Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
13c99434
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
13c99434
编写于
3月 23, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
3月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi]Move log/log2/log10/log1p Kernels to Phi (#40785)
* move activation * fix bugs when run ce
上级
b03ef424
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
332 addition
and
265 deletion
+332
-265
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+9
-1
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+3
-9
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+5
-146
paddle/fluid/operators/activation_op.kps
paddle/fluid/operators/activation_op.kps
+4
-108
paddle/phi/kernels/activation_grad_kernel.h
paddle/phi/kernels/activation_grad_kernel.h
+12
-0
paddle/phi/kernels/activation_kernel.h
paddle/phi/kernels/activation_kernel.h
+4
-0
paddle/phi/kernels/cpu/activation_grad_kernel.cc
paddle/phi/kernels/cpu/activation_grad_kernel.cc
+9
-0
paddle/phi/kernels/cpu/activation_kernel.cc
paddle/phi/kernels/cpu/activation_kernel.cc
+8
-0
paddle/phi/kernels/funcs/activation_functor.h
paddle/phi/kernels/funcs/activation_functor.h
+220
-0
paddle/phi/kernels/gpu/activation_grad_kernel.cu
paddle/phi/kernels/gpu/activation_grad_kernel.cu
+15
-0
paddle/phi/kernels/gpu/activation_kernel.cu
paddle/phi/kernels/gpu/activation_kernel.cu
+9
-1
paddle/phi/kernels/impl/activation_grad_impl.h
paddle/phi/kernels/impl/activation_grad_impl.h
+18
-0
paddle/phi/ops/compat/activation_sig.cc
paddle/phi/ops/compat/activation_sig.cc
+16
-0
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
13c99434
...
...
@@ -1122,7 +1122,15 @@ static void CheckTensorNANOrInf(const std::string& op_type,
bool
OperatorWithKernel
::
SupportsMKLDNN
(
const
proto
::
VarType
::
Type
data_type
)
const
{
auto
&
op_kernels
=
OperatorWithKernel
::
AllOpKernels
().
at
(
type_
);
auto
op_kernel_iter
=
OperatorWithKernel
::
AllOpKernels
().
find
(
type_
);
if
(
op_kernel_iter
==
OperatorWithKernel
::
AllOpKernels
().
end
())
{
VLOG
(
6
)
<<
"Warning: "
<<
type_
<<
" don't find its MKLDNN Kernel in Fluid "
"Registered Kernels. And We don't "
"search its kernels in phi lib, "
"SupportsMKLDNN() return false."
;
return
false
;
}
auto
&
op_kernels
=
op_kernel_iter
->
second
;
return
std
::
any_of
(
op_kernels
.
begin
(),
op_kernels
.
end
(),
[
data_type
](
OpKernelMap
::
const_reference
kern_pair
)
{
return
platform
::
is_cpu_place
(
kern_pair
.
first
.
place_
)
&&
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
13c99434
...
...
@@ -1496,6 +1496,9 @@ REGISTER_ACTIVATION_OP(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,
HardSigmoidGradFunctor
);
REGISTER_ACTIVATION_OP
(
logsigmoid
,
LogSigmoid
,
LogSigmoidFunctor
,
LogSigmoidGradFunctor
);
REGISTER_ACTIVATION_OP
(
log2
,
Log2
,
Log2Functor
,
Log2GradFunctor
);
REGISTER_ACTIVATION_OP
(
log10
,
Log10
,
Log10Functor
,
Log10GradFunctor
);
REGISTER_ACTIVATION_OP
(
log1p
,
Log1p
,
Log1pFunctor
,
Log1pGradFunctor
);
/* ========================== sigmoid register =============================
*/
...
...
@@ -1867,15 +1870,6 @@ REGISTER_OPERATOR(
ops
::
ActivationOpDoubleGrad
<
ops
::
LogGradGradFunctor
<
float
>::
FwdDeps
()
>
,
ops
::
ActivationDoubleGradOpInplaceInferer
);
REGISTER_ACTIVATION_CPU_KERNEL
(
log
,
Log
,
LogFunctor
,
LogGradFunctor
);
REGISTER_OP_CPU_KERNEL
(
log_grad_grad
,
ops
::
LogDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
LogGradGradFunctor
<
float
>>
,
ops
::
LogDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
LogGradGradFunctor
<
double
>>
,
ops
::
LogDoubleGradKernel
<
plat
::
CPUDeviceContext
,
ops
::
LogGradGradFunctor
<
plat
::
float16
>>
);
/* ========================================================================== */
/* ========================== register checkpoint ===========================*/
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
13c99434
...
