未验证 提交 199da968 编写于 作者: C Chen Weihang 提交者: GitHub

Polish api Program/CompiledProgram/ParallelEnv doc & code example (#27656)

* polish Program api doc & example

* polish CompiledProgram api doc & example

* polish ParallelEnv api doc & examples

* polish details, test=document_fix

* polish program doc details, test=document_fix

* polish details, test=document_fix

* fix note format error, test=document_fix

* add lost example, test=document_fix

* fix lost example, test=document_fix
上级 b14ecb86
......@@ -93,16 +93,16 @@ class CompiledProgram(object):
for example, the operators' fusion in the computation graph, memory
optimization during the execution of the computation graph, etc.
For more information about build_strategy, please refer to
:code:`fluid.BuildStrategy`.
:code:`paddle.static.BuildStrategy`.
Args:
program_or_graph (Graph|Program): This parameter is the Program or Graph
program_or_graph (Graph|Program): This argument is the Program or Graph
being executed.
build_strategy(BuildStrategy): This parameter is used to compile the
build_strategy(BuildStrategy): This argument is used to compile the
program or graph with the specified options, such as operators' fusion
in the computational graph and memory optimization during the execution
of the computational graph. For more information about build_strategy,
please refer to :code:`fluid.BuildStrategy`. The default is None.
please refer to :code:`paddle.static.BuildStrategy`. The default is None.
Returns:
CompiledProgram
......@@ -110,25 +110,28 @@ class CompiledProgram(object):
Example:
.. code-block:: python
import paddle.fluid as fluid
import numpy
import numpy
import paddle
import paddle.static as static
place = fluid.CUDAPlace(0) # fluid.CPUPlace()
exe = fluid.Executor(place)
paddle.enable_static()
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
place = paddle.CUDAPlace(0) # paddle.CPUPlace()
exe = static.Executor(place)
exe.run(fluid.default_startup_program())
compiled_prog = fluid.CompiledProgram(
fluid.default_main_program())
data = static.data(name='X', shape=[None, 1], dtype='float32')
hidden = static.nn.fc(input=data, size=10)
loss = paddle.mean(hidden)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
exe.run(static.default_startup_program())
compiled_prog = static.CompiledProgram(
static.default_main_program())
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_prog,
feed={"X": x},
fetch_list=[loss.name])
"""
def __init__(self, program_or_graph, build_strategy=None):
......@@ -169,13 +172,16 @@ class CompiledProgram(object):
exec_strategy to set some optimizations that can be applied during the construction
and computation of the Graph, such as reducing the number of AllReduce operations,
specifying the size of the thread pool used in the computation Graph running the model,
and so on. **Note: If build_strategy is specified when building CompiledProgram and calling
with_data_parallel, build_strategy in CompiledProgram will be overwritten, therefore,
if it is data parallel training, it is recommended to set build_strategy when calling
with_data_parallel interface.**
and so on.
.. note::
If build_strategy is specified when building CompiledProgram and calling
with_data_parallel, build_strategy in CompiledProgram will be overwritten, therefore,
if it is data parallel training, it is recommended to set build_strategy when calling
with_data_parallel interface.
Args:
loss_name (str): This parameter is the name of the loss variable of the model.
loss_name (str): This parameter is the name of the loss Tensor of the model.
**Note: If it is model training, you must set loss_name, otherwise the
result may be problematic**. The default is None.
build_strategy(BuildStrategy): This parameter is used to compile the
......@@ -192,7 +198,7 @@ class CompiledProgram(object):
specified by share_vars_from. This parameter needs to be set when model testing
is required during model training, and the data parallel mode is used for
training and testing. Since CompiledProgram will only distribute parameter
variables to other devices when it is first executed, the CompiledProgram
Tensors to other devices when it is first executed, the CompiledProgram
specified by share_vars_from must be run before the current CompiledProgram.
The default is None.
places(list(CUDAPlace)|list(CPUPlace)|None): This parameter specifies the device
......@@ -214,50 +220,53 @@ class CompiledProgram(object):
Example:
.. code-block:: python
import paddle.fluid as fluid
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
parallel_places = [fluid.CUDAPlace(0), fluid.CUDAPlace(1)] if use_cuda else [fluid.CPUPlace()] * 2
# NOTE: If you use CPU to run the program, you need
# to specify the CPU_NUM, otherwise, fluid will use
# all the number of the logic core as the CPU_NUM,
# in that case, the batch size of the input should be
# greater than CPU_NUM, if not, the process will be
# failed by an exception.
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
