未验证 提交 1aa6adb1 编写于 作者: W Wang Bojun 提交者: GitHub

Trt groupnorm dynamic plugin (#44911)

* add group_norm dyanmic plugin
上级 4528ed2a
...@@ -9,11 +9,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -9,11 +9,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <vector> #include "paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/fluid/inference/tensorrt/engine.h"
#include <vector>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class Scope; class Scope;
...@@ -59,52 +61,44 @@ class GroupNormOpConverter : public OpConverter { ...@@ -59,52 +61,44 @@ class GroupNormOpConverter : public OpConverter {
framework::DDim bias_dims; framework::DDim bias_dims;
auto scale_weights = GetWeight(scale_name, &scale_dims); auto scale_weights = GetWeight(scale_name, &scale_dims);
auto bias_weights = GetWeight(bias_name, &bias_dims); auto bias_weights = GetWeight(bias_name, &bias_dims);
if (engine_->with_dynamic_shape()) {
nvinfer1::Dims scale_nv_dims; int gn_num = groups;
nvinfer1::Dims bias_nv_dims; std::vector<int64_t> mean_shape({gn_num});
scale_nv_dims.nbDims = scale_dims.size(); std::vector<int64_t> variance_shape({gn_num});
bias_nv_dims.nbDims = bias_dims.size(); plugin::GroupNormPluginDynamic* plugin =
for (int i = 0; i < scale_dims.size(); i++) { new plugin::GroupNormPluginDynamic(
scale_nv_dims.d[i] = scale_dims.at(i); static_cast<const float*>(scale_weights.get().values),
} scale_weights.get().count,
for (int i = 0; i < bias_dims.size(); i++) { static_cast<const float*>(bias_weights.get().values),
bias_nv_dims.d[i] = bias_dims.at(i); bias_weights.get().count,
} epsilon,
groups,
auto* scale_layer = TRT_ENGINE_ADD_LAYER( mean_shape,
engine_, Constant, scale_nv_dims, scale_weights.get()); variance_shape);
auto* bias_layer = TRT_ENGINE_ADD_LAYER( nvinfer1::ILayer* groupnorm_layer =
engine_, Constant, bias_nv_dims, bias_weights.get()); engine_->AddDynamicPlugin(&input_itensor, 1, plugin);
auto output_name = op_desc.Output("Y")[0];
std::vector<nvinfer1::ITensor*> plugin_inputs; RreplenishLayerAndOutput(
plugin_inputs.emplace_back(input_itensor); groupnorm_layer, "group_norm", {output_name}, test_mode);
plugin_inputs.emplace_back(scale_layer->getOutput(0)); } else {
plugin_inputs.emplace_back(bias_layer->getOutput(0)); int gn_num = input_itensor->getDimensions().d[0] * groups;
std::vector<int64_t> mean_shape({gn_num});
const std::vector<nvinfer1::PluginField> fields{ std::vector<int64_t> variance_shape({gn_num});
{"eps", &epsilon, nvinfer1::PluginFieldType::kFLOAT32, 1}, plugin::GroupNormPlugin* plugin = new plugin::GroupNormPlugin(
{"num_groups", &groups, nvinfer1::PluginFieldType::kINT32, 1}, static_cast<const float*>(scale_weights.get().values),
}; scale_weights.get().count,
static_cast<const float*>(bias_weights.get().values),
nvinfer1::PluginFieldCollection* plugin_collections = bias_weights.get().count,
static_cast<nvinfer1::PluginFieldCollection*>( epsilon,
malloc(sizeof(*plugin_collections) + groups,
fields.size() * sizeof(nvinfer1::PluginField))); mean_shape,
plugin_collections->nbFields = static_cast<int>(fields.size()); variance_shape);
plugin_collections->fields = fields.data(); nvinfer1::ILayer* groupnorm_layer =
engine_->AddPlugin(&input_itensor, 1, plugin);
auto creator =
GetPluginRegistry()->getPluginCreator("GroupNormalizationPlugin", "1");
auto group_norm_plugin =
creator->createPlugin("GroupNormalizationPlugin", plugin_collections);
free(plugin_collections);
auto group_norm_plugin_layer = engine_->network()->addPluginV2(
plugin_inputs.data(), plugin_inputs.size(), *group_norm_plugin);
auto output_name = op_desc.Output("Y")[0]; auto output_name = op_desc.Output("Y")[0];
RreplenishLayerAndOutput( RreplenishLayerAndOutput(
group_norm_plugin_layer, "group_norm", {output_name}, test_mode); groupnorm_layer, "group_norm", {output_name}, test_mode);
}
} }
}; };
......
