Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1c29196e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1c29196e
编写于
3月 07, 2022
作者:
0
0x45f
提交者:
GitHub
3月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi]Move bincount OP to phi (#39947)
* move bincount OP to phi * fix dtype * set_dtype by weights or x * fix conflicts
上级
2a3d9eca
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
386 addition
and
162 deletion
+386
-162
paddle/fluid/operators/bincount_op.cc
paddle/fluid/operators/bincount_op.cc
+9
-53
paddle/fluid/operators/bincount_op.h
paddle/fluid/operators/bincount_op.h
+0
-109
paddle/phi/infermeta/binary.cc
paddle/phi/infermeta/binary.cc
+50
-0
paddle/phi/infermeta/binary.h
paddle/phi/infermeta/binary.h
+4
-0
paddle/phi/kernels/bincount_kernel.h
paddle/phi/kernels/bincount_kernel.h
+28
-0
paddle/phi/kernels/cpu/bincount_kernel.cc
paddle/phi/kernels/cpu/bincount_kernel.cc
+106
-0
paddle/phi/kernels/gpu/bincount_kernel.cu
paddle/phi/kernels/gpu/bincount_kernel.cu
+164
-0
paddle/phi/ops/compat/bincount_sig.cc
paddle/phi/ops/compat/bincount_sig.cc
+25
-0
未找到文件。
paddle/fluid/operators/bincount_op.cc
浏览文件 @
1c29196e
...
...
@@ -12,12 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bincount_op.h"
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/binary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,51 +31,6 @@ class BincountOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of BincountOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Out) of BincountOp should not be null."
));
auto
input_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
minlength
=
ctx
->
Attrs
().
Get
<
int
>
(
"minlength"
);
PADDLE_ENFORCE_GE
(
minlength
,
0
,
platform
::
errors
::
InvalidArgument
(
"The minlength should be greater than or equal to 0."
"But received minlength is %d"
,
minlength
));
PADDLE_ENFORCE_EQ
(
input_dim
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) must be 1-D tensor."
"But the dimension of Input(X) is [%d]"
,
input_dim
.
size
()));
if
(
ctx
->
HasInput
(
"Weights"
))
{
auto
weights_dim
=
ctx
->
GetInputDim
(
"Weights"
);
PADDLE_ENFORCE_EQ
(
weights_dim
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be 1-D tensor."
"But the dimension of Input(Weights) is [%d]"
,
weights_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
weights_dim
[
0
],
input_dim
[
0
],
platform
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be equal to the 'shape' of "
"Input(X)."
"But received: the 'shape' of Input(Weights) is [%s],"
"the 'shape' of Input(X) is [%s]"
,
weights_dim
,
input_dim
));
}
ctx
->
SetOutputDim
(
"Out"
,
phi
::
make_ddim
({
-
1
}));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
data_type
=
...
...
@@ -105,12 +63,10 @@ class BincountOpMaker : public framework::OpProtoAndCheckerMaker {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
bincount
,
BincountInferShapeFunctor
,
PD_INFER_META
(
phi
::
BincountInferMeta
));
REGISTER_OPERATOR
(
bincount
,
ops
::
BincountOp
,
ops
::
BincountOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
bincount
,
ops
::
BincountKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
BincountKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
BincountKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
BincountKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
BincountInferShapeFunctor
);
paddle/fluid/operators/bincount_op.h
已删除
100644 → 0
浏览文件 @
2a3d9eca
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
,
typename
InputT
>
void
BincountInner
(
const
framework
::
ExecutionContext
&
context
)
{
const
Tensor
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
Tensor
*
weights
=
context
.
Input
<
framework
::
Tensor
>
(
"Weights"
);
Tensor
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
&
minlength
=
context
.
Attr
<
int
>
(
"minlength"
);
const
InputT
*
input_data
=
input
->
data
<
InputT
>
();
auto
input_numel
=
input
->
numel
();
if
(
input_data
==
nullptr
)
{
framework
::
DDim
out_dim
{
0
};
output
->
Resize
(
out_dim
);
output
->
mutable_data
<
InputT
>
(
context
.
