“e05f3eaf698e9bab34fee1a604b655b0b99c13e2”上不存在“...fluid/inference/git@gitcode.net:paddlepaddle/Paddle.git”
提交 12596a16 编写于 作者: Y yangyaming

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix-3789

...@@ -27,3 +27,4 @@ CMakeFiles ...@@ -27,3 +27,4 @@ CMakeFiles
cmake_install.cmake cmake_install.cmake
paddle/.timestamp paddle/.timestamp
python/paddlepaddle.egg-info/ python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
...@@ -36,10 +36,6 @@ before_install: ...@@ -36,10 +36,6 @@ before_install:
# protobuf version. # protobuf version.
- sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt - sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker - sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter
- gometalinter --install
- | - |
function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; } function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; }
script: script:
......
...@@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING) ...@@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING)
endif(NOT CMAKE_CROSSCOMPILING) endif(NOT CMAKE_CROSSCOMPILING)
find_package(Git REQUIRED) find_package(Git REQUIRED)
find_package(Threads REQUIRED) find_package(Threads REQUIRED)
if(NOT ANDROID) if(NOT ANDROID AND NOT IOS)
find_package(Boost QUIET) find_package(Boost QUIET)
endif() endif()
...@@ -64,27 +64,29 @@ if(NOT CMAKE_BUILD_TYPE) ...@@ -64,27 +64,29 @@ if(NOT CMAKE_BUILD_TYPE)
FORCE) FORCE)
endif() endif()
if(ANDROID) if(ANDROID OR IOS)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") if(ANDROID)
if(AND ${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future # TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead") message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
endif() endif()
endif()
set(WITH_GPU OFF CACHE STRING set(WITH_GPU OFF CACHE STRING
"Disable GPU when cross-compiling for Android" FORCE) "Disable GPU when cross-compiling for Android and iOS" FORCE)
set(WITH_AVX OFF CACHE STRING set(WITH_AVX OFF CACHE STRING
"Disable AVX when cross-compiling for Android" FORCE) "Disable AVX when cross-compiling for Android and iOS" FORCE)
set(WITH_PYTHON OFF CACHE STRING set(WITH_PYTHON OFF CACHE STRING
"Disable PYTHON when cross-compiling for Android" FORCE) "Disable PYTHON when cross-compiling for Android and iOS" FORCE)
set(WITH_RDMA OFF CACHE STRING set(WITH_RDMA OFF CACHE STRING
"Disable RDMA when cross-compiling for Android" FORCE) "Disable RDMA when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLDNN OFF CACHE STRING set(WITH_MKLDNN OFF CACHE STRING
"Disable MKLDNN when cross-compiling for Android" FORCE) "Disable MKLDNN when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLML OFF CACHE STRING set(WITH_MKLML OFF CACHE STRING
"Disable MKLML package when cross-compiling for Android" FORCE) "Disable MKLML package when cross-compiling for Android and iOS" FORCE)
endif(ANDROID) endif()
set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
"A path setting third party libraries download & build directories.") "A path setting third party libraries download & build directories.")
......
...@@ -171,3 +171,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY) ...@@ -171,3 +171,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
add_definitions(-DPADDLE_USE_REFERENCE_CBLAS) add_definitions(-DPADDLE_USE_REFERENCE_CBLAS)
message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})") message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
endif() endif()
if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER vecLib)
set(CBLAS_INC_DIR ${VECLIB_INC_DIR})
add_definitions(-DPADDLE_USE_VECLIB)
endif()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This is a toolchain file for cross-compiling for iOS, and the