...
@@ -281,6 +281,11 @@ USE_PHI_DOUBLE_GRAD_FUNCTOR(Sigmoid)
USE_PHI_TRIPLE_GRAD_FUNCTOR
(
Sigmoid
)
USE_PHI_FUNCTOR
(
LogSigmoid
)
USE_PHI_FUNCTOR
(
HardSigmoid
)
USE_PHI_FUNCTOR
(
Log
)
USE_PHI_DOUBLE_GRAD_FUNCTOR
(
Log
)
USE_PHI_FUNCTOR
(
Log2
)
USE_PHI_FUNCTOR
(
Log10
)
USE_PHI_FUNCTOR
(
Log1p
)
template
<
typename
T
>
using
ELUGradNegativeAlphaFunctor
=
phi
::
funcs
::
ELUGradNegativeAlphaFunctor
<
T
>
;
...
...
@@ -448,88 +453,6 @@ struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
}
};
// log(x) = natural logarithm of x
template
<
typename
T
>
struct
LogFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
();
}
};
template
<
typename
T
>
struct
LogGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log2(x) = logarithm to the base 2 of the elements of x
template
<
typename
T
>
struct
Log2Functor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
()
/
static_cast
<
T
>
(
log
(
2
));
}
};
// the gradient of log2(x) is 1/(x*ln(2))
template
<
typename
T
>
struct
Log2GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
x
*
static_cast
<
T
>
(
log
(
2
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log10(x) = logarithm to the base 10 of the elements of x
template
<
typename
T
>
struct
Log10Functor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
()
/
static_cast
<
T
>
(
log
(
10
));
}
};
// the gradient of log10(x) is 1/(x*ln(10))
template
<
typename
T
>
struct
Log10GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
x
*
static_cast
<
T
>
(
log
(
10
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log1p(x) = natural logarithm of x+1
template
<
typename
T
>
struct
Log1pFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
x
).
log
();
}
};
template
<
typename
T
>
struct
Log1pGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
(
x
+
static_cast
<
T
>
(
1
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// square(x) = x^2
template
<
typename
T
>
struct
SquareFunctor
:
public
BaseActivationFunctor
<
T
>
{
...
...
@@ -1197,37 +1120,6 @@ class SquareDoubleGradKernel
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
LogDoubleGradKernel
:
public
SquareDoubleGradKernel
<
DeviceContext
,
Functor
>
{};
template
<
typename
DeviceContext
,
typename
Functor
>
class
ELUDoubleGradKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
Tensor
*
X
,
*
ddX
,
*
dOut
;
X
=
ddX
=
dOut
=
nullptr
;
framework
::
Tensor
*
dX
,
*
ddOut
;
dX
=
ddOut
=
nullptr
;
ExtractDoubleGradTensorWithInputDOut
(
ctx
,
&
X
,
&
ddX
,
&
dX
,
&
dOut
,
&
ddOut
);
if
(
dX
)
dX
->
mutable_data
<
T
>
(
X
->
dims
(),
ctx
.
GetPlace
());
if
(
ddOut
)
ddOut
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
place
=
ctx
.
template
device_context
<
DeviceContext
>();
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
ctx
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
place
,
X
,
ddX
,
ddOut
,
dOut
,
dX
);
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
CELUDoubleGradKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
...
...
