Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
12d43da9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
12d43da9
编写于
3月 15, 2023
作者:
U
umiswing
提交者:
GitHub
3月 15, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Auto tune for cutlass (#50809)
上级
be9515f2
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
908 addition
and
842 deletion
+908
-842
cmake/external/cutlass.cmake
cmake/external/cutlass.cmake
+5
-3
paddle/phi/kernels/autotune/auto_tune_base.h
paddle/phi/kernels/autotune/auto_tune_base.h
+79
-0
paddle/phi/kernels/autotune/cache.h
paddle/phi/kernels/autotune/cache.h
+21
-5
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
+18
-14
paddle/phi/kernels/sparse/gpu/cutlass_generator/common.h
paddle/phi/kernels/sparse/gpu/cutlass_generator/common.h
+103
-0
paddle/phi/kernels/sparse/gpu/cutlass_generator/gather_gemm_scatter_generator.py
...se/gpu/cutlass_generator/gather_gemm_scatter_generator.py
+552
-0
paddle/phi/kernels/sparse/gpu/cutlass_generator/gather_gemm_scatter_manifest.py
...rse/gpu/cutlass_generator/gather_gemm_scatter_manifest.py
+56
-3
paddle/phi/kernels/sparse/gpu/cutlass_generator/gather_gemm_scatter_operation.py
...se/gpu/cutlass_generator/gather_gemm_scatter_operation.py
+14
-10
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
+0
-194
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
+60
-613
未找到文件。
cmake/external/cutlass.cmake
浏览文件 @
12d43da9
...
...
@@ -39,12 +39,14 @@ ExternalProject_Add(
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_COMMAND
rm -rf
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass_generator/build &&
mkdir -p
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/build/generated/gemm
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass
_generator
/build/generated/gemm
&&
${
PYTHON_EXECUTABLE
}
-B
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass
_generator
/gather_gemm_scatter_generator.py
"
${
THIRD_PARTY_PATH
}
/cutlass/src/extern_cutlass/tools/library/scripts/"
"
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/build"
"
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass
_generator
/build"
"
${
CMAKE_CUDA_COMPILER_VERSION
}
"
INSTALL_COMMAND
""
TEST_COMMAND
""
)
...
...
paddle/phi/kernels/autotune/auto_tune_base.h
浏览文件 @
12d43da9
...
...
@@ -177,6 +177,85 @@ class MatmulAutoTuner
}
};
template
<
typename
T
,
typename
ReturnType
,
typename
...
Args
>
class
GatherGemmScatterAutoTuner
:
public
AutoTuneBase
<
T
,
KernelCallback
<
T
,
ReturnType
,
T
,
T
,
Args
...
>>
{
public:
static
GatherGemmScatterAutoTuner
<
T
,
ReturnType
,
Args
...
>*
Instance
(
ReturnType
(
*
func
)(
T
,
T
,
Args
...))
{
static
std
::
once_flag
gather_gemm_scatter_init_flag
;
static
std
::
unique_ptr
<
GatherGemmScatterAutoTuner
<
T
,
ReturnType
,
Args
...
>>
instance
;
std
::
call_once
(
gather_gemm_scatter_init_flag
,
[
&
]
{
auto
obj
=
MakeCallback
<
T
>
(
func
);
instance
.
reset
(
new
GatherGemmScatterAutoTuner
<
T
,
ReturnType
,
Args
...
>
);
instance
->
AddCallBack
(
func
);
});
return
instance
.
get
();
}
void
Run
(
const
phi
::
GPUContext
&
ctx
,
const
size_t
key
,
T
const
alpha
,
T
const
beta
,
Args
...
args
)
{
this
->
is_init_
=
true
;
this
->
CheckKernelSize
();
auto
&
cache
=
AutoTuneCache
::
Instance
().
GetGatherGemmScatter
<
T
>
();
if
(
cache
.
Find
(
key
))
{
auto
best_idx
=
cache
.
Get
(
key
);
this
->
kernels_
[
best_idx
].
Run
(
alpha
,
beta
,
args
...);
}
else
{
// Set alpha to 0 and beta to 1 to avoid changing the value of d when
// picking the best kernel
auto
best_idx
=
PickBestKernel
(
ctx
,
static_cast
<
T
>
(
0
),
static_cast
<
T
>
(
1
),
args
...);
cache
.
Set
(
key
,
best_idx
);
this
->
kernels_
[
best_idx
].
