Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
15668482
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2301
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15668482
编写于
6月 06, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into improve_pruning
上级
23a14808
35c93b4e
变更
15
显示空白变更内容
内联
并排
Showing
15 changed file
with
452 addition
and
39 deletion
+452
-39
cmake/cpplint.cmake
cmake/cpplint.cmake
+1
-1
cmake/cudnn.cmake
cmake/cudnn.cmake
+5
-12
cmake/external/openblas.cmake
cmake/external/openblas.cmake
+16
-11
cmake/generic.cmake
cmake/generic.cmake
+3
-3
doc/getstarted/index_cn.rst
doc/getstarted/index_cn.rst
+1
-1
doc/getstarted/index_en.rst
doc/getstarted/index_en.rst
+1
-1
go/cmake/golang.cmake
go/cmake/golang.cmake
+1
-1
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+1
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+9
-1
python/paddle/v2/dataset/flowers.py
python/paddle/v2/dataset/flowers.py
+184
-0
python/paddle/v2/dataset/tests/flowers_test.py
python/paddle/v2/dataset/tests/flowers_test.py
+51
-0
python/paddle/v2/image.py
python/paddle/v2/image.py
+92
-6
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+14
-0
python/paddle/v2/reader/decorator.py
python/paddle/v2/reader/decorator.py
+72
-1
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+1
-0
未找到文件。
cmake/cpplint.cmake
浏览文件 @
15668482
...
...
@@ -59,7 +59,7 @@ macro(add_style_check_target TARGET_NAME)
"--filter=
${
STYLE_FILTER
}
"
"--write-success=
${
CUR_GEN
}
"
${
filename
}
DEPENDS
${
filename
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_
LIST
_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_
SOURCE
_DIR
}
)
endif
()
endforeach
()
endif
()
...
...
cmake/cudnn.cmake
浏览文件 @
15668482
...
...
@@ -11,23 +11,16 @@ find_path(CUDNN_INCLUDE_DIR cudnn.h
get_filename_component
(
__libpath_hist
${
CUDA_CUDART_LIBRARY
}
PATH
)
if
(
NOT
${
CMAKE_HOST_SYSTEM_PROCESSOR
}
)
execute_process
(
COMMAND uname -m COMMAND tr -d '\n'
OUTPUT_VARIABLE HOST_ARCH
RESULT_VARIABLE UNAME_RESULT
)
if
(
${
UNAME_RESULT
}
)
set
(
HOST_ARCH
"x86_64"
)
endif
(
${
UNAME_RESULT
}
)
else
(
NOT
${
CMAKE_HOST_SYSTEM_PROCESSOR
}
)
set
(
HOST_ARCH
${
CMAKE_HOST_SYSTEM_PROCESSOR
}
)
endif
(
NOT
${
CMAKE_HOST_SYSTEM_PROCESSOR
}
)
set
(
TARGET_ARCH
"x86_64"
)
if
(
NOT
${
CMAKE_SYSTEM_PROCESSOR
}
)
set
(
TARGET_ARCH
${
CMAKE_SYSTEM_PROCESSOR
}
)
endif
()
list
(
APPEND CUDNN_CHECK_LIBRARY_DIRS
${
CUDNN_ROOT
}
${
CUDNN_ROOT
}
/lib64
${
CUDNN_ROOT
}
/lib
${
CUDNN_ROOT
}
/lib/
${
HOS
T_ARCH
}
-linux-gnu
${
CUDNN_ROOT
}
/lib/
${
TARGE
T_ARCH
}
-linux-gnu
$ENV{CUDNN_ROOT}
$ENV{CUDNN_ROOT}/lib64
$ENV{CUDNN_ROOT}/lib
...
...
cmake/external/openblas.cmake
浏览文件 @
15668482
...
...
@@ -24,20 +24,25 @@ IF(NOT ${CBLAS_FOUND})
SET
(
CBLAS_LIBRARIES
"
${
CBLAS_INSTALL_DIR
}
/lib/
${
LIBRARY_PREFIX
}
openblas
${
STATIC_LIBRARY_SUFFIX
}
"
CACHE FILEPATH
"openblas library."
