From 1a55f7d38c518e88ba8c35b1e8ffb39bc3f2d529 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Mon, 1 Apr 2019 21:40:05 +0800 Subject: [PATCH] Change from width-first backward to deep-first backward process test=develop --- paddle/fluid/imperative/layer.cc | 6 +- .../unittests/test_imperative_transformer.py | 674 +++++++++++++++--- 2 files changed, 581 insertions(+), 99 deletions(-) diff --git a/paddle/fluid/imperative/layer.cc b/paddle/fluid/imperative/layer.cc index ad900114f71..093c72ef224 100644 --- a/paddle/fluid/imperative/layer.cc +++ b/paddle/fluid/imperative/layer.cc @@ -129,14 +129,14 @@ class Autograd { std::map dep_counts = ComputeDepCounts(var->PreOp()); while (!ready.empty()) { - OpBase* ready_op = ready.front(); - ready.pop_front(); + OpBase* ready_op = ready.back(); + ready.pop_back(); std::map> input_grads = ready_op->ApplyGrad(); for (auto it : input_grads) { const std::vector& ingrads = it.second; - for (size_t i = 0; i < ingrads.size(); ++i) { + for (int64_t i = ingrads.size() - 1; i >= 0; --i) { if (!ingrads[i]) continue; if (ready_op->input_vars_[it.first][i]->IsStopGradient()) { continue; diff --git a/python/paddle/fluid/tests/unittests/test_imperative_transformer.py b/python/paddle/fluid/tests/unittests/test_imperative_transformer.py index f1c60fe63a7..3bdf3349730 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_transformer.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_transformer.py @@ -106,7 +106,7 @@ class ModelHyperParams(object): # number of head used in multi-head attention. n_head = 8 # number of sub-layers to be stacked in the encoder and decoder. - n_layer = 1 + n_layer = 6 # dropout rates of different modules. prepostprocess_dropout = 0.1 attention_dropout = 0.1 @@ -303,7 +303,7 @@ use_py_reader = False sync = False # how many batches we use -batch_num = 1 +batch_num = 2 np.random.seed = 1 src_word_np = np.random.randint( @@ -359,6 +359,59 @@ pos_inp2 = position_encoding_init(ModelHyperParams.max_length, ModelHyperParams.d_model) +class PrePostProcessLayer(Layer): + def __init__(self, name_scope, process_cmd, shape_len=None): + super(PrePostProcessLayer, self).__init__(name_scope) + for cmd in process_cmd: + if cmd == "n": + self._layer_norm = LayerNorm( + name_scope=self.full_name(), + begin_norm_axis=shape_len - 1, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(0.))) + + def forward(self, prev_out, out, process_cmd, dropout_rate=0.): + for cmd in process_cmd: + if cmd == "a": # add residual connection + out = out + prev_out if prev_out else out + elif cmd == "n": # add layer normalization + out = self._layer_norm(out) + elif cmd == "d": # add dropout + if dropout_rate: + out = fluid.layers.dropout( + out, + dropout_prob=dropout_rate, + seed=ModelHyperParams.dropout_seed, + is_test=False) + return out + + +class PositionwiseFeedForwardLayer(Layer): + def __init__(self, name_scope, d_inner_hid, d_hid, dropout_rate): + super(PositionwiseFeedForwardLayer, self).__init__(name_scope) + self._i2h = FC(name_scope=self.full_name(), + size=d_inner_hid, + num_flatten_dims=2, + act="relu") + self._h2o = FC(name_scope=self.full_name(), + size=d_hid, + num_flatten_dims=2) + self._dropout_rate = dropout_rate + + def forward(self, x): + hidden = self._i2h(x) + if self._dropout_rate: + hidden = fluid.layers.dropout( + hidden, + dropout_prob=self._dropout_rate, + seed=ModelHyperParams.dropout_seed, + is_test=False) + out = self._h2o(hidden) + return out + + class MultiHeadAttentionLayer(Layer): def __init__(self, name_scope, @@ -393,22 +446,11 @@ class MultiHeadAttentionLayer(Layer): bias_attr=False, num_flatten_dims=2) - def _mm(self, input): - input_shape = input.shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) - ] + [self._size] - self.x = self.create_parameter( - attr=None, shape=param_shape, dtype=self._dtype, is_bias=False) - def forward(self, queries, keys, values, attn_bias): # compute q ,k ,v keys = queries if keys is None else keys values = keys if values is None else values - # q = queries - # k = keys - # v = values q = self._q_fc(queries) k = self._k_fc(keys) v = self._v_fc(values) @@ -453,38 +495,181 @@ class MultiHeadAttentionLayer(Layer): inplace=False) # fc to output - print(final_out.shape) proj_out = self._proj_fc(final_out) return proj_out -class PrePostProcessLayer(Layer): - def __init__(self, name_scope, process_cmd, shape_len=None): - super(PrePostProcessLayer, self).