# configuration largely refers to public toolchain file:
# https://raw.githubusercontent.com/leetal/ios-cmake/master/ios.toolchain.cmake
# and
# https://github.com/cristeab/ios-cmake
#
# Supports options:
# IOS_PLATFORM = OS (default) or SIMULATOR
# This decides if SDKS will be selected from the iPhoneOS.platform or iPhoneSimulator.platform folders
# OS - the default, used to build for iPhone and iPad physical devices, which have an arm arch.
# SIMULATOR - used to build for the Simulator platforms, which have an x86 arch.
# IOS_ARCH
# The archectures wanted to support, such "arm64", "armv7;arm64"
# IOS_DEPLOYMENT_TARGET
# The minimum iOS deployment version, such as "7.0"
# IOS_ENABLE_BITCODE = ON (default) or OFF
# IOS_USE_VECLIB_FOR_BLAS = OFF (default) or ON
# IOS_DEVELOPER_ROOT = automatic(default) or /path/to/platform/Developer folder
# By default this location is automatcially chosen based on the IOS_PLATFORM value above.
# If set manually, it will override the default location and force the user of a particular Developer Platform
# IOS_SDK_ROOT = automatic(default) or /path/to/platform/Developer/SDKs/SDK folder
# By default this location is automatcially chosen based on the IOS_DEVELOPER_ROOT value.
# In this case it will always be the most up-to-date SDK found in the IOS_DEVELOPER_ROOT path.
# If set manually, this will force the use of a specific SDK version
# Macros:
# set_xcode_property (TARGET XCODE_PROPERTY XCODE_VALUE)
# A convenience macro for setting xcode specific properties on targets
# example: set_xcode_property (myioslib IPHONEOS_DEPLOYMENT_TARGET "3.1")
# find_host_package (PROGRAM ARGS)
# A macro used to find executable programs on the host system, not within the iOS environment.
# Thanks to the android-cmake project for providing the command
if(NOT IOS)
return()
endif()
set(CMAKE_SYSTEM_NAME Darwin)
# Get the Xcode version being used.
execute_process(COMMAND xcodebuild -version
OUTPUT_VARIABLE XCODE_VERSION
RESULT_VARIABLE XCODE_VERSION_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT ${XCODE_VERSION_RESULT})
string(REGEX MATCH "Xcode [0-9\\.]+" XCODE_VERSION "${XCODE_VERSION}")
string(REGEX REPLACE "Xcode ([0-9\\.]+)" "\\1" XCODE_VERSION "${XCODE_VERSION}")
message(STATUS "Building with Xcode version: ${XCODE_VERSION}")
else()
message(FATAL_ERROR "Cannot execute xcodebuild, please check whether xcode is installed.")
endif()
# Required as of cmake 2.8.10
set(CMAKE_OSX_DEPLOYMENT_TARGET "" CACHE STRING "Force unset of the deployment target for iOS" FORCE)
# Setup iOS platform unless specified manually with IOS_PLATFORM
if(NOT DEFINED IOS_PLATFORM)
set(IOS_PLATFORM "OS")
endif()
set(IOS_PLATFORM ${IOS_PLATFORM} CACHE STRING "Type of iOS Platform")
# Set the architecture for iOS
if(NOT DEFINED IOS_ARCH)
if(IOS_PLATFORM STREQUAL "OS")
# FIXME(liuyiqun): support "armv7;armv7s;arm64" future
set(IOS_ARCH "arm64")
elseif(IOS_PLATFORM STREQUAL "SIMULATOR")
set(IOS_ARCH "i386;x86_64")
elseif(IOS_PLATFORM STREQUAL "WATCHOS")
set(IOS_ARCH armv7k)
endif()
endif()
set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS")
# Specify minimum iOS deployment version
if(NOT DEFINED IOS_DEPLOYMENT_TARGET)
set(IOS_DEPLOYMENT_TARGET "7.0")
endif()
