Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
12bcd023
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12bcd023
编写于
8月 15, 2021
作者:
H
HydrogenSulfate
提交者:
chajchaj
8月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix weighted CE loss's bug
上级
1506d266
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
377 addition
and
76 deletion
+377
-76
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
...n/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
+252
-12
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+125
-64
未找到文件。
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
浏览文件 @
12bcd023
...
@@ -841,6 +841,55 @@ class CrossEntropyLoss(unittest.TestCase):
...
@@ -841,6 +841,55 @@ class CrossEntropyLoss(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel
(
self
):
N
=
100
C
=
200
input_np
=
np
.
random
.
random
([
N
,
C
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
C
,
size
=
(
N
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
255
weight_np
=
np
.
random
.
random
([
C
]).
astype
(
self
.
dtype
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
N
,
C
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
N
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
C
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
ignore_index
=
255
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
axis
=
1
,
ignore_index
=
255
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
expected
=
cross_entropy_loss_1d
(
input_np
,
label_np
,
weight
=
weight_np
,
ignore_index
=
255
)[
0
]
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_1d_with_weight_mean
(
self
):
def
test_cross_entropy_loss_1d_with_weight_mean
(
self
):
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
...
@@ -1013,7 +1062,7 @@ class CrossEntropyLoss(unittest.TestCase):
...
@@ -1013,7 +1062,7 @@ class CrossEntropyLoss(unittest.TestCase):
def
test_cross_entropy_loss_1d_mean
(
self
):
def
test_cross_entropy_loss_1d_mean
(
self
):
input_np
=
np
.
random
.
random
([
100
,
200
]).
astype
(
self
.
dtype
)
#N,C
input_np
=
np
.
random
.
random
([
100
,
200
]).
astype
(
self
.
dtype
)
#N,C
label_np
=
np
.
random
.
randint
(
0
,
100
,
size
=
(
100
)).
astype
(
np
.
int64
)
#N,1
label_np
=
np
.
random
.
randint
(
0
,
100
,
size
=
(
100
)).
astype
(
np
.
int64
)
#N,1
weight_np
=
np
.
random
.
random
([
200
]).
astype
(
self
.
dtype
)
#C
#
weight_np = np.random.random([200]).astype(self.dtype) #C
paddle
.
enable_static
()
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
...
@@ -1022,7 +1071,7 @@ class CrossEntropyLoss(unittest.TestCase):
...
@@ -1022,7 +1071,7 @@ class CrossEntropyLoss(unittest.TestCase):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
100
,
200
],
dtype
=
self
.
dtype
)
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
100
,
200
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
100
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
100
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
self
.
dtype
)
#
weight = fluid.data(name='weight', shape=[100], dtype=self.dtype)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
()
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
()
ret
=
cross_entropy_loss
(
input
,
label
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
...
@@ -1156,6 +1205,58 @@ class CrossEntropyLoss(unittest.TestCase):
...
@@ -1156,6 +1205,58 @@ class CrossEntropyLoss(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel
(
self
):
N
=
4
C
=
3
H
=
512
W
=
512
input_np
=
np
.
random
.
random
([
N
,
H
,
W
,
C
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
C
,
size
=
(
N
,
H
,
W
)).
astype
(
np
.
int64
)
label_np
[
0
,
0
,
0
]
=
255
weight_np
=
np
.
random
.
random
([
C
]).
astype
(
self
.
dtype
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
N
,
H
,
W
,
C
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
N
,
H
,
W
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
C
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
ignore_index
=
255
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
axis
=
1
,
ignore_index
=
255
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
expected
=
cross_entropy_loss_2d
(
input_np
,
label_np
,
weight
=
weight_np
,
ignore_index
=
255
)[
0
]
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_2d_with_weight_mean
(
self
):
def
test_cross_entropy_loss_2d_with_weight_mean
(
self
):
input_np
=
np
.
random
.
random
(
size
=
(
2
,
2
,
2
,
3
)).
astype
(
self
.
dtype
)
#NHWC
input_np
=
np
.
random
.
random
(
size
=
(
2
,
2
,
2
,
3
)).
astype
(
self
.
dtype
)
#NHWC
label_np
=
np
.
random
.
randint
(
label_np
=
np
.
random
.
randint
(
...
@@ -1362,21 +1463,62 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
...
@@ -1362,21 +1463,62 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
with
program_guard
(
Program
(),
Program
()):
def
test_LabelValue
():
# def test_LabelValue():
# input_data = paddle.rand(shape=[20, 100])
# label_data = paddle.randint(
# 0, 100, shape=[20, 1], dtype="int64")
# label_data[0] = 255
# weight_data = paddle.rand([100])
# paddle.nn.functional.cross_entropy(
# input=input_data,
# label=label_data,
# weight=weight_data,
# ignore_index=255)
# self.assertRaises(ValueError, test_LabelValue)
# def test_LabelValueNeg():
# input_data = paddle.rand(shape=[20, 100])
# label_data = paddle.randint(
# 0, 100, shape=[20, 1], dtype="int64")
# label_data[0] = -1
# weight_data = paddle.rand([100])
# paddle.nn.functional.cross_entropy(
# input=input_data,
# label=label_data,
# weight=weight_data,
# ignore_index=-1)
# self.assertRaises(ValueError, test_LabelValueNeg)
def
test_WeightLength_NotEqual
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
label_data
[
0
]
=
255
weight_data
=
paddle
.
