Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1b0b253d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b0b253d
编写于
8月 31, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
8月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix softmax_with_cross_entropy en docs (#45527)
上级
fe2bfe15
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
90 addition
and
13 deletion
+90
-13
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+90
-13
未找到文件。
python/paddle/nn/functional/loss.py
浏览文件 @
1b0b253d
...
@@ -184,27 +184,19 @@ def fluid_softmax_with_cross_entropy(logits,
...
@@ -184,27 +184,19 @@ def fluid_softmax_with_cross_entropy(logits,
1) Hard label (one-hot label, so every sample has exactly one class)
1) Hard label (one-hot label, so every sample has exactly one class)
.. math::
.. math::
\\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
loss_j = -\\text{logits}_{label_j} +
\\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes)
2) Soft label (each sample can have a distribution over all classes)
.. math::
.. math::
\\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
loss_j = -\\sum_{i=0}^{K}\\text{label}_i
\\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
\\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K
3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:
3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:
.. math::
.. math::
\\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
max_j &= \\max_{i=0}^{K}{\\text{logits}_i}
log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j)
softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j)
and then cross entropy loss is calculated by softmax and label.
and then cross entropy loss is calculated by softmax and label.
...
@@ -2030,6 +2022,91 @@ def softmax_with_cross_entropy(logits,
...
@@ -2030,6 +2022,91 @@ def softmax_with_cross_entropy(logits,
numeric_stable_mode
=
True
,
numeric_stable_mode
=
True
,
return_softmax
=
False
,
return_softmax
=
False
,
axis
=-
1
):
axis
=-
1
):
r
"""
This operator implements the cross entropy loss function with softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function
to provide a more numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
When the attribute :attr:`soft_label` is set :attr:`False`, this operators
expects mutually exclusive hard labels, each sample in a batch is in exactly
one class with a probability of 1.0. Each sample in the batch will have a
single label.
The equation is as follows:
1) Hard label (one-hot label, so every sample has exactly one class)
.. math::
\\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes)
.. math::
\\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:
.. math::
\\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
and then cross entropy loss is calculated by softmax and label.
Args:
logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
label (Tensor): The ground truth ``Tensor`` , data type is the same
as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
Label is a ``Tensor`` in the same shape with :attr:`logits`.
If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
soft_label (bool, optional): A flag to indicate whether to interpretant the given
labels as soft labels. Default False.
ignore_index (int, optional): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
if :attr:`soft_label` is set to :attr:`False`.
Default: kIgnoreIndex(-100).
numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
numerically stable algorithm. Only valid
when :attr:`soft_label` is :attr:`False`
and GPU is used. When :attr:`soft_label`
is :attr:`True` or CPU is used, the
algorithm is always numerically stable.
Note that the speed may be slower when use
stable algorithm. Default: True.
return_softmax (bool, optional): A flag indicating whether to return the softmax
along with the cross entropy loss. Default: False.
axis (int, optional): The index of dimension to perform softmax calculations. It
should be in range :math:`[-1, rank - 1]`, while :math:`rank`
is the rank of input :attr:`logits`. Default: -1.
Returns:
``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple \
(loss, softmax), softmax is in the same shape \
with input logits and cross entropy loss is in \
the same shape with input logits except shape \
in dimension :attr:`axis` as 1.
Examples:
.. code-block:: python
import paddle
import numpy as np
data = np.random.rand(128).astype("float32")
label = np.random.rand(1).astype("int64")
data = paddle.to_tensor(data)
label = paddle.to_tensor(label)
linear = paddle.nn.Linear(128, 100)
x = linear(data)
out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
print(out)
"""
return
fluid_softmax_with_cross_entropy
(
logits
,
label
,
soft_label
,
return
fluid_softmax_with_cross_entropy
(
logits
,
label
,
soft_label
,
ignore_index
,
numeric_stable_mode
,
ignore_index
,
numeric_stable_mode
,
return_softmax
,
axis
)
return_softmax
,
axis
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录