未验证 提交 1773afd7 编写于 作者: Z zhaoyingli 提交者: GitHub

[AutoParallel] Add AutoConvert (#36958)

* add AutoConvert

* add unitest

* amend merge&slice

* amend default dist_attr

* update doc&improve coverage

* add interface dist_context

* tiny modify
上级 c1310343
......@@ -20,8 +20,8 @@ import warnings
import logging
import paddle.fluid.core as core
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
from paddle.framework.io import _to_LodTensor
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
def is_valid_list_index(list, index):
......@@ -362,49 +362,97 @@ def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
def _check_addition_info(addition_info):
"""
Validity check of additional information
"""
def _update_addition_info(addition_info):
""" Update default addition_info with inputs """
add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
if not addition_info:
return addition_info
return add_info
elif not isinstance(addition_info, dict):
raise TypeError(
"The type of addition_info should be 'dict', but got {}".format(
str(type(addition_info))))
raise TypeError("The type of 'addition_info' should be 'dict', "
"but got '{}'.".format(str(type(addition_info))))
else:
return addition_info
for item, value in addition_info.items():
if item not in ["epoch", "batch", "batch_size"]:
raise ValueError(
"The key of 'addition_info' should be one of the "
"['epoch', 'batch', 'batch_size'], but got '{}'."
.format(str(item)))
if not isinstance(value, int):
raise ValueError(
"The value of 'addition_info' should be 'int', "
"but got '{}'.".format(str(type(value))))
add_info[item] = value
return add_info
def _check_valid_path(file_path):
"""
Validity check of input file path
"""
""" Validity check of input file path """
if not file_path:
return file_path
elif isinstance(file_path, str):
if not os.path.exists(file_path):
raise ValueError("The file_path '{}' does not exist.".format(
file_path))
else:
return [file_path]
elif isinstance(file_path, list):
if not all(isinstance(file, str) for file in file_path):
raise ValueError("The type of each file_path should be str.")
if not all(os.path.exists(file) for file in file_path):
raise ValueError("The file_path's file does not exist.")
for file in file_path:
if not isinstance(file, str):
raise TypeError("The type of file path should be 'str', "
"but got '{}'.".format(str(type(file))))
if not os.path.exists(file):
raise ValueError("The file path '{}' does not exist."
.format(file))
return file_path
else:
raise TypeError(
"The type of file_path should be 'str' or 'list', but got '{}'.".
format(str(type(file_path))))
raise TypeError("The type of file path should be 'list', "
"but got '{}'.".format(str(type(file_path))))
def _check_param_dict(param_dict):
if not param_dict:
raise ValueError("'param_dict' cannot be None.")
elif not isinstance(param_dict, dict):
raise TypeError("The type of 'param_dict' should be 'dict', "
"but got '{}'.".format(str(type(param_dict))))
else:
for name, value in param_dict.items():
if not isinstance(name, str):
raise TypeError(
"The type of key of 'param_dict' should be 'str', "
"but got '{}'.".format(str(type(name))))
if not isinstance(value, paddle.fluid.LoDTensor):
raise TypeError(
"The type of value of 'param_dict' should be 'LoDTensor', "
"but got '{}'.".format(str(type(value))))
return param_dict
def _check_dist_attr(dist_attr):
if not dist_attr:
return dist_attr
elif not isinstance(dist_attr, dict):
raise TypeError("The type of 'dist_attr' should be 'dict', "
"but got '{}'.".format(str(type(dist_attr))))
else:
for name, value in dist_attr.items():
if not isinstance(name, str):
raise TypeError(
"The type of param name of 'dist_attr' should be 'str', "
"but got '{}'.".format(str(type(name))))
if not isinstance(value, dict):
raise TypeError(
"The type of distributed attribute should be 'dict', "
"but got '{}'".format(str(type(value))))
attr = ['process_shape', 'process_group', 'dims_mapping']
if list(value.keys()) != attr:
raise ValueError(
"The key of distributed attribute should be "
"'['process_shape', 'process_group', 'dims_mapping']', "
"but got {}.".format(str(value.keys())))
return dist_attr
def save_distributed_checkpoint(program,
checkpoint_path,
is_integrated=False,
dist_attr_path,
addition_info=None,
dist_attr_path=None):
is_integrated=False,
dist_context=None):
"""
Save model parameter state, optimzer state, distributed attribute and
additional information of each rank.