GetPlace
());
return
;
}
PADDLE_ENFORCE_GE
(
*
std
::
min_element
(
input_data
,
input_data
+
input_numel
),
static_cast
<
InputT
>
(
0
),
platform
::
errors
::
InvalidArgument
(
"The elements in input tensor must be non-negative ints"
));
int64_t
output_size
=
static_cast
<
int64_t
>
(
*
std
::
max_element
(
input_data
,
input_data
+
input_numel
))
+
1L
;
output_size
=
std
::
max
(
output_size
,
static_cast
<
int64_t
>
(
minlength
));
framework
::
DDim
out_dim
{
output_size
};
output
->
Resize
(
out_dim
);
bool
has_weights
=
(
weights
!=
nullptr
);
if
(
has_weights
)
{
const
T
*
weights_data
=
weights
->
data
<
T
>
();
const
auto
&
weights_type
=
framework
::
TransToProtoVarType
(
weights
->
dtype
());
if
(
weights_type
==
framework
::
proto
::
VarType
::
FP32
)
{
float
*
output_data
=
output
->
mutable_data
<
float
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
float
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
float
>
(
0
));
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
static_cast
<
float
>
(
weights_data
[
i
]);
}
}
else
{
double
*
output_data
=
output
->
mutable_data
<
double
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
double
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
double
>
(
0
));
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
static_cast
<
double
>
(
weights_data
[
i
]);
}
}
}
else
{
int64_t
*
output_data
=
output
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
int64_t
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
0L
);
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
1L
;
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
BincountKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
auto
&
input_type
=
framework
::
TransToProtoVarType
(
input
->
dtype
());
if
(
input_type
==
framework
::
proto
::
VarType
::
INT32
)
{
BincountInner
<
DeviceContext
,
T
,
int
>
(
context
);
}
else
if
(
input_type
==
framework
::
proto
::
VarType
::
INT64
)
{
BincountInner
<
DeviceContext
,
T
,
int64_t
>
(
context
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/infermeta/binary.cc
浏览文件 @
1c29196e
...
...
@@ -456,6 +456,56 @@ void BCELossInferMeta(const MetaTensor& input,
out
->
share_lod
(
input
);
}
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
)
{
auto
input_dim
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
minlength
,
0
,
phi
::
errors
::
InvalidArgument
(
"The minlength should be greater than or equal to 0."
"But received minlength is %d"
,
minlength
));
PADDLE_ENFORCE_EQ
(
input_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) must be 1-D tensor."
"But the dimension of Input(X) is [%d]"
,
input_dim
.
size
()));
if
(
weights
.
is_initialized
())
{
auto
weights_dim
=
weights
->
dims
();
PADDLE_ENFORCE_EQ
(
weights_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be 1-D tensor."
"But the dimension of Input(Weights) is [%d]"
,
weights_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
weights_dim
[
0
],
input_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be equal to the 'shape' of "
"Input(X)."
"But received: the 'shape' of Input(Weights) is [%s],"
"the 'shape' of Input(X) is [%s]"
,
weights_dim
,
input_dim
));
}
out
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
if
(
weights
.
is_initialized
())
{
out
->
set_dtype
(
weights
->
dtype
());
}
else
{
out
->
set_dtype
(
x
.
dtype
());
}
out
->
share_lod
(
x
);
}
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
...
...
paddle/phi/infermeta/binary.h
浏览文件 @
1c29196e
...
...
@@ -85,6 +85,10 @@ void BCELossInferMeta(const MetaTensor& input,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
);
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
...