...@@ -32,11 +32,9 @@ namespace tensorrt { ...@@ -32,11 +32,9 @@ namespace tensorrt {
// Just tell by the op_types. // Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller { struct SimpleOpTypeSetTeller : public Teller {
SimpleOpTypeSetTeller() { SimpleOpTypeSetTeller() {
// TODO(baoachun) The group_norm trt plugin will check input's dim #if IS_TRT_VERSION_GE(7130)
// not -1 failed when dynamic shape mode. teller_set.insert("group_norm");
// #if IS_TRT_VERSION_GE(7130) #endif
// teller_set.insert("group_norm");
// #endif
#if IS_TRT_VERSION_GE(7000) #if IS_TRT_VERSION_GE(7000)
teller_set.insert("tile"); teller_set.insert("tile");
teller_set.insert("flatten_contiguous_range"); teller_set.insert("flatten_contiguous_range");
...@@ -583,12 +581,26 @@ bool OpTeller::Tell(const framework::ir::Node* node, ...@@ -583,12 +581,26 @@ bool OpTeller::Tell(const framework::ir::Node* node,
const auto x_shape = x_var_desc->GetShape(); const auto x_shape = x_var_desc->GetShape();
} }
if (op_type == "group_norm") { if (op_type == "group_norm") {
if (!with_dynamic_shape) return false;
bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups")); bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
if (has_attrs == false) return false; if (has_attrs == false) return false;
auto registry = GetPluginRegistry(); auto registry = GetPluginRegistry();
if (registry == nullptr) return false; if (registry == nullptr) return false;
std::string layout_str =
PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
if (layout_str != "NCHW") {
VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
<< layout_str;
return false;
}
auto* block = desc.Block();
if (block == nullptr) return false;
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
auto dtype = x_var_desc->GetDataType();
if (dtype != 5) {
VLOG(3) << "Group norm trt plugin only support float32";
return false;
}
} }
if (op_type == "concat") { if (op_type == "concat") {
if (!desc.HasAttr("axis")) { if (!desc.HasAttr("axis")) {
......
