Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
13f44099
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
13f44099
编写于
2月 16, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move slice to pten
上级
5bb3b668
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
729 addition
and
505 deletion
+729
-505
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+2
-502
paddle/fluid/operators/slice_utils.h
paddle/fluid/operators/slice_utils.h
+1
-2
paddle/pten/kernels/cpu/slice_grad_kernel.cc
paddle/pten/kernels/cpu/slice_grad_kernel.cc
+33
-0
paddle/pten/kernels/cpu/slice_kernel.cc
paddle/pten/kernels/cpu/slice_kernel.cc
+32
-0
paddle/pten/kernels/funcs/eigen/pad.cc
paddle/pten/kernels/funcs/eigen/pad.cc
+2
-1
paddle/pten/kernels/gpu/slice_grad_kernel.cu
paddle/pten/kernels/gpu/slice_grad_kernel.cu
+33
-0
paddle/pten/kernels/gpu/slice_kernel.cu
paddle/pten/kernels/gpu/slice_kernel.cu
+32
-0
paddle/pten/kernels/impl/slice_grad_kernel_impl.h
paddle/pten/kernels/impl/slice_grad_kernel_impl.h
+342
-0
paddle/pten/kernels/impl/slice_kernel_impl.h
paddle/pten/kernels/impl/slice_kernel_impl.h
+152
-0
paddle/pten/kernels/slice_grad_kernel.h
paddle/pten/kernels/slice_grad_kernel.h
+31
-0
paddle/pten/kernels/slice_kernel.h
paddle/pten/kernels/slice_kernel.h
+31
-0
paddle/pten/ops/compat/slice_sig.cc
paddle/pten/ops/compat/slice_sig.cc
+38
-0
未找到文件。
paddle/fluid/operators/slice_op.h
浏览文件 @
13f44099
...
...
@@ -29,520 +29,20 @@ using Variable = framework::Variable;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
using
DDim
=
framework
::
DDim
;
inline
void
DealTensorArray
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
bool
out_is_array
)
{
auto
in_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
// If the input is LoDTensorArray, the rank of input is 1.
int64_t
in_size
=
in_array
->
size
();
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
in_size
)
:
starts
[
0
];
int64_t
end
=
ends
[
0
]
<
0
?
(
ends
[
0
]
+
in_size
)
:
ends
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
in_size
);
if
(
starts
[
0
]
==
-
1
&&
end
==
0
)
{
end
=
start
+
1
;
}
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
0
],
starts
[
0
]));
int64_t
out_size
=
end
-
start
;
if
(
out_is_array
)
{
auto
out_array
=
ctx
.
Output
<
LoDTensorArray
>
(
"Out"
);
out_array
->
resize
(
out_size
);
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
auto
*
out_tensor
=
&
out_array
->
at
(
i
);
auto
in_tensor
=
in_array
->
at
(
i
+
start
);
out_tensor
->
set_lod
(
in_tensor
.
lod
());
if
(
in_tensor
.
memory_size
()
>
0
)
{
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out_tensor
);
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
<<
i
<<
"]."
;
}
}
}
else
{
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in_tensor
=
in_array
->
at
(
start
);
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SliceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
int
rank
=
is_tensor_array
?
