Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
17188e8d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
17188e8d
编写于
8月 23, 2021
作者:
W
Wilber
提交者:
GitHub
8月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
trt convert ut add dynamic_shape and int8, etc. (#35061)
上级
a95db6a7
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
308 addition
and
17 deletion
+308
-17
paddle/fluid/framework/ir/graph_helper.cc
paddle/fluid/framework/ir/graph_helper.cc
+1
-0
paddle/fluid/framework/ir/graph_viz_pass.cc
paddle/fluid/framework/ir/graph_viz_pass.cc
+28
-0
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
...ddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
+34
-8
python/paddle/fluid/tests/unittests/ir/inference/program_config.py
...ddle/fluid/tests/unittests/ir/inference/program_config.py
+183
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
...d/tests/unittests/ir/inference/test_trt_convert_conv2d.py
+28
-2
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
.../tests/unittests/ir/inference/trt_layer_auto_scan_test.py
+30
-3
python/paddle/static/io.py
python/paddle/static/io.py
+4
-4
未找到文件。
paddle/fluid/framework/ir/graph_helper.cc
浏览文件 @
17188e8d
...
...
@@ -535,6 +535,7 @@ void GraphToProgram(const Graph &graph, ProgramDesc *program,
block
=
program_pb
.
add_blocks
();
block
->
set_idx
(
idx
);
block
->
set_parent_idx
(
kRootBlockIndex
);
GraphToBlock
(
*
graph
.
GetSubGraph
(
idx
),
block
,
sort_kind
);
}
}
else
{
...
...
paddle/fluid/framework/ir/graph_viz_pass.cc
浏览文件 @
17188e8d
...
...
@@ -13,8 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_printer.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/dot.h"
namespace
paddle
{
...
...
@@ -44,6 +47,31 @@ void GraphVizPass::ApplyImpl(ir::Graph* graph) const {
"Can not open file %s for printing the graph."
,
graph_viz_path
));
std
::
ostream
&
sout
=
*
fout
;
// serialize only model file.
std
::
string
program_path
;
std
::
size_t
found1
=
graph_viz_path
.
find
(
"_ir_"
);
std
::
size_t
found2
=
graph_viz_path
.
find
(
".dot"
);
if
(
found1
!=
std
::
string
::
npos
&&
found2
!=
std
::
string
::
npos
)
{
ProgramDesc
program_desc
;
GraphToProgram
(
*
graph
,
&
program_desc
);
// TODO(wilber): GraphToProgram seems have bugs.
for
(
size_t
i
=
0
;
i
<
program_desc
.
Size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
program_desc
.
Block
(
i
).
OpSize
();
++
j
)
{
if
(
program_desc
.
Block
(
i
).
Op
(
j
)
->
Type
()
==
"tensorrt_engine"
)
{
program_desc
.
Block
(
i
).
Op
(
j
)
->
RemoveAttr
(
"sub_block"
);
}
}
}
std
::
string
program_bytes
=
program_desc
.
Proto
()
->
SerializeAsString
();
// rename from "17_ir_fc_fuse_pass.dot" to "fc_fuse_pass.pdmodel"
program_path
=
graph_viz_path
.
substr
(
found1
+
4
,
found2
-
found1
-
4
)
+
".pdmodel"
;
std
::
ofstream
file
(
program_path
.
c_str
(),
std
::
ios
::
binary
);
file
.
write
(
program_bytes
.
c_str
(),
program_bytes
.
size
());
file
.
close
();
VLOG
(
3
)
<<
"serialize program to "
<<
program_path
;
}
std
::
unordered_map
<
const
ir
::
Node
*
,
std
::
string
>
node2dot
;
Dot
dot
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
浏览文件 @
17188e8d
...
...
@@ -15,6 +15,7 @@
import
numpy
as
np
import
unittest
import
abc
import
os
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
NumpyArrayInitializer
...
...
@@ -22,14 +23,13 @@ import paddle.fluid.core as core
from
paddle
import
compat
as
cpt
import
paddle.inference
as
paddle_infer
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
from
program_config
import
TensorConfig
,
OpConfig
,
ProgramConfig
,
create_fake_model
from
program_config
import
TensorConfig
,
OpConfig
,
ProgramConfig
,
create_fake_model
,
create_quant_model
class
AutoScanTest
(
unittest
.