......@@ -412,9 +460,11 @@ def save_distributed_checkpoint(program,
Args:
program(Program): The program to be saved.
checkpoint_path(str): The path of the checkpoint file to be saved.
dist_attr_path(str): The path of distributed attribute file to be saved.
addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
Default values are 0, when 'addition_info' is None. Default: None.
is_integrated(bool, optional): Whether to integrate param before save. Default: False.
addition_info(dict, optional): Additional information. Default: None.
dist_attr_path(str, optional): The path of distributed attribute file to be saved. Default: None
dist_context(DistributedContext ,optional): collect related distributed information for program
Returns:
None
......@@ -422,78 +472,508 @@ def save_distributed_checkpoint(program,
Examples:
.. code-block:: python
ckpt_path = os.path.join(args.output_dir, "step_%d" % step)
os.makedirs(ckpt_path, exist_ok=True)
save_distributed_checkpoint(program, ckpt_path)
path = os.path.join("./output", "step_%d" % step)
os.makedirs(path, exist_ok=True)
add_info = {'batch': step, "batch_size": global_batch_size}
save_distributed_checkpoint(program, path, path, add_info)
"""
from .dist_context import get_default_distributed_context
assert isinstance(program, paddle.fluid.framework.Program)
assert isinstance(is_integrated, bool)
if dist_context is None:
dist_context = get_default_distributed_context()
addition_info = _update_addition_info(addition_info)
if not is_integrated:
rank = paddle.distributed.get_rank()
ckpt_file_name = os.path.join(checkpoint_path,
"model_state_rank{}.pdmodel".format(rank))
state_dict = {
"model": program.state_dict(),
"ranks": paddle.distributed.get_world_size()
}
if _check_addition_info(addition_info):
state_dict["addition_info"] = addition_info
paddle.save(state_dict, ckpt_file_name)
logging.info("Already save model to {}".format(checkpoint_path))
if dist_attr_path:
raise NotImplementedError(
"Save distributed attribute has not been implemented.")
_save_distributed_state_dict(program, addition_info, checkpoint_path)
_save_distributed_attribute(program, dist_attr_path, dist_context)
else:
# TODO: integrate param before save
raise NotImplementedError(
"Integrating parameter has not been implemented.")
def load_distributed_checkpoint(checkpoint_path,
program=None,
dist_attr_path=None):
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
"""
Load parameter, optimizer, distributed attribute and addition_info of model.
Load parameter, optimizer, distributed attribute and addition_info.
Args:
checkpoint_path(str|list[str]): checkpoint_path's type can be 'str' or 'list', \
which must be in order of rank id when type is 'list'.
program(Program, optional): The program to be updated with checkpoint_path. Default: None.
dist_attr_path(str|list[str], optional): dist_attr_path's type can be 'str' or 'list', \
which must be in order of rank id when type is 'list'. Default: None.
checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
Returns:
None or addition_info which user saved in last train.
param_dict(dict): parameters' value of all ranks.
dist_attr(dict): parameters' distributed attribute.
addition_info(dict): additional information user saved in last training.
Notes:
The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
Examples:
.. code-block:: python
ckpt_path = ['./model_state_rank0.pdmodel',
'./model_state_rank1.pdmodel']
dist_attr_path = ['./dist_attr_rank0.pdattr',
'./dist_attr_rank1.pdattr']
param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
"""
assert _check_valid_path(checkpoint_path), \
"'checkpoint_path' cannot be None."
assert _check_valid_path(dist_attr_path), \
"'dist_attr_path' cannot be None."
state_dict_info = _load_distributed_state_dict(checkpoint_path)
dist_attr = _load_distributed_attribute(dist_attr_path)
param_dict = state_dict_info["model"]
addition_info = state_dict_info["addition_info"]
return param_dict, dist_attr, addition_info
def load_checkpoint_into_program(checkpoint_path,
dist_attr_path,
program,
dist_context=None):
"""
Load parameter, optimizer, distributed attribute and addition_info into model.
Args:
checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
program(Program): the program to be updated with checkpoint_path.
dist_context(DistributedContext ,optional): collect related distributed information for program
Returns:
addition_info(dict): user saved in last train.
Notes:
The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
Examples:
.. code-block:: python
exe.run(startup_program)
ckpt_path = ['./output/step_10/model_state_rank0.pdmodel',
'./output/step_10/model_state_rank1.pdmodel']
load_distributed_checkpoint(ckpt_path, main_program)
ckpt_path = ['./model_state_rank0.pdmodel',
'./model_state_rank1.pdmodel']
dist_attr_path = ['./dist_attr_rank0.pdattr',
'./dist_attr_rank1.pdattr']
load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
"""
checkpoint_path = _check_valid_path(checkpoint_path)
dist_attr_path = _check_valid_path(dist_attr_path)
from .dist_context import get_default_distributed_context
if checkpoint_path and dist_attr_path:
raise NotImplementedError(
"Merge&Slice parameter with dist_attr has not been implemented.")
elif checkpoint_path:
assert len(checkpoint_path) == paddle.distributed.get_world_size(), \
"The number of checkpoint_path must equal to the number of ranks"
rank = paddle.distributed.get_rank()
state_dict_info = paddle.load(checkpoint_path[rank])
state_dict = state_dict_info["model"]
assert isinstance(program, paddle.fluid.framework.Program)
assert _check_valid_path(checkpoint_path), \
"'checkpoint_path' cannot be None."
assert _check_valid_path(dist_attr_path), \
"'dist_attr_path' cannot be None."
if dist_context is None:
dist_context = get_default_distributed_context()
all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
all_cur_dist_attr = get_dist_attr(program, dist_context)
all_param_dict = all_state_dict_info["model"]
addition_info = all_state_dict_info["addition_info"]
sliced_param_dict = merge_and_slice_parameter(
all_param_dict, all_pre_dist_attr, all_cur_dist_attr)
load_parameter_into_program(sliced_param_dict, program)
return addition_info
def load_parameter_into_program(param_dict, program):
"""
Load parameters into program.
Args:
param_dict(dict): parameters' name and value.
program(Program): the program to be updated
"""
_check_param_dict(param_dict)
assert program and isinstance(program, paddle.fluid.framework.Program)
program.set_state_dict(param_dict)
def _save_distributed_attribute(program, dist_attr_path, dist_context):
""" Save distributed attribute of all parameters """
# TODO: just save a complete distributed attribute file
rank_id = paddle.distributed.get_rank()
dist_attr_name = os.path.join(dist_attr_path,
"dist_attr_rank{}.pdattr".format(rank_id))
dist_attr_dict = {
"model": get_dist_attr(program, dist_context),
"world_size": paddle.distributed.get_world_size()
}
paddle.save(dist_attr_dict, dist_attr_name)
logging.info("Already saved distributed attribute to '{}'.".format(
dist_attr_path))
def _load_distributed_attribute(dist_attr_path):
""" Load parameters' distributed attribute from dist_attr_path """
total_dist_attr = {}
for dist_attr_file in dist_attr_path:
dist_attr = paddle.load(dist_attr_file)
pre_world_size = dist_attr["world_size"]
assert pre_world_size == len(dist_attr_path), \
"The number of 'dist_attr_path' must be equal to the last training world size."
for name, attr in dist_attr["model"].items():
if name not in total_dist_attr:
total_dist_attr[name] = attr
return total_dist_attr
def _save_distributed_state_dict(program, addition_info, checkpoint_path):
""" Save parameters' state_dict """
rank = paddle.distributed.get_rank()
ckpt_file_name = os.path.join(checkpoint_path,
"model_state_rank{}.pdmodel".format(rank))
state_dict = {
"model": program.state_dict(),
"world_size": paddle.distributed.get_world_size(),
"addition_info": addition_info
}
paddle.save(state_dict, ckpt_file_name)
logging.info("Already saved model to '{}'.".format(checkpoint_path))
def _load_distributed_state_dict(checkpoint_path):
""" Load parameters' state_dict from checkpoint_path """
all_state_dict = {}
for idx, ckpt_file in enumerate(checkpoint_path):
state_dict_info = paddle.load(ckpt_file)
pre_world_size = state_dict_info["world_size"]
assert pre_world_size == len(checkpoint_path), \
"The number of 'checkpoint_path' must be equal to the last training world size."
if idx == 0:
addition_info = state_dict_info["addition_info"]
for name, value in state_dict_info["model"].items():
if name in all_state_dict:
all_state_dict[name].append(np.array(value))
else:
all_state_dict[name] = [np.array(value)]
all_state_dict_info = {
"model": all_state_dict,
"addition_info": addition_info
}
return all_state_dict_info
def get_dist_attr(program, dist_context=None):
"""
Get distributed attribute of current rank.
Args:
program(Program): main program for training
"""
from .dist_context import get_default_distributed_context
assert isinstance(program, paddle.fluid.framework.Program)
if dist_context is None:
dist_context = get_default_distributed_context()
dist_attr = {}
for var in program.list_vars():
if is_parameter(var) or is_belong_to_optimizer(var):
tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
var)
process_mesh = tensor_dist_attr.process_mesh
dims_mapping = tensor_dist_attr.dims_mapping
dist_attr[var.name] = {
"process_shape": process_mesh.topology,
"process_group": process_mesh.processes,
"dims_mapping": dims_mapping
}
return dist_attr
def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
"""
Merge parameters with previous dist_attr and slice parameters with current dist_attr
Arags:
dist_param_dict(dict): parameters' value of all ranks.
pre_dist_attr(dict): parameters' dist_attr of last training process.
cur_dist_attr(dict): parameters' dist_attr of current training process.
Returns:
dist_param_dict(dict): parameters' value of current rank.
"""
assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
assert _check_dist_attr(cur_dist_attr), "'pre_dist_attr' cannot be None."
assert isinstance(dist_param_dict, dict), \
"The type of 'dist_param_dict' should be 'dict', but got {}.".format(
str(type(dist_param_dict)))
for name, value in dist_param_dict.items():
if not isinstance(name, str):
raise TypeError("The key of 'dist_param_dict' is parameter's name, "
"and its type should be 'str', but got {}."
.format(str(type(name))))
if not isinstance(value, list) or not all(
isinstance(v, np.ndarray) for v in value):
raise TypeError(
"The value of 'dist_param_dict' is parameter's value of all ranks, "
"and its type should be 'list(numpy.ndarray)'.")
param_not_in_pre = []
param_not_in_cur = []
logging.info("Start to merge and slice parameters.")
for var_name in cur_dist_attr.keys():
if var_name not in pre_dist_attr:
param_not_in_pre.append(var_name)
continue
pre_attr = pre_dist_attr[var_name]
cur_attr = cur_dist_attr[var_name]
if pre_attr == cur_attr:
# skip merge and slice
rank_id = paddle.distributed.get_rank()
index = cur_attr["process_group"].index(rank_id)
param = dist_param_dict[var_name][index]
dist_param_dict[var_name] = _to_LodTensor(param)
continue
pre_param = dist_param_dict[var_name]
pre_dims_mapping = pre_attr["dims_mapping"]
cur_dims_mapping = cur_attr["dims_mapping"]
if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
complete_param = _merge_parameter_with_dist_attr(pre_param,
pre_attr)
dist_param_dict[var_name] = complete_param
else:
complete_param = pre_param[0]
dist_param_dict[var_name] = _to_LodTensor(complete_param)
if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
sliced_param = _slice_parameter_with_dist_attr(complete_param,
cur_attr)
dist_param_dict[var_name] = sliced_param
for var_name in pre_dist_attr:
if var_name not in cur_dist_attr:
param_not_in_cur.append(var_name)
dist_param_dict.pop(var_name)
if param_not_in_pre:
warnings.warn("Parameters '{}' are not found in last training process."
.format(str(param_not_in_pre)))
if param_not_in_cur:
warnings.warn(
"Parameters '{}' are not found in current training process."
.format(str(param_not_in_cur)))
return dist_param_dict
def _merge_parameter_with_dist_attr(param_list, dist_attr):
""" Merge parameter with distributed attribute """
from .reshard import _compute_complete_shape, _compute_partition_index
dims_mapping = dist_attr["dims_mapping"]
process_shape = dist_attr["process_shape"]
process_group = dist_attr["process_group"]
# get the complete shape of the parameter
complete_shape = _compute_complete_shape(param_list[0].shape, process_shape,
dims_mapping)
# merge the parameter with dist_attr
partition_param_list = []
for process in process_group:
partition_index = _compute_partition_index(
process, complete_shape, dims_mapping, process_shape, process_group)
index = process_group.index(process)
_merge_parameter(partition_param_list, param_list[index],
partition_index)
assert len(partition_param_list) == 1 or not partition_param_list, \
"Fail to merge parameter"
complete_param = _to_LodTensor(partition_param_list[0][0])
return complete_param
def _slice_parameter_with_dist_attr(param, dist_attr):
""" Slice parameter with distributed attribute """
param = np.array(param) if isinstance(param,
paddle.fluid.LoDTensor) else param
dims_mapping = dist_attr["dims_mapping"]
process_shape = dist_attr["process_shape"]
process_group = dist_attr["process_group"]
# slice the parameter with dist_attr
partition_index_list = _get_split_indices(param.shape, dims_mapping,
process_shape, process_group)
sliced_param_list = _slice_parameter(param, partition_index_list,
len(partition_index_list))
# get the current parameter's index in sliced_param_list
rank_id = paddle.distributed.get_rank()
sliced_param_index = _get_sliced_param_index(
rank_id, param.shape, dims_mapping, process_shape, process_group)
sliced_param = _to_LodTensor(sliced_param_list[sliced_param_index])
return sliced_param
def _merge_parameter(partition_param_list, param, partition_index):
"""
Merge partitial parameters to a complete one.
Returns:
None
Examples:
.. code-block:: python
import numpy as np
partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
param = np.array([[[1.13, 1.14]]])
partition_index = [[0,1],[0,1],[2,4]]
_merge_parameter(partition_param_list, param, partition_index)
# partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
"""
from .reshard import _compute_concat_info
if not partition_param_list:
partition_param_list.append((param, partition_index))
else:
raise ValueError("'checkpoint_path' can not be None.")
i = 0
has_concat = False
while i < len(partition_param_list):
concat_axis, first_order, new_partition = _compute_concat_info(
partition_param_list[i][1], partition_index)
if concat_axis != -1:
has_concat = True
if first_order == 0:
new_param = np.concatenate(
(partition_param_list[i][0], param), axis=concat_axis)
else:
new_param = np.concatenate(
(param, partition_param_list[i][0]), axis=concat_axis)
partition_param_list.pop(i)
_merge_parameter(partition_param_list, new_param, new_partition)
break
i += 1
if not has_concat:
need_append = True
for i in range(len(partition_param_list)):
if partition_index == partition_param_list[i][1]:
need_append = False
break
if need_append:
partition_param_list.append((param, partition_index))
def _slice_parameter(complete_param, partition_index_list, length):
"""
Slice a complete parameter.
