未验证 提交 1d9cb932 编写于 作者: Q Qiyang Min 提交者: GitHub

Merge pull request #12989 from velconia/fix_last_of_py3

Fix random diff between python2 and python3
......@@ -24,6 +24,7 @@ set and test set into paddle reader creators.
from __future__ import print_function
import numpy as np
import zipfile
import paddle.dataset.common
import re
......@@ -150,12 +151,12 @@ def __initialize_meta_info__():
def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
fn = __initialize_meta_info__()
rand = random.Random(x=rand_seed)
np.random.seed(rand_seed)
with zipfile.ZipFile(file=fn) as package:
with package.open('ml-1m/ratings.dat') as rating:
for line in rating:
line = cpt.to_text(line, encoding='latin')
if (rand.random() < test_ratio) == is_test:
if (np.random.random() < test_ratio) == is_test:
uid, mov_id, rating, _ = line.strip().split("::")
uid = int(uid)
mov_id = int(mov_id)
......
......@@ -17,6 +17,7 @@ All layers just related to the neural network.
from __future__ import print_function
import numpy as np
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
......@@ -24,7 +25,6 @@ from ..param_attr import ParamAttr
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
import random
from .. import unique_name
from functools import reduce
......@@ -5102,7 +5102,7 @@ def random_crop(x, shape, seed=None):
dtype = x.dtype
out = helper.create_tmp_variable(dtype)
if seed is None:
seed = random.randint(-65536, 65535)
seed = np.random.randint(-65536, 65536)
op_attrs = {"shape": shape}
if isinstance(seed, int):
op_attrs["startup_seed"] = seed
......
......@@ -31,7 +31,6 @@ Steps to transpile pserver:
"""
import math
import random
import numpy as np
import collections
import six
......@@ -239,8 +238,8 @@ class DistributeTranspiler(object):
grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
if not self.config.slice_var_up:
random.seed(self.origin_program.random_seed)
random.shuffle(grad_var_mapping_items)
np.random.seed(self.origin_program.random_seed)
np.random.shuffle(grad_var_mapping_items)
grad_name_to_send_dummy_out = dict()
for grad_varname, splited_vars in grad_var_mapping_items:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册