From 15180e85acaa400c629a37fadcf4589b7c086c7d Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Tue, 21 Feb 2017 15:50:01 +0800 Subject: [PATCH] remove some code --- paddle/data_converter_test.py | 92 ----------------------------------- 1 file changed, 92 deletions(-) delete mode 100644 paddle/data_converter_test.py diff --git a/paddle/data_converter_test.py b/paddle/data_converter_test.py deleted file mode 100644 index d84ee517278..00000000000 --- a/paddle/data_converter_test.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import py_paddle.swig_paddle as api -import numpy as np -import paddle.trainer.PyDataProvider2 as dp2 - -from paddle.v2.data_converter import DataConverter - - -class DataConverterTest(unittest.TestCase): - def dense_reader(self, shape): - data = np.random.random(shape) - return data - - def sparse_binary_reader(self, - high, - size_limit, - batch_size, - non_empty=False): - data = [] - for i in xrange(batch_size): - num = np.random.randint(size_limit) # num could be 0 - while non_empty and num == 0: - num = np.random.randint(size_limit) - data.append(np.random.randint(high, size=num).tolist()) - - return data - - def test_dense_vector(self): - def compare(input): - converter = DataConverter([('image', dp2.dense_vector(784))]) - arg = converter([input], {'image': 0}) - output = arg.getSlotValue(0).copyToNumpyMat() - input = np.array(input, dtype='float32') - self.assertAlmostEqual(input.all(), output.all()) - - # test numpy array - data = self.dense_reader(shape=[32, 784]) - compare(data) - - # test list - compare(data.tolist()) - - #def test_sparse_binary(self): - # dim = 100000 - # data = self.sparse_binary_reader(dim, 5, 2) - # converter = DataConverter([('input', dp2.sparse_binary_vector(dim))]) - # arg = converter([data], {'input':0}) - # output = arg.getSlotValue(0) - - #def test_sparse(self): - # dim = 100000 - # v = self.sparse_binary_reader(dim, 5, 2) - # w = [] - # for dat in data: - # x = self.dense_reader(shape=[1, len(dat)]) - # w.append(x.tolist()) - # data = [] - # for each in zip(v, w): - # data.append(zip(each[0], each[1])) - # - # converter = DataConverter([('input', dp2.sparse_binary_vector(dim))]) - # arg = converter([data], {'input':0}) - # output = arg.getSlotValue(0) - - def test_integer(self): - dim = 100 - index = np.random.randint(dim, size=32) - print index - converter = DataConverter([('input', dp2.integer_value(dim))]) - arg = converter([index], {'input': 0}) - print arg.getSlotValue(0) - output = arg.getSlotValue(0).copyToNumpyArray() - print 'output=', output - - -if __name__ == '__main__': - unittest.main() -- GitLab