diff --git a/paddle/fluid/operators/pool_op.cc b/paddle/fluid/operators/pool_op.cc index fc3636e0b24765f681d3260b07fe854309774a40..4f6d31efb41c0bd1f4feddb3760cf53d27a2de2f 100644 --- a/paddle/fluid/operators/pool_op.cc +++ b/paddle/fluid/operators/pool_op.cc @@ -262,28 +262,52 @@ Example: For exclusive = false: $$ hstart = i * strides[0] - paddings[0] + $$ + $$ hend = hstart + ksize[0] + $$ + $$ wstart = j * strides[1] - paddings[1] + $$ + $$ wend = wstart + ksize[1] + $$ + $$ Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]} $$ For exclusive = true: $$ hstart = max(0, i * strides[0] - paddings[0]) + $$ + $$ hend = min(H, hstart + ksize[0]) + $$ + $$ wstart = max(0, j * strides[1] - paddings[1]) + $$ + $$ wend = min(W, wstart + ksize[1]) + $$ + $$ Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} $$ For adaptive = true: - $$ - hstart = floor(i * H_{in} / H_{out}) - hend = ceil((i + 1) * H_{in} / H_{out}) - wstart = floor(j * W_{in} / W_{out}) - wend = ceil((j + 1) * W_{in} / W_{out}) - Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} - $$ + $$ + hstart = floor(i * H_{in} / H_{out}) + $$ + $$ + hend = ceil((i + 1) * H_{in} / H_{out}) + $$ + $$ + wstart = floor(j * W_{in} / W_{out}) + $$ + $$ + wend = ceil((j + 1) * W_{in} / W_{out}) + $$ + $$ + Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} + $$ )DOC"); } @@ -403,35 +427,72 @@ Example: H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\ W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1 $$ + For exclusive = false: $$ dstart = i * strides[0] - paddings[0] + $$ + $$ dend = dstart + ksize[0] + $$ + $$ hstart = j * strides[1] - paddings[1] + $$ + $$ hend = hstart + ksize[1] + $$ + $$ wstart = k * strides[2] - paddings[2] + $$ + $$ wend = wstart + ksize[2] + $$ + $$ Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]} $$ For exclusive = true: $$ dstart = max(0, i * strides[0] - paddings[0]) + $$ + $$ dend = min(D, dstart + ksize[0]) + $$ + $$ hstart = max(0, j * strides[1] - paddings[1]) + $$ + $$ hend = min(H, hstart + ksize[1]) + $$ + $$ wstart = max(0, k * strides[2] - paddings[2]) + $$ + $$ wend = min(W, wstart + ksize[2]) + $$ + $$ Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)} $$ For adaptive = true: $$ dstart = floor(i * D_{in} / D_{out}) + $$ + $$ dend = ceil((i + 1) * D_{in} / D_{out}) + $$ + $$ hstart = floor(j * H_{in} / H_{out}) + $$ + $$ hend = ceil((j + 1) * H_{in} / H_{out}) + $$ + $$ wstart = floor(k * W_{in} / W_{out}) + $$ + $$ wend = ceil((k + 1) * W_{in} / W_{out}) + $$ + $$ Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)} $$ diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 1a7d076835841e3c1b8a90a43437eff13645fb8a..1ae9f6fc3b360c90b50b96a2cedf7f2949cbe451 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -2569,7 +2569,13 @@ def adaptive_pool2d(input, require_index=False, name=None): """ - ${comment} + **Adaptive Pool2d Operator** + The adaptive_pool2d operation calculates the output based on the input, pool_size, + pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch + size, C is the number of channels, H is the height of the feature, and W is + the width of the feature. Parameters(pool_size) should contain two elements which + represent height and width, respectively. Also the H and W dimensions of output(Out) + is same as Parameter(pool_size). Args: input (Variable): The input tensor of pooling operator. The format of @@ -2579,8 +2585,8 @@ def adaptive_pool2d(input, pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). pool_type: ${pooling_type_comment} - require_index (bool): If true, the index of max pooling point along with outputs. - it cannot be set in average pooling type. + require_index (bool): If true, the index of max pooling point will be returned along + with outputs. It cannot be set in average pooling type. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -2661,18 +2667,24 @@ def adaptive_pool3d(input, require_index=False, name=None): """ - ${comment} + **Adaptive Pool3d Operator** + The adaptive_pool3d operation calculates the output based on the input, pool_size, + pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch + size, C is the number of channels, D is the depth of the feature, H is the height of + the feature, and W is the width of the feature. Parameters(pool_size) should contain + three elements which represent height and width, respectively. Also the D, H and W + dimensions of output(Out) is same as Parameter(pool_size). Args: input (Variable): The input tensor of pooling operator. The format of - input tensor is NCHW, where N is batch size, C is - the number of channels, H is the height of the - feature, and W is the width of the feature. + input tensor is NCDHW, where N is batch size, C is + the number of channels, D is the depth of the feature, + H is the height of the feature, and W is the width of the feature. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, - it must contain two integers, (Depth, Height, Width). + it must contain three integers, (Depth, Height, Width). pool_type: ${pooling_type_comment} - require_index (bool): If true, the index of max pooling point along with outputs. - it cannot be set in average pooling type. + require_index (bool): If true, the index of max pooling point will be returned along + with outputs. It cannot be set in average pooling type. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -2709,7 +2721,7 @@ def adaptive_pool3d(input, name='data', shape=[3, 32, 32], dtype='float32') pool_out, mask = fluid.layers.adaptive_pool3d( input=data, - pool_size=[3, 3], + pool_size=[3, 3, 3], pool_type='avg') """ if pool_type not in ["max", "avg"]: