Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
18fc9275
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
18fc9275
编写于
9月 16, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
9月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add regularizer api (#27292)
上级
8fe1c2d1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
340 addition
and
8 deletion
+340
-8
python/paddle/__init__.py
python/paddle/__init__.py
+1
-0
python/paddle/fluid/tests/unittests/test_regularizer_api.py
python/paddle/fluid/tests/unittests/test_regularizer_api.py
+204
-0
python/paddle/regularizer.py
python/paddle/regularizer.py
+131
-5
python/paddle/utils/__init__.py
python/paddle/utils/__init__.py
+4
-3
未找到文件。
python/paddle/__init__.py
浏览文件 @
18fc9275
...
...
@@ -49,6 +49,7 @@ import paddle.optimizer
import
paddle.metric
import
paddle.device
import
paddle.incubate.complex
as
complex
import
paddle.regularizer
# TODO: define alias in tensor and framework directory
...
...
python/paddle/fluid/tests/unittests/test_regularizer_api.py
0 → 100644
浏览文件 @
18fc9275
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
functools
import
partial
import
contextlib
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
paddle.fluid.framework
as
framework
import
paddle.fluid.optimizer
as
optimizer
import
paddle.regularizer
as
regularizer
from
paddle.fluid.backward
import
append_backward
def
bow_net
(
data
,
label
,
dict_dim
,
is_sparse
=
False
,
emb_dim
=
8
,
hid_dim
=
8
,
hid_dim2
=
6
,
class_dim
=
2
):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
fluid/PaddleNLP/text_classification/nets.py
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
is_sparse
=
is_sparse
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
TestRegularizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
train
(
self
.
word_dict
),
batch_size
=
1
)()
self
.
train_data
=
[
next
(
reader
)
for
_
in
range
(
1
)]
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
@
contextlib
.
contextmanager
def
scope_prog_guard
(
self
,
main_prog
,
startup_prog
):
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
yield
def
run_program
(
self
,
place
,
feed_list
):
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
main_prog
=
fluid
.
default_main_program
()
param_list
=
[
var
.
name
for
var
in
main_prog
.
block
(
0
).
all_parameters
()]
param_sum
=
[]
for
data
in
self
.
train_data
:
out
=
exe
.
run
(
main_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
param_list
)
p_sum
=
0
for
v
in
out
:
p_sum
+=
np
.
sum
(
np
.
abs
(
v
))
param_sum
.
append
(
p_sum
)
return
param_sum
def
check_l2decay_regularizer
(
self
,
place
,
model
):
paddle
.
manual_seed
(
1
)
paddle
.
framework
.
random
.
_manual_program_seed
(
1
)
main_prog
=
fluid
.
framework
.
Program
()
startup_prog
=
fluid
.
framework
.
Program
()
with
self
.
scope_prog_guard
(
main_prog
=
main_prog
,
startup_prog
=
startup_prog
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
avg_cost
=
model
(
data
,
label
,
len
(
self
.
word_dict
))
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.1
,
regularization
=
paddle
.
regularizer
.
L2Decay
(
1.0
))
optimizer
.
minimize
(
avg_cost
)
param_sum
=
self
.
run_program
(
place
,
[
data
,
label
])
return
param_sum
def
check_l2decay
(
self
,
place
,
model
):
paddle
.
manual_seed
(
1
)
paddle
.
framework
.
random
.
_manual_program_seed
(
1
)
main_prog
=
fluid
.
framework
.
Program
()
startup_prog
=
fluid
.
framework
.
Program
()
with
self
.
scope_prog_guard
(
main_prog
=
main_prog
,
startup_prog
=
startup_prog
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
avg_cost_l2
=
model
(
data
,
label
,
len
(
self
.
word_dict
))
param_list
=
fluid
.
default_main_program
().
block
(
0
).
all_parameters
()
para_sum
=
[]
for
para
in
param_list
:
para_mul
=
fluid
.
layers
.
square
(
x
=
para
)
para_sum
.
append
(
fluid
.
layers
.
reduce_sum
(
input
=
para_mul
))
avg_cost_l2
+=
fluid
.
layers
.
sums
(
para_sum
)
*
.
5
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
avg_cost_l2
)
param_sum
=
self
.
run_program
(
place
,
[
data
,
label
])
return
param_sum
def
test_l2
(
self
):
for
place
in
self
.
get_places
():
dense_sparse_p_sum
=
[]
for
sparse
in
[
True
,
False
]:
model
=
partial
(
bow_net
,
is_sparse
=
sparse
)
framework_l2
=
self
.
check_l2decay_regularizer
(
place
,
model
)
l2
=
self
.
check_l2decay
(
place
,
model
)
assert
len
(
l2
)
==
len
(
framework_l2
)
for
i
in
range
(
len
(
l2
)):
assert
np
.
isclose
(
a
=
framework_l2
[
i
],
b
=
l2
[
i
],
rtol
=
5e-5
)
dense_sparse_p_sum
.
append
(
framework_l2
)
assert
len
(
dense_sparse_p_sum
[
0
])
==
len
(
dense_sparse_p_sum
[
1
])
for
i
in
range
(
len
(
dense_sparse_p_sum
[
0
])):
assert
np
.
isclose
(
a
=
dense_sparse_p_sum
[
0
][
i
],
b
=
dense_sparse_p_sum
[
1
][
i
],
rtol
=
5e-5
)
def
test_repeated_regularization
(
self
):
l1
=
paddle
.
regularizer
.
L1Decay
(
0.1
)
l2
=
paddle
.
regularizer
.