TestCase
):
def
__init__
(
self
,
methodName
=
'runTest'
):
paddle
.
enable_static
()
super
(
AutoScanTest
,
self
).
__init__
(
methodName
)
self
.
threshold
=
1e-5
@
abc
.
abstractmethod
def
sample_program_configs
(
self
)
->
List
[
ProgramConfig
]:
...
...
@@ -56,11 +56,31 @@ class AutoScanTest(unittest.TestCase):
input_tensor
.
copy_from_cpu
(
feed_data
[
name
])
predictor
.
run
()
result
=
{}
for
out_name
in
prog_config
.
outputs
:
result
[
out_name
]
=
predictor
.
get_output_handle
(
out
_name
).
copy_to_cpu
()
for
out_name
,
o_name
in
zip
(
prog_config
.
outputs
,
predictor
.
get_output_names
()):
result
[
out_name
]
=
predictor
.
get_output_handle
(
o
_name
).
copy_to_cpu
()
return
result
def
assert_op_size
(
self
,
trt_engine_num
,
paddle_op_num
):
cur_path
=
os
.
path
.
dirname
(
__file__
)
last_passed_program
=
os
.
path
.
join
(
cur_path
,
'transpose_flatten_concat_fuse_pass.pdmodel'
)
model_bytes
=
paddle
.
static
.
load_from_file
(
last_passed_program
)
pg
=
paddle
.
static
.
deserialize_program
(
model_bytes
)
main_block
=
pg
.
desc
.
block
(
0
)
op_size
=
main_block
.
op_size
()
op_types
=
[
main_block
.
op
(
i
).
type
()
==
'tensorrt_engine'
for
i
in
range
(
op_size
)
]
trt_engine_size
=
sum
(
op_types
)
paddle_op_size
=
op_size
-
trt_engine_size
self
.
assertTrue
(
trt_engine_size
==
trt_engine_num
,
'trt_engine_num is {}, but got {}!'
.
format
(
trt_engine_size
,
trt_engine_num
))
self
.
assertTrue
(
paddle_op_size
==
paddle_op_num
,
'paddle_op_num is {}, but got {}!'
.
format
(
paddle_op_size
,
paddle_op_num
))
def
assert_tensors_near
(
self
,
threshold
:
float
,
tensors
:
List
[
Dict
[
str
,
np
.
array
]]):
...
...
@@ -73,9 +93,15 @@ class AutoScanTest(unittest.TestCase):
first
[
key
],
arr
,
atol
=
threshold
),
"Output has diff between GPU and TensorRT. "
)
def
run_test
(
self
):
def
run_test
(
self
,
trt_engine_num
:
int
,
paddle_op_num
:
int
,
threshold
=
1e-5
,
quant
=
False
):
for
prog_config
in
self
.
sample_program_configs
():
model
,
params
=
create_fake_model
(
prog_config
)
if
quant
:
model
,
params
=
create_quant_model
(
model
,
params
)
for
batch_size
in
self
.
batch_size_set
:
feed_data
=
{}
for
name
,
tensor_config
in
prog_config
.
inputs
.
items
():
...
...
@@ -88,5 +114,5 @@ class AutoScanTest(unittest.TestCase):
results
.
append
(
self
.
run_test_config
(
model
,
params
,
prog_config
,
pred_config
,
feed_data
))
self
.
assert_tensors_near
(
threshold
=
self
.
threshold
,
tensors
=
results
)
self
.
assert_tensors_near
(
threshold
=
threshold
,
tensors
=
results
)
self
.
assert_op_size
(
trt_engine_num
,
paddle_op_num
)
python/paddle/fluid/tests/unittests/ir/inference/program_config.py
浏览文件 @
17188e8d
...
...
@@ -21,6 +21,11 @@ from paddle import compat as cpt
from
paddle.fluid.initializer
import
NumpyArrayInitializer
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.quantization
import
QuantizationFreezePass
from
paddle.fluid.framework
import
IrGraph
,
IrNode
,
Operator
from
paddle.fluid.executor
import
global_scope
class
TensorConfig
:
'''
...
...
@@ -160,3 +165,181 @@ def create_fake_model(program_config):
executor
.
run
(
util_program
)
params
=
scope
.
find_var
(
"out_var_0"
).
get_bytes
()
return
model
,
params
def
create_quant_model
(
model
,
params
,
activation_quantize_type
=
'moving_average_abs_max'
,
weight_quantize_type
=
'channel_wise_abs_max'
,
save
=
False
):
place
=
paddle
.
CUDAPlace
(
0
)
scope
=
global_scope
()
exe
=
paddle
.
static
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
paddle
.
static
.
load_inference_model
(
path_prefix
=
None
,
executor
=
exe
,
model_filename
=
model
,
params_filename
=
params
)
graph
=
IrGraph
(
core
.
Graph
(
inference_program
.
desc
),
for_test
=
True
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quantize_type
,
weight_quantize_type
=
weight_quantize_type
)
transform_pass
.
apply
(
graph
)
out_scale_op_list
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"matmul"
,
"relu"
,
"leaky_relu"
,
"relu6"
,
"sigmoid"
,
"tanh"
,
"prelu"
,
"swish"
,
"softmax"
,
"batch_norm"
,
"layer_norm"
,
"elementwise_add"
,
"pool2d"
,
"reshape2"
,
"transpose2"
,
"concat"
,
"elementwise_mul"
,
"scale"
,
"slice"
,
"hard_swish"
,
"hard_sigmoid"
,
"conv2d_transpose"
,
"gru"
,
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"flatten"
,
"flatten2"
,
"transpose"
,
"pad2d"
,
"reshape"
,
"layer_norm"
,
]
op_real_in_out_name
=
{
"conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"conv2d_transpose"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"matmul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"pool2d"
:
[[
"X"
],
[
"Out"
]],
"elementwise_add"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"concat"
:
[[
"X"
],
[
"Out"
]],
"softmax"
:
[[
"X"
],
[
"Out"
]],
"argmax"
:
[[
"X"
],
[
"Out"
]],
"transpose"
:
[[
"X"
],
[
"Out"
]],
"equal"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"gather"
:
[[
"X"
],
[
"Out"
]],
"greater_equal"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"greater_than"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"less_equal"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"less_than"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"mean"
:
[[
"X"
],
[
"Out"
]],
"not_equal"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"reshape"
:
[[
"X"
],
[
"Out"
]],
"reshape2"
:
[[
"X"
],
[
"Out"
]],
"transpose2"
:
[[
"X"
],
[
"Out"
]],
"bilinear_interp"
:
[[
"X"
],
[
"Out"
]],
"nearest_interp"
:
[[
"X"
],
[
"Out"
]],
"trilinear_interp"
:
[[
"X"
],
[
"Out"
]],
"slice"
:
[[
"Input"
],
[
"Out"
]],
"squeeze"
:
[[
"X"
],
[
"Out"
]],
"elementwise_sub"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"relu"
:
[[
"X"
],
[
"Out"
]],
"relu6"
:
[[
"X"
],
[
"Out"
]],
"leaky_relu"
:
[[
"X"
],
[
"Out"
]],
"prelu"
:
[[
"X"
],
[
"Out"
]],
"tanh"
:
[[
"X"
],
[
"Out"
]],
"swish"
:
[[
"X"
],
[
"Out"
]],
"dropout"
:
[[
"X"
],
[
"Out"
]],
"batch_norm"
:
[[
"X"
],
[
"Y"
]],
"layer_norm"
:
[[
"X"
],
[
"Y"
]],
"sigmoid"
:
[[
"X"
],
[
"Out"
]],
"elementwise_mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"scale"
:
[[
"X"
],
[
"Out"
]],
"hard_swish"
:
[[
"X"
],
[
"Out"
]],
"hard_sigmoid"
:
[[
"X"
],
[
"Out"
]],
"gru"
:
[[
"Input"
,
"Weight"
],
[
"Hidden"
]],
"lstm"
:
[[
"Input"
,
"Weight"
],
[
"Hidden"
]],
"pad2d"
:
[[
"X"
],
[
"Out"
]],
"flatten"
:
[[
"X"
],
[
"Out"
]],
"flatten2"
:
[[
"X"
],
[
"Out"
]],
}
def
_get_op_output_var_names
(
op
):
""" """
assert
isinstance
(
op
,
(
IrNode
,
Operator
)),
\
"The input op should be IrNode or Operator."
var_names
=
[]
op_name
=
op
.
name
()
if
isinstance
(
op
,
IrNode
)
\
else
op
.
type
if
op_name
not
in
op_real_in_out_name
:
return
[]
name_list
=
op_real_in_out_name
[
op_name
][
1
]
for
name
in
name_list
:
var_name
=
op
.
output
(
name
)
if
isinstance
(
var_name
,
list
):
var_names
.
extend
(
var_name
)
else
:
var_names
.
append
(
var_name
)
return
var_names
op_nodes
=
graph
.
all_op_nodes
()
for
op_node
in
op_nodes
:
if
op_node
.
name
()
in
out_scale_op_list
:
var_names
=
_get_op_output_var_names
(
op_node
)
for
var_name
in
var_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
var_name
)
if
in_node
.
dtype
()
not
in
\
[
core
.
VarDesc
.
VarType
.
FP64
,
core
.
VarDesc
.
VarType
.
FP32
]:
continue
op_node
.
op
().
_set_attr
(
"out_threshold"
,
3.0
)
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quantize_type
)
freeze_pass
.
apply
(
graph
)
main_program
=
graph
.
to_program
()
# modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
op_nodes
=
graph
.
all_op_nodes
()
for
op_node
in
op_nodes
:
if
op_node
.
name
()
==
'fake_quantize_moving_average_abs_max'
:
var_name
=
op_node
.
input
(
"InScale"
)[
0
]
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
tensor
.
set
(
np
.
array
([
1
],
dtype
=
np
.
float32
),
place
)
elif
op_node
.
name
()
==
'fake_channel_wise_dequantize_max_abs'
:
var_name
=
op_node
.
input
(
"Scales"
)[
0
]
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
tensor
.
set
(
np
.
ones
(
tensor
.
shape
(),
dtype
=
np
.
float32
),
place
)
if
save
:
fluid
.
io
.
save_inference_model
(
'test_inference_model'
,
feed_target_names
,
fetch_targets
,
exe
,
main_program
=
main_program
)
feed_vars
=
[
main_program
.
global_block
().
var
(
name
)
for
name
in
feed_target_names
]
serialized_program
=
paddle
.
static
.
serialize_program
(
feed_vars
,
fetch_targets
,
program
=
main_program
)
serialized_params
=
paddle
.
static
.
serialize_persistables
(
feed_vars
,
fetch_targets
,
executor
=
exe
,
program
=
main_program
)
return
serialized_program
,
serialized_params
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
浏览文件 @
17188e8d
...
...
@@ -15,6 +15,7 @@
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
from
program_config
import
TensorConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
class
TrtConvertConv2dTest
(
TrtLayerAutoScanTest
):
...
...
@@ -59,8 +60,33 @@ class TrtConvertConv2dTest(TrtLayerAutoScanTest):
self
.
program_inputs
=
{
"input_data"
:
input_data
}
self
.
program_outputs
=
[
"relu_output_data"
]
def
test_check_output
(
self
):
self
.
run_test
()
def
test_check_fp32_output
(
self
):
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Float32
# the fused tensorrt engine num is 1, and paddle op num is 2(feed and fetch).
self
.
run_test
(
trt_engine_num
=
1
,
paddle_op_num
=
2
,
threshold
=
1e-5
)
def
test_check_fp16_output
(
self
):
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
self
.
run_test
(
trt_engine_num
=
1
,
paddle_op_num
=
2
,
threshold
=
1e-2
)
def
test_dynamic_shape_fp32_check_output
(
self
):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]}
self
.
run_test
(
trt_engine_num
=
1
,
paddle_op_num
=
2
,
threshold
=
1e-5
)
def
test_dynamic_shape_fp16_check_output
(
self
):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]}
self
.
run_test
(
trt_engine_num
=
1
,
paddle_op_num
=
2
,
threshold
=
1e-2
)
def
test_trt_int8_check_output
(
self
):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Int8
self
.
run_test
(
trt_engine_num
=
1
,
paddle_op_num
=
2
,
quant
=
True
,
threshold
=
1e-1
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
浏览文件 @
17188e8d
...
...
@@ -16,6 +16,7 @@ import numpy as np
import
unittest
import
itertools
import
abc
import
logging
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -26,6 +27,9 @@ from typing import *
from
program_config
import
TensorConfig
,
OpConfig
,
ProgramConfig
from
auto_scan_test
import
AutoScanTest
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
"%(asctime)s - %(filename)s - %(message)s"
)
class
TrtLayerAutoScanTest
(
AutoScanTest
):
class
TensorRTParam
:
...
...