set(IOS_DEPLOYMENT_TARGET ${IOS_DEPLOYMENT_TARGET} CACHE STRING "Minimum iOS version")
# Whether to enable bitcode
if(NOT DEFINED IOS_ENABLE_BITCODE)
set(IOS_ENABLE_BITCODE ON)
endif()
set(IOS_ENABLE_BITCODE ${IOS_ENABLE_BITCODE} CACHE BOOL "Whether to enable bitcode")
if(NOT DEFINED IOS_USE_VECLIB_FOR_BLAS)
set(IOS_USE_VECLIB_FOR_BLAS OFF)
endif()
set(IOS_USE_VECLIB_FOR_BLAS ${IOS_UES_VECLIB_FOR_BLAS} CACHE BOOL "Whether to use veclib")
# Check the platform selection and setup for developer root
if(${IOS_PLATFORM} STREQUAL "OS")
set(IOS_PLATFORM_LOCATION "iPhoneOS.platform")
set(XCODE_IOS_PLATFORM iphoneos)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphoneos")
elseif(${IOS_PLATFORM} STREQUAL "SIMULATOR")
set(IOS_PLATFORM_LOCATION "iPhoneSimulator.platform")
set(XCODE_IOS_PLATFORM iphonesimulator)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphonesimulator")
elseif(${IOS_PLATFORM} STREQUAL "WATCHOS")
set(IOS_PLATFORM_LOCATION "WatchOS.platform")
set(XCODE_IOS_PLATFORM watchos)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-watchos")
else(${IOS_PLATFORM} STREQUAL "OS")
message(FATAL_ERROR "Unsupported IOS_PLATFORM value selected. Please set to\n"
"\t OS, SIMULATOR, or WATCHOS.")
endif()
# Check iOS developer toolchain
if(NOT DEFINED IOS_DEVELOPER_ROOT)
# Setup iOS developer location
execute_process(COMMAND xcode-select -print-path
OUTPUT_VARIABLE XCODE_DEVELOPER_DIR
RESULT_VARIABLE XCODE_DEVELOPER_DIR_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# Xcode 4.3 changed the installation location, choose the most recent one available
if(${XCODE_VERSION} VERSION_LESS "4.3.0")
set(IOS_DEVELOPER_ROOT "/Developer/Platforms/${IOS_PLATFORM_LOCATION}/Developer")
else()
set(IOS_DEVELOPER_ROOT "${XCODE_DEVELOPER_DIR}/Platforms/${IOS_PLATFORM_LOCATION}/Developer")
endif()
endif()
if(EXISTS ${IOS_DEVELOPER_ROOT})
set(IOS_DEVELOPER_ROOT ${IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform")
else()
message(FATAL_ERROR "Invalid IOS_DEVELOPER_ROOT: ${IOS_DEVELOPER_ROOT} does not exist.")
endif()
# Check iOS SDK
if(NOT DEFINED IOS_SDK_ROOT)
# Find and use the most recent iOS sdk
file(GLOB IOS_SDK_LISTS "${IOS_DEVELOPER_ROOT}/SDKs/*")
if(IOS_SDK_LISTS)
list(SORT IOS_SDK_LISTS)
list(REVERSE IOS_SDK_LISTS)
list(GET IOS_SDK_LISTS 0 IOS_SDK_ROOT)
else(IOS_SDK_LISTS)
message(FATAL_ERROR "No iOS SDK's found in default search path ${IOS_DEVELOPER_ROOT}."
" Please manually set IOS_SDK_ROOT or install the iOS SDK.")
endif(IOS_SDK_LISTS)
endif()
if(EXISTS ${IOS_SDK_ROOT})
set(IOS_SDK_ROOT ${IOS_SDK_ROOT} CACHE PATH "Location of the selected iOS SDK")
message(STATUS "iOS toolchain: ${IOS_SDK_ROOT}")
else()
message(FATAL_ERROR "Invalid IOS_SDK_ROOT: ${IOS_SDK_ROOT} does not exist.")
endif()
# Set the sysroot default to the most recent SDK
set(CMAKE_OSX_SYSROOT ${IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS support")
# Get version of iOS SDK
execute_process(COMMAND xcodebuild -sdk ${CMAKE_OSX_SYSROOT} -version SDKVersion
OUTPUT_VARIABLE IOS_SDK_VERSION
RESULT_VARIABLE IOS_SDK_VERSION_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_SDK_VERSION_RESULT})
string(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" IOS_SDK_VERSION "${IOS_SDK_ROOT}")
endif()
if(NOT IOS_SDK_VERSION)
message(WARNING "Cannot get SDK's version.")