Run
(
alpha
,
beta
,
args
...);
}
}
protected:
size_t
PickBestKernel
(
const
phi
::
GPUContext
&
ctx
,
const
T
&
alpha
,
const
T
&
beta
,
Args
&
...
args
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
this
->
mutex_
);
constexpr
size_t
NO_KERNEL_WORKS
=
-
1
;
size_t
best_idx
=
NO_KERNEL_WORKS
;
float
min_time
=
std
::
numeric_limits
<
float
>::
max
();
// Time cost test estabulished in default stream.
for
(
int
i
=
0
;
i
<
this
->
kernels_
.
size
();
++
i
)
{
float
time
=
0
;
// Some kernels may require more shared memory than available, skip these
// kernels.
try
{
time
=
this
->
RunAndMeasureKernel
(
ctx
,
i
,
alpha
,
beta
,
args
...);
if
(
time
<
min_time
)
{
min_time
=
time
;
best_idx
=
i
;
}
}
catch
(
const
std
::
runtime_error
&
error
)
{
VLOG
(
3
)
<<
"the kernels_["
<<
i
<<
"] get error:"
<<
error
.
what
();
}
}
if
(
best_idx
==
NO_KERNEL_WORKS
)
{
LOG
(
ERROR
)
<<
"No kernel works!
\n
"
;
exit
(
-
1
);
}
VLOG
(
3
)
<<
"best kernel idx is "
<<
best_idx
;
return
best_idx
;
}
};
template
<
typename
T
,
typename
ReturnType
,
typename
...
Args
>
static
GatherGemmScatterAutoTuner
<
T
,
ReturnType
,
Args
...
>*
MakeGatherGemmScatterTuner
(
ReturnType
(
*
func
)(
T
,
T
,
Args
...))
{
return
GatherGemmScatterAutoTuner
<
T
,
ReturnType
,
Args
...
>::
Instance
(
func
);
}
// Define the auto_tuner inital object.
#define DEFINE_AUTOTUNER_COMMON_OBJ(name) \
template <typename T, typename ReturnType, typename... Args> \
...
...
paddle/phi/kernels/autotune/cache.h
浏览文件 @
12d43da9
...
...
@@ -45,13 +45,15 @@ enum class AlgorithmType {
kConvBackwardFilter
=
3
,
kTranspose
=
4
,
kMatmul
=
5
,
kGatherGemmScatterFP16NN
=
6
,
kGatherGemmScatterFP32NN
=
7
,
#if !defined(PADDLE_WITH_CUDNN_FRONTEND)
kAlgorithmCount
=
6
kAlgorithmCount
=
8
#else
kConvForwardV8
=
6
,
kConvBackwardDataV8
=
7
,
kConvBackwardFilterV8
=
8
,
kAlgorithmCount
=
9
kConvForwardV8
=
8
,
kConvBackwardDataV8
=
9
,
kConvBackwardFilterV8
=
10
,
kAlgorithmCount
=
11
#endif
};
...
...
@@ -88,6 +90,20 @@ class AutoTuneCache {
return
conv_auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
}
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
T
,
float
>::
value
,
AlgorithmsCacheMap
&>::
type
GetGatherGemmScatter
()
{
return
Get
(
AlgorithmType
::
kGatherGemmScatterFP32NN
);
}
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
,
AlgorithmsCacheMap
&>::
type
GetGatherGemmScatter
()
{
return
Get
(
AlgorithmType
::
kGatherGemmScatterFP16NN
);
}
#ifdef PADDLE_WITH_CUDNN_FRONTEND
CudnnFrontendPlanCache
&
GetConvV8
(
const
AlgorithmType
&
algo_type
)
{
return
cudnn_v8_auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
...
...
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
浏览文件 @
12d43da9
...
...
@@ -125,12 +125,16 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
#ifdef PADDLE_WITH_CUTLASS
bool
cutlass
=
true
;
if
(
dev_ctx
.
GetComputeCapability
()
<
75
)
cutlass
=
false
;
if
(
in_channels
%
4
!=
0
||
out_channels
%
4
!=
0
)
{
if
(
dev_ctx
.
GetComputeCapability
()
<
80
)
cutlass
=
false
;
if
(
in_channels
%
8
!=
0
||
out_channels
%
8
!=
0
)
{
if
(
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
)
cutlass
=
false
;
}
if
(
in_channels
%
4
!=
0
||
out_channels
%
4
!=
0
)
{
if
(
std
::
is_same
<
T
,
float
>::
value
)
cutlass
=
false
;
}
if
(
std
::
is_same
<
T
,
double
>::
value
)
cutlass
=
false
;
if
(
!
std
::
is_same
<
IntT
,
int32_t
>::
value
)
cutlass
=
false
;
if
(
cutlass
)
{
auto
*
out_values
=
out
->
mutable_non_zero_elements
();
T
*
out_values_ptr
=
out_values
->
data
<
T
>
();
...