exe = fluid.Executor(place)
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
test_program = fluid.default_main_program().clone(for_test=True)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
exe.run(fluid.default_startup_program())
compiled_train_prog = fluid.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name, places=parallel_places)
# NOTE: if not set share_vars_from=compiled_train_prog,
# the parameters used in test process are different with
# the parameters used by train process
compiled_test_prog = fluid.CompiledProgram(
test_program).with_data_parallel(
share_vars_from=compiled_train_prog,
places=parallel_places)
train_data = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_train_prog,
import numpy
import os
import paddle
import paddle.static as static
paddle.enable_static()
use_cuda = True
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
parallel_places = [paddle.CUDAPlace(0), paddle.CUDAPlace(1)] if use_cuda else [paddle.CPUPlace()] * 2
# NOTE: If you use CPU to run the program, you need
# to specify the CPU_NUM, otherwise, paddle will use
# all the number of the logic core as the CPU_NUM,
# in that case, the batch size of the input should be
# greater than CPU_NUM, if not, the process will be
# failed by an exception.
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
exe = static.Executor(place)
data = static.data(name='X', shape=[None, 1], dtype='float32')
hidden = static.nn.fc(input=data, size=10)
loss = paddle.mean(hidden)
test_program = static.default_main_program().clone(for_test=True)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
exe.run(static.default_startup_program())
compiled_train_prog = static.CompiledProgram(
static.default_main_program()).with_data_parallel(
loss_name=loss.name, places=parallel_places)
# NOTE: if not set share_vars_from=compiled_train_prog,
# the parameters used in test process are different with
# the parameters used by train process
compiled_test_prog = static.CompiledProgram(
test_program).with_data_parallel(
share_vars_from=compiled_train_prog,
places=parallel_places)
train_data = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_train_prog,
feed={"X": train_data},
fetch_list=[loss.name])
test_data = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_test_prog,
test_data = numpy.random.random(size=(10, 1)).astype('float32')
loss_data, = exe.run(compiled_test_prog,
feed={"X": test_data},
fetch_list=[loss.name])
"""
......
......@@ -61,60 +61,44 @@ def prepare_context(strategy=None):
class ParallelEnv(object):
"""
**Notes**:
**The old class name was Env and will be deprecated. Please use new class name ParallelEnv.**
.. note::
This API is not recommended, if you need to get rank and world_size,
it is recommended to use ``paddle.distributed.get_rank()`` and
``paddle.distributed.get_world_size()`` .
This class is used to obtain the environment variables required for
the parallel execution of dynamic graph model.
the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
The dynamic graph parallel mode needs to be started using paddle.distributed.launch.
By default, the related environment variable is automatically configured by this module.
This class is generally used in with `fluid.dygraph.DataParallel` to configure dynamic graph models
to run in parallel.
The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
or ``paddle.distributed.spawn`` .
Examples:
.. code-block:: python
# This example needs to run with paddle.distributed.launch, The usage is:
# python -m paddle.distributed.launch --selected_gpus=0,1 example.py
# And the content of `example.py` is the code of following example.
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph.base import to_variable
place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
with fluid.dygraph.guard(place=place):
# prepare the data parallel context
strategy=dygraph.prepare_context()
linear = Linear(1, 10, act="softmax")
adam = fluid.optimizer.AdamOptimizer()
# make the module become the data parallelism module
linear = dygraph.DataParallel(linear, strategy)
x_data = np.random.random(size=[10, 1]).astype(np.float32)
data = to_variable(x_data)
hidden = linear(data)
avg_loss = fluid.layers.mean(hidden)
# scale the loss according to the number of trainers.
avg_loss = linear.scale_loss(avg_loss)
avg_loss.backward()
# collect the gradients of trainers.
linear.apply_collective_grads()
adam.minimize(avg_loss)
linear.clear_gradients()
import paddle
import paddle.distributed as dist
def train():
# 1. initialize parallel environment
dist.init_parallel_env()
# 2. get current ParallelEnv
parallel_env = dist.ParallelEnv()
print("rank: ", parallel_env.rank)
print("world_size: ", parallel_env.world_size)
# print result in process 1:
# rank: 1
# world_size: 2
# print result in process 2:
# rank: 2
# world_size: 2
if __name__ == '__main__':