set(IOS_SDK_VERSION 1)
endif()
set(CMAKE_SYSTEM_VERSION ${IOS_SDK_VERSION})
# Find the C & C++ compilers for the specified SDK.
if(NOT CMAKE_C_COMPILER)
# Default to use clang
execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang
OUTPUT_VARIABLE IOS_C_COMPILER
RESULT_VARIABLE IOS_C_COMPILER_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_C_COMPILER_RESULT})
get_filename_component(IOS_C_COMPILER clang PROGRAM)
endif()
else(NOT CMAKE_C_COMPILER)
# User can set it in cmake command
get_filename_component(IOS_C_COMPILER ${CMAKE_C_COMPILER} PROGRAM)
endif(NOT CMAKE_C_COMPILER)
if(NOT EXISTS ${IOS_C_COMPILER})
message(FATAL_ERROR "Cannot find C compiler: ${IOS_C_COMPILER}")
endif()
if(NOT CMAKE_CXX_COMPILER)
# Default to use clang++
execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang++
OUTPUT_VARIABLE IOS_CXX_COMPILER
RESULT_VARIABLE IOS_CXX_COMPILER_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_CXX_COMPILER_RESULT})
get_filename_component(IOS_CXX_COMPILER clang++ PROGRAM)
endif()
else(NOT CMAKE_CXX_COMPILER)
# User can set it in cmake command
get_filename_component(IOS_CXX_COMPILER ${CMAKE_CXX_COMPILER} PROGRAM)
endif(NOT CMAKE_CXX_COMPILER)
if(NOT EXISTS ${IOS_CXX_COMPILER})
message(FATAL_ERROR "Cannot find CXX compiler: ${IOS_CXX_COMPILER}")
endif()
set(CMAKE_C_COMPILER ${IOS_C_COMPILER} CACHE PATH "C compiler" FORCE)
set(CMAKE_CXX_COMPILER ${IOS_CXX_COMPILER} CACHE PATH "CXX compiler" FORCE)
set(CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG "-compatibility_version ")
set(CMAKE_C_OSX_CURRENT_VERSION_FLAG "-current_version ")
set(CMAKE_CXX_OSX_COMPATIBILITY_VERSION_FLAG "${CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG}")
set(CMAKE_CXX_OSX_CURRENT_VERSION_FLAG "${CMAKE_C_OSX_CURRENT_VERSION_FLAG}")
# Set iOS specific C/C++ flags
if(IOS_PLATFORM STREQUAL "OS")
if(XCODE_VERSION VERSION_LESS "7.0")
set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-mios-version-min=${IOS_DEPLOYMENT_TARGET}")
else()