...
@@ -150,18 +154,18 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
const
IntT
*
gather_indices
=
rulebook_ptr
+
h_offsets_ptr
[
i
];
const
IntT
*
scatter_indices
=
rulebook_ptr
+
rulebook_len
+
h_offsets_ptr
[
i
];
dispatchKernel
(
dev_ctx
,
x
.
non_zero_elements
().
data
<
T
>
(),
tmp_kernel_ptr
,
out_values_ptr
,
out_values_ptr
,
M
,
N
,
K
,
gather_indices
,
scatter_indices
,
cutlass
,
x
.
dtype
(
));
GatherGemmScatterDriver
(
dev_ctx
,
x
.
non_zero_elements
().
data
<
T
>
(),
tmp_kernel_ptr
,
out_values_ptr
,
out_values_ptr
,
M
,
N
,
K
,
gather_indices
,
scatter_indices
,
static_cast
<
T
>
(
1.0
)
,
static_cast
<
T
>
(
1.0
));
}
}
else
{
#endif
...
...
paddle/phi/kernels/sparse/gpu/cutlass_generator/common.h
0 → 100644
浏览文件 @
12d43da9
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_CUTLASS
#include "cutlass/arch/mma.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/half.h"
#include "cutlass/util/device_memory.h"
#include "examples/common/helper.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
namespace
phi
{
namespace
sparse
{
#define TYPEDEF_KERNEL_POINTER(kernel, dtype) \
typedef void (*kernel)(dtype const alpha, \
dtype const beta, \
const GPUContext& dev_ctx, \
const dtype* const a, \
const dtype* const b, \
const dtype* const c, \
dtype* const d, \
const int m, \
const int n, \
const int k, \
const int32_t* a_indices, \
const int32_t* c_d_indices);
#define GATHER_GEMM_SCATTER_CHECK(status) \
{ \
cutlass::Status error = status; \
if (error != cutlass::Status::kSuccess) { \
throw std::runtime_error(cutlassGetStatusString(error)); \
} \
}
#define DEFINE_LAUNCH_KERNEL(dtype, cutlass_type) \
template <typename Gemm> \
void launchKernel(dtype const alpha, \
dtype const beta, \
const GPUContext& dev_ctx, \
const dtype* const a, \
const dtype* const b, \
const dtype* const c, \
dtype* const d, \
const int m, \
const int n, \
const int k, \
const int32_t* a_indices, \
const int32_t* c_d_indices) { \
cutlass::gemm::GemmCoord problem_size_real({m, n, k}); \
int split_k_slices = 1; \
typename Gemm::Arguments arguments{ \
cutlass::gemm::GemmUniversalMode::kGemm, \
problem_size_real, \
split_k_slices, \
{static_cast<const cutlass_type>(static_cast<const float>(alpha)), \
static_cast<const cutlass_type>(static_cast<const float>(beta))}, \
reinterpret_cast<const cutlass_type* const>(a), \
reinterpret_cast<const cutlass_type* const>(b), \
reinterpret_cast<const cutlass_type* const>(c), \
reinterpret_cast<cutlass_type* const>(d), \
cutlass::layout::RowMajor().capacity(problem_size_real.mk()), \
cutlass::layout::RowMajor().capacity(problem_size_real.kn()), \
cutlass::layout::RowMajor().capacity(problem_size_real.mn()), \
cutlass::layout::RowMajor().capacity(problem_size_real.mn()), \
problem_size_real.k(), \
problem_size_real.n(), \
problem_size_real.n(), \
problem_size_real.n(), \
a_indices, \
nullptr, \
c_d_indices}; \
size_t workspace_size = Gemm::get_workspace_size(arguments); \
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); \
Gemm gemm_op; \
cutlass::Status status = gemm_op.can_implement(arguments); \
GATHER_GEMM_SCATTER_CHECK(status); \
status = gemm_op.initialize(arguments, workspace.get()); \
GATHER_GEMM_SCATTER_CHECK(status); \
gemm_op(dev_ctx.stream()); \
}
TYPEDEF_KERNEL_POINTER
(
fp16_gather_gemm_scatter
,
phi
::
dtype
::
float16
)
TYPEDEF_KERNEL_POINTER
(
fp32_gather_gemm_scatter
,
float
)
DEFINE_LAUNCH_KERNEL
(
phi
::
dtype
::
float16
,
cutlass
::
half_t
)
DEFINE_LAUNCH_KERNEL
(
float
,
float
)
}
// namespace sparse
}
// namespace phi
#endif
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
→
paddle/phi/kernels/sparse/gpu/cutlass
_generator
/gather_gemm_scatter_generator.py
浏览文件 @
12d43da9
...
