Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
198fbdfb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
198fbdfb
编写于
1月 07, 2021
作者:
1
123malin
提交者:
GitHub
1月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Lookahead and ModelAverage Optimizer (#30004)
* test=develop, add model_average and lookahead
上级
6a19e41f
变更
9
展开全部
显示空白变更内容
内联
并排
Showing
9 changed file
with
1203 addition
and
2 deletion
+1203
-2
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+3
-0
python/paddle/__init__.py
python/paddle/__init__.py
+1
-0
python/paddle/fluid/tests/unittests/test_lookahead.py
python/paddle/fluid/tests/unittests/test_lookahead.py
+146
-0
python/paddle/fluid/tests/unittests/test_modelaverage.py
python/paddle/fluid/tests/unittests/test_modelaverage.py
+209
-0
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+4
-2
python/paddle/incubate/optimizer/__init__.py
python/paddle/incubate/optimizer/__init__.py
+18
-0
python/paddle/incubate/optimizer/lookahead.py
python/paddle/incubate/optimizer/lookahead.py
+296
-0
python/paddle/incubate/optimizer/modelaverage.py
python/paddle/incubate/optimizer/modelaverage.py
+525
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
198fbdfb
...
...
@@ -104,6 +104,9 @@ std::map<std::string, std::set<std::string>> op_passing_outs_map = {
{
"sgd"
,
{
"ParamOut"
}},
{
"adam"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
{
"average_accumulates"
,
{
"out_sum_1"
,
"out_sum_2"
,
"out_sum_3"
,
"out_num_accumulates"
,
"out_old_num_accumulates"
,
"out_num_updates"
}},
{
"momentum"
,
{
"ParamOut"
,
"VelocityOut"
}},
{
"batch_norm"
,
{
"MeanOut"
,
"VarianceOut"
}},
{
"sync_batch_norm"
,
{
"MeanOut"
,
"VarianceOut"
}},
...
...
python/paddle/__init__.py
浏览文件 @
198fbdfb
...
...
@@ -43,6 +43,7 @@ import paddle.optimizer
import
paddle.metric
import
paddle.device
import
paddle.regularizer
import
paddle.incubate
# TODO: define alias in tensor and framework directory
...
...
python/paddle/fluid/tests/unittests/test_lookahead.py
0 → 100644
浏览文件 @
198fbdfb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
import
paddle.nn
as
nn
LOOKAHEAD_K
=
5
LOOKAHEAD_ALPHA
=
0.2
SGD_LR
=
1.0
class
TestLookAhead
(
unittest
.
TestCase
):
def
test_lookahead_static
(
self
):
paddle
.
enable_static
()
place
=
fluid
.
CPUPlace
()
shape
=
[
2
,
3
,
8
,
8
]
exe
=
fluid
.
Executor
(
place
)
train_program
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup
):
with
fluid
.
unique_name
.
guard
():
data
=
fluid
.
data
(
name
=
'X'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
hidden
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
10
)
loss
=
fluid
.
layers
.
mean
(
hidden
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
SGD_LR
)
lookahead
=
paddle
.
incubate
.
optimizer
.
LookAhead
(
optimizer
,
alpha
=
LOOKAHEAD_ALPHA
,
k
=
LOOKAHEAD_K
)
lookahead
.
minimize
(
loss
)
exe
.
run
(
startup
)
slow_param
=
None
fast_param
=
None
for
i
in
range
(
10
):
if
(
i
+
1
)
%
LOOKAHEAD_K
==
0
:
slow_param
=
slow_param
+
LOOKAHEAD_ALPHA
*
(
fast_param
-
slow_param
)
x
=
np
.
random
.
random
(
size
=
(
10
,
1
)).
astype
(
'float32'
)
latest_b
,
b_grad
=
exe
.
run
(
program
=
train_program
,
feed
=
{
'X'
:
x
},
fetch_list
=
[
'fc_0.b_0'
,
'fc_0.b_0@GRAD'
,
])
if
i
==
0
:
slow_param
=
latest_b
if
(
i
+
1
)
%
LOOKAHEAD_K
==
0
:
self
.
assertAlmostEqual
(
slow_param
.
all
(),
latest_b
.
all
(),
delta
=
5e-3
)
fast_param
=
latest_b
-
SGD_LR
*
b_grad
def
test_look_ahead_dygraph
(
self
):
BATCH_SIZE
=
16
BATCH_NUM
=
4
EPOCH_NUM
=
4
IMAGE_SIZE
=
784
CLASS_NUM
=
10
# define a random dataset
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__init__
(
self
,
num_samples
):
self
.
num_samples
=
num_samples
def
__getitem__
(
self
,
idx
):
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
CLASS_NUM
-
1
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
num_samples
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear
=
nn
.