...@@ -8,6 +8,7 @@ list( ...@@ -8,6 +8,7 @@ list(
gelu_op_plugin.cu gelu_op_plugin.cu
pool_op_plugin.cu pool_op_plugin.cu
swish_op_plugin.cu swish_op_plugin.cu
group_norm_op_plugin.cu
layer_norm_op_plugin.cu layer_norm_op_plugin.cu
instance_norm_op_plugin.cu instance_norm_op_plugin.cu
emb_eltwise_layernorm_plugin.cu emb_eltwise_layernorm_plugin.cu
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h"
#include "paddle/phi/kernels/group_norm_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
using DataLayout = framework::DataLayout;
int GroupNormPlugin::initialize() TRT_NOEXCEPT { return 0; }
nvinfer1::Dims GroupNormPlugin::getOutputDimensions(
int index, const nvinfer1::Dims *inputDims, int nbInputs) TRT_NOEXCEPT {
return inputDims[0];
}
int GroupNormPlugin::enqueue(int batch_size,
const void *const *inputs,
#if IS_TRT_VERSION_LT(8000)
void **outputs,
void *workspace,
#else
void *const *outputs,
void *workspace,
#endif
cudaStream_t stream) TRT_NOEXCEPT {
const auto &input_dims = this->getInputDims(0);
int groups = groups_;
float eps = eps_;
std::vector<int> input_shape;
input_shape.push_back(batch_size);
for (int i = 0; i < input_dims.nbDims; i++) {
input_shape.push_back(input_dims.d[i]);
}
const auto input_ddim = phi::make_ddim(input_shape);
int C = input_shape[1];
PADDLE_ENFORCE_EQ(
C,
scale_.size(),
platform::errors::InvalidArgument(
"scale's size should be equal to the channel number in groupnorm,"
"but got channel number:%d, scale's size:%d.",
C,
scale_.size()));
PADDLE_ENFORCE_EQ(
C,
bias_.size(),
platform::errors::InvalidArgument(
"bias's size should be equal to the channel number in groupnorm,"
"but got channel number:%d, bias's size:%d.",
C,
bias_.size()));
int device_id;
cudaGetDevice(&device_id);
const float *input = static_cast<const float *>(inputs[0]);
float *output = static_cast<float *>(outputs[0]);
scale_t.Resize(phi::make_ddim({C}));
bias_t.Resize(phi::make_ddim({C}));
mean_t.Resize(phi::make_ddim(mean_shape_));
variance_t.Resize(phi::make_ddim(variance_shape_));
float *scale_d = scale_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *bias_d = bias_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *mean_d = mean_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *variance_d =
variance_t.mutable_data<float>(platform::CUDAPlace(device_id));
framework::Tensor temp_variance_t;
temp_variance_t.Resize(phi::make_ddim(variance_shape_));
float *temp_variance_d =
temp_variance_t.mutable_data<float>(platform::CUDAPlace(device_id));
cudaMemcpyAsync(scale_d,
scale_.data(),
sizeof(float) * C,
cudaMemcpyHostToDevice,
stream);
cudaMemcpyAsync(
bias_d, bias_.data(), sizeof(float) * C, cudaMemcpyHostToDevice, stream);
phi::GroupNormDirectCUDAFunctor<float> group_norm;
group_norm(stream,
input,
input_shape,
bias_d,
scale_d,
mean_d,
temp_variance_d,
groups_,
eps_,
output,
mean_d,
variance_d,
DataLayout::kNCHW);
return cudaGetLastError() != cudaSuccess;
}
nvinfer1::DimsExprs GroupNormPluginDynamic::getOutputDimensions(
int output_index,
const nvinfer1::DimsExprs *inputDims,
int nb_inputs,
nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
return inputDims[0];
}
bool GroupNormPluginDynamic::supportsFormatCombination(
int pos,
const nvinfer1::PluginTensorDesc *in_out,
int nb_inputs,
int nb_outputs) TRT_NOEXCEPT {
PADDLE_ENFORCE_NOT_NULL(
in_out,
platform::errors::InvalidArgument(
"The input of groupnorm plugin shoule not be nullptr."));
PADDLE_ENFORCE_LT(
pos,
nb_inputs + nb_outputs,
platform::errors::InvalidArgument("The pos(%d) should be less than the "
"num(%d) of the input and the output.",
pos,
nb_inputs + nb_outputs));
const nvinfer1::PluginTensorDesc &in = in_out[pos];
if (pos == 0) {