...
@@ -41,7 +41,6 @@ def CreateGatherGemmScatterOperator(
layouts
,
tile_descriptions
,
data_type
,
alignment_constraints
,
complex_transforms
=
None
,
epilogue_functor
=
EpilogueFunctor
.
LinearCombination
,
swizzling_functor
=
SwizzlingFunctor
.
Identity8
,
...
...
@@ -55,12 +54,15 @@ def CreateGatherGemmScatterOperator(
element_a
,
element_b
,
element_c
,
element_epilogue
=
data_type
operations
=
[]
alignment_constraints
=
[
0
]
if
'f16'
==
element_a
.
name
or
'bf16'
==
element_a
.
name
:
alignment_constraints
=
[
8
]
elif
'f32'
==
element_a
.
name
or
'tf32'
==
element_a
.
name
:
alignment_constraints
=
[
4
]
elif
'f64'
==
element_a
.
name
:
alignment_constraints
=
[
1
]
# by default, only generate the largest tile and largest alignment
# if manifest.kernel_filter == '':
# tile_descriptions = [tile_descriptions[0],]
# alignment_constraints = [alignment_constraints[0],]
operations
=
[]
for
layout
in
layouts
:
for
tile_description
in
tile_descriptions
:
...
...
@@ -95,9 +97,9 @@ def CreateGatherGemmScatterOperator(
return
operations
def
GenerateSM
70_TensorOp_884
(
manifest
,
cuda_version
):
def
GenerateSM
80_TensorOp_16816
(
manifest
,
cuda_version
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
1
0
,
1
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
1
1
,
0
):
return
layouts
=
[
...
...
@@ -106,15 +108,7 @@ def GenerateSM70_TensorOp_884(manifest, cuda_version):
math_instructions
=
[
MathInstruction
(
[
8
,
8
,
4
],
DataType
.
f16
,
DataType
.
f16
,
DataType
.
f32
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add
,
),
MathInstruction
(
[
8
,
8
,
4
],
[
16
,
8
,
16
],
DataType
.
f16
,
DataType
.
f16
,
DataType
.
f16
,
...
...
@@ -123,36 +117,78 @@ def GenerateSM70_TensorOp_884(manifest, cuda_version):
),
]
min_cc
=
7
0
max_cc
=
75
min_cc
=
8
0
max_cc
=
1024
alignment_constraints
=
[
8
,
4
,
2
,
1
]
alignment_constraints
=
[
8
]
for
math_inst
in
math_instructions
:
tile_descriptions
=
[
TileDescription
(
[
256
,
128
,
32
],
2
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
[
256
,
128
,
32
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
32
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
3
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
10
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
32
],
2
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
[
256
,
128
,
64
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
[
128
,
256
,
64
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
2
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
[
256
,
64
,
64
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
2
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
[
64
,
256
,
64
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
[
128
,
128
,
64
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
[
256
,
64
,
64
],
3
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
[
64
,
256
,
64
],
3
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
64
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
64
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
64
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
64
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
]
...
...
@@ -164,11 +200,7 @@ def GenerateSM70_TensorOp_884(manifest, cuda_version):
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
,
alignment_constraints
,
manifest
,
layouts
,
tile_descriptions
,
data_type
)
# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
...
...
@@ -182,16 +214,286 @@ def GenerateSM70_TensorOp_884(manifest, cuda_version):
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type_mixed
,
alignment_constraints
,
manifest
,
layouts
,
tile_descriptions
,
data_type_mixed
)
def
GenerateSM70
(
manifest
,
cuda_version
):
GenerateSM70_TensorOp_884
(
manifest
,
cuda_version
)
def
GenerateSM80_TensorOp_1688
(
manifest
,
cuda_version
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
11
,
0
):
return
layouts
=
[
(
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
),
]
math_instructions
=
[
MathInstruction
(
[
16
,
8
,
8
],
DataType
.
tf32
,
DataType
.
tf32
,
DataType
.
f32
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add
,
)
]
min_cc
=
80
max_cc
=
1024
for
math_inst
in
math_instructions
:
tile_descriptions
=
[
TileDescription
(
[
256
,
128
,
16
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
16
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
16
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
16
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
16
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
16
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
16
],
10
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
128
,
32
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
32
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
]
data_type
=
[
math_inst
.
element_a
,
math_inst
.
element_b
,
math_inst
.
element_accumulator
,
math_inst
.