# Xcode 7.0+ uses flags we can build directly from XCODE_IOS_PLATFORM.
set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-m${XCODE_IOS_PLATFORM}-version-min=${IOS_DEPLOYMENT_TARGET}")
endif()
else()
set(XCODE_IOS_FLATFORM_VERSION_FLAGS "-mios-simulator-version-min=${IOS_DEPLOYMENT_TARGET}")
endif()
if(IOS_ENABLE_BITCODE)
set(XCODE_IOS_BITCODE_FLAGS "${IOS_COMPILER_FLAGS} -fembed-bitcode")
else()
set(XCODE_IOS_BITCODE_FLAGS "")
endif()
set(IOS_COMPILER_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} ${XCODE_IOS_BITCODE_FLAGS}")
# Hidden visibilty is required for cxx on iOS
set(CMAKE_C_FLAGS "${IOS_COMPILER_FLAGS} ${CMAKE_C_FLAGS}" CACHE STRING "C flags")
set(CMAKE_CXX_FLAGS "${IOS_COMPILER_FLAGS} -fvisibility-inlines-hidden ${CMAKE_CXX_FLAGS}" CACHE STRING "CXX flags")
set(IOS_LINK_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} -Wl,-search_paths_first")
if(IOS_USE_VECLIB_FOR_BLAS)
# Find vecLib for iOS
set(VECLIB_SEARCH_DIRS
${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks
${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Frameworks
)
find_path(VECLIB_INC_DIR vecLib.h PATHS ${VECLIB_SEARCH_DIRS}/vecLib.framework/Headers)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(vecLib DEFAULT_MSG VECLIB_INC_DIR)
if(VECLIB_FOUND)
if(VECLIB_INC_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*")
set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework vecLib")
message(STATUS "Found standalone vecLib.framework")
else()
set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework Accelerate")
message(STATUS "Found vecLib as part of Accelerate.framework")
endif()
endif()
endif()
set(CMAKE_C_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_C_LINK_FLAGS}")
set(CMAKE_CXX_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_CXX_LINK_FLAGS}")
set(CMAKE_PLATFORM_HAS_INSTALLNAME 1)
if(NOT IOS_ENABLE_BITCODE)
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib -headerpad_max_install_names")
set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle -headerpad_max_install_names")
else()
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib")
set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle")
endif()
set(CMAKE_SHARED_MODULE_LOADER_C_FLAG "-Wl,-bundle_loader,")
set(CMAKE_SHARED_MODULE_LOADER_CXX_FLAG "-Wl,-bundle_loader,")
set(CMAKE_FIND_LIBRARY_SUFFIXES ".dylib" ".so" ".a")
# hack: if a new cmake (which uses CMAKE_INSTALL_NAME_TOOL) runs on an old build tree
# (where install_name_tool was hardcoded) and where CMAKE_INSTALL_NAME_TOOL isn't in the cache
# and still cmake didn't fail in CMakeFindBinUtils.cmake (because it isn't rerun)
# hardcode CMAKE_INSTALL_NAME_TOOL here to install_name_tool, so it behaves as it did before, Alex
if(NOT DEFINED CMAKE_INSTALL_NAME_TOOL)
find_program(CMAKE_INSTALL_NAME_TOOL install_name_tool)
endif()
# Set the find root to the iOS developer roots and to user defined paths
set(CMAKE_FIND_ROOT_PATH ${IOS_DEVELOPER_ROOT} ${IOS_SDK_ROOT} ${CMAKE_PREFIX_PATH}
CACHE string "iOS find search path root")
# default to searching for frameworks first
set(CMAKE_FIND_FRAMEWORK FIRST)
# set up the default search directories for frameworks
set(CMAKE_SYSTEM_FRAMEWORK_PATH
${IOS_SDK_ROOT}/System/Library/Frameworks
${IOS_SDK_ROOT}/System/Library/PrivateFrameworks
${IOS_SDK_ROOT}/Developer/Library/Frameworks
)
# only search the iOS sdks, not the remainder of the host filesystem
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
message(STATUS "iOS: Targeting iOS '${CMAKE_SYSTEM_VERSION}', "
"building for '${IOS_PLATFORM}' platform, with architecture '${CMAKE_OSX_ARCHITECTURES}'")
message(STATUS "System CMAKE_C_FLAGS: ${CMAKE_C_FLAGS}")
message(STATUS "System CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}")
# Used in ExternalProject command
string(REPLACE ";" "\\$<SEMICOLON>" EXTERNAL_IOS_ARCHITECTURES "${CMAKE_OSX_ARCHITECTURES}")
set(EXTERNAL_OPTIONAL_ARGS
-DCMAKE_OSX_SYSROOT=${CMAKE_OSX_SYSROOT}
-DCMAKE_OSX_ARCHITECTURES=${EXTERNAL_IOS_ARCHITECTURES})
# This little macro lets you set any XCode specific property
macro(set_xcode_property TARGET XCODE_PROPERTY XCODE_VALUE)
set_property (TARGET ${TARGET} PROPERTY XCODE_ATTRIBUTE_${XCODE_PROPERTY} ${XCODE_VALUE})
endmacro(set_xcode_property)
# This macro lets you find executable programs on the host system
macro(find_host_package)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE NEVER)
set(IOS FALSE)
find_package(${ARGN})
set(IOS TRUE)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
endmacro(find_host_package)
...@@ -39,13 +39,14 @@ ExternalProject_Add( ...@@ -39,13 +39,14 @@ ExternalProject_Add(
PREFIX ${GFLAGS_SOURCES_DIR} PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_TESTING=OFF -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release -DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release -DCMAKE_BUILD_TYPE:STRING=Release
......
