Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1f6df878
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f6df878
编写于
8月 31, 2020
作者:
Z
Zhong Hui
提交者:
GitHub
8月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc, use to_tensor
fix doc, use to_tensor for the loss ops
上级
7ee70a47
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
23 addition
and
30 deletion
+23
-30
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+8
-12
python/paddle/nn/layer/distance.py
python/paddle/nn/layer/distance.py
+5
-5
python/paddle/nn/layer/loss.py
python/paddle/nn/layer/loss.py
+10
-13
未找到文件。
python/paddle/nn/functional/loss.py
浏览文件 @
1f6df878
...
@@ -147,7 +147,6 @@ def binary_cross_entropy(input, label, weight=None, reduction='mean',
...
@@ -147,7 +147,6 @@ def binary_cross_entropy(input, label, weight=None, reduction='mean',
label = paddle.to_tensor(label_data)
label = paddle.to_tensor(label_data)
output = paddle.nn.functional.binary_cross_entropy(input, label)
output = paddle.nn.functional.binary_cross_entropy(input, label)
print(output.numpy()) # [0.65537095]
print(output.numpy()) # [0.65537095]
paddle.enable_static()
"""
"""
if
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
if
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
...
@@ -165,8 +164,7 @@ def binary_cross_entropy(input, label, weight=None, reduction='mean',
...
@@ -165,8 +164,7 @@ def binary_cross_entropy(input, label, weight=None, reduction='mean',
return
core
.
ops
.
reduce_sum
(
out
,
'dim'
,
[
0
],
'keep_dim'
,
False
,
return
core
.
ops
.
reduce_sum
(
out
,
'dim'
,
[
0
],
'keep_dim'
,
False
,
"reduce_all"
,
True
)
"reduce_all"
,
True
)
elif
reduction
==
'mean'
:
elif
reduction
==
'mean'
:
return
core
.
ops
.
reduce_mean
(
out
,
'dim'
,
[
0
],
'keep_dim'
,
False
,
return
core
.
ops
.
mean
(
out
)
"reduce_all"
,
True
)
else
:
else
:
return
out
return
out
...
@@ -467,14 +465,12 @@ def margin_ranking_loss(input,
...
@@ -467,14 +465,12 @@ def margin_ranking_loss(input,
.. code-block:: python
.. code-block:: python
import numpy as np
import paddle
import paddle
paddle.disable_static()
paddle.disable_static()
input = paddle.to_
variable(np.array([[1, 2], [3, 4]]).astype('float32')
)
input = paddle.to_
tensor([[1, 2], [3, 4]], dtype='float32'
)
other = paddle.to_
variable(np.array([[2, 1], [2, 4]]).astype('float32')
)
other = paddle.to_
tensor([[2, 1], [2, 4]], dtype='float32'
)
label = paddle.to_
variable(np.array([[1, -1], [-1, -1]]).astype('float32')
)
label = paddle.to_
tensor([[1, -1], [-1, -1]], dtype='float32'
)
loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
print(loss.numpy()) # [0.75]
print(loss.numpy()) # [0.75]
"""
"""
...
@@ -578,8 +574,8 @@ def l1_loss(input, label, reduction='mean', name=None):
...
@@ -578,8 +574,8 @@ def l1_loss(input, label, reduction='mean', name=None):
paddle.disable_static()
paddle.disable_static()
input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
input = paddle.to_
variable
(input_data)
input = paddle.to_
tensor
(input_data)
label = paddle.to_
variable
(label_data)
label = paddle.to_
tensor
(label_data)
l1_loss = paddle.nn.functional.l1_loss(input, label)
l1_loss = paddle.nn.functional.l1_loss(input, label)
print(l1_loss.numpy())
print(l1_loss.numpy())
...
@@ -675,9 +671,9 @@ def nll_loss(input,
...
@@ -675,9 +671,9 @@ def nll_loss(input,
place = paddle.CPUPlace()
place = paddle.CPUPlace()
paddle.disable_static(place)
paddle.disable_static(place)
input = paddle.to_
variable
(input_np)
input = paddle.to_
tensor
(input_np)
log_out = log_softmax(input)
log_out = log_softmax(input)
label = paddle.to_
variable
(label_np)
label = paddle.to_
tensor
(label_np)
result = nll_loss(log_out, label)
result = nll_loss(log_out, label)
print(result.numpy()) # [1.0720209]
print(result.numpy()) # [1.0720209]
"""
"""
...
...
python/paddle/nn/layer/distance.py
浏览文件 @
1f6df878
...
@@ -44,10 +44,10 @@ class PairwiseDistance(layers.Layer):
...
@@ -44,10 +44,10 @@ class PairwiseDistance(layers.Layer):
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
x: :math:`
(N, D)
` where `D` is the dimension of vector, available dtype
x: :math:`
[N, D]
` where `D` is the dimension of vector, available dtype
is float32, float64.
is float32, float64.
y: :math:`
(N, D)
`, y have the same shape and dtype as x.
y: :math:`
[N, D]
`, y have the same shape and dtype as x.
out: :math:`
(N)`. If :attr:`keepdim` is ``True``, the out shape is :math:`(N, 1)
`.
out: :math:`
[N]`. If :attr:`keepdim` is ``True``, the out shape is :math:`[N, 1]
`.