FORCE
)
SET
(
COMMON_ARGS CC=
${
CMAKE_C_COMPILER
}
NO_SHARED=1 NO_LAPACK=1
)
SET
(
COMMON_ARGS CC=
${
CMAKE_C_COMPILER
}
NO_SHARED=1 NO_LAPACK=1
libs
)
IF
(
CMAKE_CROSSCOMPILING
)
IF
(
ANDROID
)
# arm_soft_fp_abi branch of OpenBLAS to support softfp
# https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
SET
(
OPENBLAS_COMMIT
"b5c96fcfcdc82945502a2303116a64d89985daf5"
)
SET
(
OPTIONAL_ARGS HOSTCC=
${
HOST_C_COMPILER
}
TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0 libs
)
SET
(
OPTIONAL_ARGS HOSTCC=
${
HOST_C_COMPILER
}
TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0
)
ELSEIF
(
RPI
)
# use hardfp
SET
(
OPENBLAS_COMMIT
"v0.2.19"
)
SET
(
OPTIONAL_ARGS HOSTCC=
${
HOST_C_COMPILER
}
TARGET=ARMV7 USE_THREAD=0 libs
)
SET
(
OPTIONAL_ARGS HOSTCC=
${
HOST_C_COMPILER
}
TARGET=ARMV7 USE_THREAD=0
)
ENDIF
()
ELSE
()
SET
(
OPENBLAS_COMMIT
"v0.2.19"
)
SET
(
OPTIONAL_ARGS DYNAMIC_ARCH=1 libs NUM_THREADS=64
)
SET
(
OPTIONAL_ARGS
""
)
IF
(
CMAKE_SYSTEM_PROCESSOR MATCHES
"^x86(_64)?$"
)
SET
(
OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64
)
ENDIF
()
ENDIF
()
ExternalProject_Add
(
...
...
cmake/generic.cmake
浏览文件 @
15668482
...
...
@@ -182,7 +182,7 @@ function(go_library TARGET_NAME)
COMMAND env GOPATH=
${
GOPATH
}
${
CMAKE_Go_COMPILER
}
build
${
BUILD_MODE
}
-o
"
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
LIB_NAME
}
"
${
go_library_SRCS
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_
LIST
_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_
SOURCE
_DIR
}
)
add_custom_target
(
${
TARGET_NAME
}
_lib ALL DEPENDS
${
TARGET_NAME
}
_timestamp
${
go_library_DEPS
}
)
add_library
(
${
TARGET_NAME
}
STATIC IMPORTED
)
set_property
(
TARGET
${
TARGET_NAME
}
PROPERTY
...
...
@@ -199,7 +199,7 @@ function(go_binary TARGET_NAME)
COMMAND env GOPATH=
${
GOPATH
}
${
CMAKE_Go_COMPILER
}
build
-o
"
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
TARGET_NAME
}
"
${
go_library_SRCS
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_
LIST
_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_
SOURCE
_DIR
}
)
add_custom_target
(
${
TARGET_NAME
}
ALL DEPENDS
${
TARGET_NAME
}
_timestamp
${
go_binary_DEPS
}
)
install
(
PROGRAMS
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
TARGET_NAME
}
DESTINATION bin
)
endfunction
(
go_binary
)
...
...
@@ -213,7 +213,7 @@ function(go_test TARGET_NAME)
COMMAND env GOPATH=
${
GOPATH
}
${
CMAKE_Go_COMPILER
}
test
-c -o
"
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
TARGET_NAME
}
"
${
go_test_SRCS
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_
LIST
_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_
SOURCE
_DIR
}
)
add_custom_target
(
${
TARGET_NAME
}
ALL DEPENDS
${
TARGET_NAME
}
_timestamp
${
go_test_DEPS
}
)
add_test
(
${
TARGET_NAME
}
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
TARGET_NAME
}
)
endfunction
(
go_test
)
...