return (in.type == nvinfer1::DataType::kFLOAT) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
}
const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
// output
return in.type == prev.type && in.format == prev.format;
}
nvinfer1::DataType GroupNormPluginDynamic::getOutputDataType(
int index,
const nvinfer1::DataType *input_types,
int nb_inputs) const TRT_NOEXCEPT {
PADDLE_ENFORCE_EQ(index,
0,
platform::errors::InvalidArgument(
"The groupnorm Plugin only has one input, so the "
"index value should be 0, but get %d.",
index));
return input_types[0];
}
int GroupNormPluginDynamic::enqueue(
const nvinfer1::PluginTensorDesc *input_desc,
const nvinfer1::PluginTensorDesc *output_desc,
const void *const *inputs,
void *const *outputs,
void *workspace,
cudaStream_t stream) TRT_NOEXCEPT {
const auto &input_dims = input_desc[0].dims;
int groups = groups_;
float eps = eps_;
std::vector<int> input_shape;
for (int i = 0; i < input_dims.nbDims; i++) {
input_shape.push_back(input_dims.d[i]);
}
const auto input_ddim = phi::make_ddim(input_shape);
int C = input_shape[1];
int image_size = input_shape[2] * input_shape[3];
int batchSize = input_shape[0];
std::vector<int64_t> batched_mean_shape = {batchSize * mean_shape_[0]};
std::vector<int64_t> batched_variance_shape = {batchSize *
variance_shape_[0]};
PADDLE_ENFORCE_EQ(
C,
scale_.size(),
platform::errors::InvalidArgument(
"scale's size should be equal to the channel number in groupnorm,"
"but got feature_size:%d, scale's size:%d.",
C,
scale_.size()));
PADDLE_ENFORCE_EQ(
C,
bias_.size(),
platform::errors::InvalidArgument(
"bias's size should be equal to the channel number in groupnorm,"
"but got feature_size:%d, bias's size:%d.",
C,
bias_.size()));
int device_id;
cudaGetDevice(&device_id);
auto input_type = input_desc[0].type;
if (input_type == nvinfer1::DataType::kFLOAT) {
const float *input = static_cast<const float *>(inputs[0]);
float *output = static_cast<float *>(outputs[0]);
scale_t.Resize(phi::make_ddim({C}));
bias_t.Resize(phi::make_ddim({C}));
mean_t.Resize(phi::make_ddim(batched_mean_shape));
variance_t.Resize(phi::make_ddim(batched_variance_shape));
float *scale_d =
scale_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *bias_d = bias_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *mean_d = mean_t.mutable_data<float>(platform::CUDAPlace(device_id));
float *variance_d =
variance_t.mutable_data<float>(platform::CUDAPlace(device_id));
framework::Tensor temp_variance_t;
temp_variance_t.Resize(phi::make_ddim(batched_variance_shape));
float *temp_variance_d =
temp_variance_t.mutable_data<float>(platform::CUDAPlace(device_id));
cudaMemcpyAsync(scale_d,
scale_.data(),
sizeof(float) * C,
cudaMemcpyHostToDevice,
stream);
cudaMemcpyAsync(bias_d,
bias_.data(),
sizeof(float) * C,
cudaMemcpyHostToDevice,
stream);
phi::GroupNormDirectCUDAFunctor<float> group_norm;
group_norm(stream,
input,
input_shape,
bias_d,
scale_d,
mean_d,
temp_variance_d,
groups,
eps,
output,
mean_d,
variance_d,
DataLayout::kNCHW);
} else {
// input not float
PADDLE_THROW(platform::errors::Fatal(
"The Groupnorm TRT Plugin's only support fp32 input"));
}
return cudaGetLastError() != cudaSuccess;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class GroupNormPlugin : public PluginTensorRT {
public:
size_t getSerializationSize() const TRT_NOEXCEPT override {
return getBaseSerializationSize() + SerializedSize(scale_) +
SerializedSize(bias_) + SerializedSize(eps_) +
SerializedSize(groups_) + SerializedSize(mean_shape_) +
SerializedSize(variance_shape_);
}
void serialize(void* buffer) const TRT_NOEXCEPT override {
serializeBase(buffer);
SerializeValue(&buffer, scale_);
SerializeValue(&buffer, bias_);