Returns:
sliced_param_list(list): sliced parameters with 'partition_index_list'
Examples:
.. code-block:: python
import numpy as np
complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
rank = 2
complete_shape = [1, 1, 6]
dims_mapping = [-1, -1, 0]
process_shape = [3]
process_group = [0, 1, 2]
sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
# [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
"""
sliced_param_list = []
axis = len(complete_param.shape) - length
sliced_param = np.split(
complete_param, partition_index_list[axis], axis=axis)
if length == 1:
return sliced_param
for param in sliced_param:
sliced_param_list.extend(
_slice_parameter(param, partition_index_list, length - 1))
return sliced_param_list
def _get_sliced_param_index(rank, complete_shape, dims_mapping, process_shape,
process_group):
"""
Get sliced_param's index of current rank in all sliced parameters list.
Returns:
sliced_param_index(int): the index of sliced param in sliced_param_list
Examples:
.. code-block:: python
import numpy as np
complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
rank = 2
complete_shape = [1, 1, 6]
dims_mapping = [-1, -1, 0]
process_shape = [3]
process_group = [0, 1, 2]
slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
# slice_param:
# [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
index = _get_sliced_param_index(rank, complete_shape, dims_mapping
process_shape, process_group)
# index: 2
"""
from .reshard import _compute_partition_index
partition_index = _compute_partition_index(
rank, complete_shape, dims_mapping, process_shape, process_group)
sliced_param_index = 0
for i, shape in enumerate(complete_shape):
if dims_mapping[i] == -1:
slice_shape = shape
else:
slice_shape = shape // process_shape[dims_mapping[i]]
if shape == 1:
index = 0
else:
index = (partition_index[i][0] + 1) // slice_shape
sliced_param_index = sliced_param_index * (shape // slice_shape) + index
return sliced_param_index
program.set_state_dict(state_dict) if program else \
warnings.warn("'Program' is None, parameters will not be loaded.")
if "addition_info" not in state_dict_info:
return
def _get_split_indices(complete_shape, dims_mapping, process_shape,
process_group):
"""
Get split indices of every dimension.
Returns:
split_indices_list(list): the split indices of every dimension of the parameter
return state_dict_info["addition_info"]
Examples:
.. code-block:: python
import numpy as np
complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
complete_shape = [1, 1, 6]
dims_mapping = [-1, -1, 0]
process_shape = [3]
process_group = [0, 1, 2]
index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
# index: [[], [], [2, 4]]
"""
from .reshard import _compute_partition_index
split_indices_list = []
for process in process_group:
partition_index = _compute_partition_index(
process, complete_shape, dims_mapping, process_shape, process_group)
if split_indices_list:
for dim in range(len(partition_index)):
split_indices_list[dim].extend(partition_index[dim])
else:
split_indices_list = partition_index
split_indices_list = list(
map(lambda x, y: list(set(x) - set([y]) - set([0])), split_indices_list,
complete_shape))
split_indices_list = [sorted(x) for x in split_indices_list]
return split_indices_list
......@@ -39,6 +39,7 @@ list(APPEND DIST_TEST_OPS test_parallel_class_center_sample)
list(APPEND DIST_TEST_OPS test_parallel_margin_cross_entropy)
list(APPEND DIST_TEST_OPS test_auto_parallel_data_unshard)
list(APPEND DIST_TEST_OPS test_auto_parallel_save_load)
list(APPEND DIST_TEST_OPS test_auto_parallel_autoconvert)
set(MIXED_DIST_TEST_OPS ${DIST_TEST_OPS})
#remove distribute unittests.