...
doc/getstarted/index_cn.rst
浏览文件 @
15668482
...
...
@@ -7,4 +7,4 @@
build_and_install/index_cn.rst
concepts/use_concepts_cn.rst
- `深度学习入门课程 <http://book.paddlepaddle.org/>`_
- `深度学习入门课程 <http://book.paddlepaddle.org/
index.cn.html
>`_
doc/getstarted/index_en.rst
浏览文件 @
15668482
...
...
@@ -6,4 +6,4 @@ GET STARTED
build_and_install/index_en.rst
- `Deep Learning 101 <http://book.paddlepaddle.org/index.
en.
html>`_
- `Deep Learning 101 <http://book.paddlepaddle.org/index.html>`_
go/cmake/golang.cmake
浏览文件 @
15668482
...
...
@@ -39,7 +39,7 @@ function(GO_LIBRARY NAME BUILD_TYPE)
COMMAND env GOPATH=
${
GOPATH
}
${
CMAKE_Go_COMPILER
}
build
${
BUILD_MODE
}
-o
"
${
CMAKE_CURRENT_BINARY_DIR
}
/
${
LIB_NAME
}
"
${
CMAKE_GO_FLAGS
}
${
GO_SOURCE
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_
LIST
_DIR
}
)
WORKING_DIRECTORY
${
CMAKE_CURRENT_
SOURCE
_DIR
}
)
add_custom_target
(
${
NAME
}
ALL DEPENDS
${
OUTPUT_DIR
}
/.timestamp
${
ARGN
}
)
add_dependencies
(
${
NAME
}
goGet
)
...
...
paddle/scripts/docker/build.sh
浏览文件 @
15668482
...
...
@@ -58,7 +58,7 @@ EOF
make
-j
`
nproc
`
if
[
${
WITH_TESTING
:-
OFF
}
==
"ON"
]
&&
[
${
RUN_TEST
:-
OFF
}
==
"ON"
]
;
then
pip uninstall
-y
py-paddle paddle
||
true
ctest
-
V
ctest
-
-output-on-failure
fi
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
15668482
...
...
@@ -111,6 +111,7 @@ __all__ = [
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
'printer_layer'
,
'print_layer'
,
'priorbox_layer'
,
'cross_channel_norm_layer'
,
...
...
@@ -969,7 +970,7 @@ def fc_layer(input,
@
wrap_name_default
(
"print"
)
def
print_layer
(
input
,
name
=
None
):
def
print
er
_layer
(
input
,
name
=
None
):
"""
Print the output value of input layers. This layer is useful for debugging.
...
...
@@ -991,6 +992,13 @@ def print_layer(input, name=None):
inputs
=
[
l
.
name
for
l
in
input
],
)
# this layer don't return anything, can not be input of other layer.
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.
print_layer
=
printer_layer
@
wrap_name_default
(
"priorbox"
)
def
priorbox_layer
(
input
,
...
...
python/paddle/v2/dataset/flowers.py
0 → 100644
浏览文件 @
15668482
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
and parse train/test set intopaddle reader creators.
This set contains images of flowers belonging to 102 different categories.
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.
The database was used in:
Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
"""
import
cPickle
import
itertools
from
common
import
download
import
tarfile
import
scipy.io
as
scio
from
paddle.v2.image
import
*
import
os
import
numpy
as
np
import
paddle.v2
as
paddle
from
multiprocessing
import
cpu_count
__all__
=
[
'train'
,
'test'
,
'valid'
]
DATA_URL
=
'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL
=
'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL
=
'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
DATA_MD5
=
'52808999861908f626f3c1f4e79d11fa'
LABEL_MD5
=
'e0620be6f572b9609742df49c70aed4d'
SETID_MD5
=
'a5357ecc9cb78c4bef273ce3793fc85c'
def
default_mapper
(
sample
):
'''
map image bytes data to type needed by model input layer
'''
img
,
label
=
sample
img
=
paddle
.
image
.
load_image_bytes
(
img
)
img
=
paddle
.
image
.