@@ -1522,36 +1414,6 @@ class LogitGradKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
struct
LogGradGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
>
void
operator
()(
const
Device
&
dev
,
const
framework
::
Tensor
*
X
,
const
framework
::
Tensor
*
ddX
,
framework
::
Tensor
*
ddOut
,
const
framework
::
Tensor
*
dOut
,
framework
::
Tensor
*
dX
)
const
{
auto
*
d
=
dev
.
eigen_device
();
auto
ddx
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddX
,
"Input"
,
"DDX"
,
"LogGradGrad"
));
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
X
,
"Input"
,
"X"
,
"LogGradGrad"
));
// ddout = ddx / x; dx = -(dout / x) * (ddx / x)
// calculate dx first, so ddout can inplace ddx
if
(
dX
)
{
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dOut
,
"Output"
,
"DOut"
,
"LogGradGrad"
));
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dX
,
"Output"
,
"DX"
,
"LogGradGrad"
));
dx
.
device
(
*
d
)
=
dout
*
static_cast
<
T
>
(
-
1
)
*
ddx
/
(
x
*
x
);
}
if
(
ddOut
)
{
auto
ddout
=
framework
::
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddOut
,
"Output"
,
"DDOut"
,
"LogGradGrad"
));
ddout
.
device
(
*
d
)
=
ddx
*
static_cast
<
T
>
(
1
)
/
x
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -1560,9 +1422,6 @@ struct LogGradGradFunctor : public BaseActivationFunctor<T> {
__macro(floor, Floor, FloorFunctor, ZeroGradFunctor); \
__macro(round, Round, RoundFunctor, ZeroGradFunctor); \
__macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
__macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor); \
__macro(log2, Log2, Log2Functor, Log2GradFunctor); \
__macro(log10, Log10, Log10Functor, Log10GradFunctor); \
__macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor); \
__macro(stanh, STanh, STanhFunctor, STanhGradFunctor); \
__macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor); \
...
...
paddle/fluid/operators/activation_op.kps
浏览文件 @
13c99434
...
...
@@ -131,27 +131,6 @@ struct CudaExpm1GradFunctor : public BaseActivationFunctor<T> {
}
};
template <typename T>
struct CudaLogFunctor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
// log(x) = log(x)
__device__ __forceinline__ T operator()(const T arg_x) const {
MPType x = static_cast<MPType>(arg_x);
return static_cast<T>(log(x));
}
};
template <typename T>
struct CudaLogGradFunctor : public BaseActivationFunctor<T> {
// dx = dout / x
__device__ __forceinline__ T operator()(const T dout, const T x) const {
return dout / x;
}
static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
};
template <typename T>
struct CudaSquareFunctor : public BaseActivationFunctor<T> {
// square(x) = x * x
...
...
@@ -220,78 +199,6 @@ struct CudaRsqrtGradFunctor : public BaseActivationFunctor<T> {
}
};
template <typename T>
struct CudaLog1pFunctor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
MPType one = static_cast<MPType>(1.0f);
// log1p(x) = log(1 + x)
__device__ __forceinline__ T operator()(const T arg_x) const {
MPType x = static_cast<MPType>(arg_x);
return static_cast<T>(log(one + x));
}
};
template <typename T>
struct CudaLog1pGradFunctor : public BaseActivationFunctor<T> {
T one = static_cast<T>(1.0f);
// dx = dout / (1 + x)
__device__ __forceinline__ T operator()(const T dout, const T x) const {
return dout / (one + x);
}
static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
};
template <typename T>
struct CudaLog2Functor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
// log2(x) = log2(x)
__device__ __forceinline__ T operator()(const T arg_x) const {
MPType x = static_cast<MPType>(arg_x);
return static_cast<T>(log2(x));
}
};
template <typename T>
struct CudaLog2GradFunctor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
T log_two = static_cast<T>(log(static_cast<MPType>(2.0f)));
// dx = dout / (x * log(2))
__device__ __forceinline__ T operator()(const T dout, const T x) const {
return dout / (x * log_two);
}
static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
};
template <typename T>
struct CudaLog10Functor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
// log10(x) = log10(x)
__device__ __forceinline__ T operator()(const T arg_x) const {
MPType x = static_cast<MPType>(arg_x);
return static_cast<T>(log10(x));
}
};
template <typename T>
struct CudaLog10GradFunctor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
T log_ten = static_cast<T>(log(static_cast<MPType>(10.0f)));
// dx = dout / (x * log(10))
__device__ __forceinline__ T operator()(const T dout, const T x) const {
return dout / (x * log_ten);
}
static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
};
template <typename T>
struct CudaSoftReluFunctor : public BaseActivationFunctor<T> {
using MPType = typename details::MPTypeTrait<T>::Type;
...
...