__init__(name_scope) - for cmd in process_cmd: - if cmd == "n": - self._layer_norm = LayerNorm( - name_scope=self.full_name(), - begin_norm_axis=shape_len - 1, - param_attr=fluid.ParamAttr( - initializer=fluid.initializer.Constant(1.)), - bias_attr=fluid.ParamAttr( - initializer=fluid.initializer.Constant(0.))) +class EncoderSubLayer(Layer): + def __init__(self, + name_scope, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd="n", + postprocess_cmd="da"): - def forward(self, prev_out, out, process_cmd, dropout_rate=0.): - for cmd in process_cmd: - if cmd == "a": # add residual connection - out = out + prev_out if prev_out else out - elif cmd == "n": # add layer normalization - out = self._layer_norm(out) - elif cmd == "d": # add dropout - if dropout_rate: - out = fluid.layers.dropout( - out, - dropout_prob=dropout_rate, - seed=ModelHyperParams.dropout_seed, - is_test=False) - return out + super(EncoderSubLayer, self).__init__(name_scope) + self._preprocess_cmd = preprocess_cmd + self._postprocess_cmd = postprocess_cmd + self._prepostprocess_dropout = prepostprocess_dropout + + self._preprocess_layer = PrePostProcessLayer(self.full_name(), + self._preprocess_cmd, 3) + self._multihead_attention_layer = MultiHeadAttentionLayer( + self.full_name(), d_key, d_value, d_model, n_head, + attention_dropout) + self._postprocess_layer = PrePostProcessLayer( + self.full_name(), self._postprocess_cmd, None) + self._preprocess_layer2 = PrePostProcessLayer(self.full_name(), + self._preprocess_cmd, 3) + self._positionwise_feed_forward = PositionwiseFeedForwardLayer( + self.full_name(), d_inner_hid, d_model, relu_dropout) + self._postprocess_layer2 = PrePostProcessLayer( + self.full_name(), self._postprocess_cmd, None) + + def forward(self, enc_input, attn_bias): + pre_process_multihead = self._preprocess_layer( + None, enc_input, self._preprocess_cmd, self._prepostprocess_dropout) + attn_output = self._multihead_attention_layer(pre_process_multihead, + None, None, attn_bias) + attn_output = self._postprocess_layer(enc_input, attn_output, + self._postprocess_cmd, + self._prepostprocess_dropout) + pre_process2_output = self._preprocess_layer2( + None, attn_output, self._preprocess_cmd, + self._prepostprocess_dropout) + ffd_output = self._positionwise_feed_forward(pre_process2_output) + return self._postprocess_layer2(attn_output, ffd_output, + self._postprocess_cmd, + self._prepostprocess_dropout) + + +class EncoderLayer(Layer): + def __init__(self, + name_scope, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd="n", + postprocess_cmd="da"): + + super(EncoderLayer, self).__init__(name_scope) + self._preprocess_cmd = preprocess_cmd + self._encoder_sublayers = list() + self._prepostprocess_dropout = prepostprocess_dropout + self._n_layer = n_layer + self._preprocess_layer = PrePostProcessLayer(self.full_name(), + self._preprocess_cmd, 3) + for i in range(n_layer): + self._encoder_sublayers.append( + self.add_sublayer( + 'esl_%d' % i, + EncoderSubLayer( + self.full_name(), n_head, d_key, d_value, d_model, + d_inner_hid, prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, postprocess_cmd))) + + def forward(self, enc_input, attn_bias): + for i in range(self._n_layer): + enc_output = self._encoder_sublayers[i](enc_input, attn_bias) + enc_input = enc_output + + return self._preprocess_layer(None, enc_output, self._preprocess_cmd, + self._prepostprocess_dropout) + + +class PrepareEncoderDecoderLayer(Layer): + def __init__(self, + name_scope, + src_vocab_size, + src_emb_dim, + src_max_len, + dropout_rate, + word_emb_param_name=None, + pos_enc_param_name=None): + super(PrepareEncoderDecoderLayer, self).