Linear
(
IMAGE_SIZE
,
CLASS_NUM
)
self
.
bias
=
self
.
_linear
.
bias
@
paddle
.
jit
.
to_static
def
forward
(
self
,
x
):
return
self
.
_linear
(
x
)
def
train
(
layer
,
loader
,
loss_fn
,
opt
):
idx
=
0
slow_param
=
None
fast_param
=
None
for
epoch_id
in
range
(
EPOCH_NUM
):
for
batch_id
,
(
image
,
label
)
in
enumerate
(
loader
()):
idx
+=
1
out
=
layer
(
image
)
loss
=
loss_fn
(
out
,
label
)
loss
.
backward
()
fast_param
=
layer
.
bias
.
numpy
()
-
SGD_LR
*
layer
.
bias
.
grad
opt
.
step
()
if
idx
==
1
:
slow_param
=
fast_param
if
idx
%
LOOKAHEAD_K
==
0
:
slow_param
=
slow_param
+
LOOKAHEAD_ALPHA
*
(
fast_param
-
slow_param
)
self
.
assertAlmostEqual
(
np
.
mean
(
slow_param
),
np
.
mean
(
layer
.
bias
.
numpy
()),
delta
=
5e-3
)
opt
.
clear_grad
()
layer
=
LinearNet
()
loss_fn
=
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
SGD_LR
,
parameters
=
layer
.
parameters
())
lookahead
=
paddle
.
incubate
.
optimizer
.
LookAhead
(
optimizer
,
alpha
=
LOOKAHEAD_ALPHA
,
k
=
LOOKAHEAD_K
)
# create data loader
dataset
=
RandomDataset
(
BATCH_NUM
*
BATCH_SIZE
)
loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
train
(
layer
,
loader
,
loss_fn
,
lookahead
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_modelaverage.py
0 → 100644
浏览文件 @
198fbdfb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
import
paddle.nn
as
nn
class
TestModelAverage
(
unittest
.
TestCase
):
def
test_model_average_static
(
self
):
paddle
.
enable_static
()
place
=
fluid
.
CPUPlace
()
shape
=
[
2
,
3
,
8
,
8
]
exe
=
fluid
.
Executor
(
place
)
train_program
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup
):
with
fluid
.
unique_name
.
guard
():
data
=
fluid
.
data
(
name
=
'X'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
hidden
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
10
)
loss
=
fluid
.
layers
.
mean
(
hidden
)
test_program
=
train_program
.
clone
()
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.2
,
momentum
=
0.1
)
optimizer
.
minimize
(
loss
)
# build ModelAverage optimizer
model_average
=
paddle
.
incubate
.
optimizer
.
ModelAverage
(
0.15
,
min_average_window
=
2
,
max_average_window
=
10
)
exe
.
run
(
startup
)
for
i
in
range
(
10
):
x
=
np
.
random
.
random
(
size
=
(
10
,
1
)).
astype
(
'float32'
)
latest_b
,
sum_1
,
sum_2
,
sum_3
,
num_accumulates
,
old_num_accumulates
,
num_updates
=
exe
.
run
(
program
=
train_program
,
feed
=
{
'X'
:
x
},
fetch_list
=
[
'fc_0.b_0'
,
'fc_0.b_0_sum_1_0'
,
'fc_0.b_0_sum_2_0'
,
'fc_0.b_0_sum_3_0'
,
'fc_0.b_0_num_accumulates_0'
,
'fc_0.b_0_old_num_accumulates_0'
,
'fc_0.b_0_num_updates_0'
])
self
.
assertTrue
(
np
.
equal
(
sum_1
,
np
.
zeros
(
shape
=
[
10
],
dtype
=
'float32'
)).
all
())
self
.
assertTrue
(
np
.
equal
(
sum_2
,
np
.
zeros
(
shape
=
[
10
],
dtype
=
'float32'
)).
all
())
self
.
assertTrue
(
np
.
equal
(
num_accumulates
,
np
.
array
(
[
0
],
dtype
=
'int64'
)).
all
())
self
.
