Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1533d7e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1533d7e2
编写于
8月 27, 2021
作者:
W
WangXi
提交者:
GitHub
8月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] Fix row parallel linear bias (#35186)
上级
7debae3a
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
69 addition
and
40 deletion
+69
-40
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+35
-25
python/paddle/fluid/tests/unittests/static_model_parallel_by_col.py
...dle/fluid/tests/unittests/static_model_parallel_by_col.py
+19
-10
python/paddle/fluid/tests/unittests/static_model_parallel_by_row.py
...dle/fluid/tests/unittests/static_model_parallel_by_row.py
+15
-5
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
1533d7e2
...
@@ -1078,6 +1078,19 @@ def _linear(x, weight, bias=None, name=None):
...
@@ -1078,6 +1078,19 @@ def _linear(x, weight, bias=None, name=None):
return
res
return
res
def
_set_var_distributed
(
var
):
if
var
is
None
:
return
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
def
_parallel_linear
(
x
,
def
_parallel_linear
(
x
,
num_rows
,
num_rows
,
num_cols
,
num_cols
,
...
@@ -1095,7 +1108,7 @@ def _parallel_linear(x,
...
@@ -1095,7 +1108,7 @@ def _parallel_linear(x,
axis the dimension of the parameter of linear layer.
axis the dimension of the parameter of linear layer.
axis = 0: the row dimension
axis = 0: the row dimension
axi
d
= 1: the col dimension
axi
s
= 1: the col dimension
"""
"""
if
group
is
not
None
and
not
group
.
is_member
():
if
group
is
not
None
and
not
group
.
is_member
():
...
@@ -1108,14 +1121,6 @@ def _parallel_linear(x,
...
@@ -1108,14 +1121,6 @@ def _parallel_linear(x,
else
:
else
:
x
=
_c_identity
(
x
,
group
=
group
)
x
=
_c_identity
(
x
,
group
=
group
)
if
core
.
is_compiled_with_npu
():
linear
=
_Linear
(
num_rows
,
num_cols
,
weight_attr
=
param_attr
,
bias_attr
=
bias_attr
,
name
=
name
)
else
:
linear
=
paddle
.
nn
.
Linear
(
linear
=
paddle
.
nn
.
Linear
(
num_rows
,
num_rows
,
num_cols
,
num_cols
,
...
@@ -1123,25 +1128,28 @@ def _parallel_linear(x,
...
@@ -1123,25 +1128,28 @@ def _parallel_linear(x,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
name
=
name
)
name
=
name
)
linear_out
=
linear
(
x
)
# NOTE: npu linear function use matmul_v2 but linear use matmul
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
linear_function
=
_linear
if
core
.
is_compiled_with_npu
()
\
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
else
paddle
.
nn
.
functional
.
linear
startup_block
.
_find_var_recursive
(
linear
.
weight
.
name
).
is_distributed
=
True
linear_out
=
linear_function
(
main_block
.
_find_var_recursive
(
linear
.
weight
.
name
).
is_distributed
=
True
x
,
linear
.
weight
,
# NOTE(wangxi): row split, bias need add after allreduce
None
if
axis
==
0
else
linear
.
bias
,
linear
.
name
)
_set_var_distributed
(
linear
.
weight
)
# set is_distributed for splited bias
# set is_distributed for splited bias
# if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
# if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
# if a linear layer is splited by col, the bias would also be split into each rank as its weight
# if a linear layer is splited by col, the bias would also be split into each rank as its weight
if
axis
==
1
and
linear
.
_bias_attr
!=
False
:
if
axis
==
1
and
linear
.
_bias_attr
!=
False
:
startup_block
.
_find_var_recursive
(
_set_var_distributed
(
linear
.
bias
)
linear
.
bias
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
linear
.
bias
.
name
).
is_distributed
=
True
if
not
gather_out
:
return
linear_out
if
not
gather_out
:
return
linear_out
op_type
=
'c_allreduce_sum'
if
axis
==
0
else
'c_concat'
out_shape
=
list
(
linear_out
.
shape
)
out_shape
=
list
(
linear_out
.
shape
)
out_shape
[
0
]
*=
1
if
axis
==
0
else
nranks
out_shape
[
0
]
*=
1
if
axis
==
0
else
nranks
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
out
=
main_block
.
create_var
(
out
=
main_block
.
create_var
(
shape
=
out_shape
,
shape
=
out_shape
,
dtype
=
linear_out
.
dtype
,
dtype
=
linear_out
.
dtype
,
...
@@ -1160,6 +1168,8 @@ def _parallel_linear(x,
...
@@ -1160,6 +1168,8 @@ def _parallel_linear(x,
'use_calc_stream'
:
True
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
'use_model_parallel'
:
True
})
})
if
linear
.
bias
is
not
None
:
out
=
out
+
linear
.
bias
else
:
else
:
main_block
.
append_op
(
main_block
.
append_op
(
type
=
'c_concat'
,
type
=
'c_concat'
,
...