element_accumulator
,
]
data_type_mixed
=
[
math_inst
.
element_a
,
math_inst
.
element_b
,
math_inst
.
element_a
,
math_inst
.
element_accumulator
,
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
)
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type_mixed
)
def
GenerateSM80_TensorOp_1688_fast_math
(
manifest
,
cuda_version
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
11
,
0
):
return
layouts
=
[
(
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
),
]
math_instructions
=
[
MathInstruction
(
[
16
,
8
,
8
],
DataType
.
tf32
,
DataType
.
tf32
,
DataType
.
f32
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add
,
),
]
min_cc
=
80
max_cc
=
1024
for
math_inst
in
math_instructions
:
tile_descriptions
=
[
TileDescription
(
[
256
,
128
,
16
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
16
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
16
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
16
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
16
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
16
],
6
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
16
],
10
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
128
,
32
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
32
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
4
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
4
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
5
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
]
data_type
=
[
DataType
.
f32
,
DataType
.
f32
,
DataType
.
f32
,
DataType
.
f32
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
)
def
GenerateSM80_TensorOp_1688_fast_fp32_math
(
manifest
,
cuda_version
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
11
,
0
):
return
layouts
=
[
(
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
),
]
math_instructions
=
[
MathInstruction
(
[
16
,
8
,
8
],
DataType
.
f32
,
DataType
.
f32
,
DataType
.
f32
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add_fast_f32
,
),
]
min_cc
=
80
max_cc
=
1024
for
math_inst
in
math_instructions
:
tile_descriptions
=
[
TileDescription
(
[
128
,
128
,
16
],
4
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
16
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
16
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
16
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
16
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
16
],
4
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
16
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
3
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
3
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
3
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
]
data_type
=
[
DataType
.
f32
,
DataType
.
f32
,
DataType
.
f32
,
DataType
.
f32
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
)
def
GenerateSM80
(
manifest
,
cuda_version
):
GenerateSM80_TensorOp_16816
(
manifest
,
cuda_version
)
GenerateSM80_TensorOp_1688
(
manifest
,
cuda_version
)
GenerateSM80_TensorOp_1688_fast_math
(
manifest
,
cuda_version
)
GenerateSM80_TensorOp_1688_fast_fp32_math
(
manifest
,
cuda_version
)
class
KernelCfg
:
...
...
@@ -229,7 +531,7 @@ class KernelCfg:
if
__name__
==
"__main__"
:
args
=
KernelCfg
(
architectures
=
'
7
0'
,
architectures
=
'
8
0'
,
build_dir
=
sys
.
argv
[
2
],
cuda_version
=
sys
.
argv
[
3
],
curr_build_dir
=
sys
.
argv
[
2
],
...
...
@@ -245,6 +547,6 @@ if __name__ == "__main__":
)
manifest
=
GatherGemmScatterManifest
(
args
)
GenerateSM
7
0
(
manifest
,
args
.
cuda_version
)
GenerateSM
8
0
(
manifest
,
args
.
cuda_version
)
manifest
.
emit
(
GeneratorTarget
.
Library
)
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_manifest.py
→
paddle/phi/kernels/sparse/gpu/cutlass
_generator
/gather_gemm_scatter_manifest.py
浏览文件 @
12d43da9
...
...
@@ -18,7 +18,7 @@ import shutil
from
gather_gemm_scatter_operation
import
(
EmitGatherGemmScatterConfigurationLibrary
,
)
from
library
import
OperationKind
,
OperationKindNames
from
library
import
OperationKind
,
OperationKindNames
,
SubstituteTemplate
from
manifest
import
EmitOperationKindLibrary
,
GeneratorTarget
,
Manifest
...
...
@@ -28,11 +28,25 @@ class GatherGemmScatterEmitOperationKindLibrary(EmitOperationKindLibrary):
self
.
emitters
=
{
OperationKind
.
Gemm
:
EmitGatherGemmScatterConfigurationLibrary
}
self
.
header_template
=
"#pragma once
\n
#ifdef PADDLE_WITH_CUTLASS
\n
"
self
.
header_template
=
"#pragma once
\n
#ifdef PADDLE_WITH_CUTLASS
\n
#include
\"
paddle/phi/kernels/sparse/gpu/cutlass_generator/common.h
\"\n
"
self
.
entry_template
=
""
self
.
configuration_prototype_template
=
""
self
.
configuration_template
=
""
self
.
epilogue_template
=
"#endif"
self
.
namespace_template
=
"""
namespace phi {
namespace sparse {
"""
self
.
epilogue_template
=
"""
} // namespace sparse
} // namespace phi
#endif
"""
self
.
fp16_kernels_list
=
(
"static std::vector<fp16_gather_gemm_scatter> fp16_kernels = {
\n
"
)
self
.
fp32_kernels_list
=
(
"static std::vector<fp32_gather_gemm_scatter> fp32_kernels = {
\n
"
)
def
__enter__
(
self
):
self
.
operation_path
=
os
.
path
.
join
(
...