assertTrue
(
np
.
equal
(
old_num_accumulates
,
np
.
array
(
[
2
],
dtype
=
'int64'
)).
all
())
self
.
assertTrue
(
np
.
equal
(
num_updates
,
np
.
array
(
[
10
],
dtype
=
'int64'
)).
all
())
average_b
=
(
sum_1
+
sum_2
+
sum_3
)
/
(
num_accumulates
+
old_num_accumulates
)
# apply ModelAverage
with
model_average
.
apply
(
exe
):
x
=
np
.
random
.
random
(
size
=
(
10
,
1
)).
astype
(
'float32'
)
outs
,
b
=
exe
.
run
(
program
=
test_program
,
feed
=
{
'X'
:
x
},
fetch_list
=
[
loss
.
name
,
'fc_0.b_0'
])
self
.
assertAlmostEqual
(
np
.
mean
(
average_b
),
np
.
mean
(
b
))
x
=
np
.
random
.
random
(
size
=
(
10
,
1
)).
astype
(
'float32'
)
outs
,
b
=
exe
.
run
(
program
=
test_program
,
feed
=
{
'X'
:
x
},
fetch_list
=
[
loss
.
name
,
'fc_0.b_0'
])
self
.
assertAlmostEqual
(
np
.
mean
(
latest_b
),
np
.
mean
(
b
))
def
test_model_average_dygraph
(
self
):
BATCH_SIZE
=
16
BATCH_NUM
=
4
EPOCH_NUM
=
4
IMAGE_SIZE
=
784
CLASS_NUM
=
10
# define a random dataset
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__init__
(
self
,
num_samples
):
self
.
num_samples
=
num_samples
def
__getitem__
(
self
,
idx
):
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
CLASS_NUM
-
1
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
num_samples
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear
=
nn
.
Linear
(
IMAGE_SIZE
,
CLASS_NUM
)
self
.
bias
=
self
.
_linear
.
bias
@
paddle
.
jit
.
to_static
def
forward
(
self
,
x
):
return
self
.
_linear
(
x
)
def
train
(
layer
,
loader
,
loss_fn
,
opt
,
model_average
):
for
epoch_id
in
range
(
EPOCH_NUM
):
for
batch_id
,
(
image
,
label
)
in
enumerate
(
loader
()):
out
=
layer
(
image
)
loss
=
loss_fn
(
out
,
label
)
loss
.
backward
()
opt
.
step
()
model_average
.
step
()
opt
.
clear_grad
()
model_average
.
clear_grad
()
# print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
# epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
sum_1
=
model_average
.
_get_accumulator
(
'sum_1'
,
layer
.
bias
)
sum_2
=
model_average
.
_get_accumulator
(
'sum_2'
,
layer
.
bias
)
sum_3
=
model_average
.
_get_accumulator
(
'sum_3'
,
layer
.
bias
)
num_accumulates
=
model_average
.
_get_accumulator
(
'num_accumulates'
,
layer
.
bias
)
old_num_accumulates
=
model_average
.
_get_accumulator
(
'old_num_accumulates'
,
layer
.
bias
)
num_updates
=
model_average
.
_get_accumulator
(
'num_updates'
,
layer
.
bias
)
return
((
sum_1
+
sum_2
+
sum_3
)
/
(
num_accumulates
+
old_num_accumulates
)).
numpy
()
def
evaluate
(
layer
,
loader
,
loss_fn
,
check_param
):
for
batch_id
,
(
image
,
label
)
in
enumerate
(
loader
()):
out
=
layer
(
image
)
loss
=
loss_fn
(
out
,
label
)
loss
.
backward
()
self
.
assertAlmostEqual
(
np
.
mean
(
layer
.
bias
.
numpy
()),
np
.
mean
(
check_param
),
delta
=
5e-3
)
# print("Evaluate batch {}: loss = {}, bias = {}".format(
# batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
# create network
layer
=
LinearNet
()
loss_fn
=
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.2
,
momentum
=
0.1
,
parameters
=
layer
.
parameters
())
# build ModelAverage optimizer
model_average
=
paddle
.
incubate
.
optimizer
.