...
python/paddle/fluid/tests/unittests/static_model_parallel_by_col.py
浏览文件 @
1533d7e2
...
@@ -43,29 +43,38 @@ OUT_SIZE = 2 * MODEL_PARALLEL_SIZE
...
@@ -43,29 +43,38 @@ OUT_SIZE = 2 * MODEL_PARALLEL_SIZE
#fluid.default_main_program().random_seed = 1
#fluid.default_main_program().random_seed = 1
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
bias
))
return
weight_attr
,
bias_attr
def
create_model
(
data
,
rank
):
def
create_model
(
data
,
rank
):
np
.
random
.
seed
(
2021
)
np
.
random
.
seed
(
2021
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
np_bias
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
OUT_SIZE
,
)).
astype
(
DTYPE
)
if
rank
is
not
None
:
if
rank
is
not
None
:
start_col
=
0
if
rank
==
0
else
OUT_SIZE
//
2
start_col
=
0
if
rank
==
0
else
OUT_SIZE
//
2
np_weight_part
=
np_weight
[:,
start_col
:
start_col
+
OUT_SIZE
//
2
]
np_weight_part
=
np_weight
[:,
start_col
:
start_col
+
OUT_SIZE
//
2
]
np_bias_part
=
np_bias
[
start_col
:
start_col
+
OUT_SIZE
//
2
]
weight_attr
,
bias_attr
=
get_param_attr
(
np_weight_part
,
np_bias_part
)
result
=
paddle
.
distributed
.
split
(
result
=
paddle
.
distributed
.
split
(
data
,
data
,
size
=
(
IN_SIZE
,
OUT_SIZE
),
size
=
(
IN_SIZE
,
OUT_SIZE
),
operation
=
'linear'
,
operation
=
'linear'
,
axis
=
1
,
axis
=
1
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
weight_attr
,
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
bias_attr
=
bias_attr
)
np_weight_part
)),
bias_attr
=
False
,
)
else
:
else
:
result
=
fluid
.
layers
.
fc
(
weight_attr
,
bias_attr
=
get_param_attr
(
np_weight
,
np_bias
)
data
,
result
=
fluid
.
layers
.
fc
(
data
,
size
=
OUT_SIZE
,
size
=
OUT_SIZE
,
param_attr
=
paddle
.
ParamAttr
(
param_attr
=
weight_attr
,
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
bias_attr
=
bias_attr
)
bias_attr
=
False
,
)
predict
=
paddle
.
sum
(
result
)
predict
=
paddle
.
sum
(
result
)
return
predict
return
predict
...
...
python/paddle/fluid/tests/unittests/static_model_parallel_by_row.py
浏览文件 @
1533d7e2
...
@@ -43,29 +43,39 @@ OUT_SIZE = 2 * MODEL_PARALLEL_SIZE
...
@@ -43,29 +43,39 @@ OUT_SIZE = 2 * MODEL_PARALLEL_SIZE
#fluid.default_main_program().random_seed = 1
#fluid.default_main_program().random_seed = 1
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
bias
))
return
weight_attr
,
bias_attr
def
create_model
(
data
,
rank
):
def
create_model
(
data
,
rank
):
np
.
random
.
seed
(
2021
)
np
.
random
.
seed
(
2021
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
np_bias
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
OUT_SIZE
,
)).
astype
(
DTYPE
)
if
rank
is
not
None
:
if
rank
is
not
None
:
start_row
=
0
if
rank
==
0
else
IN_SIZE
//
2
start_row
=
0
if
rank
==
0
else
IN_SIZE
//
2
np_weight_part
=
np_weight
[
start_row
:
start_row
+
IN_SIZE
//
2
,
:]
np_weight_part
=
np_weight
[
start_row
:
start_row
+
IN_SIZE
//
2
,
:]
weight_attr
,
bias_attr
=
get_param_attr
(
np_weight_part
,
np_bias
)
result
=
paddle
.
distributed
.
split
(
result
=
paddle
.
distributed
.
split
(
data
,
data
,
size
=
(
IN_SIZE
,
OUT_SIZE
),
size
=
(
IN_SIZE
,
OUT_SIZE
),
operation
=
'linear'
,
operation
=
'linear'
,
axis
=
0
,
axis
=
0
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
weight_attr
,
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
bias_attr
=
bias_attr
)
np_weight_part
)),
bias_attr
=
False
,
)
else
:
else
:
weight_attr
,
bias_attr
=
get_param_attr
(
np_weight
,
np_bias
)
result
=
fluid
.
layers
.
fc
(
result
=
fluid
.
layers
.
fc
(
data
,
data
,
size
=
OUT_SIZE
,
size
=
OUT_SIZE
,
param_attr
=
paddle
.
ParamAttr
(
param_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
bias_attr
=
False
,
)
bias_attr
=
bias_attr
)
predict
=
paddle
.
sum
(
result
)
predict
=
paddle
.
sum
(
result
)
return
predict
return
predict
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录