1
:
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
SliceCompute
<
1
>
(
ctx
);
break
;
case
2
:
SliceCompute
<
2
>
(
ctx
);
break
;
case
3
:
SliceCompute
<
3
>
(
ctx
);
break
;
case
4
:
SliceCompute
<
4
>
(
ctx
);
break
;
case
5
:
SliceCompute
<
5
>
(
ctx
);
break
;
case
6
:
SliceCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
private:
template
<
size_t
D
>
void
SliceCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
Variable
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
bool
input_is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
bool
out_is_array
=
out_var
->
IsType
<
LoDTensorArray
>
();
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
// Step 1: Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
// Step 2: Compute output
if
(
input_is_array
)
{
DealTensorArray
(
ctx
,
starts
,
ends
,
out_is_array
);
return
;
}
else
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in_dims
=
in
->
dims
();
auto
out_dims
=
out
->
dims
();
auto
slice_dims
=
out_dims
;
// 2.1 Infer output dims
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
// when start == -1 && end == start+1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
in_dims
[
axes
[
i
]];
}
}
}
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
// 2.2 Get output
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
auto
extents
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
slice_dims
[
i
];
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
offsets
[
axes
[
i
]]
=
starts
[
i
];
}
out
->
Resize
(
slice_dims
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_t
=
framework
::
EigenTensor
<
T
,
D
>::
From
(
*
in
,
in_dims
);
auto
out_t
=
framework
::
EigenTensor
<
T
,
D
>::
From
(
*
out
,
slice_dims
);
auto
&
eigen_place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
if
(
in
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.slice:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
DSizes
<
int
,
D
>
offsets_32bit
,
extents_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
offsets_32bit
[
i
]
=
offsets
[
i
];
extents_32bit
[
i
]
=
extents
[
i
];
}
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
framework
::
To32BitIndex
(
out_t
),
framework
::
To32BitIndex
(
in_t
),
offsets_32bit
,
extents_32bit
);
}
else
{
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
out_t
,
in_t
,
offsets
,
extents
);
}
out
->
Resize
(
out_dims
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SliceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
size_t
rank
=
is_array
?
1
:
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
SliceCompute
<
1
>
(
ctx
);
break
;
case
2
:
SliceCompute
<
2
>
(
ctx
);
break
;
case
3
:
SliceCompute
<
3
>
(
ctx
);
break
;
case
4
:
SliceCompute
<
4
>
(
ctx
);
break
;
case
5
:
SliceCompute
<
5
>
(
ctx
);
break
;
case
6
:
SliceCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
private:
template
<
size_t
D
>
void
SliceCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
Variable
*
d_input_var
=
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Input"
));
const
Variable
*
d_out_var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
bool
d_input_is_array
=
d_input_var
->
IsType
<
LoDTensorArray
>
();
bool
d_out_is_array
=
d_out_var
->
IsType
<
LoDTensorArray
>
();
if
(
d_input_is_array
)
{
auto
*
input_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
auto
*
d_in_arr
=
ctx
.
Output
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Input"
));
int64_t
d_in_size
=
input_array
->
size
();
d_in_arr
->
resize
(
d_in_size
);
// If the input is LoDTensorArray, the rank of input is 1.
// So only use the 0th element of starts.
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
d_in_size
)
:
starts
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
// set zero
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
pten
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
functor
;
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
auto
dim
=
input_array
->
at
(
i
).
dims
();
d_in_arr
->
at
(
i
).
Resize
(
dim
);
d_in_arr
->
at
(
i
).
mutable_data
<
T
>
(
ctx
.
GetPlace
());
functor
(
reinterpret_cast
<
const
DeviceContext
&>
(
dev_ctx
),
&
d_in_arr
->
at
(
i
),
static_cast
<
T
>
(
0
));
}
if
(
d_out_is_array
)
{
auto
*
d_out_arr
=
ctx
.
Input
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Out"
));
int
d_out_size
=
d_out_arr
->
size
();
for
(
int
i
=
0
;
i
<
d_out_size
;
++
i
)
{
paddle
::
framework
::
TensorCopy
(
d_out_arr
->
at
(
i
),
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
+
i
)));
}
}
else
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
paddle
::
framework
::
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
)));
}
return
;
}
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_input
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
d_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_dims
=
d_out
->
dims
();
auto
in_dims
=
d_input
->
dims
();
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
decrease_size
=
decrease_axis
.
size
();
if
(
decrease_size
>
0
)
{
if
(
decrease_size
==
static_cast
<
size_t
>
(
in_dims
.