@@ -773,6 +680,10 @@ USE_PHI_FUNCTOR(CudaELU)
USE_PHI_FUNCTOR(CudaSigmoid)
USE_PHI_FUNCTOR(CudaLogSigmoid)
USE_PHI_FUNCTOR(CudaHardSigmoid)
USE_PHI_FUNCTOR(CudaLog)
USE_PHI_FUNCTOR(CudaLog2)
USE_PHI_FUNCTOR(CudaLog10)
USE_PHI_FUNCTOR(CudaLog1p)
template <typename T>
using CudaELUGradNegativeAlphaFunctor =
...
...
@@ -975,18 +886,6 @@ REGISTER_OP_CUDA_KERNEL(
ops::CudaExpm1GradFunctor<plat::float16>>);
/* ========================================================================== */
/* ========================== Log register ==================================*/
REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
REGISTER_OP_CUDA_KERNEL(
log_grad_grad, ops::LogDoubleGradKernel<plat::CUDADeviceContext,
ops::LogGradGradFunctor<float>>,
ops::LogDoubleGradKernel<plat::CUDADeviceContext,
ops::LogGradGradFunctor<double>>,
ops::LogDoubleGradKernel<plat::CUDADeviceContext,
ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */
#define FOR_EACH_ACTIVATION_CUDA_OP(__macro) \
__macro(softshrink, SoftShrink, CudaSoftShrinkFunctor, \
CudaSoftShrinkGradFunctor); \
...
...
@@ -995,9 +894,6 @@ REGISTER_OP_CUDA_KERNEL(
__macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor); \
__macro(reciprocal, Reciprocal, CudaReciprocalFunctor, \
CudaReciprocalGradFunctor); \
__macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor); \
__macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor); \
__macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor); \
__macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \
__macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor); \
__macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor); \
...
...
paddle/phi/kernels/activation_grad_kernel.h
浏览文件 @
13c99434
...
...
@@ -135,6 +135,14 @@ void SigmoidTripleGradKernel(const Context& dev_ctx,
DenseTensor
*
d_dout
,
DenseTensor
*
d_ddx
);
template
<
typename
T
,
typename
Context
>
void
LogDoubleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
dout
,
const
DenseTensor
&
ddx
,
DenseTensor
*
dx
,
DenseTensor
*
ddout
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Cos
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Tan
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Acos
);
...
...
@@ -149,6 +157,10 @@ DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Atanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
TanhShrink
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Silu
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
LogSigmoid
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log2
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log10
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log1p
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Relu
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Tanh
);
...
...
paddle/phi/kernels/activation_kernel.h
浏览文件 @
13c99434
...
...
@@ -56,6 +56,10 @@ DECLARE_ACTIVATION_KERNEL(TanhShrink)
DECLARE_ACTIVATION_KERNEL
(
Silu
)
DECLARE_ACTIVATION_KERNEL
(
Sigmoid
)
DECLARE_ACTIVATION_KERNEL
(
LogSigmoid
)
DECLARE_ACTIVATION_KERNEL
(
Log
)
DECLARE_ACTIVATION_KERNEL
(
Log2
)
DECLARE_ACTIVATION_KERNEL
(
Log10
)
DECLARE_ACTIVATION_KERNEL
(
Log1p
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
LeakyRelu
,
alpha
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
ThresholdedRelu
,
threshold
)
...
...
paddle/phi/kernels/cpu/activation_grad_kernel.cc
浏览文件 @
13c99434
...
...
@@ -121,6 +121,10 @@ DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, AtanhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
TanhShrink
,
TanhShrinkGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Silu
,
SiluGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
LogSigmoid
,
LogSigmoidGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log
,
LogGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log2
,
Log2GradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log10
,
Log10GradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log1p
,
Log1pGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Relu
,
ReluGradFunctor
);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Tanh
,
TanhGradFunctor
);
...
...
@@ -233,3 +237,8 @@ PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_double_grad, SigmoidDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
sigmoid_triple_grad
,
SigmoidTripleGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
hard_sigmoid_grad
,
HardSigmoidGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
logsigmoid_grad
,
LogSigmoidGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log_grad
,
LogGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log2_grad
,
Log2GradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log10_grad
,
Log10GradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log1p_grad
,
Log1pGradKernel
)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL
(
log_double_grad
,
LogDoubleGradKernel
)
paddle/phi/kernels/cpu/activation_kernel.cc
浏览文件 @
13c99434
...