...@@ -34,16 +34,17 @@ ExternalProject_Add( ...@@ -34,16 +34,17 @@ ExternalProject_Add(
PREFIX ${GLOG_SOURCES_DIR} PREFIX ${GLOG_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DWITH_GFLAGS=ON -DWITH_GFLAGS=ON
CMAKE_ARGS -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags
CMAKE_ARGS -DBUILD_TESTING=OFF -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release -DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib -DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
......
...@@ -48,15 +48,16 @@ IF(WITH_TESTING) ...@@ -48,15 +48,16 @@ IF(WITH_TESTING)
PREFIX ${GTEST_SOURCES_DIR} PREFIX ${GTEST_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_GMOCK=ON -DBUILD_GMOCK=ON
CMAKE_ARGS -Dgtest_disable_pthreads=ON -Dgtest_disable_pthreads=ON
CMAKE_ARGS -Dgtest_force_shared_crt=ON -Dgtest_force_shared_crt=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release -DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release -DCMAKE_BUILD_TYPE:STRING=Release
......
...@@ -29,30 +29,41 @@ IF(NOT ${CBLAS_FOUND}) ...@@ -29,30 +29,41 @@ IF(NOT ${CBLAS_FOUND})
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}" "${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
CACHE FILEPATH "openblas library." FORCE) CACHE FILEPATH "openblas library." FORCE)
IF(APPLE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER}")
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ELSE()
SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs)
ENDIF()
IF(CMAKE_CROSSCOMPILING) IF(CMAKE_CROSSCOMPILING)
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER})
GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY)
SET(CROSS_SUFFIX ${CROSS_SUFFIX}/)
IF(ANDROID) IF(ANDROID)
# arm_soft_fp_abi branch of OpenBLAS to support softfp # arm_soft_fp_abi branch of OpenBLAS to support softfp
# https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
SET(TARGET "ARMV7") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(TARGET "ARMV8") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0)
ENDIF()
ELSEIF(IOS)
# FIXME(liuyiqun): support multiple architectures
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}")
IF(CMAKE_OSX_ARCHITECTURES MATCHES "armv7")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch armv7")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX})
ENDIF() ENDIF()
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=${TARGET} ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(RPI) ELSEIF(RPI)
# use hardfp # use hardfp
SET(OPENBLAS_COMMIT "v0.2.20") SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0) SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0)
ENDIF() ENDIF()
ELSE() ELSE()
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
ENDIF()
SET(OPENBLAS_COMMIT "v0.2.20") SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS "") SET(OPTIONAL_ARGS "")
IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$")
...@@ -60,6 +71,8 @@ IF(NOT ${CBLAS_FOUND}) ...@@ -60,6 +71,8 @@ IF(NOT ${CBLAS_FOUND})
ENDIF() ENDIF()
ENDIF() ENDIF()
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ExternalProject_Add( ExternalProject_Add(
extern_openblas extern_openblas
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
......
...@@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST) ...@@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
"-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}" "-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}"
"-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}" "-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}"
"-Dprotobuf_WITH_ZLIB=ON" "-Dprotobuf_WITH_ZLIB=ON"
"-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}") "-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}"
${EXTERNAL_OPTIONAL_ARGS})
SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}") SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}")
ENDIF() ENDIF()
......