...
paddle/phi/kernels/bincount_kernel.h
0 → 100644
浏览文件 @
1c29196e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BincountKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
const
DenseTensor
&>
weights
,
int
minlength
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/bincount_kernel.cc
0 → 100644
浏览文件 @
1c29196e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bincount_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
Context
,
typename
T
,
typename
InputT
>
void
BincountInner
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
const
DenseTensor
&>
weights
,
int
minlength
,
DenseTensor
*
out
)
{
const
DenseTensor
*
input
=
&
x
;
DenseTensor
*
output
=
out
;
const
InputT
*
input_data
=
input
->
data
<
InputT
>
();
auto
input_numel
=
input
->
numel
();
if
(
input_data
==
nullptr
)
{
phi
::
DDim
out_dim
{
0
};
output
->
Resize
(
out_dim
);
dev_ctx
.
template
Alloc
<
InputT
>(
output
);
return
;
}
PADDLE_ENFORCE_GE
(
*
std
::
min_element
(
input_data
,
input_data
+
input_numel
),
static_cast
<
InputT
>
(
0
),
phi
::
errors
::
InvalidArgument
(
"The elements in input tensor must be non-negative ints"
));
int64_t
output_size
=
static_cast
<
int64_t
>
(
*
std
::
max_element
(
input_data
,
input_data
+
input_numel
))
+
1L
;
output_size
=
std
::
max
(
output_size
,
static_cast
<
int64_t
>
(
minlength
));
phi
::
DDim
out_dim
{
output_size
};
output
->
Resize
(
out_dim
);
bool
has_weights
=
weights
.
is_initialized
();
if
(
has_weights
)
{
const
T
*
weights_data
=
weights
->
data
<
T
>
();
if
(
weights
->
dtype
()
==
DataType
::
FLOAT32
)
{
float
*
output_data
=
dev_ctx
.
template
Alloc
<
float
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
float
>
()(
dev_ctx
,
output
,
static_cast
<
float
>
(
0
));
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
static_cast
<
float
>
(
weights_data
[
i
]);
}
}
else
{
double
*
output_data
=
dev_ctx
.
template
Alloc
<
double
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
double
>
()(
dev_ctx
,
output
,
static_cast
<
double
>
(
0
));
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
static_cast
<
double
>
(
weights_data
[
i
]);
}
}
}
else
{
int64_t
*
output_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
0L
);
for
(
int64_t
i
=
0
;
i
<
input_numel
;
i
++
)
{
output_data
[
input_data
[
i
]]
+=
1L
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
BincountKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
const
DenseTensor
&>
weights
,
int
minlength
,
DenseTensor
*
out
)
{
if
(
x
.
dtype
()
==
DataType
::
INT32
)
{
BincountInner
<
Context
,
T
,
int
>
(
dev_ctx
,
x
,
weights
,
minlength
,
out
);
}
else
if
(
x
.
dtype
()
==
DataType
::
INT64
)
{
BincountInner
<
Context
,
T
,
int64_t
>
(
dev_ctx
,
x
,
weights
,
minlength
,
out
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
bincount
,
CPU
,
ALL_LAYOUT
,
phi
::
BincountKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/
fluid/operators/bincount_op
.cu
→
paddle/
phi/kernels/gpu/bincount_kernel
.cu
浏览文件 @
1c29196e
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bincount_kernel.h"
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/bincount_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
namespace
phi
{
using
Tensor
=
framework
::
Tensor
;
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
paddle
::
platform
::
PADDLE_CUDA_NUM_THREADS
;
inline
int
GET_BLOCKS
(
const
int
N
)
{
return
(
N
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
;
}
template
<
typename
T
,
typename
InputT
,
typename
OutT
>
__global__
void
KernelBincount
(
const
InputT
*
input
,
const
int
total_elements
,
const
bool
has_weights
,
const
T
*
weights
,
__global__
void
KernelBincount
(
const
InputT
*
input
,
const
int
total_elements
,
const
bool
has_weights
,
const
T
*
weights
,
OutT
*
output
)
{
if
(
!
has_weights
)
{
for
(
int
i
=
threadIdx
.
x
;
i
<
total_elements
;
i
+=
blockDim
.
x
)
{
...
...