simple_transform
(
img
,
256
,
224
,
True
)
return
img
.
flatten
().
astype
(
'float32'
),
label
def
reader_creator
(
data_file
,
label_file
,
setid_file
,
dataset_name
,
mapper
=
default_mapper
,
buffered_size
=
1024
):
'''
1. read images from tar file and
merge images into batch files in 102flowers.tgz_batch/
2. get a reader to read sample from batch file
:param data_file: downloaded data file
:type data_file: string
:param label_file: downloaded label file
:type label_file: string
:param setid_file: downloaded setid file containing information
about how to split dataset
:type setid_file: string
:param dataset_name: data set name (tstid|trnid|valid)
:type dataset_name: string
:param mapper: a function to map image bytes data to type
needed by model input layer
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: data reader
:rtype: callable
'''
labels
=
scio
.
loadmat
(
label_file
)[
'labels'
][
0
]
indexes
=
scio
.
loadmat
(
setid_file
)[
dataset_name
][
0
]
img2label
=
{}
for
i
in
indexes
:
img
=
"jpg/image_%05d.jpg"
%
i
img2label
[
img
]
=
labels
[
i
-
1
]
file_list
=
batch_images_from_tar
(
data_file
,
dataset_name
,
img2label
)
def
reader
():
for
file
in
open
(
file_list
):
file
=
file
.
strip
()
batch
=
None
with
open
(
file
,
'r'
)
as
f
:
batch
=
cPickle
.
load
(
f
)
data
=
batch
[
'data'
]
labels
=
batch
[
'label'
]
for
sample
,
label
in
itertools
.
izip
(
data
,
batch
[
'label'
]):
yield
sample
,
int
(
label
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
cpu_count
(),
buffered_size
)
def
train
(
mapper
=
default_mapper
,
buffered_size
=
1024
):
'''
Create flowers training set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: train data reader
:rtype: callable
'''
return
reader_creator
(
download
(
DATA_URL
,
'flowers'
,
DATA_MD5
),
download
(
LABEL_URL
,
'flowers'
,
LABEL_MD5
),
download
(
SETID_URL
,
'flowers'
,
SETID_MD5
),
'trnid'
,
mapper
,
buffered_size
)
def
test
(
mapper
=
default_mapper
,
buffered_size
=
1024
):
'''
Create flowers test set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: test data reader
:rtype: callable
'''
return
reader_creator
(
download
(
DATA_URL
,
'flowers'
,
DATA_MD5
),
download
(
LABEL_URL
,
'flowers'
,
LABEL_MD5
),
download
(
SETID_URL
,
'flowers'
,
SETID_MD5
),
'tstid'
,
mapper
,
buffered_size
)
def
valid
(
mapper
=
default_mapper
,
buffered_size
=
1024
):
'''
Create flowers validation set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: test data reader
:rtype: callable
'''
return
reader_creator
(
download
(
DATA_URL
,
'flowers'
,
DATA_MD5
),
download
(
LABEL_URL
,
'flowers'
,
LABEL_MD5
),
download
(
SETID_URL
,
'flowers'
,
SETID_MD5
),
'valid'
,
mapper
,
buffered_size
)
def
fetch
():
download
(
DATA_URL
,
'flowers'
,
DATA_MD5
)
download
(
LABEL_URL
,
'flowers'
,
LABEL_MD5
)
download
(
SETID_URL
,
'flowers'
,
SETID_MD5
)
python/paddle/v2/dataset/tests/flowers_test.py
0 → 100644
浏览文件 @
15668482
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2.dataset.flowers
import
unittest
class
TestFlowers
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
label
=
0
size
=
224
*
224
*
3
for
l
in
reader
():
self
.
assertEqual
(
l
[
0
].
size
,
size
)
if
l
[
1
]
>
label
:
label
=
l
[
1
]
sum
+=
1
return
sum
,
label
def
test_train
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
flowers
.
train
())
self
.
assertEqual
(
instances
,
1020
)
self
.
assertEqual
(
max_label_value
,
102
)
def
test_test
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
flowers
.