# 1. start by ``paddle.distributed.spawn`` (default)
dist.spawn(train, nprocs=2)
# 2. start by ``paddle.distributed.launch``
# train()
"""
def __init__(self):
......
......@@ -3951,7 +3951,7 @@ class IrGraph(object):
class Program(object):
"""
Create Python Program. It has at least one :ref:`api_guide_Block_en`, when the
control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
it will contain nested block.
Please reference the
......@@ -3968,9 +3968,9 @@ class Program(object):
backward ops and vars.
**Notes**:
**we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
**by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
:ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
**we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
**by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
:ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
Returns:
Program: An empty Program.
......@@ -3978,14 +3978,17 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")
paddle.enable_static()
main_program = static.Program()
startup_program = static.Program()
with static.program_guard(main_program=main_program, startup_program=startup_program):
x = static.data(name="x", shape=[-1, 784], dtype='float32')
y = static.data(name="y", shape=[-1, 1], dtype='int32')
z = static.nn.fc(name="fc", input=x, size=10, act="relu")
print("main program is: {}".format(main_program))
print("start up program is: {}".format(startup_program))
......@@ -4053,15 +4056,18 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
print(prog.random_seed)
## 0
## the default random seed is 0
prog.global_seed(102)
prog1 = fluid.default_main_program()
prog1 = static.default_main_program()
print(prog1.random_seed)
## 102
## the random seed is 102
......@@ -4254,11 +4260,14 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
pred = fluid.layers.fc(x, size=3)
paddle.enable_static()
prog = static.default_main_program()
x = static.data(name="X", shape=[2,3], dtype="float32")
pred = static.nn.fc(x, size=3)
prog_string = prog.to_string(throw_on_error=True, with_details=False)
prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
print("program string without detail: {}".format(prog_string))
......@@ -4299,17 +4308,15 @@ class Program(object):
def clone(self, for_test=False):
"""
**Notes**:
**1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .
**2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.
**3. This API has no effect in Dygraph Mode**
.. note:::
1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
3. This API has no effect in Dygraph Mode.
Create a new Program with forward content of original one when ``for_test=True``.
Create a new Program as same as the original one when ``for_test=False``.
Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
training and testing. They have an attribute, :code:`is_test`, to
control this behaviour. This method will change the :code:`is_test`
attribute of them to :code:`True` when :code:`for_test=True`.
......@@ -4323,13 +4330,17 @@ class Program(object):
For Example:
::
import paddle.fluid as fluid
img = fluid.layers.data(name='image', shape=[784])
pred = fluid.layers.fc(input=img, size=10, act='relu')
loss = fluid.layers.mean(pred)
import paddle
import paddle.static as static
paddle.enable_static()
img = static.data(name='image', shape=[None, 784])
pred = static.nn.fc(input=img, size=10, act='relu')
loss = paddle.mean(pred)
# Here we use clone before Momentum
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
test_program = static.default_main_program().clone(for_test=True)
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer.minimize(loss)
Args:
......@@ -4343,14 +4354,15 @@ class Program(object):
Examples:
**Notes: The Program's order maybe different after** :code:`clone` **and
this will not affect your training or testing progress. In the following
example we give you an simple method** :code:`print_prog(program)` **to
print Program Descs inorder to make sure you have same print result
after** :code:`clone`:
.. note::
The Program's order maybe different after :code:`clone` and
this will not affect your training or testing progress. In the following
example we give you an simple method :code:`print_prog(program)` to
print Program Descs inorder to make sure you have same print result
after :code:`clone`:
.. code-block:: python
import paddle.fluid as fluid
import six
def print_prog(prog):
......@@ -4365,11 +4377,16 @@ class Program(object):
print(" [ attrs: {}: {} ]".format(key, value))
1. To clone a test program, the sample code is:
1. To clone a test program, the sample code is:
.. code-block:: python
import paddle.fluid as fluid
import six
import paddle
import paddle.static as static
import paddle.utils as utils
import paddle.nn.functional as F
paddle.enable_static()
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