SerializeValue(&buffer, eps_);
SerializeValue(&buffer, groups_);
SerializeValue(&buffer, mean_shape_);
SerializeValue(&buffer, variance_shape_);
}
GroupNormPlugin(const float* scale,
const int scale_num,
const float* bias,
const int bias_num,
float eps,
int groups,
std::vector<int64_t> mean_shape,
std::vector<int64_t> variance_shape)
: groups_(groups),
eps_(eps),
mean_shape_(mean_shape),
variance_shape_(variance_shape) {
scale_.resize(scale_num);
bias_.resize(bias_num);
std::copy(scale, scale + scale_num, scale_.data());
std::copy(bias, bias + bias_num, bias_.data());
}
GroupNormPlugin(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &scale_);
DeserializeValue(&serialData, &serialLength, &bias_);
DeserializeValue(&serialData, &serialLength, &eps_);
DeserializeValue(&serialData, &serialLength, &groups_);
DeserializeValue(&serialData, &serialLength, &mean_shape_);
DeserializeValue(&serialData, &serialLength, &variance_shape_);
}
~GroupNormPlugin() {}
int initialize() TRT_NOEXCEPT override;
GroupNormPlugin* clone() const TRT_NOEXCEPT override {
return new GroupNormPlugin(scale_.data(),
scale_.size(),
bias_.data(),
bias_.size(),
eps_,
groups_,
mean_shape_,
variance_shape_);
}
const char* getPluginType() const TRT_NOEXCEPT override {
return "groupnorm_plugin";
}
int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims* inputs,
int nbInputDims) TRT_NOEXCEPT override;
#if IS_TRT_VERSION_LT(8000)
int enqueue(int batchSize,
const void* const* inputs,
void** outputs,
#else
int enqueue(int batchSize,
const void* const* inputs,
void* const* outputs,
#endif
void* workspace,
cudaStream_t stream) TRT_NOEXCEPT override;
private:
std::vector<float> scale_;
std::vector<float> bias_;
framework::Tensor scale_t;
framework::Tensor bias_t;
framework::Tensor mean_t;
framework::Tensor variance_t;
int groups_;
float eps_;
std::vector<int64_t> mean_shape_;
std::vector<int64_t> variance_shape_;
};
class GroupNormPluginCreator : public TensorRTPluginCreator {
public:
const char* getPluginName() const TRT_NOEXCEPT override {
return "groupnorm_plugin";
}
const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
nvinfer1::IPluginV2* deserializePlugin(const char* name,
const void* serial_data,
size_t serial_length)
TRT_NOEXCEPT override {
return new GroupNormPlugin(serial_data, serial_length);
}
};
REGISTER_TRT_PLUGIN_V2(GroupNormPluginCreator);
class GroupNormPluginDynamic : public DynamicPluginTensorRT {
public:
GroupNormPluginDynamic(const float* scale,
const int scale_num,
const float* bias,
const int bias_num,
float eps,
int groups,
std::vector<int64_t> mean_shape,
std::vector<int64_t> variance_shape)
: groups_(groups),
eps_(eps),
mean_shape_(mean_shape),
variance_shape_(variance_shape) {
scale_.resize(scale_num);
bias_.resize(bias_num);
std::copy(scale, scale + scale_num, scale_.data());
std::copy(bias, bias + bias_num, bias_.data());
}
GroupNormPluginDynamic(void const* serialData, size_t serialLength) {
DeserializeValue(&serialData, &serialLength, &scale_);
DeserializeValue(&serialData, &serialLength, &bias_);
DeserializeValue(&serialData, &serialLength, &eps_);
DeserializeValue(&serialData, &serialLength, &groups_);
DeserializeValue(&serialData, &serialLength, &mean_shape_);
DeserializeValue(&serialData, &serialLength, &variance_shape_);
}
nvinfer1::IPluginV2DynamicExt* clone() const TRT_NOEXCEPT override {
return new GroupNormPluginDynamic(scale_.data(),
scale_.size(),
bias_.data(),
bias_.size(),
eps_,
groups_,
mean_shape_,
variance_shape_);
}
const char* getPluginType() const TRT_NOEXCEPT override {
return "groupnorm_plugin_dynamic";
}
int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
int initialize() TRT_NOEXCEPT override { return 0; }