...@@ -12,16 +12,17 @@ ...@@ -12,16 +12,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
INCLUDE(ExternalProject) IF(NOT WITH_PYTHON)
return()
ENDIF()
INCLUDE(python_module) INCLUDE(python_module)
FIND_PACKAGE(PythonInterp 2.7) FIND_PACKAGE(PythonInterp 2.7)
IF(WITH_PYTHON) FIND_PACKAGE(PythonLibs 2.7)
FIND_PACKAGE(PythonLibs 2.7) # Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE.
# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE. ADD_LIBRARY(python SHARED IMPORTED GLOBAL)
ADD_LIBRARY(python SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
ENDIF(WITH_PYTHON)
SET(py_env "") SET(py_env "")
IF(PYTHONINTERP_FOUND) IF(PYTHONINTERP_FOUND)
...@@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND) ...@@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND)
ENDIF() ENDIF()
ENDIF(PYTHONINTERP_FOUND) ENDIF(PYTHONINTERP_FOUND)
IF(WITH_PYTHON) INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
ELSE()
SET(PYTHON_LIBRARIES "")
ENDIF()
...@@ -12,6 +12,10 @@ ...@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
IF(NOT WITH_SWIG_PY)
return()
ENDIF()
FIND_PACKAGE(SWIG) FIND_PACKAGE(SWIG)
IF(NOT SWIG_FOUND) IF(NOT SWIG_FOUND)
......
...@@ -16,25 +16,14 @@ INCLUDE(ExternalProject) ...@@ -16,25 +16,14 @@ INCLUDE(ExternalProject)
SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc) SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc)
SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc) SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc)
SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" CACHE PATH "Warp-ctc Directory" FORCE)
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include"
CACHE PATH "Warp-ctc Directory" FORCE)
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" CACHE PATH "Warp-ctc Library Directory" FORCE) # Used in unit test test_WarpCTCLayer
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib"
IF(WIN32) CACHE PATH "Warp-ctc Library Directory" FORCE)
SET(WARPCTC_LIBRARIES SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/lib/libwarpctc${CMAKE_SHARED_LIBRARY_SUFFIX}"
"${WARPCTC_INSTALL_DIR}/lib/warpctc.dll" CACHE FILEPATH "Warp-ctc Library" FORCE) CACHE FILEPATH "Warp-ctc Library" FORCE)
ELSE(WIN32)
IF(APPLE)
SET(_warpctc_SHARED_SUFFIX dylib)
ELSE(APPLE)
SET(_warpctc_SHARED_SUFFIX so)
ENDIF(APPLE)
SET(WARPCTC_LIBRARIES
"${WARPCTC_INSTALL_DIR}/lib/libwarpctc.${_warpctc_SHARED_SUFFIX}" CACHE FILEPATH "Warp-ctc Library" FORCE)
ENDIF(WIN32)
IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" ) IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" )
SET(USE_OMP OFF) SET(USE_OMP OFF)
...@@ -49,22 +38,26 @@ ExternalProject_Add( ...@@ -49,22 +38,26 @@ ExternalProject_Add(
PREFIX ${WARPCTC_SOURCES_DIR} PREFIX ${WARPCTC_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
CMAKE_ARGS -DWITH_GPU=${WITH_GPU} -DWITH_GPU=${WITH_GPU}
CMAKE_ARGS -DWITH_OMP=${USE_OMP} -DWITH_OMP=${USE_OMP}
CMAKE_ARGS -DWITH_TORCH=OFF -DWITH_TORCH=OFF
CMAKE_ARGS -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
CMAKE_ARGS -DBUILD_SHARED=ON -DBUILD_SHARED=ON
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release -DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
) )
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL) ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES}) SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
ADD_DEPENDENCIES(warpctc extern_warpctc) ADD_DEPENDENCIES(warpctc extern_warpctc)
......
...@@ -34,15 +34,16 @@ ExternalProject_Add( ...@@ -34,15 +34,16 @@ ExternalProject_Add(
GIT_TAG "v1.2.8" GIT_TAG "v1.2.8"
PREFIX ${ZLIB_SOURCES_DIR} PREFIX ${ZLIB_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR} -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DBUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DBUILD_SHARED_LIBS=OFF
CMAKE_ARGS -DCMAKE_MACOSX_RPATH=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release -DCMAKE_MACOSX_RPATH=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release -DCMAKE_BUILD_TYPE:STRING=Release
......