...
@@ -74,6 +74,10 @@ DEFINE_CPU_ACTIVATION_KERNEL(TanhShrink, TanhShrinkFunctor)
DEFINE_CPU_ACTIVATION_KERNEL
(
Silu
,
SiluFunctor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
Sigmoid
,
SigmoidFunctor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
LogSigmoid
,
LogSigmoidFunctor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
Log
,
LogFunctor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
Log2
,
Log2Functor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
Log10
,
Log10Functor
)
DEFINE_CPU_ACTIVATION_KERNEL
(
Log1p
,
Log1pFunctor
)
DEFINE_CPU_ACT_KERNEL_WITH_ONE_ATTRS
(
LeakyRelu
,
LeakyReluFunctor
,
alpha
)
DEFINE_CPU_ACT_KERNEL_WITH_ONE_ATTRS
(
ThresholdedRelu
,
...
...
@@ -118,3 +122,7 @@ PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
PD_REGISTER_ACTIVATION_KERNEL
(
sigmoid
,
SigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
logsigmoid
,
LogSigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
hard_sigmoid
,
HardSigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log
,
LogKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log2
,
Log2Kernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log10
,
Log10Kernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log1p
,
Log1pKernel
)
paddle/phi/kernels/funcs/activation_functor.h
浏览文件 @
13c99434
...
...
@@ -1223,6 +1223,133 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
}
};
// log(x) = natural logarithm of x
template
<
typename
T
>
struct
LogFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
();
}
};
template
<
typename
T
>
struct
LogGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log2(x) = logarithm to the base 2 of the elements of x
template
<
typename
T
>
struct
Log2Functor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
()
/
static_cast
<
T
>
(
log
(
2
));
}
};
// the gradient of log2(x) is 1/(x*ln(2))
template
<
typename
T
>
struct
Log2GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
x
*
static_cast
<
T
>
(
log
(
2
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log10(x) = logarithm to the base 10 of the elements of x
template
<
typename
T
>
struct
Log10Functor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
()
/
static_cast
<
T
>
(
log
(
10
));
}
};
// the gradient of log10(x) is 1/(x*ln(10))
template
<
typename
T
>
struct
Log10GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
x
*
static_cast
<
T
>
(
log
(
10
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
// log1p(x) = natural logarithm of x+1
template
<
typename
T
>
struct
Log1pFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
x
).
log
();
}
};
template
<
typename
T
>
struct
Log1pGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
(
x
+
static_cast
<
T
>
(
1
)));
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
template
<
typename
T
>
struct
LogGradGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
>
void
operator
()(
const
Device
&
dev
,
const
DenseTensor
*
X
,
const
DenseTensor
*
ddX
,
DenseTensor
*
ddOut
,
const
DenseTensor
*
dOut
,
DenseTensor
*
dX
)
const
{
auto
*
d
=
dev
.
eigen_device
();
auto
ddx
=
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddX
,
"Input"
,
"DDX"
,
"LogGradGrad"
));
auto
x
=
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
X
,
"Input"
,
"X"
,
"LogGradGrad"
));
// ddout = ddx / x; dx = -(dout / x) * (ddx / x)
// calculate dx first, so ddout can inplace ddx
if
(
dX
)
{
auto
dout
=
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dOut
,
"Output"
,
"DOut"
,
"LogGradGrad"
));
auto
dx
=
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
dX
,
"Output"
,
"DX"
,
"LogGradGrad"
));
dx
.
device
(
*
d
)
=
dout
*
static_cast
<
T
>
(
-
1
)
*
ddx
/
(
x
*
x
);
}
if
(
ddOut
)
{
auto
ddout
=
EigenVector
<
T
>::
Flatten
(
GET_DATA_SAFELY
(
ddOut
,
"Output"
,
"DDOut"
,
"LogGradGrad"
));
ddout
.
device
(
*
d
)
=
ddx
*
static_cast
<
T
>
(
1
)
/
x
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
template
<
typename
T
>
struct
CudaReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
...
...