test
())
self
.
assertEqual
(
instances
,
6149
)
self
.
assertEqual
(
max_label_value
,
102
)
def
test_valid
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
flowers
.
valid
())
self
.
assertEqual
(
instances
,
1020
)
self
.
assertEqual
(
max_label_value
,
102
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/image.py
浏览文件 @
15668482
import
numpy
as
np
try
:
import
cv2
except
:
print
(
"import cv2 error, please install opencv-python: pip install opencv-python"
)
except
ImportError
:
cv2
=
None
import
os
import
tarfile
import
cPickle
__all__
=
[
"load_image"
,
"resize_short"
,
"to_chw"
,
"center_crop"
,
"random_crop"
,
"left_right_flip"
,
"simple_transform"
,
"load_and_transform"
"load_image_bytes"
,
"load_image"
,
"resize_short"
,
"to_chw"
,
"center_crop"
,
"random_crop"
,
"left_right_flip"
,
"simple_transform"
,
"load_and_transform"
,
"batch_images_from_tar"
]
"""
This file contains some common interfaces for image preprocess.
...
...
@@ -28,6 +30,90 @@ the image layout as follows.
"""
def
batch_images_from_tar
(
data_file
,
dataset_name
,
img2label
,
num_per_batch
=
1024
):
"""
Read images from tar file and batch them into batch file.
param data_file: path of image tar file
type data_file: string
param dataset_name: 'train','test' or 'valid'
type dataset_name: string
param img2label: a dic with image file name as key
and image's label as value
type img2label: dic
param num_per_batch: image number per batch file
type num_per_batch: int
return: path of list file containing paths of batch file
rtype: string
"""
batch_dir
=
data_file
+
"_batch"
out_path
=
"%s/%s"
%
(
batch_dir
,
dataset_name
)
meta_file
=
"%s/%s.txt"
%
(
batch_dir
,
dataset_name
)
if
os
.
path
.
exists
(
out_path
):
return
meta_file
else
:
os
.
makedirs
(
out_path
)
tf
=
tarfile
.
open
(
data_file
)
mems
=
tf
.
getmembers
()
data
=
[]
labels
=
[]
file_id
=
0
for
mem
in
mems
:
if
mem
.
name
in
img2label
:
data
.
append
(
tf
.
extractfile
(
mem
).
read
())
labels
.
append
(
img2label
[
mem
.
name
])
if
len
(
data
)
==
num_per_batch
:
output
=
{}
output
[
'label'
]
=
labels
output
[
'data'
]
=
data
cPickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'w'
),
protocol
=
cPickle
.
HIGHEST_PROTOCOL
)
file_id
+=
1
data
=
[]
labels
=
[]
if
len
(
data
)
>
0
:
output
=
{}
output
[
'label'
]
=
labels
output
[
'data'
]
=
data
cPickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'w'
),
protocol
=
cPickle
.
HIGHEST_PROTOCOL
)
with
open
(
meta_file
,
'a'
)
as
meta
:
for
file
in
os
.
listdir
(
out_path
):
meta
.
write
(
os
.
path
.
abspath
(
"%s/%s"
%
(
out_path
,
file
))
+
"
\n
"
)
return
meta_file
def
load_image_bytes
(
bytes
,
is_color
=
True
):
"""
Load an color or gray image from bytes array.
Example usage:
.. code-block:: python
with open('cat.jpg') as f:
im = load_image_bytes(f.read())
:param bytes: the input image bytes array.
:type file: str
:param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will
load and return a gray image.
"""
flag
=
1
if
is_color
else
0
file_bytes
=
np
.
asarray
(
bytearray
(
bytes
),
dtype
=
np
.
uint8
)
img
=
cv2
.
imdecode
(
file_bytes
,
flag
)
return
img
def
load_image
(
file
,
is_color
=
True
):
"""
Load an color or gray image from the file path.
...
...
python/paddle/v2/layer.py
浏览文件 @
15668482
...
...