size_t getSerializationSize() const TRT_NOEXCEPT override {
return SerializedSize(scale_) + SerializedSize(bias_) +
SerializedSize(eps_) + SerializedSize(groups_) +
SerializedSize(mean_shape_) + SerializedSize(variance_shape_);
}
void serialize(void* buffer) const TRT_NOEXCEPT override {
SerializeValue(&buffer, scale_);
SerializeValue(&buffer, bias_);
SerializeValue(&buffer, eps_);
SerializeValue(&buffer, groups_);
SerializeValue(&buffer, mean_shape_);
SerializeValue(&buffer, variance_shape_);
}
nvinfer1::DimsExprs getOutputDimensions(int output_index,
const nvinfer1::DimsExprs* inputs,
int nb_inputs,
nvinfer1::IExprBuilder& expr_builder)
TRT_NOEXCEPT override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc* inOut,
int nbInputs,
int nbOutputs) TRT_NOEXCEPT override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out,
int nbOutputs) TRT_NOEXCEPT override {}
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const TRT_NOEXCEPT override {
return 0;
}
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs,
void* const* outputs,
void* workspace,
cudaStream_t stream) TRT_NOEXCEPT override;
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType* inputTypes,
int nbInputs) const
TRT_NOEXCEPT override;
void destroy() TRT_NOEXCEPT override { delete this; }
// void terminate() TRT_NOEXCEPT override;
private:
std::vector<float> scale_;
std::vector<float> bias_;
framework::Tensor scale_t;
framework::Tensor bias_t;
framework::Tensor mean_t;
framework::Tensor variance_t;
int groups_;
float eps_;
std::vector<int64_t> mean_shape_;
std::vector<int64_t> variance_shape_;
};
class GroupNormPluginDynamicCreator : public TensorRTPluginCreator {
public:
const char* getPluginName() const TRT_NOEXCEPT override {
return "groupnorm_plugin_dynamic";
}
const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
nvinfer1::IPluginV2* deserializePlugin(const char* name,
const void* serial_data,
size_t serial_length)
TRT_NOEXCEPT override {
return new GroupNormPluginDynamic(serial_data, serial_length);
}
};
REGISTER_TRT_PLUGIN_V2(GroupNormPluginDynamicCreator);
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -228,6 +228,98 @@ void GroupNormKernel(const Context& dev_ctx, ...@@ -228,6 +228,98 @@ void GroupNormKernel(const Context& dev_ctx,
data_layout); data_layout);
} }
template <typename T>
void GroupNormDirectCUDAFunctor<T>::operator()(gpuStream_t stream,
const T* input,
std::vector<int> input_shape,
const T* bias,
const T* scale,
T* temp_mean,
T* temp_variance,
int groups,
float eps,
T* output,
T* mean,
T* variance,
const DataLayout data_layout) {
const auto input_ddim = phi::make_ddim(input_shape);
const int C =
(data_layout == DataLayout::kNCHW ? input_ddim[1]
: input_ddim[input_ddim.size() - 1]);
const int group_size = C / groups;
const int W =
(data_layout == DataLayout::kNCHW ? input_ddim[input_ddim.size() - 1]
: input_ddim[input_ddim.size() - 2]);
int image_size = 1;
if (data_layout == DataLayout::kNCHW) {
for (int i = 2; i < input_ddim.size(); ++i) {
image_size *= input_ddim[i];
}
} else {
for (int i = 1; i < input_ddim.size() - 1; ++i) {
image_size *= input_ddim[i];
}
}
#ifdef __HIPCC__
int block_size = std::max(std::min(256, image_size), 64);
#else
int block_size = std::min(1024, image_size);
#endif
dim3 grid(group_size, groups, input_ddim[0]);
dim3 threads(block_size, 1, 1);
if (data_layout == DataLayout::kNCHW) {
using AccT = typename phi::kps::details::MPTypeTrait<float>::Type;
constexpr int vec_size = sizeof(float4) / sizeof(float);
int size = group_size * image_size; // group element size
const int max_num_threads = 1024;
int max_block_size = std::min(size / vec_size, max_num_threads);
int block_size_nchw = 1;