......@@ -4382,20 +4399,20 @@ class Program(object):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
train_program = fluid.Program()
startup_program = fluid.Program()
train_program = static.Program()
startup_program = static.Program()
# startup_program is used to do some parameter init work,
# and main program is used to hold the network
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
with static.program_guard(train_program, startup_program):
with utils.unique_name.guard():
img = static.data(name='image', shape=[None, 784])
hidden = static.nn.fc(input=img, size=200, act='relu')
hidden = F.dropout(hidden, p=0.5)
loss = F.cross_entropy(
input=static.nn.fc(hidden, size=10, act='softmax'),
label=static.data(name='label', shape=[1], dtype='int64'))
avg_loss = paddle.mean(loss)
test_program = train_program.clone(for_test=True)
print_prog(test_program)
......@@ -4407,17 +4424,22 @@ class Program(object):
# that's why we need to use startup program of train. And for startup program of test, it has nothing,
# since it is a new program.
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
with static.program_guard(train_program, startup_program):
with utils.unique_name.guard():
sgd = paddle.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
2. The clone method can be avoid if you create program for training and program for testing individually.
2. The clone method can be avoid if you create program for training and program for testing individually.
.. code-block:: python
import paddle.fluid as fluid
import six
import paddle
import paddle.static as static
import paddle.utils as utils
import paddle.nn.functional as F
paddle.enable_static()
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
......@@ -4429,32 +4451,32 @@ class Program(object):
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
def network():
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
img = static.data(name='image', shape=[None, 784])
hidden = static.nn.fc(input=img, size=200, act='relu')
hidden = F.dropout(hidden, p=0.5)
loss = F.cross_entropy(
input=static.nn.fc(hidden, size=10, act='softmax'),
label=static.data(name='label', shape=[1], dtype='int64'))
avg_loss = paddle.mean(loss)
return avg_loss
train_program_2 = fluid.Program()
startup_program_2 = fluid.Program()
test_program_2 = fluid.Program()
with fluid.program_guard(train_program_2, startup_program_2):
with fluid.unique_name.guard():
train_program_2 = static.Program()
startup_program_2 = static.Program()
test_program_2 = static.Program()
with static.program_guard(train_program_2, startup_program_2):
with utils.unique_name.guard():
avg_loss = network()
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd = paddle.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
# the test startup program is not used.
with fluid.program_guard(test_program_2, startup_program_2):
with fluid.unique_name.guard():
with static.program_guard(test_program_2, startup_program_2):
with utils.unique_name.guard():
avg_loss = network()
print_prog(test_program_2)
The two code snippets above will generate and print same programs.
The two code snippets above will generate and print same programs.
"""
#NOTE(zhiqiu): we sync the original program first, since its program may diff with
......@@ -4661,10 +4683,9 @@ class Program(object):
@staticmethod
def parse_from_string(binary_str):
"""
**Notes**:
**1. All information about parameters will be lost after serialization**
**2. This API has no effect in Dygraph mode**
.. note::
1. All information about parameters will be lost after serialization;
2. This API has no effect in Dygraph mode.
Deserialize a Program from `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_ binary string.
This method always use to save and load model
......@@ -4679,23 +4700,24 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
paddle.enable_static()
startup_prog = fluid.Program()
main_prog = fluid.Program()
with fluid.program_guard(startup_prog, main_prog):
x = fluid.layers.data(
name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)
startup_prog = static.Program()
main_prog = static.Program()
with static.program_guard(startup_prog, main_prog):
x = static.data(name='X', shape=[1000, 784], dtype='float32')
y = fluid.layers.data(
name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)
y = static.data(name='Y', shape=[784, 100], dtype='float32')
z = fluid.layers.mul(x=x, y=y)
z = paddle.matmul(x=x, y=y)
binary_str = fluid.default_main_program().desc.serialize_to_string()
prog_restored = fluid.default_main_program().parse_from_string(binary_str)
binary_str = static.default_main_program().desc.serialize_to_string()
prog_restored = static.default_main_program().parse_from_string(binary_str)
print(fluid.default_main_program())
print(static.default_main_program())
print(prog_restored)
"""
p = Program()
......@@ -4727,7 +4749,8 @@ class Program(object):