ModelAverage
(
0.15
,
parameters
=
layer
.
parameters
(),
min_average_window
=
2
,
max_average_window
=
10
)
# create data loader
dataset
=
RandomDataset
(
BATCH_NUM
*
BATCH_SIZE
)
loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
eval_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
1
)
# train
check_param
=
train
(
layer
,
loader
,
loss_fn
,
optimizer
,
model_average
)
# print(check_param)
with
model_average
.
apply
(
need_restore
=
False
):
evaluate
(
layer
,
eval_loader
,
loss_fn
,
check_param
)
check_param
=
(
model_average
.
_get_accumulator
(
'restore'
,
layer
.
bias
)).
numpy
()
# print(check_param)
# print("\nEvaluate With Restored Paramters")
model_average
.
restore
()
evaluate
(
layer
,
eval_loader
,
loss_fn
,
check_param
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/incubate/__init__.py
浏览文件 @
198fbdfb
...
...
@@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
optimizer
from
..fluid.contrib
import
reader
__all__
=
[]
__all__
+=
[
"reader"
]
from
..fluid.contrib
import
reader
__all__
+=
optimizer
.
__all__
python/paddle/incubate/optimizer/__init__.py
0 → 100644
浏览文件 @
198fbdfb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.lookahead
import
LookAhead
from
.modelaverage
import
ModelAverage
__all__
=
[
'LookAhead'
,
'ModelAverage'
]
python/paddle/incubate/optimizer/lookahead.py
0 → 100644
浏览文件 @
198fbdfb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.optimizer
import
Optimizer
from
paddle.fluid
import
core
,
framework
,
layers
,
unique_name
from
paddle.fluid.framework
import
Program
,
Variable
,
name_scope
,
default_main_program
,
default_startup_program
,
device_guard
from
paddle.fluid.layer_helper
import
LayerHelper
import
paddle
import
numpy
as
np
from
paddle.fluid.dygraph
import
base
as
imperative_base
__all__
=
[
"LookAhead"
]
class
LookAhead
(
Optimizer
):
r
"""
This implements the Lookahead optimizer of the
paper : https://arxiv.org/abs/1907.08610.
Lookahead keeps two sets of params: the fast_params and
the slow_params. inner_optimizer update fast_params every
training step. Lookahead updates the slow_params and fast_params
every k training steps as follows:
.. math::
slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
fast\_param_t &= slow\_param_t
Args:
inner_optimizer (Optimizer): The optimizer that update fast params step by step.
alpha (float, optinal): The learning rate of Lookahead. The default value is 0.5.
k (int, optinal): The slow params is updated every k steps. The default value is 5.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1,
(1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
self.bias = self._linear.bias
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Train Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.SGD(learning_rate=0.1, parameters=layer.parameters())
lookahead = paddle.incubate.optimizer.LookAhead(optimizer, alpha=0.2, k=5)
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
train(layer, loader, loss_fn, lookahead)
"""
_slow_str
=
"slow"
def
__init__
(
self
,
inner_optimizer
,
alpha
=
0.5
,
k
=
5
,
name
=
None
):
assert
(
inner_optimizer
is
not
None
),
"inner optimizer can not be None"
assert
(
0.0
<=
alpha
<=
1.0
),
"alpha should be larger or equal to 0.0, and less or equal than 1.0"
assert
(
isinstance
(
k
,
int
)
and
k
>
0
),
"k should be a positive integer"
self
.
inner_optimizer
=
inner_optimizer
if
self
.
inner_optimizer
.
_parameter_list
is
None
:
parameters
=
framework
.
default_main_program
().
global_block
(
).
all_parameters
()
else
:
parameters
=
self
.
inner_optimizer
.
_parameter_list
super
(
LookAhead
,
self
).
__init__
(
learning_rate
=
alpha
,
parameters
=
parameters
,
weight_decay
=
None
,
grad_clip
=
None
,
name
=
name
)
self
.
alpha
=
alpha
self
.
k
=
k
self
.
type
=
"lookahead"
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
)
self
.
_global_step_var
=
None
self
.
_k_var
=
None
@
framework
.
dygraph_only
@
imperative_base
.
no_grad
def
step
(
self
):
"""
Execute the optimizer and update parameters once.
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32'))
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
lookahead = paddle.incubate.optimizer.LookAhead(sgd, alpha=0.2, k=5)
loss.backward()
lookahead.step()
lookahead.clear_grad()
"""
self
.
inner_optimizer
.
step
()
params_grads
=
[]
for
param
in
self
.
_parameter_list
:
if
not
param
.
trainable
:
continue
if
param
.
_grad_ivar
()
is
not
None
:
grad_var
=
param
.