size
()))
{
// all dims decrease
std
::
vector
<
int
>
origin_out_shape
(
decrease_size
,
1
);
out_dims
=
framework
::
make_ddim
(
std
::
vector
<
int
>
(
decrease_size
,
1
));
}
else
{
std
::
vector
<
int
>
origin_out_shape
(
out_dims
.
size
()
+
decrease_size
,
-
1
);
for
(
size_t
i
=
0
;
i
<
decrease_size
;
++
i
)
{
origin_out_shape
[
decrease_axis
[
i
]]
=
1
;
}
int
index
=
0
;
for
(
size_t
i
=
0
;
i
<
origin_out_shape
.
size
();
++
i
)
{
if
(
origin_out_shape
[
i
]
==
-
1
)
{
origin_out_shape
[
i
]
=
out_dims
[
index
];
++
index
;
}
}
out_dims
=
framework
::
make_ddim
(
origin_out_shape
);
}
}
auto
offsets
=
Eigen
::
array
<
int64_t
,
D
>
();
auto
extents
=
Eigen
::
array
<
int64_t
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
out_dims
[
i
];
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
int
axis
=
axes
[
i
];
int64_t
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
in_dims
[
axis
])
:
starts
[
i
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
offsets
[
axis
]
=
start
;
}
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
offsets
[
i
];
paddings
[
i
].
second
=
(
in_dims
[
i
]
-
out_dims
[
i
])
-
offsets
[
i
];
}
EigenPaddingCompute
(
ctx
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
template
<
size_t
D
>
void
EigenPaddingCompute
(
const
framework
::
ExecutionContext
&
context
,
Tensor
*
d_input
,
const
DDim
&
in_dims
,
const
Tensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
const
{
if
(
D
<=
3
)
{
// if dimension less than 3, cannot reduce dimension
LaunchEigenPadding
(
context
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
else
{
// else we can reduce dimension
// count not-zero padding number, and record the dimension
int
need_pad_num
=
0
,
pad_dim
=
-
1
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
if
(
paddings
[
i
].
first
!=
0
||
paddings
[
i
].
second
!=
0
)
{
need_pad_num
++
;
pad_dim
=
i
;
}
}
if
(
need_pad_num
==
1
)
{
// only need padding one dimension, we can reduce dimension.
// only the padding dimension is available for us.
// How to reduce dimension(5 to 3 for example):
// before(D=5):
// in_dims: [x1, x2, x3, x4, x5]
// padding.first: [0, 0, a, 0, 0]
// padding.second: [0, 0, b, 0, 0]
// | |
// V V
// after(D=3):
// reshaped_in_dims: [x1*x2, x3, x4*x5]
// reshaped_padding.first: [0, a, 0]
// reshaped_padding.second: [0, b, 0]
if
(
pad_dim
==
D
-
1
)
{
// only last dimension need padding,
// reshape the dimension of tensor in 2: [preceding, padding]
std
::
vector
<
int64_t
>
in_tore_shape
(
2
,
1
),
out_tore_shape
(
2
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
2
>
reshaped_padding
;
// first dimension is the accumulate of preceding dimension
for
(
int
i
=
0
;
i
<
pad_dim
;
i
++
)
{
in_tore_shape
[
0
]
*=
in_dims
[
i
];
out_tore_shape
[
0
]
*=
out_dims
[
i
];
}
// second dimension is the padding dimension
in_tore_shape
[
1
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
1
]
=
out_dims
[
pad_dim
];
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape: the first dimension do not need padding,
// set padding[0] zero
reshaped_padding
[
0
].
first
=
reshaped_padding
[
0
].
second
=
0
;
// the second dimension is the previous padding dimension
reshaped_padding
[
1
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
1
].
second
=
paddings
[
pad_dim
].
