From 1f0fa675718fd5aa58ca194a0aafa89829da877d Mon Sep 17 00:00:00 2001 From: ZhenWang Date: Thu, 22 Nov 2018 21:05:35 +0800 Subject: [PATCH] add some activation api examples. --- python/paddle/fluid/layers/nn.py | 46 ++++++++++++++++++++++++++++++-- 1 file changed, 44 insertions(+), 2 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index ccd9175b64d..2891893fde3 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -6833,6 +6833,13 @@ def elu(x, alpha=1.0, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.elu(x, alpha=0.2) """ helper = LayerHelper('elu', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6856,6 +6863,13 @@ def relu6(x, threshold=6.0, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.relu6(x, threshold=6.0) """ helper = LayerHelper('relu6', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6879,6 +6893,13 @@ def pow(x, factor=1.0, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.pow(x, factor=2.0) """ helper = LayerHelper('pow', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6903,6 +6924,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.stanh(x, scale_a=0.6667, scale_b=1.7159) """ helper = LayerHelper('stanh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6928,6 +6956,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8) """ helper = LayerHelper('hard_sigmoid', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6952,6 +6987,13 @@ def swish(x, beta=1.0, name=None): Returns: output(${out_type}): ${out_comment} + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32") + y = fluid.layers.swish(x, beta=1.2) """ helper = LayerHelper('swish', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) @@ -6988,8 +7030,8 @@ def prelu(x, mode, param_attr=None, name=None): .. code-block:: python x = fluid.layers.data(name="x", shape=[10,10], dtype="float32") - mode = 'channel' - output = fluid.layers.prelu(x,mode) + mode = 'channel' + output = fluid.layers.prelu(x,mode) """ helper = LayerHelper('prelu', **locals()) if mode not in ['all', 'channel', 'element']: -- GitLab