@@ -44,119 +46,119 @@ __global__ void KernelBincount(const InputT* input, const int total_elements,
}
}
template
<
typename
DeviceContext
,
typename
T
,
typename
InputT
>
void
BincountCUDAInner
(
const
framework
::
ExecutionContext
&
context
)
{
const
Tensor
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
Tensor
*
weights
=
context
.
Input
<
framework
::
Tensor
>
(
"Weights"
);
Tensor
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
&
minlength
=
context
.
Attr
<
int
>
(
"minlength"
);
template
<
typename
Context
,
typename
T
,
typename
InputT
>
void
BincountCUDAInner
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
const
DenseTensor
&>
weights
,
int
minlength
,
DenseTensor
*
out
)
{
const
DenseTensor
*
input
=
&
x
;
DenseTensor
*
output
=
out
;
const
InputT
*
input_data
=
input
->
data
<
InputT
>
();
const
int
input_numel
=
input
->
numel
();
if
(
input_data
==
nullptr
)
{
framework
::
DDim
out_dim
{
0
};
phi
::
DDim
out_dim
{
0
};
output
->
Resize
(
out_dim
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
()
);
dev_ctx
.
template
Alloc
<
T
>(
output
);
return
;
}
auto
input_x
=
framework
::
EigenVector
<
InputT
>::
Flatten
(
*
input
);
framework
::
Tensor
input_min_t
,
input_max_t
;
auto
*
input_max_data
=
input_max_t
.
mutable_data
<
InputT
>
({
1
},
context
.
GetPlace
());
auto
*
input_min_data
=
input_min_t
.
mutable_data
<
InputT
>
({
1
},
context
.
GetPlace
());
auto
input_x
=
EigenVector
<
InputT
>::
Flatten
(
*
input
);
DenseTensor
input_min_t
,
input_max_t
;
input_max_t
.
Resize
({
1
});
auto
*
input_max_data
=
dev_ctx
.
template
Alloc
<
InputT
>(
&
input_max_t
);
input_min_t
.
Resize
({
1
});
auto
*
input_min_data
=
dev_ctx
.
template
Alloc
<
InputT
>(
&
input_min_t
);
auto
input_max_scala
=
framework
::
EigenScalar
<
InputT
>::
From
(
input_max_t
);
auto
input_min_scala
=
framework
::
EigenScalar
<
InputT
>::
From
(
input_min_t
);
auto
input_max_scala
=
EigenScalar
<
InputT
>::
From
(
input_max_t
);
auto
input_min_scala
=
EigenScalar
<
InputT
>::
From
(
input_min_t
);
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>()
.
eigen_device
();
auto
*
place
=
dev_ctx
.
eigen_device
();
input_max_scala
.
device
(
*
place
)
=
input_x
.
maximum
();
input_min_scala
.
device
(
*
place
)
=
input_x
.
minimum
();
Tensor
input_min_cpu
,
input_max_cpu
;
paddle
::
framework
::
TensorCopySync
(
input_max_t
,
platform
::
CPUPlace
(),
&
input_max_cpu
);
paddle
::
framework
::
TensorCopySync
(
input_min_t
,
platform
::
CPUPlace
(),
&
input_min_cpu
);
Dense
Tensor
input_min_cpu
,
input_max_cpu
;
paddle
::
framework
::
TensorCopySync
(
input_max_t
,
phi
::
CPUPlace
(),
&
input_max_cpu
);
paddle
::
framework
::
TensorCopySync
(
input_min_t
,
phi
::
CPUPlace
(),
&
input_min_cpu
);
InputT
input_min
=
input_min_cpu
.
data
<
InputT
>
()[
0
];
PADDLE_ENFORCE_GE
(
input_min
,
static_cast
<
InputT
>
(
0
),
platform
::
errors
::
InvalidArgument
(
input_min
,
static_cast
<
InputT
>
(
0
),
phi
::
errors
::
InvalidArgument
(
"The elements in input tensor must be non-negative ints"
));
int64_t
output_size
=
static_cast
<
int64_t
>
(
input_max_cpu
.