...
@@ -64,6 +78,21 @@ class GatherGemmScatterEmitOperationKindLibrary(EmitOperationKindLibrary):
self
.
source_files
.
append
(
configuration_emitter
.
configuration_path
)
self
.
configurations
.
append
(
configuration_name
)
if
'h'
==
operations
[
0
].
short_math_name
():
self
.
fp16_kernels_list
+=
(
"""
launchKernel<"""
+
configuration_name
+
"::Gemm>,"
)
if
's'
==
operations
[
0
].
short_math_name
():
self
.
fp32_kernels_list
+=
(
"""
launchKernel<"""
+
configuration_name
+
"::Gemm>,"
)
self
.
top_level_file
.
write
(
'#include "'
+
self
.
operation_path
...
...
@@ -72,6 +101,30 @@ class GatherGemmScatterEmitOperationKindLibrary(EmitOperationKindLibrary):
+
'.h"
\n
'
)
def
__exit__
(
self
,
exception_type
,
exception_value
,
traceback
):
self
.
top_level_file
.
write
(
SubstituteTemplate
(
self
.
entry_template
,
{
'operation_name'
:
OperationKindNames
[
self
.
kind
]},
)
)
for
configuration_name
in
self
.
configurations
:
self
.
top_level_file
.
write
(
SubstituteTemplate
(
self
.
configuration_template
,
{
'configuration_name'
:
configuration_name
},
)
)
self
.
fp16_kernels_list
+=
"
\n
};
\n
"
self
.
fp32_kernels_list
+=
"
\n
};
\n
"
self
.
top_level_file
.
write
(
self
.
namespace_template
)
self
.
top_level_file
.
write
(
self
.
fp16_kernels_list
)
self
.
top_level_file
.
write
(
self
.
fp32_kernels_list
)
self
.
top_level_file
.
write
(
self
.
epilogue_template
)
self
.
top_level_file
.
close
()
class
GatherGemmScatterManifest
(
Manifest
):
def
emit
(
self
,
target
=
GeneratorTarget
.
Library
):
...
...
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_operation.py
→
paddle/phi/kernels/sparse/gpu/cutlass
_generator
/gather_gemm_scatter_operation.py
浏览文件 @
12d43da9
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
import
enum
import
os.path
...
...
@@ -40,16 +41,7 @@ from library import (
class
EmitGatherGemmScatterInstance
(
EmitGemmInstance
):
def
__init__
(
self
,
operation_suffix
=
''
):
self
.
operation_suffix
=
operation_suffix
self
.
includes
=
[
"cutlass/cutlass.h"
,
"cutlass/numeric_types.h"
,
"cutlass/arch/arch.h"
,
"cutlass/arch/mma.h"
,
"cutlass/layout/matrix.h"
,
"cutlass/gemm/device/gemm.h"
,
"cutlass/gemm/device/gemm_universal_adapter.h"
,
"cutlass/gemm/kernel/default_gemm_universal.h"
,
]
self
.
includes
=
[]
self
.
builtin_epilogue_functor_template
=
"""
${epilogue_functor}<
${element_c},
...
...
@@ -247,6 +239,18 @@ namespace sparse {
#endif
"""
def
__enter__
(
self
):
self
.
configuration_file
=
open
(
self
.
configuration_path
,
"w"
)
self
.
configuration_file
.
write
(
self
.
header_template
)
self
.
configuration_file
.
write
(
self
.
separator
)
self
.
includes
=
collections
.
OrderedDict
([])
self
.
instance_definitions
=
[]
self
.
instance_wrappers
=
[]
self
.
operations
=
[]
return
self
def
__exit__
(
self
,
exception_type
,
exception_value
,
traceback
):
# Write includes
...
...