list(APPEND MIXED_DIST_TEST_OPS test_dgc_op)
......@@ -256,6 +257,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_cost_model)
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_data_unshard)
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_save_load)
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_autoconvert)
elseif(WITH_GPU)
if (${CUDNN_VERSION} VERSION_LESS 7100)
LIST(REMOVE_ITEM TEST_OPS test_conv2d_fusion_op)
......@@ -1035,6 +1037,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
set_tests_properties(test_parallel_margin_cross_entropy PROPERTIES TIMEOUT 120)
set_tests_properties(test_auto_parallel_data_unshard PROPERTIES TIMEOUT 120)
set_tests_properties(test_auto_parallel_save_load PROPERTIES TIMEOUT 120)
set_tests_properties(test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120)
if(${NCCL_VERSION} VERSION_GREATER_EQUAL 2212)
set_tests_properties(test_parallel_dygraph_sparse_embedding PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_dygraph_transformer PROPERTIES TIMEOUT 120)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import random
import numpy as np
import os
import shutil
import paddle
import paddle.nn as nn
import paddle.utils as utils
import paddle.static as static
import paddle.nn.functional as F
import paddle.distributed.auto_parallel as auto
from paddle.distributed import fleet
from paddle.fluid.initializer import NumpyArrayInitializer
from paddle.distributed.auto_parallel.utils import save_distributed_checkpoint, load_distributed_checkpoint, load_checkpoint_into_program
from paddle.distributed.auto_parallel.utils import get_dist_attr, merge_and_slice_parameter, load_parameter_into_program
from paddle.distributed.auto_parallel.reshard import HAS_SENT, HAS_RECV, HAS_ALLGATHER
paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
PP_MESH_0 = None
PP_MESH_1 = None
class MLPLayer(nn.Layer):
def __init__(self,
hidden_size=64,
intermediate_size=4 * 64,
initializer_range=0.02):
super(MLPLayer, self).__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
np.random.seed(2021)
arr0 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
arr1 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
weight_attr0 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr0))
weight_attr1 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr1))
bias_attr = None
self.linear0 = nn.Linear(
d_model, dim_feedforward, weight_attr0, bias_attr=bias_attr)
self.linear1 = nn.Linear(
dim_feedforward, d_model, weight_attr1, bias_attr=bias_attr)
self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
def forward(self, input):
if _global_parallel_strategy == "pp":
auto.shard_tensor(
self.linear0.weight,
dist_attr={
"process_mesh": PP_MESH_0,
"dims_mapping": [-1, -1]
})
auto.shard_tensor(
self.linear1.weight,
dist_attr={
"process_mesh": PP_MESH_1,
"dims_mapping": [-1, -1]
})
elif _global_parallel_strategy == "mp":
auto.shard_tensor(
self.linear0.weight,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [-1, 0]
})
auto.shard_tensor(
self.linear1.weight,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [0, -1]
})
elif _global_parallel_strategy == "dp":
auto.shard_tensor(
self.linear0.weight,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [-1, -1]
})
auto.shard_tensor(
self.linear1.weight,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [-1, -1]
})
out = self.norm(input)
out = self.linear0(out)
out = F.gelu(out, approximate=True)
out = self.linear1(out)
return out
def mlp_forward(train_program, start_program):
with static.program_guard(train_program,start_program), \
utils.unique_name.guard():
batch_size = 4
hidden_size = 64
input = static.data(
name="input", shape=[batch_size, hidden_size], dtype='float32')
label = static.data(
name="label", shape=[batch_size, 1], dtype='float32')
if _global_parallel_strategy == "pp":
auto.shard_tensor(
input,
dist_attr={
"process_mesh": PP_MESH_0,
"dims_mapping": [-1, -1]
})
auto.shard_tensor(
label,
dist_attr={
"process_mesh": PP_MESH_1,
"dims_mapping": [-1, -1]
})
elif _global_parallel_strategy == "dp":
auto.shard_tensor(
input,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [0, -1]
})
elif _global_parallel_strategy == "mp":
auto.shard_tensor(
input,
dist_attr={
"process_mesh": _global_process_mesh,
"dims_mapping": [-1, -1]
})
mlp = MLPLayer(
hidden_size=hidden_size,
intermediate_size=4 * hidden_size,
initializer_range=0.02)
predict = mlp(input)
error_cost = paddle.nn.functional.square_error_cost(predict, label)
loss = paddle.mean(error_cost)
return loss, train_program, start_program
def get_distributed_program():
train_program = static.Program()
startup_program = static.Program()
dist_strategy = fleet.DistributedStrategy()
dist_strategy.semi_auto = True
fleet.init(is_collective=True, strategy=dist_strategy)
loss, train_program, startup_program = mlp_forward(train_program,
startup_program)
optimizer = paddle.fluid.optimizer.SGDOptimizer(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer)
_, _, dist_startup_prog, dist_main_prog = optimizer.minimize(
loss, startup_program)
return dist_main_prog, dist_startup_prog, loss
class TestMLPAutoConvert(unittest.TestCase):
def setUp(self):
paddle.seed(2021)
random.seed(2021)
np.random.seed(2021)
def tearDown(self):
os.remove("./model_state_rank{}.pdmodel".format(
str(paddle.distributed.get_rank())))
os.remove("./dist_attr_rank{}.pdattr".format(
str(paddle.distributed.get_rank())))
def test_mlp_mp2pp(self):
global _global_parallel_strategy
_global_parallel_strategy = "mp"
global _global_process_mesh
_global_process_mesh = auto.ProcessMesh([0, 1])
input = np.random.random(size=(80, 64)).astype('float32')
label = np.random.random(size=(80, 1)).astype('float32')
dist_main_prog, dist_start_prog, loss = get_distributed_program()
place = paddle.set_device("gpu")
exe = paddle.static.Executor(place)
exe.run(dist_start_prog)
for step in range(20):
if step == 10:
save_distributed_checkpoint(
dist_main_prog, ".", dist_attr_path=".")