second
;
LaunchEigenPadding
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
else
if
(
pad_dim
==
0
)
{
// only first dimension need padding,
// reshape the dimension of tensor in 2: [padding, succeeding]
// similar to (D - 1)
std
::
vector
<
int64_t
>
in_tore_shape
(
2
,
1
),
out_tore_shape
(
2
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
2
>
reshaped_padding
;
// first dimension is the padding dimension
in_tore_shape
[
0
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
0
]
=
out_dims
[
pad_dim
];
// sencond dimension is the accumulate of succeeding dimension
for
(
size_t
i
=
pad_dim
+
1
;
i
<
D
;
i
++
)
{
in_tore_shape
[
1
]
*=
in_dims
[
i
];
out_tore_shape
[
1
]
*=
out_dims
[
i
];
}
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape:
// the first dimension is the previous padding dimension
reshaped_padding
[
0
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
0
].
second
=
paddings
[
pad_dim
].
second
;
// the second dimension do not need padding, set padding[1] zero
reshaped_padding
[
1
].
first
=
reshaped_padding
[
1
].
second
=
0
;
LaunchEigenPadding
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
else
{
// other dimension need padding
// reshape the dimension of tensor in 3:
// [preceding, padding, succeeding]
std
::
vector
<
int64_t
>
in_tore_shape
(
3
,
1
),
out_tore_shape
(
3
,
1
);
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
3
>
reshaped_padding
;
// first dimension is the accumulate of preceding dimension
for
(
int
i
=
0
;
i
<
pad_dim
;
i
++
)
{
in_tore_shape
[
0
]
*=
in_dims
[
i
];
out_tore_shape
[
0
]
*=
out_dims
[
i
];
}
// second dimension is the padding dimension
in_tore_shape
[
1
]
=
in_dims
[
pad_dim
];
out_tore_shape
[
1
]
=
out_dims
[
pad_dim
];
// third dimension is the accumulate of succeeding dimension
for
(
size_t
i
=
pad_dim
+
1
;
i
<
D
;
i
++
)
{
in_tore_shape
[
2
]
*=
in_dims
[
i
];
out_tore_shape
[
2
]
*=
out_dims
[
i
];
}
// convert array from std::vector to DDim
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape:
// the first dimension do not need padding, set padding[0] zero
reshaped_padding
[
0
].
first
=
reshaped_padding
[
2
].
second
=
0
;
// the second dimension is the previous padding dimension
reshaped_padding
[
1
].
first
=
paddings
[
pad_dim
].
first
;
reshaped_padding
[
1
].
second
=
paddings
[
pad_dim
].
second
;
// the third dimension do not need padding, set padding[2] zero
reshaped_padding
[
2
].
first
=
reshaped_padding
[
2
].
second
=
0
;
LaunchEigenPadding
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
}
else
{
// need padding at many dimension, cannot reduce dimension
LaunchEigenPadding
(
context
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
}
}
template
<
size_t
D
>
void
LaunchEigenPadding
(
const
framework
::
ExecutionContext
&
context
,
Tensor
*
d_input
,
const
DDim
&
in_dims
,
const
Tensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
const
{
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
d_in_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_input
,
in_dims
);
auto
d_out_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_out
,
out_dims
);
if
(
d_input
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.pad:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
paddings_32bit
[
i
]
=
std
::
make_pair
(
paddings
[
i
].
first
,
paddings
[
i
].
second
);
}
EigenPad
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
framework
::
To32BitIndex
(
d_in_t
),
framework
::
To32BitIndex
(
d_out_t
),
paddings_32bit
,
static_cast
<
T
>
(
0
));
}
else
{
EigenPad
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
d_in_t
,
d_out_t
,
paddings
,
static_cast
<
T
>
(
0
));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/slice_utils.h
浏览文件 @
13f44099
...
...
@@ -13,13 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <paddle/fluid/framework/
operator
.h>
#include <paddle/fluid/framework/
dim
.h>
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
=
int64_t
>
inline
void
CheckAndUpdateSliceAttrs
(
const
framework
::
DDim
in_dims
,
...