@@ -1970,6 +2097,99 @@ struct CudaHardSigmoidGradFunctor : public BaseActivationFunctor<T> {
}
};
template
<
typename
T
>
struct
CudaLogFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
// log(x) = log(x)
__device__
__forceinline__
T
operator
()(
const
T
arg_x
)
const
{
MPType
x
=
static_cast
<
MPType
>
(
arg_x
);
return
static_cast
<
T
>
(
log
(
x
));
}
};
template
<
typename
T
>
struct
CudaLogGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
// dx = dout / x
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
T
x
)
const
{
return
dout
/
x
;
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
template
<
typename
T
>
struct
CudaLog1pFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
MPType
one
=
static_cast
<
MPType
>
(
1.0
f
);
// log1p(x) = log(1 + x)
__device__
__forceinline__
T
operator
()(
const
T
arg_x
)
const
{
MPType
x
=
static_cast
<
MPType
>
(
arg_x
);
return
static_cast
<
T
>
(
log
(
one
+
x
));
}
};
template
<
typename
T
>
struct
CudaLog1pGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
T
one
=
static_cast
<
T
>
(
1.0
f
);
// dx = dout / (1 + x)
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
T
x
)
const
{
return
dout
/
(
one
+
x
);
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
template
<
typename
T
>
struct
CudaLog2Functor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
// log2(x) = log2(x)
__device__
__forceinline__
T
operator
()(
const
T
arg_x
)
const
{
MPType
x
=
static_cast
<
MPType
>
(
arg_x
);
return
static_cast
<
T
>
(
log2
(
x
));
}
};
template
<
typename
T
>
struct
CudaLog2GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
T
log_two
=
static_cast
<
T
>
(
log
(
static_cast
<
MPType
>
(
2.0
f
)));
// dx = dout / (x * log(2))
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
T
x
)
const
{
return
dout
/
(
x
*
log_two
);
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
template
<
typename
T
>
struct
CudaLog10Functor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
// log10(x) = log10(x)
__device__
__forceinline__
T
operator
()(
const
T
arg_x
)
const
{
MPType
x
=
static_cast
<
MPType
>
(
arg_x
);
return
static_cast
<
T
>
(
log10
(
x
));
}
};
template
<
typename
T
>
struct
CudaLog10GradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
MPType
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
T
log_ten
=
static_cast
<
T
>
(
log
(
static_cast
<
MPType
>
(
10.0
f
)));
// dx = dout / (x * log(10))
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
T
x
)
const
{
return
dout
/
(
x
*
log_ten
);
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
ActBwdOpFwdDeps
::
kDepX
;
}
};
#endif
}
// namespace funcs
...
...
paddle/phi/kernels/gpu/activation_grad_kernel.cu
浏览文件 @
13c99434
...
...
@@ -177,6 +177,10 @@ DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, CudaAtanhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
TanhShrink
,
CudaTanhShrinkGradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Silu
,
CudaSiluGradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
LogSigmoid
,
CudaLogSigmoidGradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log
,
CudaLogGradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log2
,
CudaLog2GradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log10
,
CudaLog10GradFunctor
);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX
(
Log1p
,
CudaLog1pGradFunctor
);
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
LeakyRelu
,
CudaLeakyReluGradFunctor
,
...
...
@@ -300,3 +304,14 @@ PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_double_grad, SigmoidDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
sigmoid_triple_grad
,
SigmoidTripleGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
hard_sigmoid_grad
,
HardSigmoidGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
logsigmoid_grad
,
LogSigmoidGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log_grad
,
LogGradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log2_grad
,
Log2GradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log10_grad
,
Log10GradKernel
)
PD_REGISTER_ACTIVATION_GRAD_KERNEL
(
log1p_grad
,
Log1pGradKernel
)
PD_REGISTER_KERNEL
(
log_double_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
LogDoubleGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/activation_kernel.cu
浏览文件 @
13c99434
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/impl/activation_
grad_
impl.h"
#include "paddle/phi/kernels/impl/activation_impl.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
...
...