The same dtype as input tensor.
The same dtype as input tensor.
Examples:
Examples:
...
@@ -58,8 +58,8 @@ class PairwiseDistance(layers.Layer):
...
@@ -58,8 +58,8 @@ class PairwiseDistance(layers.Layer):
paddle.disable_static()
paddle.disable_static()
x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64)
x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64)
y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64)
y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64)
x = paddle.to_
variable
(x_np)
x = paddle.to_
tensor
(x_np)
y = paddle.to_
variable
(y_np)
y = paddle.to_
tensor
(y_np)
dist = paddle.nn.PairwiseDistance()
dist = paddle.nn.PairwiseDistance()
distance = dist(x, y)
distance = dist(x, y)
print(distance.numpy()) # [5. 5.]
print(distance.numpy()) # [5. 5.]
...
...
python/paddle/nn/layer/loss.py
浏览文件 @
1f6df878
...
@@ -376,8 +376,8 @@ class L1Loss(fluid.dygraph.Layer):
...
@@ -376,8 +376,8 @@ class L1Loss(fluid.dygraph.Layer):
paddle.disable_static()
paddle.disable_static()
input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
input = paddle.to_
variable
(input_data)
input = paddle.to_
tensor
(input_data)
label = paddle.to_
variable
(label_data)
label = paddle.to_
tensor
(label_data)
l1_loss = paddle.nn.loss.L1Loss()
l1_loss = paddle.nn.loss.L1Loss()
output = l1_loss(input, label)
output = l1_loss(input, label)
...
@@ -455,7 +455,7 @@ class BCELoss(fluid.dygraph.Layer):
...
@@ -455,7 +455,7 @@ class BCELoss(fluid.dygraph.Layer):
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
input (Tensor): 2-D tensor with shape:
(N, *)
, N is batch_size, `*` means
input (Tensor): 2-D tensor with shape:
[N, *]
, N is batch_size, `*` means
number of additional dimensions. The input ``input`` should always
number of additional dimensions. The input ``input`` should always
be the output of sigmod. Available dtype is float32, float64.
be the output of sigmod. Available dtype is float32, float64.
label (Tensor): 2-D tensor with the same shape as ``input``. The target
label (Tensor): 2-D tensor with the same shape as ``input``. The target
...
@@ -476,12 +476,11 @@ class BCELoss(fluid.dygraph.Layer):
...
@@ -476,12 +476,11 @@ class BCELoss(fluid.dygraph.Layer):
label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
paddle.disable_static()
paddle.disable_static()
input = paddle.to_
variable
(input_data)
input = paddle.to_
tensor
(input_data)
label = paddle.to_
variable
(label_data)
label = paddle.to_
tensor
(label_data)
bce_loss = paddle.nn.loss.BCELoss()
bce_loss = paddle.nn.loss.BCELoss()
output = bce_loss(input, label)
output = bce_loss(input, label)
print(output.numpy()) # [0.65537095]
print(output.numpy()) # [0.65537095]
paddle.enable_static()
"""
"""
...
@@ -584,9 +583,9 @@ class NLLLoss(fluid.dygraph.Layer):
...
@@ -584,9 +583,9 @@ class NLLLoss(fluid.dygraph.Layer):
place = paddle.CPUPlace()
place = paddle.CPUPlace()
paddle.disable_static(place)
paddle.disable_static(place)
input = paddle.to_
variable
(input_np)
input = paddle.to_
tensor
(input_np)
log_out = log_softmax(input)
log_out = log_softmax(input)
label = paddle.to_
variable
(label_np)
label = paddle.to_
tensor
(label_np)
result = nll_loss(log_out, label)
result = nll_loss(log_out, label)
print(result.numpy()) # [1.0720209]
print(result.numpy()) # [1.0720209]
...
@@ -729,14 +728,12 @@ class MarginRankingLoss(fluid.dygraph.Layer):
...
@@ -729,14 +728,12 @@ class MarginRankingLoss(fluid.dygraph.Layer):
.. code-block:: python
.. code-block:: python
import numpy as np
import paddle
import paddle
paddle.disable_static()
paddle.disable_static()
input = paddle.to_
variable(np.array([[1, 2], [3, 4]]).astype("float32")
)
input = paddle.to_
tensor([[1, 2], [3, 4]]), dtype="float32"
)
other = paddle.to_
variable(np.array([[2, 1], [2, 4]]).astype("float32")
)
other = paddle.to_
tensor([[2, 1], [2, 4]]), dtype="float32"
)
label = paddle.to_
variable(np.array([[1, -1], [-1, -1]]).astype("float32")
)
label = paddle.to_
tensor([[1, -1], [-1, -1]], dtype="float32"
)
margin_rank_loss = paddle.nn.MarginRankingLoss()
margin_rank_loss = paddle.nn.MarginRankingLoss()
loss = margin_rank_loss(input, other, label)
loss = margin_rank_loss(input, other, label)
print(loss.numpy()) # [0.75]
print(loss.numpy()) # [0.75]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录