...
paddle/pten/kernels/cpu/slice_grad_kernel.cc
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/slice_grad_kernel.h"
#include "paddle/pten/kernels/impl/slice_grad_kernel_impl.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
PT_REGISTER_KERNEL
(
slice_grad
,
CPU
,
ALL_LAYOUT
,
pten
::
SliceGradRawKernel
,
bool
,
int
,
int64_t
,
float
,
double
,
pten
::
dtype
::
complex
<
float
>
,
pten
::
dtype
::
complex
<
double
>
,
pten
::
dtype
::
bfloat16
,
pten
::
dtype
::
float16
)
{}
paddle/pten/kernels/cpu/slice_kernel.cc
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/slice_kernel.h"
#include "paddle/pten/kernels/impl/slice_kernel_impl.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
PT_REGISTER_KERNEL
(
slice
,
CPU
,
ALL_LAYOUT
,
pten
::
SliceRawKernel
,
bool
,
int
,
int64_t
,
float
,
double
,
pten
::
dtype
::
complex
<
float
>
,
pten
::
dtype
::
complex
<
double
>
,
pten
::
dtype
::
bfloat16
)
{}
paddle/pten/kernels/funcs/eigen/pad.cc
浏览文件 @
13f44099
...
...
@@ -56,7 +56,8 @@ struct EigenPad<Eigen::DefaultDevice, T, Rank> {
template struct FUNCTOR<Eigen::DefaultDevice, TYPE, 3>; \
template struct FUNCTOR<Eigen::DefaultDevice, TYPE, 4>; \
template struct FUNCTOR<Eigen::DefaultDevice, TYPE, 5>; \
template struct FUNCTOR<Eigen::DefaultDevice, TYPE, 6>
template struct FUNCTOR<Eigen::DefaultDevice, TYPE, 6>;
INSTANTIATION
(
EigenPad
,
bool
);
INSTANTIATION
(
EigenPad
,
int
);
INSTANTIATION
(
EigenPad
,
int64_t
);
...
...
paddle/pten/kernels/gpu/slice_grad_kernel.cu
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/impl/slice_grad_kernel_impl.h"
#include "paddle/pten/kernels/slice_grad_kernel.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
PT_REGISTER_KERNEL
(
slice_grad
,
GPU
,
ALL_LAYOUT
,
pten
::
SliceGradRawKernel
,
bool
,
int
,
int64_t
,
float
,
double
,
pten
::
dtype
::
complex
<
float
>
,
pten
::
dtype
::
complex
<
double
>
,
pten
::
dtype
::
bfloat16
,
pten
::
dtype
::
float16
)
{}
paddle/pten/kernels/gpu/slice_kernel.cu
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/impl/slice_kernel_impl.h"
#include "paddle/pten/kernels/slice_kernel.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
PT_REGISTER_KERNEL
(
slice
,
GPU
,
ALL_LAYOUT
,
pten
::
SliceRawKernel
,
bool
,
int
,
int64_t
,
float
,
double
,
pten
::
dtype
::
complex
<
float
>
,
pten
::
dtype
::
complex
<
double
>
,
pten
::
dtype
::
bfloat16
)
{}
paddle/pten/kernels/impl/slice_grad_kernel_impl.h
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/pten/kernels/funcs/eigen/common.h"
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
#include "paddle/pten/kernels/slice_grad_kernel.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
,
size_t
D
>
void
LaunchEigenPadding
(
const
Context
&
context
,
DenseTensor
*
d_input
,
const
DDim
&
in_dims
,
const
DenseTensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
{
auto
&
place
=
*
context
.
template
eigen_device
();
auto
d_in_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_input
,
in_dims
);
auto
d_out_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_out
,
out_dims
);
if
(
d_input
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.pad:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
paddings_32bit
[
i
]
=
std
::
make_pair
(
paddings
[
i
].
first
,
paddings
[
i
].