@@ -93,6 +93,10 @@ DEFINE_GPU_ACTIVATION_KERNEL(TanhShrink, CudaTanhShrinkFunctor)
DEFINE_GPU_ACTIVATION_KERNEL
(
Silu
,
CudaSiluFunctor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
Sigmoid
,
CudaSigmoidFunctor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
LogSigmoid
,
CudaLogSigmoidFunctor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
Log
,
CudaLogFunctor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
Log2
,
CudaLog2Functor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
Log10
,
CudaLog10Functor
)
DEFINE_GPU_ACTIVATION_KERNEL
(
Log1p
,
CudaLog1pFunctor
)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS
(
LeakyRelu
,
CudaLeakyReluFunctor
,
alpha
)
DEFINE_GPU_ACT_KERNEL_WITH_ONE_ATTRS
(
ThresholdedRelu
,
...
...
@@ -164,3 +168,7 @@ PD_REGISTER_ACTIVATION_KERNEL(silu, SiluKernel)
PD_REGISTER_ACTIVATION_KERNEL
(
sigmoid
,
SigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
logsigmoid
,
LogSigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
hard_sigmoid
,
HardSigmoidKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log
,
LogKernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log2
,
Log2Kernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log10
,
Log10Kernel
)
PD_REGISTER_ACTIVATION_KERNEL
(
log1p
,
Log1pKernel
)
paddle/phi/kernels/impl/activation_grad_impl.h
浏览文件 @
13c99434
...
...
@@ -275,4 +275,22 @@ void SigmoidTripleGradKernel(const Context& dev_ctx,
d_ddx
);
}
template
<
typename
T
,
typename
Context
>
void
LogDoubleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
dout
,
const
DenseTensor
&
ddx
,
DenseTensor
*
dx
,
DenseTensor
*
ddout
)
{
if
(
dx
)
{
dx
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dx
);
}
if
(
ddout
)
{
dev_ctx
.
template
Alloc
<
T
>(
ddout
);
}
funcs
::
LogGradGradFunctor
<
T
>
functor
;
functor
(
dev_ctx
,
&
x
,
&
ddx
,
ddout
,
&
dout
,
dx
);
}
}
// namespace phi
paddle/phi/ops/compat/activation_sig.cc
浏览文件 @
13c99434
...
...
@@ -57,6 +57,10 @@ DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(HardShrink, "hard_shrink", "threshold");
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
TanhShrink
,
"tanh_shrink"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
Silu
,
"silu"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
LogSigmoid
,
"logsigmoid"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
Log
,
"log"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
Log2
,
"log2"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
Log10
,
"log10"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPX_OP_ARGMAP
(
Log1p
,
"log1p"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP
(
Relu
,
"relu"
,
);
// NOLINT
DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP
(
Tanh
,
"tanh"
,
);
// NOLINT
...
...
@@ -125,6 +129,12 @@ KernelSignature EluDoubleGradOpArgumentMapping(
"elu_double_grad"
,
{
"X"
,
"DOut"
,
"DDX"
},
{
"alpha"
},
{
"DX"
,
"DDOut"
});
}
KernelSignature
LogDoubleGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"log_double_grad"
,
{
"X"
,
"DOut"
,
"DDX"
},
{},
{
"DX"
,
"DDOut"
});
}
}
// namespace phi
PD_REGISTER_BASE_KERNEL_NAME
(
relu_grad_grad
,
relu_double_grad
);
...
...
@@ -134,6 +144,7 @@ PD_REGISTER_BASE_KERNEL_NAME(softshrink, soft_shrink);
PD_REGISTER_BASE_KERNEL_NAME
(
softshrink_grad
,
soft_shrink_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elu_grad_grad
,
elu_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
sigmoid_grad_grad
,
sigmoid_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
log_grad_grad
,
log_double_grad
);
PD_REGISTER_ARG_MAPPING_FN
(
cos_grad
,
phi
::
CosGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
tan_grad
,
phi
::
TanGradOpArgumentMapping
);
...
...
@@ -181,3 +192,8 @@ PD_REGISTER_ARG_MAPPING_FN(logsigmoid_grad,
phi
::
LogSigmoidGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
hard_sigmoid_grad
,
phi
::
HardSigmoidGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
log_grad
,
phi
::
LogGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
log_grad_grad
,
phi
::
LogDoubleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
log2_grad
,
phi
::
Log2GradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
log10_grad
,
phi
::
Log10GradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
log1p_grad
,
phi
::
Log1pGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录