_grad_ivar
()
params_grads
.
append
((
param
,
grad_var
))
self
.
_apply_optimize
(
loss
=
None
,
startup_program
=
None
,
params_grads
=
params_grads
)
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
for
p
in
parameters
:
self
.
_add_accumulator
(
self
.
_slow_str
,
p
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
if
self
.
_global_step_var
is
None
:
self
.
_global_step_var
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"lookahead_step"
),
shape
=
[
1
],
value
=
0
,
dtype
=
'int32'
,
persistable
=
True
)
self
.
helper
.
append_op
(
type
=
'increment'
,
inputs
=
{
'X'
:
[
self
.
_global_step_var
]},
outputs
=
{
'Out'
:
[
self
.
_global_step_var
]},
attrs
=
{
'step'
:
1.0
})
one_var
=
paddle
.
ones
(
shape
=
[
1
],
dtype
=
'int32'
,
name
=
'lookahead_ones'
)
zero_var
=
paddle
.
zeros
(
shape
=
[
1
],
dtype
=
'int32'
,
name
=
'lookahead_zeros'
)
k_var
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"lookahead_k"
),
shape
=
[
1
],
value
=
self
.
k
,
dtype
=
'int32'
,
persistable
=
True
)
mod
=
paddle
.
remainder
(
self
.
_global_step_var
,
k_var
)
cond_1
=
paddle
.
equal
(
self
.
_global_step_var
,
one_var
)
cond_1
=
paddle
.
cast
(
cond_1
,
dtype
=
'float32'
)
cond_2
=
paddle
.
equal
(
mod
,
zero_var
)
cond_2
=
paddle
.
cast
(
cond_2
,
dtype
=
'float32'
)
slow_var
=
self
.
_get_accumulator
(
self
.
_slow_str
,
param_and_grad
[
0
])
tmp_var
=
cond_1
*
param_and_grad
[
0
]
+
(
1
-
cond_1
)
*
slow_var
paddle
.
assign
(
tmp_var
,
slow_var
)
tmp_var
=
self
.
alpha
*
param_and_grad
[
0
]
+
(
1.0
-
self
.
alpha
)
*
slow_var
tmp_var_1
=
cond_2
*
tmp_var
+
(
1
-
cond_2
)
*
param_and_grad
[
0
]
paddle
.
assign
(
tmp_var_1
,
param_and_grad
[
0
])
tmp_var_1
=
cond_2
*
tmp_var
+
(
1
-
cond_2
)
*
slow_var
paddle
.
assign
(
tmp_var_1
,
slow_var
)
@
imperative_base
.
no_grad
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameters
=
None
,
no_grad_set
=
None
):
"""
Add operations to minimize ``loss`` by updating ``parameters``.
Args:
loss (Tensor): A ``Tensor`` containing the value to minimize.
startup_program (Program, optional): :ref:`api_fluid_Program` for
initializing parameters in ``parameters``. The default value
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
to minimize ``loss``. The default value is None, at this time all parameters
will be updated.
no_grad_set (set, optional): Set of ``Tensor`` or ``Tensor.name`` that don't need
to be updated. The default value is None.
Returns:
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad) tensor pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
Examples:
.. code-block:: python
import paddle
import numpy as np
inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32'))
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
lookahead = paddle.incubate.optimizer.LookAhead(sgd, alpha=0.2, k=5)
loss.backward()
lookahead.minimize(loss)
lookahead.clear_grad()
"""
assert
isinstance
(
loss
,
Variable
),
"The loss should be an Tensor."
parameter_list
=
parameters
if
parameters
\
else
self
.
_parameter_list
# Apply inner optimizer to the main_program
optimize_ops
,
params_grads
=
self
.
inner_optimizer
.
minimize
(
loss
,
startup_program
=
startup_program
,
parameters
=
parameters
,
no_grad_set
=
no_grad_set
)
_
=
self
.
_apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
return
optimize_ops
,
params_grads
python/paddle/incubate/optimizer/modelaverage.py
0 → 100644
浏览文件 @
198fbdfb
此差异已折叠。
点击以展开。
python/setup.py.in
浏览文件 @
198fbdfb
...
...
@@ -143,6 +143,7 @@ packages=['paddle',
'paddle.reader',
'paddle.distributed',
'paddle.incubate',
'paddle.incubate.optimizer',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.meta_optimizers',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录