data
<
InputT
>
()[
0
])
+
1L
;
output_size
=
std
::
max
(
output_size
,
static_cast
<
int64_t
>
(
minlength
));
framework
::
DDim
out_dim
{
output_size
};
phi
::
DDim
out_dim
{
output_size
};
output
->
Resize
(
out_dim
);
bool
has_weights
=
(
weights
!=
nullptr
);
bool
has_weights
=
weights
.
is_initialized
(
);
const
T
*
weights_data
=
has_weights
?
weights
->
data
<
T
>
()
:
nullptr
;
auto
stream
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>().
stream
();
auto
stream
=
dev_ctx
.
stream
();
if
(
!
has_weights
)
{
int64_t
*
output_data
=
output
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
int64_t
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
0L
);
int64_t
*
output_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
int64_t
>
()(
dev_ctx
,
output
,
0L
);
KernelBincount
<
T
,
InputT
,
int64_t
><<<
GET_BLOCKS
(
input_numel
),
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input_data
,
input_numel
,
has_weights
,
weights_data
,
output_data
);
}
else
{
const
auto
&
weights_type
=
framework
::
TransToProtoVarType
(
weights
->
dtype
());
const
auto
&
weights_type
=
paddle
::
framework
::
TransToProtoVarType
(
weights
->
dtype
());
if
(
weights_type
==
framework
::
proto
::
VarType
::
FP32
)
{
float
*
output_data
=
output
->
mutable_data
<
float
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
float
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
float
>
(
0
));
if
(
weights
->
dtype
()
==
DataType
::
FLOAT32
)
{
float
*
output_data
=
dev_ctx
.
template
Alloc
<
float
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
float
>
()(
dev_ctx
,
output
,
static_cast
<
float
>
(
0
));
KernelBincount
<
T
,
InputT
,
float
><<<
GET_BLOCKS
(
input_numel
),
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input_data
,
input_numel
,
has_weights
,
weights_data
,
output_data
);
}
else
{
double
*
output_data
=
output
->
mutable_data
<
double
>
(
context
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
double
>
()(
context
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
double
>
(
0
));
double
*
output_data
=
dev_ctx
.
template
Alloc
<
double
>(
output
);
phi
::
funcs
::
SetConstant
<
Context
,
double
>
()(
dev_ctx
,
output
,
static_cast
<
double
>
(
0
));
KernelBincount
<
T
,
InputT
,
double
><<<
GET_BLOCKS
(
input_numel
),
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input_data
,
input_numel
,
has_weights
,
weights_data
,
output_data
);
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
BincountCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
auto
&
input_type
=
framework
::
TransToProtoVarType
(
input
->
dtype
());
if
(
input_type
==
framework
::
proto
::
VarType
::
INT32
)
{
BincountCUDAInner
<
DeviceContext
,
T
,
int
>
(
context
);
}
else
if
(
input_type
==
framework
::
proto
::
VarType
::
INT64
)
{
BincountCUDAInner
<
DeviceContext
,
T
,
int64_t
>
(
context
);
}
template
<
typename
T
,
typename
Context
>
void
BincountKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
const
DenseTensor
&>
weights
,
int
minlength
,
DenseTensor
*
out
)
{
if
(
x
.
dtype
()
==
DataType
::
INT32
)
{
BincountCUDAInner
<
Context
,
T
,
int
>
(
dev_ctx
,
x
,
weights
,
minlength
,
out
);
}
else
if
(
x
.
dtype
()
==
DataType
::
INT64
)
{
BincountCUDAInner
<
Context
,
T
,
int64_t
>
(
dev_ctx
,
x
,
weights
,
minlength
,
out
);
}
}
;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
bincount
,
ops
::
BincountCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
BincountCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
BincountCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
BincountCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
bincount
,
GPU
,
ALL_LAYOUT
,
phi
::
BincountKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/ops/compat/bincount_sig.cc
0 → 100644
浏览文件 @
1c29196e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
BincountOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"bincount"
,
{
"X"
,
"Weights"
},
{
"minlength"
},
{
"Out"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
bincount
,
phi
::
BincountOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录