while (block_size_nchw < max_block_size) {
block_size_nchw *= 2;
}
block_size_nchw = std::max(block_size_nchw, phi::kps::details::kWarpSize);
dim3 grids(input_ddim[0] * groups);
dim3 blocks(block_size_nchw);
if (size < vec_size * block_size_nchw) {
phi::ScalarGetMeanAndVarNCHW<T>
<<<grids, blocks, 0, stream>>>(input, temp_mean, temp_variance, size);
} else {
phi::VectorizedGetMeanAndVarNCHW<T, AccT, vec_size>
<<<grids, blocks, 0, stream>>>(input, temp_mean, temp_variance, size);
}
} else {
phi::GroupNormForwardGetMeanAndVar<T>
<<<grid, threads, 0, stream>>>(input,
input_ddim[0],
C,
W,
image_size,
groups,
group_size,
temp_mean,
temp_variance);
}
GroupNormForward<T, 3><<<grid, threads, 0, stream>>>(
input,
temp_mean,
temp_variance,
scale,
bias,
input_ddim[0],
C,
W,
image_size,
groups,
group_size,
eps,
output,
variance,
data_layout); // for now, we only support nchw for group norm
}
template class GroupNormDirectCUDAFunctor<float>;
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <string> #include <string>
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/dense_tensor.h"
namespace phi { namespace phi {
...@@ -32,4 +33,24 @@ void GroupNormKernel(const Context& dev_ctx, ...@@ -32,4 +33,24 @@ void GroupNormKernel(const Context& dev_ctx,
DenseTensor* mean, DenseTensor* mean,
DenseTensor* variance); DenseTensor* variance);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <typename T>
class GroupNormDirectCUDAFunctor {
public:
void operator()(gpuStream_t stream,
const T* input,
std::vector<int> input_shape,
const T* bias,
const T* scale,
T* temp_mean,
T* temp_variance,
int groups,
float eps,
T* output,
T* mean,
T* variance,
const DataLayout data_layout);
};
#endif
} // namespace phi } // namespace phi
...@@ -24,6 +24,15 @@ import unittest ...@@ -24,6 +24,15 @@ import unittest
class TrtConvertGroupNormTest(TrtLayerAutoScanTest): class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool: def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
if attrs[0]['epsilon'] < 0 or attrs[0]['epsilon'] > 0.001:
return False
if attrs[0]['groups'] <= 0:
return False
return True return True
def sample_program_configs(self): def sample_program_configs(self):
...@@ -41,17 +50,13 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -41,17 +50,13 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
return np.random.randn(32).astype(np.float32) return np.random.randn(32).astype(np.float32)
for batch in [1, 2, 4]: for batch in [1, 2, 4]:
for group in [1, 4, 32]: for group in [1, 4, 32, -1]:
for epsilon in [0.1, 0.7]: for epsilon in [0.0001, 0.0007, -1, 1]:
for data_layout in ['NCHW', 'NHWC']: for data_layout in ['NCHW']:
for i in [0, 1]:
dics = [{ dics = [{
"epsilon": epsilon, "epsilon": epsilon,
"groups": group, "groups": group,
"data_layout": data_layout "data_layout": data_layout
}, {
"groups": group,
"data_layout": data_layout
}] }]
ops_config = [{ ops_config = [{
"op_type": "group_norm", "op_type": "group_norm",
...@@ -65,7 +70,7 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -65,7 +70,7 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
"Mean": ["mean_output"], "Mean": ["mean_output"],
"Variance": ["variance_output"] "Variance": ["variance_output"]
}, },
"op_attrs": dics[i] "op_attrs": dics[0]
}] }]
ops = self.generate_op_config(ops_config) ops = self.generate_op_config(ops_config)
...@@ -73,11 +78,9 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -73,11 +78,9 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
ops=ops, ops=ops,
weights={ weights={
"scale_weight": "scale_weight":
TensorConfig( TensorConfig(data_gen=partial(generate_scale)),
data_gen=partial(generate_scale)),
"bias_weight": "bias_weight":