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
已删除
100644 → 0
浏览文件 @
be9515f2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_CUTLASS
#include "paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h"
namespace
phi
{
namespace
sparse
{
fp16_gather_gemm_scatter
getBestFp16Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
if
(
M
>
100000
)
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_f16_s1688gemm_f16_64x128_32x2_nn_align8
::
Gemm
>
;
if
(
M
>
20000
)
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_f16_s1688gemm_f16_64x64_32x2_nn_align8
::
Gemm
>
;
if
(
M
>
15000
)
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align8
::
Gemm
>
;
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
128
)
{
if
(
M
>=
5000
)
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h16816gemm_64x64_64x5_nn_align8
::
Gemm
>
;
}
if
(
N
==
128
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
::
Gemm
>
;
}
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
N
,
const
int
K
,
const
int
SM
)
{
if
(
SM
==
75
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_f16_64x64_32x2_nn_align4
::
Gemm
>
;
}
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
if
(
M
>=
15000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
128
)
{
if
(
M
>=
100000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
::
Gemm
>
;
if
(
M
>=
5000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_256x64_16x4_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
::
Gemm
>
;
}
if
(
N
==
128
)
{
if
(
M
>=
100000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
::
Gemm
>
;
if
(
M
>=
5000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x128_16x6_nn_align4
::
Gemm
>
;
}
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
fp64_gather_gemm_scatter
getBestFp64Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
if
(
M
>=
10000
)
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
}
// namespace sparse
}
// namespace phi
#endif
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
浏览文件 @
12d43da9
...
...
@@ -13,628 +13,75 @@
// limitations under the License.
#pragma once
#include <type_traits>
#ifdef PADDLE_WITH_CUTLASS
#include "cutlass/arch/mma.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/device/gemm_grouped.h"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/util/device_memory.h"
#include "examples/common/helper.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/kernels/autotune/auto_tune_base.h"
#include "paddle/phi/kernels/sparse/gpu/cutlass_generator/build/generated/gemm/all_gemm_operations.h"
namespace
phi
{
namespace
sparse
{
typedef
void
(
*
fp16_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
cutlass
::
half_t
*
const
a
,
const
cutlass
::
half_t
*
const
b
,
const
cutlass
::
half_t
*
const
c
,
cutlass
::
half_t
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
cutlass
::
half_t
const
alpha
,
cutlass
::
half_t
const
beta
);
typedef
void
(
*
fp32_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
float
*
const
a
,
const
float
*
const
b
,
const
float
*
const
c
,
float
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
float
const
alpha
,
float
const
beta
);
typedef
void
(
*
fp64_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
double
*
const
a
,
const
double
*
const
b
,
const
double
*
const
c
,
double
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
double
const
alpha
,
double
const
beta
);
fp16_gather_gemm_scatter
getBestFp16Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
K
,
const
int
N
,
const
int
SM
);
fp64_gather_gemm_scatter
getBestFp64Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
template
<
typename
T
,
typename
Gemm
>
void
launchKernel
(
const
GPUContext
&
dev_ctx
,
const
T
*
const
a
,
const
T
*
const
b
,
const
T
*
const
c
,
T
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
T
const
alpha
,
T
const
beta
)
{
cutlass
::
gemm
::
GemmCoord
problem_size_real
({
m
,
n
,
k
});
int
split_k_slices
=
1
;
typename
Gemm
::
Arguments
arguments
{
cutlass
::
gemm
::
GemmUniversalMode
::
kGemm
,
problem_size_real
,
split_k_slices
,
{
alpha
,
beta
},
a
,
b
,
c
,
d
,
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mk
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
kn
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mn
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mn
()),
problem_size_real
.
k
(),
problem_size_real
.
n
(),
problem_size_real
.
n
(),
problem_size_real
.
n
(),
a_indices
,
nullptr
,
c_d_indices
};
size_t
workspace_size
=
Gemm
::
get_workspace_size
(
arguments
);
cutlass
::
device_memory
::
allocation
<
uint8_t
>
workspace
(
workspace_size
);
Gemm
gemm_op
;
cutlass
::
Status
status
=
gemm_op
.
can_implement
(
arguments
);
CUTLASS_CHECK
(
status
);
status
=
gemm_op
.
initialize
(
arguments
,
workspace
.
get
());
CUTLASS_CHECK
(
status
);
gemm_op
(
dev_ctx
.
stream
());
}
static
void
dispatchKernel
(
const
GPUContext
&
dev_ctx
,
const
void
*
const
a
,
const
void
*
const
b
,
const
void
*
const
c
,
void
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
void
*
a_indices
,
const
void
*
c_d_indices
,
const
bool
cutlass
,
const
phi
::
DataType
type
)
{
if
(
!
cutlass
)
return
;
if
(
type
==
phi
::
DataType
::
FLOAT16
)
{
fp16_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp16Kernel
(
m
,
n
,
k
);
gather_gemm_scatter
(
dev_ctx
,
static_cast
<
const
cutlass
::
half_t
*>
(
a
),
static_cast
<
const
cutlass
::
half_t
*>
(
b
),
static_cast
<
const
cutlass
::
half_t
*>
(
c
),
static_cast
<
cutlass
::
half_t
*>
(
d
),
m
,
n
,
k
,
static_cast
<
const
int32_t
*>
(
a_indices
),
static_cast
<
const
int32_t
*>
(
c_d_indices
),
static_cast
<
cutlass
::
half_t
>
(
1
),
static_cast
<
cutlass
::
half_t
>
(
1
));
}
else
if
(
type
==
phi
::
DataType
::
FLOAT32
)
{
fp32_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp32Kernel
(
m
,
n
,
k
,
dev_ctx
.