@@ -149,6 +149,20 @@ def __get_used_layers__(output_layers, extra_layers=None):
for
layer
in
output_layers
:
dfs_travel
(
layer
.
full_name
)
# print layer needs to be specially handled because no other
# layer depends on it. It is used to print the result of some
# layers when running the model for debug purpose. So we explicitly
# add a print layer to the topolty if its input is in the toplogy.
for
layer
in
cp
.
g_config
.
model_config
.
layers
:
if
layer
.
type
==
'print'
:
used
=
True
for
inp
in
layer
.
inputs
:
if
inp
.
input_layer_name
not
in
layer_names
:
used
=
False
break
if
used
:
layer_names
.
add
(
layer
.
name
)
return
layer_names
...
...
python/paddle/v2/reader/decorator.py
浏览文件 @
15668482
...
...
@@ -14,7 +14,7 @@
__all__
=
[
'map_readers'
,
'buffered'
,
'compose'
,
'chain'
,
'shuffle'
,
'ComposeNotAligned'
,
'firstn'
'ComposeNotAligned'
,
'firstn'
,
'xmap_readers'
]
import
itertools
...
...
@@ -224,3 +224,74 @@ def firstn(reader, n):
yield
item
return
firstn_reader
class
XmapEndSignal
():
pass
def
xmap_readers
(
mapper
,
reader
,
process_num
,
buffer_size
):
"""
Use multiprocess to map samples from reader by a mapper defined by user.
And this function contains a buffered decorator.
:param mapper: a function to map sample.
:type mapper: callable
:param reader: the data reader to read from
:type reader: callable
:param process_num: process number to handle original sample
:type process_num: int
:param buffer_size: max buffer size
:type buffer_size: int
:return: the decarated reader
:rtype: callable
"""
end
=
XmapEndSignal
()
in_queue
=
Queue
(
buffer_size
)
out_queue
=
Queue
(
buffer_size
)
# define a worker to read samples from reader to in_queue
def
read_worker
(
reader
,
in_queue
):
for
i
in
reader
():
in_queue
.
put
(
i
)
in_queue
.
put
(
end
)
# start a read worker in a thread
t
=
Thread
(
target
=
read_worker
,
args
=
(
reader
,
in_queue
))
t
.
daemon
=
True
t
.
start
()
# define a worker to handle samples from in_queue by mapper
# and put mapped samples into out_queue
def
handle_worker
(
in_queue
,
out_queue
,
mapper
):
sample
=
in_queue
.
get
()
while
not
isinstance
(
sample
,
XmapEndSignal
):
r
=
mapper
(
sample
)
out_queue
.
put
(
r
)
sample
=
in_queue
.
get
()
in_queue
.
put
(
end
)
out_queue
.
put
(
end
)
# start several handle_workers
workers
=
[]
for
i
in
xrange
(
process_num
):
worker
=
Thread
(
target
=
handle_worker
,
args
=
(
in_queue
,
out_queue
,
mapper
))
worker
.
daemon
=
True
workers
.
append
(
worker
)
for
w
in
workers
:
w
.
start
()
def
xreader
():
sample
=
out_queue
.
get
()
while
not
isinstance
(
sample
,
XmapEndSignal
):
yield
sample
sample
=
out_queue
.
get
()
finish
=
1
while
finish
<
process_num
:
sample
=
out_queue
.
get
()
if
isinstance
(
sample
,
XmapEndSignal
):
finish
+=
1
else
:
yield
sample
return
xreader
python/paddle/v2/tests/test_layer.py
浏览文件 @
15668482
...
...
@@ -164,6 +164,7 @@ class OtherLayerTest(unittest.TestCase):
maxid
=
layer
.
max_id
(
input
=
inference
)
sampling_id
=
layer
.
sampling_id
(
input
=
inference
)
eos
=
layer
.
eos
(
input
=
maxid
,
eos_id
=
5
)
layer
.
printer
(
maxid
)
print
layer
.
parse_network
([
maxid
,
sampling_id
,
eos
])
def
test_slicing_joining_layer
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录