Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1facefb4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1facefb4
编写于
9月 22, 2020
作者:
S
seiriosPlus
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ut
上级
b70002c5
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
168 addition
and
0 deletion
+168
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py
+168
-0
未找到文件。
python/paddle/fluid/tests/unittests/test_dist_fleet_ps6.py
0 → 100644
浏览文件 @
1facefb4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy
import
StrategyFactory
# For Net
base_lr
=
0.2
emb_lr
=
base_lr
*
3
dict_dim
=
1500
emb_dim
=
128
hid_dim
=
128
margin
=
0.1
sample_rate
=
1
batch_size
=
4
class
TestPSPassWithBow
(
unittest
.
TestCase
):
def
net
(
self
):
def
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
):
cond
=
fluid
.
layers
.
less_than
(
cos_q_nt
,
cos_q_pt
)
cond
=
fluid
.
layers
.
cast
(
cond
,
dtype
=
'float64'
)
cond_3
=
fluid
.
layers
.
reduce_sum
(
cond
)
acc
=
fluid
.
layers
.
elementwise_div
(
cond_3
,
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
batch_size
*
1.0
,
dtype
=
'float64'
),
name
=
"simnet_acc"
)
return
acc
def
get_loss
(
cos_q_pt
,
cos_q_nt
):
loss_op1
=
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
cos_q_pt
,
shape
=
[
-
1
,
1
],
value
=
margin
,
dtype
=
'float32'
),
cos_q_pt
)
loss_op2
=
fluid
.
layers
.
elementwise_add
(
loss_op1
,
cos_q_nt
)
loss_op3
=
fluid
.
layers
.
elementwise_max
(
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
loss_op2
,
shape
=
[
-
1
,
1
],
value
=
0.0
,
dtype
=
'float32'
),
loss_op2
)
avg_cost
=
fluid
.
layers
.
mean
(
loss_op3
)
return
avg_cost
is_distributed
=
False
is_sparse
=
True
# query
q
=
fluid
.
layers
.
data
(
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# embedding
q_emb
=
fluid
.
contrib
.
layers
.
sparse_embedding
(
input
=
q
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
))
q_emb
=
fluid
.
layers
.
reshape
(
q_emb
,
[
-
1
,
emb_dim
])
# vsum
q_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
q_emb
,
pool_type
=
'sum'
)
q_ss
=
fluid
.
layers
.
softsign
(
q_sum
)
# fc layer after conv
q_fc
=
fluid
.
layers
.
fc
(
input
=
q_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__q_fc__"
,
learning_rate
=
base_lr
))
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
# pt
pt
=
fluid
.
layers
.
data
(
name
=
"pos_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# embedding
pt_emb
=
fluid
.
contrib
.
layers
.
sparse_embedding
(
input
=
pt
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
))
pt_emb
=
fluid
.
layers
.
reshape
(
pt_emb
,
[
-
1
,
emb_dim
])
# vsum
pt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
pt_emb
,
pool_type
=
'sum'
)
pt_ss
=
fluid
.
layers
.
softsign
(
pt_sum
)
# fc layer
pt_fc
=
fluid
.
layers
.
fc
(
input
=
pt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
,
learning_rate
=
base_lr
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
# nt
nt
=
fluid
.
layers
.
data
(
name
=
"neg_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# embedding
nt_emb
=
fluid
.
contrib
.
layers
.
sparse_embedding
(
input
=
nt
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
))
nt_emb
=
fluid
.
layers
.
reshape
(
nt_emb
,
[
-
1
,
emb_dim
])
# vsum
nt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
nt_emb
,
pool_type
=
'sum'
)
nt_ss
=
fluid
.
layers
.
softsign
(
nt_sum
)
# fc layer
nt_fc
=
fluid
.
layers
.
fc
(
input
=
nt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
,
learning_rate
=
base_lr
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
cos_q_pt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
pt_fc
)
cos_q_nt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
nt_fc
)
# loss
avg_cost
=
get_loss
(
cos_q_pt
,
cos_q_nt
)
# acc
acc
=
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
)
return
[
avg_cost
,
acc
,
cos_q_pt
]
def
test
(
self
):
endpoints
=
[
"127.0.0.1:36004"
,
"127.0.0.1:36005"
,
"127.0.0.1:36006"
,
"127.0.0.1:36007"
]
role
=
role_maker
.
UserDefinedRoleMaker
(
current_id
=
0
,
role
=
role_maker
.
Role
.
SERVER
,
worker_num
=
2
,
server_endpoints
=
endpoints
)
fleet
.
init
(
role
)
loss
,
acc
,
_
=
self
.
net
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
base_lr
)
strategy
=
StrategyFactory
.
create_async_strategy
()
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
optimizer
.
minimize
(
loss
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录