__init__(name_scope) + self._src_max_len = src_max_len + self._src_emb_dim = src_emb_dim + self._src_vocab_size = src_vocab_size + self._dropout_rate = dropout_rate + self._input_emb = Embedding( + name_scope=self.full_name(), + size=[src_vocab_size, src_emb_dim], + padding_idx=0, + param_attr=fluid.ParamAttr( + name=word_emb_param_name, + initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5))) + + if pos_enc_param_name is pos_enc_param_names[0]: + pos_inp = pos_inp1 + else: + pos_inp = pos_inp2 + self._pos_emb = Embedding( + name_scope=self.full_name(), + size=[self._src_max_len, src_emb_dim], + param_attr=fluid.ParamAttr( + name=pos_enc_param_name, + initializer=fluid.initializer.NumpyArrayInitializer(pos_inp), + trainable=False)) + + # use in dygraph_mode to fit different length batch + # self._pos_emb._w = to_variable( + # position_encoding_init(self._src_max_len, self._src_emb_dim)) + + def forward(self, src_word, src_pos): + src_word_emb = self._input_emb(src_word) + src_word_emb = fluid.layers.scale( + x=src_word_emb, scale=self._src_emb_dim**0.5) + # # TODO change this to fit dynamic length input + src_pos_emb = self._pos_emb(src_pos) + src_pos_emb.stop_gradient = True + enc_input = src_word_emb + src_pos_emb + return fluid.layers.dropout( + enc_input, + dropout_prob=self._dropout_rate, + seed=ModelHyperParams.dropout_seed, + is_test=False) if self._dropout_rate else enc_input + + +class WrapEncoderLayer(Layer): + def __init__(self, name_cope, src_vocab_size, max_length, n_layer, n_head, + d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, + postprocess_cmd, weight_sharing): + """ + The wrapper assembles together all needed layers for the encoder. + """ + super(WrapEncoderLayer, self).__init__(name_cope) + + self._prepare_encoder_layer = PrepareEncoderDecoderLayer( + self.full_name(), + src_vocab_size, + d_model, + max_length, + prepostprocess_dropout, + word_emb_param_name=word_emb_param_names[0], + pos_enc_param_name=pos_enc_param_names[0]) + self._encoder = EncoderLayer( + self.full_name(), n_layer, n_head, d_key, d_value, d_model, + d_inner_hid, prepostprocess_dropout, attention_dropout, + relu_dropout, preprocess_cmd, postprocess_cmd) + + def forward(self, enc_inputs): + src_word, src_pos, src_slf_attn_bias = enc_inputs + enc_input = self._prepare_encoder_layer(src_word, src_pos) + enc_output = self._encoder(enc_input, src_slf_attn_bias) + return enc_output class DecoderSubLayer(Layer): @@ -494,13 +679,20 @@ class DecoderSubLayer(Layer): d_key, d_value, d_model, + d_inner_hid, + prepostprocess_dropout, attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, cache=None, - preprocess_cmd="n", gather_idx=None): super(DecoderSubLayer, self).__init__(name_scope) - self._preprocess_layer = PrePostProcessLayer(self.full_name(), - preprocess_cmd, 3) + self._postprocess_cmd = postprocess_cmd + self._preprocess_cmd = preprocess_cmd + self._prepostprcess_dropout = prepostprocess_dropout + self._pre_process_layer = PrePostProcessLayer(self.full_name(), + preprocess_cmd, 3) self._multihead_attention_layer = MultiHeadAttentionLayer( self.full_name(), d_key, @@ -510,42 +702,300 @@ class DecoderSubLayer(Layer): attention_dropout, cache=cache, gather_idx=gather_idx) + self._post_process_layer = PrePostProcessLayer(self.full_name(), + postprocess_cmd, None) + self._pre_process_layer2 = PrePostProcessLayer(self.full_name(), + preprocess_cmd, 3) + self._multihead_attention_layer2 = MultiHeadAttentionLayer( + self.full_name(), + d_key, + d_value, + d_model, + n_head, + attention_dropout, + cache=cache, + gather_idx=gather_idx, + static_kv=True) + self._post_process_layer2 = PrePostProcessLayer(self.full_name(), + postprocess_cmd, None) + self._pre_process_layer3 = PrePostProcessLayer(self.full_name(), + preprocess_cmd, 3) + self._positionwise_feed_forward_layer = PositionwiseFeedForwardLayer( + self.full_name(), d_inner_hid, d_model, relu_dropout) + self._post_process_layer3 = PrePostProcessLayer(self.full_name(), + postprocess_cmd, None) - def forward(self, input, slf_attn_bias): - print(input.shape) - print(slf_attn_bias.shape) - y = self._preprocess_layer(None, input, "n", 0.1) - slf_attn_output = self._multihead_attention_layer(y, None, None, - slf_attn_bias) - return slf_attn_output, y + def