未验证 提交 19639e31 编写于 作者: F fengjiayi 提交者: GitHub

Merge pull request #12254 from JiayiFeng/fix_lr_decay

Fix learning rate scheduler performance issue
...@@ -62,7 +62,7 @@ def noam_decay(d_model, warmup_steps): ...@@ -62,7 +62,7 @@ def noam_decay(d_model, warmup_steps):
The decayed learning rate. The decayed learning rate.
""" """
global_step = _decay_step_counter(1) global_step = _decay_step_counter(1)
with init_on_cpu():
a = global_step**-0.5 a = global_step**-0.5
b = (warmup_steps**-1.5) * global_step b = (warmup_steps**-1.5) * global_step
lr_value = (d_model**-0.5) * ops.elementwise_min(a, b) lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)
...@@ -108,8 +108,6 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -108,8 +108,6 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
with init_on_cpu():
# update learning_rate
div_res = global_step / decay_steps div_res = global_step / decay_steps
if staircase: if staircase:
div_res = ops.floor(div_res) div_res = ops.floor(div_res)
...@@ -138,7 +136,6 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -138,7 +136,6 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
with init_on_cpu():
div_res = global_step / decay_steps div_res = global_step / decay_steps
if staircase: if staircase:
div_res = ops.floor(div_res) div_res = ops.floor(div_res)
...@@ -184,7 +181,6 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -184,7 +181,6 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
with init_on_cpu():
div_res = global_step / decay_steps div_res = global_step / decay_steps
if staircase: if staircase:
div_res = ops.floor(div_res) div_res = ops.floor(div_res)
...@@ -224,13 +220,10 @@ def polynomial_decay(learning_rate, ...@@ -224,13 +220,10 @@ def polynomial_decay(learning_rate,
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
with init_on_cpu():
if cycle: if cycle:
div_res = ops.ceil(global_step / decay_steps) div_res = ops.ceil(global_step / decay_steps)
zero_var = tensor.fill_constant( zero_var = tensor.fill_constant(shape=[1], dtype='float32', value=0.0)
shape=[1], dtype='float32', value=0.0) one_var = tensor.fill_constant(shape=[1], dtype='float32', value=1.0)
one_var = tensor.fill_constant(
shape=[1], dtype='float32', value=1.0)
with control_flow.Switch() as switch: with control_flow.Switch() as switch:
with switch.case(global_step == zero_var): with switch.case(global_step == zero_var):
...@@ -277,7 +270,6 @@ def piecewise_decay(boundaries, values): ...@@ -277,7 +270,6 @@ def piecewise_decay(boundaries, values):
global_step = _decay_step_counter() global_step = _decay_step_counter()
with init_on_cpu():
lr = tensor.create_global_var( lr = tensor.create_global_var(
shape=[1], shape=[1],
value=0.0, value=0.0,
...@@ -288,15 +280,16 @@ def piecewise_decay(boundaries, values): ...@@ -288,15 +280,16 @@ def piecewise_decay(boundaries, values):
with control_flow.Switch() as switch: with control_flow.Switch() as switch:
for i in range(len(boundaries)): for i in range(len(boundaries)):
boundary_val = tensor.fill_constant( boundary_val = tensor.fill_constant(
shape=[1], dtype='float32', value=float(boundaries[i])) shape=[1],
dtype='float32',
value=float(boundaries[i]),
force_cpu=True)
value_var = tensor.fill_constant( value_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(values[i])) shape=[1], dtype='float32', value=float(values[i]))
with switch.case(global_step < boundary_val): with switch.case(global_step < boundary_val):
tensor.assign(value_var, lr) tensor.assign(value_var, lr)
last_value_var = tensor.fill_constant( last_value_var = tensor.fill_constant(
shape=[1], shape=[1], dtype='float32', value=float(values[len(values) - 1]))
dtype='float32',
value=float(values[len(values) - 1]))
with switch.default(): with switch.default():
tensor.assign(last_value_var, lr) tensor.assign(last_value_var, lr)
......
...@@ -91,20 +91,21 @@ class TestLearningRateDecay(unittest.TestCase): ...@@ -91,20 +91,21 @@ class TestLearningRateDecay(unittest.TestCase):
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn, def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
kwargs): kwargs):
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
decayed_lr = fluid_decay_fn(**kwargs) decayed_lr = fluid_decay_fn(**kwargs)
place = fluid.CPUPlace() place = fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(startup_prog)
fluid.memory_optimize(fluid.default_main_program()) fluid.memory_optimize(main_prog)
for step in range(10): for step in range(10):
lr_val, = exe.run(fluid.default_main_program(), lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
feed={},
fetch_list=[decayed_lr])
python_decayed_lr = python_decay_fn( python_decayed_lr = python_decay_fn(
global_step=float(step), **kwargs) global_step=float(step), **kwargs)
self.assertAlmostEqual( self.assertAlmostEqual(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册