TensorConfig( TensorConfig(data_gen=partial(generate_bias))
data_gen=partial(generate_bias))
}, },
inputs={ inputs={
"input_data": "input_data":
...@@ -92,11 +95,11 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -92,11 +95,11 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
self, program_config) -> (paddle_infer.Config, List[int], float): self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs): def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 32, 32]} self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 16, 16]}
self.dynamic_shape.max_input_shape = { self.dynamic_shape.max_input_shape = {
"input_data": [4, 64, 128, 64] "input_data": [4, 64, 128, 128]
} }
self.dynamic_shape.opt_input_shape = {"input_data": [2, 32, 64, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [1, 32, 64, 64]}
def clear_dynamic_shape(): def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {} self.dynamic_shape.max_input_shape = {}
...@@ -104,13 +107,7 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -104,13 +107,7 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
self.dynamic_shape.opt_input_shape = {} self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape): def generate_trt_nodes_num(attrs, dynamic_shape):
if len(attrs[0]) == 3:
if dynamic_shape:
return 1, 2 return 1, 2
else:
return 0, 3
else:
return 0, 3
attrs = [ attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops)) program_config.ops[i].attrs for i in range(len(program_config.ops))
...@@ -120,31 +117,22 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest): ...@@ -120,31 +117,22 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
clear_dynamic_shape() clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32 self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), (1e-5, 1e-5) attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), (1e-5, 1e-5) attrs, False), 1e-5
# for dynamic_shape # for dynamic_shape
generate_dynamic_shape(attrs) generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32 self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), (1e-5, 1e-5) attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), (1e-5, 1e-5) attrs, True), 1e-5
def add_skip_trt_case(self): def add_skip_trt_case(self):
pass
def teller1(program_config, predictor_config):
if len(self.dynamic_shape.min_input_shape) != 0:
return True
return False
self.add_skip_case(
teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
"The goup_norm plugin will check dim not -1 failed when dynamic fp16 mode."
)
def test(self): def test(self):
self.add_skip_trt_case() self.add_skip_trt_case()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
from paddle.fluid.core import AnalysisConfig
class TRTGroupNormTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(name="data",
shape=[-1, 512, 12, 12],
dtype="float32")
out = self.append_group_norm(data)
self.feeds = {
"data": np.random.random([1, 512, 12, 12]).astype("float32"),
}
self.enable_trt = True
self.trt_parameters = TRTGroupNormTest.TensorRTParam(
1 << 30, 1, 1, AnalysisConfig.Precision.Float32, False, False)
self.dynamic_shape_params = TRTGroupNormTest.DynamicShapeParam(
{'data': [1, 512, 12, 12]}, {'data': [1, 512, 12, 12]},
{'data': [1, 512, 12, 12]}, False)
self.fetch_list = [out]
def append_group_norm(self, data):
param_attr = fluid.ParamAttr(
name='group_norm_scale',
initializer=fluid.initializer.Constant(value=1.0))
bias_attr = fluid.ParamAttr(
name='group_norm_bias',
initializer=fluid.initializer.Constant(value=0.0))
return fluid.layers.group_norm(data,
groups=32,
epsilon=0.000009999999747378752,
param_attr=param_attr,
bias_attr=bias_attr)
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册