second
);
}
funcs
::
EigenPad
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
To32BitIndex
(
d_in_t
),
To32BitIndex
(
d_out_t
),
paddings_32bit
,
static_cast
<
T
>
(
0
));
}
else
{
funcs
::
EigenPad
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
d_in_t
,
d_out_t
,
paddings
,
static_cast
<
T
>
(
0
));
}
}
template
<
typename
T
,
typename
Context
,
size_t
D
>
void
EigenPaddingCompute
(
const
Context
&
context
,
DenseTensor
*
d_input
,
const
DDim
&
in_dims
,
const
DenseTensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
{
if
(
D
<=
3
)
{
// if dimension less than 3, cannot reduce dimension
LaunchEigenPadding
<
T
,
Context
,
D
>
(
context
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
// } else { // else we can reduce dimension
// // count not-zero padding number, and record the dimension
// int need_pad_num = 0, pad_dim = -1;
// for (size_t i = 0; i < D; i++) {
// if (paddings[i].first != 0 || paddings[i].second != 0) {
// need_pad_num++;
// pad_dim = i;
// }
// }
// if (need_pad_num == 1) {
// // only need padding one dimension, we can reduce dimension.
// // only the padding dimension is available for us.
// // How to reduce dimension(5 to 3 for example):
// // before(D=5):
// // in_dims: [x1, x2, x3, x4, x5]
// // padding.first: [0, 0, a, 0, 0]
// // padding.second: [0, 0, b, 0, 0]
// // | |
// // V V
// // after(D=3):
// // reshaped_in_dims: [x1*x2, x3, x4*x5]
// // reshaped_padding.first: [0, a, 0]
// // reshaped_padding.second: [0, b, 0]
// if (pad_dim == D - 1) {
// // only last dimension need padding,
// // reshape the dimension of tensor in 2: [preceding, padding]
// std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
// Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;
// // first dimension is the accumulate of preceding dimension
// for (int i = 0; i < pad_dim; i++) {
// in_tore_shape[0] *= in_dims[i];
// out_tore_shape[0] *= out_dims[i];
// }
// // second dimension is the padding dimension
// in_tore_shape[1] = in_dims[pad_dim];
// out_tore_shape[1] = out_dims[pad_dim];
// // convert array from std::vector to DDim
// DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
// DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
// // after reshape: the first dimension do not need padding,
// // set padding[0] zero
// reshaped_padding[0].first = reshaped_padding[0].second = 0;
// // the second dimension is the previous padding dimension
// reshaped_padding[1].first = paddings[pad_dim].first;
// reshaped_padding[1].second = paddings[pad_dim].second;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// } else if (pad_dim == 0) {
// // only first dimension need padding,
// // reshape the dimension of tensor in 2: [padding, succeeding]
// // similar to (D - 1)
// std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
// Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;
// // first dimension is the padding dimension
// in_tore_shape[0] = in_dims[pad_dim];
// out_tore_shape[0] = out_dims[pad_dim];
// // sencond dimension is the accumulate of succeeding dimension
// for (size_t i = pad_dim + 1; i < D; i++) {
// in_tore_shape[1] *= in_dims[i];
// out_tore_shape[1] *= out_dims[i];
// }
// // convert array from std::vector to DDim
// DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
// DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
// // after reshape:
// // the first dimension is the previous padding dimension
// reshaped_padding[0].first = paddings[pad_dim].first;
// reshaped_padding[0].second = paddings[pad_dim].second;
// // the second dimension do not need padding, set padding[1] zero