The default random seed for random operators in Program. ``0`` means get
the random seed from random device.
**Notes: It must be set before the operators have been added.**
.. note::
It must be set before the operators have been added.
Returns:
int64: Random seed in current Program
......@@ -4736,18 +4759,22 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
import paddle.nn.functional as F
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
random_seed = prog.random_seed
x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
x_var = static.data(name="X", shape=[3,3], dtype="float32")
print(random_seed)
## 0
## the default random seed is 0
# Here we need to set random seed before we use fluid.layers.dropout
prog.random_seed = 1
z_var = fluid.layers.dropout(x_var, 0.7)
z_var = F.dropout(x_var, 0.7)
print(prog.random_seed)
## 1
......@@ -4760,7 +4787,8 @@ class Program(object):
"""
The number of :ref:`api_guide_Block_en` in this Program.
**Notes: This API has no effect in Dygraph mode**
.. note::
This API has no effect in Dygraph mode.
Returns:
int(Platform-dependent size): num of :ref:`api_guide_Block_en` in current Program
......@@ -4769,13 +4797,17 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
num_blocks = prog.num_blocks
print(num_blocks)
# print result:
# 1
"""
return self.desc.num_blocks()
......@@ -4792,8 +4824,8 @@ class Program(object):
def global_block(self):
"""
**Notes**:
**This API has no effect in Dygraph mode**
.. note::
This API has no effect in Dygraph mode.
Get the first :ref:`api_guide_Block_en` of this Program.
......@@ -4804,9 +4836,12 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
gb_block = prog.global_block()
print(gb_block)
......@@ -4815,8 +4850,8 @@ class Program(object):
def block(self, index):
"""
**Notes**:
**This API has no effect in Dygraph mode**
.. note::
This API has no effect in Dygraph mode.
Get the :code:`index` :ref:`api_guide_Block_en` of this Program
......@@ -4829,9 +4864,12 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
block_0 = prog.block(0)
print(block_0)
"""
......@@ -4839,8 +4877,8 @@ class Program(object):
def current_block(self):
"""
**Notes**:
**This API has no effect in Dygraph mode**
.. note::
This API has no effect in Dygraph mode.
Get the current :ref:`api_guide_Block_en` . The :code:`current` :ref:`api_guide_Block_en`
is the :ref:`api_guide_Block_en` to append operators.
......@@ -4851,9 +4889,12 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
paddle.enable_static()
prog = static.default_main_program()
current_blk = prog.current_block()
print(current_blk)
"""
......@@ -4987,21 +5028,27 @@ class Program(object):
def list_vars(self):
"""
Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Get all Tensors from this Program. A iterable object is returned.
Returns:
iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
iterable Tensors: The Generator will yield every Tensor in this program.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
prog = fluid.default_main_program()
img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
paddle.enable_static()
prog = static.default_main_program()
img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
label = static.data(name='label', shape=[None,1], dtype='int64')
for var in prog.list_vars():
print(var)
# var img : fluid.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
# var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
"""
for each_block in self.blocks:
for each_var in list(each_block.vars.values()):
......@@ -5017,13 +5064,16 @@ class Program(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import paddle.static as static
paddle.enable_static()
program = fluid.default_main_program()
data = fluid.data(name='x', shape=[None, 13], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
program = static.default_main_program()
data = static.data(name='x', shape=[None, 13], dtype='float32')
hidden = static.nn.fc(input=data, size=10)
loss = paddle.mean(hidden)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
for param in program.all_parameters():
print(param)
......@@ -5031,30 +5081,8 @@ class Program(object):
# Here will print all parameters in current program, in this example,
# the result is like:
#
# name: "fc_0.w_0"
# type {
# type: LOD_TENSOR
# lod_tensor {
# tensor {
# data_type: FP32
# dims: 13
# dims: 10
# }
# }
# }
# persistable: true
#
# name: "fc_0.b_0"
# type {
# type: LOD_TENSOR
# lod_tensor {
# tensor {
# data_type: FP32
# dims: 10
# }
# }
# }
# persistable: true
# persist trainable param fc_0.w_0 : fluid.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
# persist trainable param fc_0.b_0 : fluid.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
#
# Here print(param) will print out all the properties of a parameter,
# including name, type and persistable, you can access to specific
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册