diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index ecde407e6d85ea1bfc0181b4b60e095ea496fb1a..54a1c68a37f6929890aab697b48d621e6effb7d8 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -264,6 +264,25 @@ class TestLRDecay(TranspilerTest): ]) +class TestDecayedAdagrad(TranspilerTest): + def net_conf(self): + x = fluid.layers.data(name='x', shape=[1000], dtype='float32') + y_predict = fluid.layers.fc(input=x, + size=1000, + act=None, + param_attr=fluid.ParamAttr(name='fc_w'), + bias_attr=fluid.ParamAttr(name='fc_b')) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(cost) + opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1) + opt.minimize(avg_cost) + + def transpiler_test_impl(self): + pserver, startup = self.get_pserver(self.pserver1_ep) + trainer, _ = self.get_trainer() + + class TestLRDecayConditional(TranspilerTest): def net_conf(self): x = fluid.layers.data(name='x', shape=[1000], dtype='float32') diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 3ddc1f3addbd722df498008432cbda9be986c1a4..6547a7e71ebadcb18159d0960a490959e9eaf160 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -1428,6 +1428,9 @@ to transpile() call.") elif op_type == "rmsprop": if varkey in ["Moment", "MeanSquare"]: return param_shape + elif op_type == "decayed_adagrad": + if varkey == "Moment": + return param_shape elif op_type == "sgd": pass return orig_shape