L2Decay
(
0.01
)
fc_param_attr
=
fluid
.
ParamAttr
(
regularizer
=
l1
)
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
x
=
fluid
.
layers
.
uniform_random
([
2
,
2
,
3
])
out
=
fluid
.
layers
.
fc
(
x
,
5
,
param_attr
=
fc_param_attr
)
loss
=
fluid
.
layers
.
reduce_sum
(
out
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
,
regularization
=
l2
)
sgd
.
minimize
(
loss
)
with
fluid
.
dygraph
.
guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
randn
(
3
,
2
).
astype
(
'float32'
))
paddle
.
manual_seed
(
1
)
paddle
.
framework
.
random
.
_manual_program_seed
(
1
)
linear1
=
fluid
.
dygraph
.
Linear
(
2
,
2
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_param_attr
)
linear2
=
fluid
.
dygraph
.
Linear
(
2
,
2
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_param_attr
)
loss1
=
linear1
(
input
)
loss1
.
backward
()
# set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
fluid
.
optimizer
.
SGD
(
parameter_list
=
linear1
.
parameters
(),
learning_rate
=
1e-2
,
regularization
=
l2
).
minimize
(
loss1
)
# only set l1 in fluid.ParamAttr
loss2
=
linear2
(
input
)
loss2
.
backward
()
fluid
.
optimizer
.
SGD
(
parameter_list
=
linear2
.
parameters
(),
learning_rate
=
1e-2
).
minimize
(
loss2
)
# they should both be applied by l1, and keep the same
self
.
assertTrue
(
np
.
allclose
(
linear1
.
weight
.
numpy
(),
linear2
.
weight
.
numpy
()),
"weight should use the regularization in fluid.ParamAttr!"
)
self
.
assertTrue
(
np
.
allclose
(
linear1
.
bias
.
numpy
(),
linear2
.
bias
.
numpy
()),
"bias should use the regularization in fluid.ParamAttr!"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/regularizer.py
浏览文件 @
18fc9275
...
...
@@ -12,8 +12,134 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define the regularizer functions
# __all__ = ['L1Decay',
# 'L1DecayRegularizer',
# 'L2Decay',
# 'L2DecayRegularizer']
__all__
=
[
'L1Decay'
,
'L2Decay'
]
import
paddle.fluid
as
fluid
class
L1Decay
(
fluid
.
regularizer
.
L1Decay
):
"""
Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined
in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the regularizer
in Optimizer will be used.
In the implementation, the formula of L1 Weight Decay Regularization is as follows:
.. math::
L1WeightDecay = reg\_coeff * sign(parameter)
Args:
coeff(float, optional): regularization coeff. Default:0.0.
Examples:
.. code-block:: python
# Example1: set Regularizer in optimizer
import paddle
from paddle.regularizer import L1Decay
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
momentum = paddle.optimizer.Momentum(
learning_rate=0.1,
parameters=linear.parameters(),
weight_decay=L1Decay(0.0001))
back = out.backward()
momentum.step()
momentum.clear_grad()
# Example2: set Regularizer in parameters
# Set L1 regularization in parameters.
# Global regularizer does not take effect on my_conv2d for this case.
from paddle.nn import Conv2d
from paddle import ParamAttr
from paddle.regularizer import L2Decay
my_conv2d = Conv2d(
in_channels=10,
out_channels=10,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(regularizer=L2Decay(coeff=0.01)),
bias_attr=False)
"""
def
__init__
(
self
,
coeff
=
0.0
):
super
(
L1Decay
,
self
).
__init__
(
coeff
)
class
L2Decay
(
fluid
.
regularizer
.
L2Decay
):
"""
Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined
in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the regularizer
in Optimizer will be used.
In the implementation, the formula of L2 Weight Decay Regularization is as follows:
.. math::
L2WeightDecay = reg\_coeff * parameter
Args:
regularization_coeff(float, optional): regularization coeff. Default:0.0
Examples:
.. code-block:: python
# Example1: set Regularizer in optimizer
import paddle
from paddle.regularizer import L2Decay
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
momentum = paddle.optimizer.Momentum(
learning_rate=0.1,
parameters=linear.parameters(),
weight_decay=L2Decay(0.0001))
back = out.backward()
momentum.step()
momentum.clear_grad()
# Example2: set Regularizer in parameters
# Set L2 regularization in parameters.
# Global regularizer does not take effect on my_conv2d for this case.
from paddle.nn import Conv2d
from paddle import ParamAttr
from paddle.regularizer import L2Decay
my_conv2d = Conv2d(
in_channels=10,
out_channels=10,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(regularizer=L2Decay(coeff=0.01)),
bias_attr=False)
"""
def
__init__
(
self
,
coeff
=
0.0
):
super
(
L2Decay
,
self
).
__init__
(
coeff
)
python/paddle/utils/__init__.py
浏览文件 @
18fc9275
...
...
@@ -16,12 +16,13 @@ from .profiler import ProfilerOptions
from
.profiler
import
Profiler
from
.profiler
import
get_profiler
from
.deprecated
import
deprecated
from
..fluid.framework
import
unique_name
from
..fluid.framework
import
load_op_library
from
..fluid.framework
import
require_version
from
.
import
download
__all__
=
[
'dump_config'
,
'deprecated'
,
'download'
]
#TODO: define new api under this directory
# __all__ = ['unique_name',
# 'load_op_library',
# 'require_version']
__all__
+=
[
'unique_name'
,
'load_op_library'
,
'require_version'
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录