@@ -42,6 +46,18 @@ class TrtLayerAutoScanTest(AutoScanTest):
self
.
use_static
=
use_static
self
.
use_calib_mode
=
use_calib_mode
class
DynamicShapeParam
:
'''
Prepare TensorRT subgraph engine dynamic shape parameters.
'''
def
__init__
(
self
,
min_input_shape
,
max_input_shape
,
optim_input_shape
,
disable_trt_plugin_fp16
):
self
.
min_input_shape
=
min_input_shape
self
.
max_input_shape
=
max_input_shape
self
.
optim_input_shape
=
optim_input_shape
self
.
disable_trt_plugin_fp16
=
disable_trt_plugin_fp16
def
__init__
(
self
,
methodName
=
'runTest'
):
super
(
TrtLayerAutoScanTest
,
self
).
__init__
(
methodName
)
self
.
trt_param
=
self
.
TensorRTParam
(
...
...
@@ -51,6 +67,7 @@ class TrtLayerAutoScanTest(AutoScanTest):
precision
=
paddle_infer
.
PrecisionType
.
Float32
,
use_static
=
False
,
use_calib_mode
=
False
)
self
.
dynamic_shape
=
self
.
DynamicShapeParam
({},
{},
{},
False
)
def
update_program_input_and_weight_with_attr
(
self
,
op_attr_list
):
raise
NotImplementedError
...
...
@@ -96,6 +113,7 @@ class TrtLayerAutoScanTest(AutoScanTest):
config
=
paddle_infer
.
Config
()
config
.
enable_use_gpu
(
100
,
0
)
if
use_trt
:
config
.
switch_ir_debug
()
config
.
enable_tensorrt_engine
(
max_batch_size
=
self
.
trt_param
.
max_batch_size
,
workspace_size
=
self
.
trt_param
.
workspace_size
,
...
...
@@ -103,13 +121,22 @@ class TrtLayerAutoScanTest(AutoScanTest):
precision_mode
=
precision_mode
,
use_static
=
self
.
trt_param
.
use_static
,
use_calib_mode
=
self
.
trt_param
.
use_calib_mode
)
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
self
.
dynamic_shape
.
min_input_shape
.
keys
(
)
==
self
.
dynamic_shape
.
max_input_shape
.
keys
(
)
and
self
.
dynamic_shape
.
min_input_shape
.
keys
(
)
==
self
.
dynamic_shape
.
opt_input_shape
.
keys
():
config
.
set_trt_dynamic_shape_info
(
self
.
dynamic_shape
.
min_input_shape
,
self
.
dynamic_shape
.
max_input_shape
,
self
.
dynamic_shape
.
opt_input_shape
,
self
.
dynamic_shape
.
disable_trt_plugin_fp16
)
return
config
@
abc
.
abstractmethod
def
sample_predictor_configs
(
self
):
logging
.
info
(
'--------- gpu inference ---------'
)
yield
self
.
create_program_config
(
use_trt
=
False
)
logging
.
info
(
'--------- trt inference ---------'
)
yield
self
.
create_program_config
(
use_trt
=
True
,
precision_mode
=
self
.
trt_param
.
precision
)
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Float32
:
yield
self
.
create_program_config
(
use_trt
=
True
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Half
)
python/paddle/static/io.py
浏览文件 @
17188e8d
...
...
@@ -757,7 +757,7 @@ def load_inference_model(path_prefix, executor, **kwargs):
"params_filename cannot be None when path_prefix is None."
)
load_dirname
=
''
program_bytes
=
model_filename
params_
filename
=
params_filename
params_
bytes
=
params_filename
# load from file
else
:
# check and norm path_prefix
...
...
@@ -795,12 +795,12 @@ def load_inference_model(path_prefix, executor, **kwargs):
program_bytes
=
load_from_file
(
model_path
)
load_dirname
=
os
.
path
.
dirname
(
params_path
)
params_filename
=
os
.
path
.
basename
(
params_path
)
# deserialize bytes to program
program
=
deserialize_program
(
program_bytes
)
# load params data
params_path
=
os
.
path
.
join
(
load_dirname
,
params_filename
)
params_bytes
=
load_from_file
(
params_path
)
# deserialize bytes to program
program
=
deserialize_program
(
program_bytes
)
# deserialize bytes to params
deserialize_persistables
(
program
,
params_bytes
,
executor
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录