rand
([
100
+
1
])
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input_data
,
label
=
label_data
,
weight
=
weight_data
,
ignore_index
=-
100
)
self
.
assertRaises
(
ValueError
,
test_WeightLength_NotEqual
)
def
test_LabelValue_ExceedMax
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
label_data
[
0
]
=
100
weight_data
=
paddle
.
rand
([
100
])
weight_data
=
paddle
.
rand
([
100
])
paddle
.
nn
.
functional
.
cross_entropy
(
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input_data
,
input
=
input_data
,
label
=
label_data
,
label
=
label_data
,
weight
=
weight_data
,
weight
=
weight_data
,
ignore_index
=
255
)
ignore_index
=
-
100
)
self
.
assertRaises
(
ValueError
,
test_LabelValue
)
self
.
assertRaises
(
ValueError
,
test_LabelValue
_ExceedMax
)
def
test_LabelValue
Neg
():
def
test_LabelValue
_ExceedMin
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
...
@@ -1386,9 +1528,107 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
...
@@ -1386,9 +1528,107 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
input
=
input_data
,
input
=
input_data
,
label
=
label_data
,
label
=
label_data
,
weight
=
weight_data
,
weight
=
weight_data
,
ignore_index
=-
1
)
ignore_index
=-
100
)
self
.
assertRaises
(
ValueError
,
test_LabelValue_ExceedMin
)
def
static_test_WeightLength_NotEqual
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
weight_np
=
np
.
random
.
random
([
3
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
static_test_WeightLength_NotEqual
)
def
static_test_LabelValue_ExceedMax
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
255
weight_np
=
np
.
random
.
random
([
4
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
4
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
static_test_LabelValue_ExceedMax
)
def
static_test_LabelValue_ExceedMin
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
-
1
weight_np
=
np
.
random
.
random
([
4
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
4
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
test_LabelValueNeg
)
self
.
assertRaises
(
ValueError
,
static_test_LabelValue_ExceedMin
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
12bcd023
...
@@ -1657,7 +1657,7 @@ def cross_entropy(input,
...
@@ -1657,7 +1657,7 @@ def cross_entropy(input,
if
weight
is
not
None
:
if
weight
is
not
None
:
#trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
#
trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
if
soft_label
==
True
:
if
soft_label
==
True
:
# chajchaj:
# chajchaj:
# weight's shape is C, where C is class num.
# weight's shape is C, where C is class num.
...
@@ -1675,14 +1675,43 @@ def cross_entropy(input,
...
@@ -1675,14 +1675,43 @@ def cross_entropy(input,
out
=
_C_ops
.
elementwise_mul
(
out
,
weight_gather_reshape
)
out
=
_C_ops
.
elementwise_mul
(
out
,
weight_gather_reshape
)
else
:
else
:
label_min
=
paddle
.
min
(
label
)
if
input
.
shape
[
-
1
]
!=
weight
.
shape
[
-
1
]:
label_max
=
paddle
.
max
(
label
)
if
label_min
<
0
or
label_max
>=
input
.
shape
[
-
1
]:
raise
ValueError
(
raise
ValueError
(
'Expected 0 <= label_value < class_dimension({}), but got {} <= label_value <= {} '
.
"input's class_dimension({}) must equal to
\
format
(
input
.
shape
[
-
1
],
weight's class_dimension({})
\
label_min
.
numpy
(),
label_max
.
numpy
()))
when weight is provided"
weight_gather
=
_C_ops
.
gather_nd
(
weight
,
label
)
.
format
(
input
.
shape
[
-
1
],
weight
.
shape
[
-
1
]))
valid_label
=
paddle
.
where
(
label
==
ignore_index
,
paddle
.
to_tensor
(
0
,
dtype
=
label
.
dtype
),
label
)
if
(
len
(
paddle
.
nonzero
(
valid_label
<
0
))
>
0
)
or
(
len
(
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
>
0
):
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
<
0
))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's lower bound({})"
.
format
(
invalid_label
[
0
],
0
))
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's upper bound({})"
.
format
(
invalid_label
[
0
],
input
.
shape
[
-
1
]))
ignore_weight_mask
=
paddle
.
cast
((
label
!=
ignore_index
),
out
.
dtype
)
if
ignore_weight_mask
.
ndim
>
1
and
ignore_weight_mask
.
shape
[
-
1
]
==
1
:
ignore_weight_mask
.
squeeze_
(
-
1
)
weight_gather
=
_C_ops
.
gather_nd
(
weight
,
valid_label
)
# ignore的位置暂时用label0的权重代替
weight_gather
=
_C_ops
.
elementwise_mul
(
weight_gather
,
ignore_weight_mask
)
input_shape
=
list
(
label
.
shape
)
input_shape
=
list
(
label
.
shape
)
weight_gather_reshape
=
reshape
(
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
input_shape
)
weight_gather
,
shape
=
input_shape
)
...
@@ -1695,17 +1724,17 @@ def cross_entropy(input,
...
@@ -1695,17 +1724,17 @@ def cross_entropy(input,
# so, reduce_sum all directly is ok
# so, reduce_sum all directly is ok
return
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
return
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
elif
reduction
==
"mean"
:
elif
reduction
==
"mean"
:
#
1. if weight==none,
#
1. if weight==none,
# numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
# numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
# denominator: count sample num with class_index!=ignore_index
# denominator: count sample num with class_index!=ignore_index
#2. else
#
2. else
# numerator: loss's weighted sum
# numerator: loss's weighted sum
# denominator: cal the sum of weight where the sample's class_index!=ignore_index
# denominator: cal the sum of weight where the sample's class_index!=ignore_index
if
ignore_index
!=
-
100
:
if
ignore_index
!=
-
100
:
out_sum
=
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
out_sum
=
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
#for each label[i],set 1 or 0, according to ignore_index
#
for each label[i],set 1 or 0, according to ignore_index
#mask[i]=0, if label[i]==ignore_index
#
mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
#
mask[i]=1, otherwise
mask
=
(
label
!=
ignore_index
)
mask
=
(
label
!=
ignore_index
)
if
weight
is
None
:
if
weight
is
None
:
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
...
@@ -1761,7 +1790,7 @@ def cross_entropy(input,
...
@@ -1761,7 +1790,7 @@ def cross_entropy(input,
weight_name
=
name
if
reduction
==
'none'
else
None
weight_name
=
name
if
reduction
==
'none'
else
None
if
soft_label
==
True
:
if
soft_label
==
True
:
# chajchaj:
# chajchaj:
#trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
#
trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
# weight's shape is C, where C is class num.
# weight's shape is C, where C is class num.
# for 1d case: label's shape is [N,C], weight_gather's shape is N.
# for 1d case: label's shape is [N,C], weight_gather's shape is N.
# for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
# for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
...
@@ -1775,8 +1804,40 @@ def cross_entropy(input,
...
@@ -1775,8 +1804,40 @@ def cross_entropy(input,
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
out_shape
)
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
out_shape
)
out
=
paddle
.
cast
(
out
,
weight_gather_reshape
.
dtype
)
out
=
paddle
.
cast
(
out
,
weight_gather_reshape
.
dtype
)
else
:
else
:
if
input
.
shape
[
-
1
]
!=
weight
.
shape
[
-
1
]:
raise
ValueError
(
"input's class_dimension({}) must equal to
\
weight's class_dimension({})
\
when weight is provided"
.
format
(
input
.
shape
[
-
1
],
weight
.
shape
[
-
1
]))
valid_label
=
paddle
.
where
(
label
==
ignore_index
,
paddle
.
to_tensor
(
0
,
dtype
=
label
.
dtype
),
label
)
if
(
len
(
paddle
.
nonzero
(
valid_label
<
0
))
>
0
)
or
(
len
(
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
>
0
):
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
<
0
))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's lower bound({})"
.
format
(
invalid_label
[
0
],
0
))
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's upper bound({})"
.
format
(
invalid_label
[
0
],
input
.
shape
[
-
1
]))
ignore_weight_mask
=
paddle
.
cast
((
label
!=
ignore_index
),
out
.
dtype
)
if
ignore_weight_mask
.
ndim
>
1
and
ignore_weight_mask
.
shape
[
-
1
]
==
1
:
ignore_weight_mask
=
paddle
.
squeeze
(
ignore_weight_mask
,
-
1
)
weight_gather
=
paddle
.
gather_nd
(
weight_gather
=
paddle
.
gather_nd
(
weight
,
label
)
#trans weight from class to sample, shape:N
weight
,
valid_label
)
#trans weight from class to sample, shape:N
weight_gather
=
paddle
.
multiply
(
weight_gather
,
ignore_weight_mask
)
input_shape
=
list
(
label
.
shape
)
input_shape
=
list
(
label
.
shape
)
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
input_shape
)
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
input_shape
)
out
=
paddle
.
multiply
(
out
,
weight_gather_reshape
,
name
=
weight_name
)
out
=
paddle
.
multiply
(
out
,
weight_gather_reshape
,
name
=
weight_name
)
...
@@ -1786,9 +1847,9 @@ def cross_entropy(input,
...
@@ -1786,9 +1847,9 @@ def cross_entropy(input,
elif
reduction
==
"mean"
:
elif
reduction
==
"mean"
:
if
ignore_index
!=
-
100
:
if
ignore_index
!=
-
100
:
out_sum
=
paddle
.
sum
(
out
,
name
=
name
)
out_sum
=
paddle
.
sum
(
out
,
name
=
name
)
#for each label[i],set 1 or 0, according to ignore_index
#
for each label[i],set 1 or 0, according to ignore_index
#mask[i]=0, if label[i]==ignore_index
#
mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
#
mask[i]=1, otherwise
mask
=
(
label
!=
ignore_index
)
mask
=
(
label
!=
ignore_index
)
if
(
weight
is
None
):
if
(
weight
is
None
):
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录