// reshaped_padding[1].first = reshaped_padding[1].second = 0;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// } else {
// // other dimension need padding
// // reshape the dimension of tensor in 3:
// // [preceding, padding, succeeding]
// std::vector<int64_t> in_tore_shape(3, 1), out_tore_shape(3, 1);
// Eigen::array<std::pair<int64_t, int64_t>, 3> reshaped_padding;
// // first dimension is the accumulate of preceding dimension
// for (int i = 0; i < pad_dim; i++) {
// in_tore_shape[0] *= in_dims[i];
// out_tore_shape[0] *= out_dims[i];
// }
// // second dimension is the padding dimension
// in_tore_shape[1] = in_dims[pad_dim];
// out_tore_shape[1] = out_dims[pad_dim];
// // third dimension is the accumulate of succeeding dimension
// for (size_t i = pad_dim + 1; i < D; i++) {
// in_tore_shape[2] *= in_dims[i];
// out_tore_shape[2] *= out_dims[i];
// }
// // convert array from std::vector to DDim
// DDim reshaped_in_dims = framework::make_ddim(in_tore_shape);
// DDim reshaped_out_dims = framework::make_ddim(out_tore_shape);
// // after reshape:
// // the first dimension do not need padding, set padding[0] zero
// reshaped_padding[0].first = reshaped_padding[2].second = 0;
// // the second dimension is the previous padding dimension
// reshaped_padding[1].first = paddings[pad_dim].first;
// reshaped_padding[1].second = paddings[pad_dim].second;
// // the third dimension do not need padding, set padding[2] zero
// reshaped_padding[2].first = reshaped_padding[2].second = 0;
// LaunchEigenPadding<T, Context, D>(context, d_input, reshaped_in_dims,
// d_out,
// reshaped_out_dims, reshaped_padding);
// }
// } else {
// // need padding at many dimension, cannot reduce dimension
// LaunchEigenPadding<T, Context, D>(context, d_input, in_dims, d_out,
// out_dims,
// paddings);
// }
// }
}
template
<
typename
T
,
typename
Context
,
size_t
D
>
void
SliceGradCompute
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
)
{
auto
*
d_out
=
&
out_grad
;
auto
*
d_input
=
input_grad
;
d_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_dims
=
d_out
->
dims
();
auto
in_dims
=
d_input
->
dims
();
auto
decrease_size
=
decrease_axis
.
size
();
if
(
decrease_size
>
0
)
{
if
(
decrease_size
==
static_cast
<
size_t
>
(
in_dims
.
size
()))
{
// all dims decrease
std
::
vector
<
int
>
origin_out_shape
(
decrease_size
,
1
);
out_dims
=
framework
::
make_ddim
(
std
::
vector
<
int
>
(
decrease_size
,
1
));
}
else
{
std
::
vector
<
int
>
origin_out_shape
(
out_dims
.
size
()
+
decrease_size
,
-
1
);
for
(
size_t
i
=
0
;
i
<
decrease_size
;
++
i
)
{
origin_out_shape
[
decrease_axis
[
i
]]
=
1
;
}
int
index
=
0
;
for
(
size_t
i
=
0
;
i
<
origin_out_shape
.
size
();
++
i
)
{
if
(
origin_out_shape
[
i
]
==
-
1
)
{
origin_out_shape
[
i
]
=
out_dims
[
index
];
++
index
;
}
}
out_dims
=
framework
::
make_ddim
(
origin_out_shape
);
}
}
auto
offsets
=
Eigen
::
array
<
int64_t
,
D
>
();
auto
extents
=
Eigen
::
array
<
int64_t
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
out_dims
[
i
];
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
int
axis
=
axes
[
i
];
int64_t
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
in_dims
[
axis
])
:
starts
[
i
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
offsets
[
axis
]
=
start
;
}
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
offsets
[
i
];
paddings
[
i
].
second
=
(
in_dims
[
i
]
-
out_dims
[
i
])
-
offsets
[
i
];
}
EigenPaddingCompute
<
T
,
Context
,
D
>
(
ctx
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
)
{
size_t
rank
=
out_grad
.
dims
().