forward(self, dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias): + pre_process_rlt = self._pre_process_layer( + None, dec_input, self._preprocess_cmd, self._prepostprcess_dropout) + slf_attn_output = self._multihead_attention_layer(pre_process_rlt, None, + None, slf_attn_bias) + slf_attn_output_pp = self._post_process_layer( + dec_input, slf_attn_output, self._postprocess_cmd, + self._prepostprcess_dropout) + pre_process_rlt2 = self._pre_process_layer2(None, slf_attn_output_pp, + self._preprocess_cmd, + self._prepostprcess_dropout) + enc_attn_output_pp = self._multihead_attention_layer2( + pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias) + enc_attn_output = self._post_process_layer2( + slf_attn_output, enc_attn_output_pp, self._postprocess_cmd, + self._prepostprcess_dropout) + pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output, + self._preprocess_cmd, + self._prepostprcess_dropout) + ffd_output = self._positionwise_feed_forward_layer(pre_process_rlt3) + dec_output = self._post_process_layer3(enc_attn_output, ffd_output, + self._postprocess_cmd, + self._prepostprcess_dropout) + return dec_output + + +class DecoderLayer(Layer): + def __init__(self, + name_scope, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + caches=None, + gather_idx=None): + super(DecoderLayer, self).__init__(name_scope) + self._pre_process_layer = PrePostProcessLayer(self.full_name(), + preprocess_cmd, 3) + self._decoder_sub_layers = list() + self._n_layer = n_layer + self._preprocess_cmd = preprocess_cmd + self._prepostprocess_dropout = prepostprocess_dropout + for i in range(n_layer): + self._decoder_sub_layers.append( + self.add_sublayer( + 'dsl_%d' % i, + DecoderSubLayer( + self.full_name(), + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + cache=None if caches is None else caches[i], + gather_idx=gather_idx))) + + def forward(self, dec_input, enc_output, dec_slf_attn_bias, + dec_enc_attn_bias): + for i in range(self._n_layer): + tmp_dec_output = self._decoder_sub_layers[i]( + dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias) + dec_input = tmp_dec_output + + dec_output = self._pre_process_layer(None, tmp_dec_output, + self._preprocess_cmd, + self._prepostprocess_dropout) + return dec_output + + +class WrapDecoderLayer(Layer): + def __init__(self, + name_scope, + trg_vocab_size, + max_length, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + weight_sharing, + caches=None, + gather_idx=None): + """ + The wrapper assembles together all needed layers for the encoder. + """ + super(WrapDecoderLayer, self).__init__(name_scope) + + self._prepare_decoder_layer = PrepareEncoderDecoderLayer( + self.full_name(), + trg_vocab_size, + d_model, + max_length, + prepostprocess_dropout, + word_emb_param_name=word_emb_param_names[1], + pos_enc_param_name=pos_enc_param_names[1]) + self._decoder_layer = DecoderLayer( + self.full_name(), + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + caches=caches, + gather_idx=gather_idx) + self._weight_sharing = weight_sharing + if not weight_sharing: + self._fc = FC(self.full_name(), + size=trg_vocab_size, + bias_attr=False) + + def forward(self, dec_inputs=None, enc_output=None): + trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs + dec_input = self._prepare_decoder_layer(trg_word, trg_pos) + dec_output = self._decoder_layer(dec_input, enc_output, + trg_slf_attn_bias, trg_src_attn_bias) + + dec_output_reshape = fluid.layers.reshape( + dec_output, shape=[-1, dec_output.shape[-1]], inplace=False) + + if self._weight_sharing: + predict = fluid.layers.matmul( + x=dec_output_reshape, + y=self._prepare_decoder_layer._input_emb._w, + transpose_y=True) + else: + predict = self._fc(dec_output_reshape) + + if dec_inputs is None: + # Return probs for independent decoder program. + predict_out = fluid.layers.softmax(predict) + return predict_out + return predict + + +class TransFormer(Layer): + def __init__(self, + name_scope, + src_vocab_size, + trg_vocab_size, + max_length, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + preprocess_cmd, + postprocess_cmd, + weight_sharing, + label_smooth_eps, + use_py_reader=False, + is_test=False): + super(TransFormer, self).