GetComputeCapability
());
gather_gemm_scatter
(
dev_ctx
,
static_cast
<
const
float
*>
(
a
),
static_cast
<
const
float
*>
(
b
),
static_cast
<
const
float
*>
(
c
),
static_cast
<
float
*>
(
d
),
m
,
n
,
k
,
static_cast
<
const
int32_t
*>
(
a_indices
),
static_cast
<
const
int32_t
*>
(
c_d_indices
),
static_cast
<
float
>
(
1
),
static_cast
<
float
>
(
1
));
}
else
if
(
type
==
phi
::
DataType
::
FLOAT64
)
{
fp64_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp64Kernel
(
m
,
n
,
k
);
gather_gemm_scatter
(
dev_ctx
,
static_cast
<
const
double
*>
(
a
),
static_cast
<
const
double
*>
(
b
),
static_cast
<
const
double
*>
(
c
),
static_cast
<
double
*>
(
d
),
m
,
n
,
k
,
static_cast
<
const
int32_t
*>
(
a_indices
),
static_cast
<
const
int32_t
*>
(
c_d_indices
),
static_cast
<
double
>
(
1
),
static_cast
<
double
>
(
1
));
// To reduce tuning time, map shape (m,n,k) to (m/features_num_range,n,k) so
// that shapes in this range share the same key.
constexpr
int
features_num_range
=
10000
;
#define DEFINE_GATHER_GEMM_SCATTER_DRIVER(dtype, kernels) \
template <typename T, typename IntT> \
typename std::enable_if<std::is_same<T, dtype>::value && \
std::is_same<IntT, int32_t>::value, \
void>::type \
GatherGemmScatterDriver(const phi::GPUContext& ctx, \
const T* const a, \
const T* const b, \
const T* const c, \
T* const d, \
const int& m, \
const int& n, \
const int& k, \
const IntT* a_indices, \
const IntT* c_d_indices, \
T alpha, \
T beta) { \
auto* tuner = autotune::MakeGatherGemmScatterTuner(kernels[0]); \
for (auto i = 1; i < kernels.size(); i++) tuner->AddCallBack(kernels[i]); \
size_t key = autotune::GenKey(m / features_num_range, n, k); \
tuner->Run(ctx, \
key, \
alpha, \
beta, \
ctx, \
a, \
b, \
c, \
d, \
m, \
n, \
k, \
a_indices, \
c_d_indices); \
}
}
struct
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
128
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x128_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
128
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
4
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
4
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h16816gemm_64x64_64x5_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
64
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
64
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
16
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_f16_s1688gemm_f16_64x128_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_f16_s1688gemm_f16_64x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
10
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
128
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_256x64_16x4_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
256
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
4
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
256
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_64x128_16x6_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
6
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF32
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
16
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
8
,
8
,
4
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
double
,
1
,
double
,
double
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
1
,
1
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
32
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
8
,
8
,
4
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
double
,
1
,
double
,
double
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
1
,
1
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
template
<
typename
T
,
typename
IntT
>
typename
std
::
enable_if
<
std
::
is_same
<
T
,
double
>::
value
||
!
std
::
is_same
<
IntT
,
int32_t
>::
value
,
void
>::
type
GatherGemmScatterDriver
(
const
phi
::
GPUContext
&
ctx
,
const
T
*
const
a
,
const
T
*
const
b
,
const
T
*
const
c
,
T
*
const
d
,
const
int
&
m
,
const
int
&
n
,
const
int
&
k
,
const
IntT
*
a_indices
,
const
IntT
*
c_d_indices
,
T
alpha
,
T
beta
)
{}
// sm75
struct
cutlass_tensorop_s1688gemm_f16_64x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
>
;
};
DEFINE_GATHER_GEMM_SCATTER_DRIVER
(
phi
::
dtype
::
float16
,
fp16_kernels
)
DEFINE_GATHER_GEMM_SCATTER_DRIVER
(
float
,
fp32_kernels
)
}
// namespace sparse
}
// namespace phi
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录