size
();
switch
(
rank
)
{
case
1
:
SliceGradCompute
<
T
,
Context
,
1
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
case
2
:
SliceGradCompute
<
T
,
Context
,
2
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
case
3
:
SliceGradCompute
<
T
,
Context
,
3
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
case
4
:
SliceGradCompute
<
T
,
Context
,
4
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
case
5
:
SliceGradCompute
<
T
,
Context
,
5
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
case
6
:
SliceGradCompute
<
T
,
Context
,
6
>
(
ctx
,
out_grad
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
input_grad
);
break
;
default:
PADDLE_THROW
(
pten
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
}
// namespace pten
paddle/pten/kernels/impl/slice_kernel_impl.h
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/pten/kernels/funcs/eigen/common.h"
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
,
size_t
D
>
void
SliceCompute
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts_t
,
const
std
::
vector
<
int64_t
>&
ends_t
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
)
{
// Step 1: Get the accurate attribute value of starts and ends
std
::
vector
<
int64_t
>
starts
=
starts_t
;
std
::
vector
<
int64_t
>
ends
=
ends_t
;
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
pten
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
pten
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
// Step 2: Compute output
auto
in
=
&
input
;
auto
in_dims
=
in
->
dims
();
auto
out_dims
=
out
->
dims
();
auto
slice_dims
=
out_dims
;
// 2.1 Infer output dims
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
// when start == -1 && end == start+1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
in_dims
[
axes
[
i
]];
}
}
}
paddle
::
operators
::
CheckAndUpdateSliceAttrs
<
int64_t
>
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
paddle
::
operators
::
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
paddle
::
operators
::
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
// 2.2 Get output
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
auto
extents
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
slice_dims
[
i
];
}
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
offsets
[
axes
[
i
]]
=
starts
[
i
];
}
out
->
Resize
(
slice_dims
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_t
=
EigenTensor
<
T
,
D
>::
From
(
*
in
,
in_dims
);
auto
out_t
=
EigenTensor
<
T
,
D
>::
From
(
*
out
,
slice_dims
);
auto
&
eigen_place
=
*
ctx
.
eigen_device
();
if
(
in
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.slice:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
DSizes
<
int
,
D
>
offsets_32bit
,
extents_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
offsets_32bit
[
i
]
=
offsets
[
i
];
extents_32bit
[
i
]
=
extents
[
i
];
}
funcs
::
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
To32BitIndex
(
out_t
),
To32BitIndex
(
in_t
),
offsets_32bit
,
extents_32bit
);
}
else
{
funcs
::
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
out_t
,
in_t
,
offsets
,
extents
);
}
out
->
Resize
(
out_dims
);
}
template
<
typename
T
,
typename
Context
>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
)
{
int
rank
=
input
.
dims
().
size
();
switch
(
rank
)
{
case
1
:
SliceCompute
<
T
,
Context
,
1
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
case
2
:
SliceCompute
<
T
,
Context
,
2
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
case
3
:
SliceCompute
<
T
,
Context
,
3
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
case
4
:
SliceCompute
<
T
,
Context
,
4
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
case
5
:
SliceCompute
<
T
,
Context
,
5
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
case
6
:
SliceCompute
<
T
,
Context
,
6
>
(
ctx
,
input
,
axes
,
starts
,
ends
,
infer_flags
,
decrease_axis
,
out
);
break
;
default:
PADDLE_THROW
(
pten
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
}
// namespace pten
paddle/pten/kernels/slice_grad_kernel.h
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/pten/core/dense_tensor.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
);
}
// namespace pten
paddle/pten/kernels/slice_kernel.h
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/pten/core/dense_tensor.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
);
}
// namespace pten
paddle/pten/ops/compat/slice_sig.cc
0 → 100644
浏览文件 @
13f44099
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/core/compat/op_utils.h"
namespace
pten
{
KernelSignature
SliceOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
KernelSignature
SliceGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"slice_grad"
,
{
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
// namespace pten
PT_REGISTER_ARG_MAPPING_FN
(
slice
,
pten
::
SliceOpArgumentMapping
);
PT_REGISTER_ARG_MAPPING_FN
(
slice_grad
,
pten
::
SliceGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录