__init__(name_scope) + self._label_smooth_eps = label_smooth_eps + self._trg_vocab_size = trg_vocab_size + if weight_sharing: + assert src_vocab_size == trg_vocab_size, ( + "Vocabularies in source and target should be same for weight sharing." + ) + self._wrap_encoder_layer = WrapEncoderLayer( + self.full_name(), src_vocab_size, max_length, n_layer, n_head, + d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, + weight_sharing) + self._wrap_decoder_layer = WrapDecoderLayer( + self.full_name(), trg_vocab_size, max_length, n_layer, n_head, + d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, + attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, + weight_sharing) + + if weight_sharing: + self._wrap_decoder_layer._prepare_decoder_layer._input_emb._w = self._wrap_encoder_layer._prepare_encoder_layer._input_emb._w + + def forward(self, enc_inputs, dec_inputs, label, weights): + enc_output = self._wrap_encoder_layer(enc_inputs) + predict = self._wrap_decoder_layer(dec_inputs, enc_output) + if self._label_smooth_eps: + label_out = fluid.layers.label_smooth( + label=fluid.layers.one_hot( + input=label, depth=self._trg_vocab_size), + epsilon=self._label_smooth_eps) + + cost = fluid.layers.softmax_with_cross_entropy( + logits=predict, + label=label_out, + soft_label=True if self._label_smooth_eps else False) + weighted_cost = cost * weights + sum_cost = fluid.layers.reduce_sum(weighted_cost) + token_num = fluid.layers.reduce_sum(weights) + token_num.stop_gradient = True + avg_cost = sum_cost / token_num + return sum_cost, avg_cost, predict, token_num class TestDygraphTransformer(unittest.TestCase): def test_transformer_float32(self): seed = 90 - x1 = np.ones([32, 4, 512]).astype('float32') - x2 = np.ones([32, 8, 4, 4]).astype('float32') - with guard(place=fluid.CPUPlace()): + with guard(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed - transformer = DecoderSubLayer( - 'transformer', ModelHyperParams.n_head, ModelHyperParams.d_key, - ModelHyperParams.d_value, ModelHyperParams.d_model, - ModelHyperParams.attention_dropout) - optimizer = fluid.optimizer.SGD(learning_rate=0.003) + transformer = TransFormer( + 'transformer', + ModelHyperParams.src_vocab_size, + ModelHyperParams.trg_vocab_size, + ModelHyperParams.max_length + 1, + ModelHyperParams.n_layer, + ModelHyperParams.n_head, + ModelHyperParams.d_key, + ModelHyperParams.d_value, + ModelHyperParams.d_model, + ModelHyperParams.d_inner_hid, + ModelHyperParams.prepostprocess_dropout, + ModelHyperParams.attention_dropout, + ModelHyperParams.relu_dropout, + ModelHyperParams.preprocess_cmd, + ModelHyperParams.postprocess_cmd, + ModelHyperParams.weight_sharing, + TrainTaskConfig.label_smooth_eps, + use_py_reader=use_py_reader, + is_test=False) + if sync: + lr_decay = fluid.layers.learning_rate_scheduler.noam_decay( + ModelHyperParams.d_model, TrainTaskConfig.warmup_steps) + with fluid.default_main_program()._lr_schedule_guard(): + learning_rate = lr_decay * TrainTaskConfig.learning_rate + optimizer = fluid.optimizer.Adam( + learning_rate=learning_rate, + beta1=TrainTaskConfig.beta1, + beta2=TrainTaskConfig.beta2, + epsilon=TrainTaskConfig.eps) + else: + optimizer = fluid.optimizer.SGD(learning_rate=0.003) dy_param_init = dict() dy_param_updated = dict() for i in range(batch_num): - loss, y = transformer(to_variable(x1), to_variable(x2)) - loss = fluid.layers.reduce_sum(loss) - print('dy los', loss.shape) + enc_inputs, dec_inputs, label, weights = create_data() + dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer( + enc_inputs, dec_inputs, label, weights) if i == 0: for param in transformer.parameters(): dy_param_init[param.name] = param._numpy() - loss._backward() - optimizer.minimize(loss) - dy_key_value = y._gradient() + dy_avg_cost._backward() + optimizer.minimize(dy_avg_cost) transformer.clear_gradients() if i == batch_num - 1: for param in transformer.parameters(): @@ -554,60 +1004,92 @@ class TestDygraphTransformer(unittest.TestCase): with new_program_scope(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed - transformer = DecoderSubLayer( - 