res = exe.run(dist_main_prog,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
},
fetch_list=[loss])
last_res = res[0]
_global_parallel_strategy = "pp"
_global_process_mesh = auto.ProcessMesh([0, 1])
global PP_MESH_0
PP_MESH_0 = auto.ProcessMesh(mesh=[0])
global PP_MESH_1
PP_MESH_1 = auto.ProcessMesh(mesh=[1])
dist_main_prog_load, dist_start_prog_load, loss_load = get_distributed_program(
)
place = paddle.set_device("gpu")
exe = paddle.static.Executor(place)
exe.run(dist_start_prog_load)
ckpt_path = [
"./model_state_rank0.pdmodel", "./model_state_rank1.pdmodel"
]
dist_attr_path = [
"./dist_attr_rank0.pdattr", "./dist_attr_rank1.pdattr"
]
load_checkpoint_into_program(ckpt_path, dist_attr_path,
dist_main_prog_load)
for step in range(10, 20):
if paddle.distributed.get_rank() in [0]:
res = exe.run(dist_main_prog_load,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
})
else:
res = exe.run(dist_main_prog_load,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
},
fetch_list=[loss_load])
if paddle.distributed.get_rank() in [1]:
self.assertEqual(last_res, res[0])
class TestMLPAutoConvert2(unittest.TestCase):
def setUp(self):
paddle.seed(2021)
random.seed(2021)
np.random.seed(2021)
HAS_SENT.clear()
HAS_RECV.clear()
HAS_ALLGATHER.clear()
def tearDown(self):
os.remove("./model_state_rank{}.pdmodel".format(
str(paddle.distributed.get_rank())))
os.remove("./dist_attr_rank{}.pdattr".format(
str(paddle.distributed.get_rank())))
def test_mlp_pp2mp(self):
global _global_parallel_strategy
_global_parallel_strategy = "pp"
global _global_process_mesh
_global_process_mesh = auto.ProcessMesh([0, 1])
global PP_MESH_0
PP_MESH_0 = auto.ProcessMesh(mesh=[0])
global PP_MESH_1
PP_MESH_1 = auto.ProcessMesh(mesh=[1])
input = np.random.random(size=(80, 64)).astype('float32')
label = np.random.random(size=(80, 1)).astype('float32')
dist_main_prog, dist_start_prog, loss = get_distributed_program()
place = paddle.set_device("gpu")
exe = paddle.static.Executor(place)
exe.run(dist_start_prog)
for step in range(20):
if step == 10:
add_info = {"batch": step, "batch_size": 4}
save_distributed_checkpoint(dist_main_prog, ".", ".", add_info)
if paddle.distributed.get_rank() in [0]:
res = exe.run(dist_main_prog,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
})
else:
res = exe.run(dist_main_prog,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
},
fetch_list=[loss])
if paddle.distributed.get_rank() in [1]:
last_res = res[0]
_global_parallel_strategy = "mp"
_global_process_mesh = auto.ProcessMesh([0, 1])
dist_main_prog_load, dist_start_prog_load, loss_load = get_distributed_program(
)
place = paddle.set_device("gpu")
exe = paddle.static.Executor(place)
exe.run(dist_start_prog_load)
ckpt_path = [
"./model_state_rank0.pdmodel", "./model_state_rank1.pdmodel"
]
dist_attr_path = [
"./dist_attr_rank0.pdattr", "./dist_attr_rank1.pdattr"
]
param_dict, pre_dist_attr, add_info = load_distributed_checkpoint(
ckpt_path, dist_attr_path)
batch = add_info["batch"]
batch_size = add_info["batch_size"]
start_index = batch * batch_size
input = input[start_index:, :]
label = label[start_index:, :]
cur_dist_attr = get_dist_attr(dist_main_prog_load)
sliced_param_dict = merge_and_slice_parameter(param_dict, pre_dist_attr,
cur_dist_attr)
load_parameter_into_program(sliced_param_dict, dist_main_prog_load)
for step in range(10):
res = exe.run(dist_main_prog_load,
feed={
"input": input[step * 4:(step + 1) * 4, :],
"label": label[step * 4:(step + 1) * 4, :]
},
fetch_list=[loss_load])
if paddle.distributed.get_rank() in [1]:
self.assertEqual(last_res, res[0])
class TestMLPAutoConvertInvalid(unittest.TestCase):
def setUp(self):
paddle.seed(2021)
random.seed(2021)
np.random.seed(2021)
def test_input_invalid(self):
global _global_parallel_strategy
_global_parallel_strategy = "mp"
global _global_process_mesh
_global_process_mesh = auto.ProcessMesh([0, 1])
dist_main_prog, _, _ = get_distributed_program()
with self.assertRaises(TypeError):
save_distributed_checkpoint(
dist_main_prog, [""], [""], addition_info=[0])
