未验证 提交 1a80b484 编写于 作者: F fuyou765 提交者: GitHub

[MLU]add mlu kernel for range op (#43296)

上级 0454b777
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/range_op.h"
namespace paddle {
namespace operators {
template <typename T>
class RangeMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* start_t = context.Input<framework::Tensor>("Start");
auto* end_t = context.Input<framework::Tensor>("End");
auto* step_t = context.Input<framework::Tensor>("Step");
auto* out = context.Output<framework::Tensor>("Out");
framework::Tensor n;
framework::TensorCopy(
*start_t, platform::CPUPlace(),
context.template device_context<platform::MLUDeviceContext>(), &n);
context.template device_context<paddle::platform::MLUDeviceContext>()
.Wait();
T start = n.data<T>()[0];
framework::TensorCopy(
*end_t, platform::CPUPlace(),
context.template device_context<platform::MLUDeviceContext>(), &n);
context.template device_context<paddle::platform::MLUDeviceContext>()
.Wait();
T end = n.data<T>()[0];
framework::TensorCopy(
*step_t, platform::CPUPlace(),
context.template device_context<platform::MLUDeviceContext>(), &n);
context.template device_context<paddle::platform::MLUDeviceContext>()
.Wait();
T step = n.data<T>()[0];
int64_t size = 0;
GetSize(start, end, step, &size);
out->Resize(phi::make_ddim({size}));
out->mutable_data<T>(context.GetPlace());
std::vector<T> odata;
T value = start;
for (int64_t i = 0; i < size; ++i) {
odata.push_back(value);
value += step;
}
framework::TensorFromVector(odata, context.device_context(), out);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_MLU_KERNEL(range, paddle::operators::RangeMLUKernel<int>,
paddle::operators::RangeMLUKernel<int64_t>,
paddle::operators::RangeMLUKernel<float>,
paddle::operators::RangeMLUKernel<double>)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import paddle
import unittest
import numpy as np
from op_test import OpTest
from functools import partial
paddle.enable_static()
def arange_wrapper(start, end, step, dtype=None):
return paddle.arange(start, end, step, dtype)
class TestRangeOp(OpTest):
def setUp(self):
self.op_type = "range"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.init_config()
self.inputs = {
'Start': np.array([self.case[0]]).astype(self.dtype),
'End': np.array([self.case[1]]).astype(self.dtype),
'Step': np.array([self.case[2]]).astype(self.dtype)
}
self.outputs = {
'Out':
np.arange(self.case[0], self.case[1],
self.case[2]).astype(self.dtype)
}
def init_config(self):
self.dtype = np.float32
self.python_api = partial(arange_wrapper, dtype=self.dtype)
self.case = (0, 1, 0.2)
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
class TestFloatRangeOpCase0(TestRangeOp):
def init_config(self):
self.dtype = np.float32
self.python_api = partial(arange_wrapper, dtype=self.dtype)
self.case = (0, 5, 1)
class TestInt32RangeOpCase0(TestRangeOp):
def init_config(self):
self.dtype = np.int32
self.python_api = partial(arange_wrapper, dtype=self.dtype)
self.case = (0, 5, 2)
class TestInt32RangeOpCase1(TestRangeOp):
def init_config(self):
self.dtype = np.int32
self.python_api = partial(arange_wrapper, dtype=self.dtype)
self.case = (10, 1, -2)
class TestInt32RangeOpCase2(TestRangeOp):
def init_config(self):
self.dtype = np.int32
self.python_api = partial(arange_wrapper, dtype=self.dtype)
self.case = (-1, -10, -2)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册