'transformer', ModelHyperParams.n_head, ModelHyperParams.d_key, - ModelHyperParams.d_value, ModelHyperParams.d_model, - ModelHyperParams.attention_dropout) - exe = fluid.Executor(fluid.CPUPlace()) + transformer = TransFormer( + 'transformer', + ModelHyperParams.src_vocab_size, + ModelHyperParams.trg_vocab_size, + ModelHyperParams.max_length + 1, + ModelHyperParams.n_layer, + ModelHyperParams.n_head, + ModelHyperParams.d_key, + ModelHyperParams.d_value, + ModelHyperParams.d_model, + ModelHyperParams.d_inner_hid, + ModelHyperParams.prepostprocess_dropout, + ModelHyperParams.attention_dropout, + ModelHyperParams.relu_dropout, + ModelHyperParams.preprocess_cmd, + ModelHyperParams.postprocess_cmd, + ModelHyperParams.weight_sharing, + TrainTaskConfig.label_smooth_eps, + use_py_reader=use_py_reader, + is_test=False) + exe = fluid.Executor(fluid.CPUPlace( + ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) optimizer = fluid.optimizer.SGD(learning_rate=0.003) - data1 = fluid.layers.data(name='X', shape=[4, 512], dtype='float32') - data2 = fluid.layers.data( - name='Y', shape=[8, 4, 4], dtype='float32') - loss, y = transformer(data1, data2) - loss = fluid.layers.reduce_sum(loss) - print('loss hspae', loss.shape) - - optimizer.minimize(loss) + data_input_names = encoder_data_input_fields + decoder_data_input_fields[: + -1] + label_data_input_fields + all_inputs = make_all_inputs(data_input_names) + enc_inputs_len = len(encoder_data_input_fields) + dec_inputs_len = len(decoder_data_input_fields[:-1]) + enc_inputs = all_inputs[0:enc_inputs_len] + dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + + dec_inputs_len] + label = all_inputs[-2] + weights = all_inputs[-1] + static_param_updated = dict() + static_param_init = dict() + static_param_name_list = list() + static_sum_cost, static_avg_cost, static_predict, static_token_num = transformer( + enc_inputs, dec_inputs, label, weights) - static_param_init = {} - static_param_name_list = [] - static_param_updated = {} + optimizer.minimize(static_avg_cost) for param in transformer.parameters(): static_param_name_list.append(param.name) out = exe.run(fluid.default_startup_program(), fetch_list=static_param_name_list) - for i in range(len(static_param_name_list)): static_param_init[static_param_name_list[i]] = out[i] - - print(fluid.default_main_program()) + static_sum_cost_value = None + static_avg_cost_value = None + static_predict_value = None + static_token_num_value = None for i in range(batch_num): - feed_dict = {"X": x1, "Y": x2} + feed_dict = create_feed_dict_list(create_data(True)) fetch_list = [ - "transformer/DecoderSubLayer_0/PrePostProcessLayer_0/LayerNorm_0.tmp_2@GRAD" + static_sum_cost, static_avg_cost, static_predict, + static_token_num ] fetch_list.extend(static_param_name_list) out = exe.run(fluid.default_main_program(), feed=feed_dict, fetch_list=fetch_list) + static_sum_cost_value = out[0] + static_avg_cost_value = out[1] + static_predict_value = out[2] + static_token_num_value = out[3] if i == batch_num - 1: - static_key_value = out[0] - for k in range(1, len(out)): + for k in range(4, len(out)): static_param_updated[static_param_name_list[k - - 1]] = out[k] + 4]] = out[k] + self.assertTrue( + np.allclose(static_avg_cost_value, dy_avg_cost._numpy())) + self.assertTrue( + np.allclose(static_sum_cost_value, dy_sum_cost._numpy())) + self.assertTrue( + np.allclose( + static_predict_value, dy_predict._numpy(), atol=1e-5)) + self.assertTrue( + np.allclose(static_token_num_value, dy_token_num._numpy())) for key, value in six.iteritems(static_param_init): - self.assertTrue(np.array_equal(value, dy_param_init[key])) + self.assertTrue(np.allclose(value, dy_param_init[key])) for key, value in six.iteritems(static_param_updated): - if not (value == dy_param_updated[key]).all(): - print(key) - if not np.array_equal(dy_key_value, static_key_value): - print("xxx", dy_key_value, static_key_value) - print("yyy") - print(dy_key_value - static_key_value) - print(np.where(dy_key_value - static_key_value)) + self.assertTrue( + np.allclose( + value, dy_param_updated[key], atol=1e-4)) if __name__ == '__main__': -- GitLab