with self.assertRaises(ValueError):
save_distributed_checkpoint(
dist_main_prog, [""], [""], addition_info={"step": 0})
with self.assertRaises(ValueError):
save_distributed_checkpoint(
dist_main_prog, [""], [""], addition_info={"batch": 0.0})
with self.assertRaises(ValueError):
load_checkpoint_into_program(["./model_state_rank.pdmodel"],
["./dist_attr_rank.pdattr"],
dist_main_prog)
with self.assertRaises(ValueError):
load_distributed_checkpoint(["./model_state_rank.pdmodel"],
["./dist_attr_rank.pdattr"])
with self.assertRaises(TypeError):
load_distributed_checkpoint({
"0": "./model_state_rank.pdmodel"
}, {"1": "./dist_attr_rank.pdattr"})
if __name__ == "__main__":
unittest.main()
......@@ -29,12 +29,7 @@ import paddle.distributed.auto_parallel as auto
from paddle.distributed import fleet
from paddle.fluid.initializer import NumpyArrayInitializer
from paddle.distributed.auto_parallel.utils import make_data_unshard
from paddle.distributed.auto_parallel.utils import save_distributed_checkpoint, load_distributed_checkpoint
from paddle.distributed.auto_parallel.reshard import reshard
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.dist_context import DistributedContext
from paddle.distributed.auto_parallel.process_group import get_all_process_groups
from paddle.distributed.auto_parallel.utils import save_distributed_checkpoint, load_checkpoint_into_program
paddle.enable_static()
_global_parallel_strategy = None
......@@ -204,7 +199,7 @@ class TestMLPSaveLoad(unittest.TestCase):
if step == 10:
path = "./output_dp{}".format(paddle.distributed.get_rank())
os.makedirs(path, exist_ok=True)
save_distributed_checkpoint(dist_main_prog, path)
save_distributed_checkpoint(dist_main_prog, path, path)
res = exe.run(dist_main_prog,
feed={
......@@ -218,7 +213,11 @@ class TestMLPSaveLoad(unittest.TestCase):
"./output_dp0/model_state_rank0.pdmodel",
"./output_dp1/model_state_rank1.pdmodel"
]
load_distributed_checkpoint(ckpt_path, dist_main_prog)
dist_attr_path = [
"./output_dp0/dist_attr_rank0.pdattr",
"./output_dp1/dist_attr_rank1.pdattr"
]
load_checkpoint_into_program(ckpt_path, dist_attr_path, dist_main_prog)
for step in range(10, 20):
res = exe.run(dist_main_prog,
feed={
......@@ -248,7 +247,7 @@ class TestMLPSaveLoad(unittest.TestCase):
if step == 10:
path = "./output_mp{}".format(paddle.distributed.get_rank())
os.makedirs(path, exist_ok=True)
save_distributed_checkpoint(dist_main_prog, path)
save_distributed_checkpoint(dist_main_prog, path, path)
res = exe.run(dist_main_prog,
feed={
......@@ -262,7 +261,11 @@ class TestMLPSaveLoad(unittest.TestCase):
"./output_mp0/model_state_rank0.pdmodel",
"./output_mp1/model_state_rank1.pdmodel"
]
load_distributed_checkpoint(ckpt_path, dist_main_prog)
dist_attr_path = [
"./output_mp0/dist_attr_rank0.pdattr",
"./output_mp1/dist_attr_rank1.pdattr"
]
load_checkpoint_into_program(ckpt_path, dist_attr_path, dist_main_prog)
for step in range(10, 20):
res = exe.run(dist_main_prog,
feed={
......@@ -296,7 +299,7 @@ class TestMLPSaveLoad(unittest.TestCase):
if step == 10:
path = "./output_pp{}".format(paddle.distributed.get_rank())
os.makedirs(path, exist_ok=True)
save_distributed_checkpoint(dist_main_prog, path)
save_distributed_checkpoint(dist_main_prog, path, path)
if paddle.distributed.get_rank() in [0]:
res = exe.run(dist_main_prog,
......@@ -319,7 +322,11 @@ class TestMLPSaveLoad(unittest.TestCase):
"./output_pp0/model_state_rank0.pdmodel",
"./output_pp1/model_state_rank1.pdmodel"
]
load_distributed_checkpoint(ckpt_path, dist_main_prog)
dist_attr_path = [
"./output_pp0/dist_attr_rank0.pdattr",
"./output_pp1/dist_attr_rank1.pdattr"
]
load_checkpoint_into_program(ckpt_path, dist_attr_path, dist_main_prog)
for step in range(10, 20):
if paddle.distributed.get_rank() in [0]:
res = exe.run(dist_main_prog,
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestAutoParallelAutoConvert(TestMultipleGpus):
def test_auto_parallel_autoconvert(self):
self.run_mnist_2gpu('auto_parallel_autoconvert.py')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册