...@@ -128,8 +128,10 @@ set(GPU_COMMON_FLAGS ...@@ -128,8 +128,10 @@ set(GPU_COMMON_FLAGS
) )
if (APPLE) if (APPLE)
if(NOT CMAKE_CROSSCOMPILING)
# On Mac OS X build fat binaries with x86_64 architectures by default. # On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif()
else() else()
set(GPU_COMMON_FLAGS set(GPU_COMMON_FLAGS
-Wall -Wall
......
...@@ -24,11 +24,10 @@ IF(WIN32) ...@@ -24,11 +24,10 @@ IF(WIN32)
SET(HOST_SYSTEM "win32") SET(HOST_SYSTEM "win32")
ELSE(WIN32) ELSE(WIN32)
IF(APPLE) IF(APPLE)
EXEC_PROGRAM (sw_vers ARGS -productVersion OUTPUT_VARIABLE MACOSX_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" VERSION "${MACOSX_VERSION}")
SET(MACOS_VERSION ${VERSION})
SET(HOST_SYSTEM "macosx") SET(HOST_SYSTEM "macosx")
IF(NOT DEFINED ENV{MACOSX_DEPLOYMENT_TARGET}) EXEC_PROGRAM(sw_vers ARGS -productVersion OUTPUT_VARIABLE HOST_SYSTEM_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" MACOS_VERSION "${HOST_SYSTEM_VERSION}")
IF(NOT DEFINED $ENV{MACOSX_DEPLOYMENT_TARGET})
# Set cache variable - end user may change this during ccmake or cmake-gui configure. # Set cache variable - end user may change this during ccmake or cmake-gui configure.
SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING
"Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.") "Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.")
...@@ -49,6 +48,8 @@ ELSE(WIN32) ...@@ -49,6 +48,8 @@ ELSE(WIN32)
ELSEIF(LINUX_ISSUE MATCHES "Fedora") ELSEIF(LINUX_ISSUE MATCHES "Fedora")
SET(HOST_SYSTEM "fedora") SET(HOST_SYSTEM "fedora")
ENDIF() ENDIF()
STRING(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" HOST_SYSTEM_VERSION "${LINUX_ISSUE}")
ENDIF(EXISTS "/etc/issue") ENDIF(EXISTS "/etc/issue")
IF(EXISTS "/etc/redhat-release") IF(EXISTS "/etc/redhat-release")
...@@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES) ...@@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES)
MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES) MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES)
MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}") MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}, version: ${HOST_SYSTEM_VERSION}")
MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores") MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores")
# configuration for cross-compiling # configuration for cross-compiling
...@@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME) ...@@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi") ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi")
SET(RPI TRUE) SET(RPI TRUE)
INCLUDE(cross_compiling/raspberry_pi) INCLUDE(cross_compiling/raspberry_pi)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "iOS")
SET(IOS TRUE)
INCLUDE(cross_compiling/ios)
ENDIF() ENDIF()
ENDIF() ENDIF()
......
...@@ -25,8 +25,10 @@ function(target_circle_link_libraries TARGET_NAME) ...@@ -25,8 +25,10 @@ function(target_circle_link_libraries TARGET_NAME)
endif() endif()
endforeach() endforeach()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
if(IOS AND NOT IOS_ENABLE_BITCODE)
list(APPEND LIBS "-undefined dynamic_lookup") list(APPEND LIBS "-undefined dynamic_lookup")
endif() endif()
endif()
list(REVERSE libsInArgn) list(REVERSE libsInArgn)
target_link_libraries(${TARGET_NAME} target_link_libraries(${TARGET_NAME}
${LIBS} ${LIBS}
......
# Design Doc: Block and Scope
## The Representation of Computation
Both deep learning systems and programming languages help users describe computation procedures. These systems use various representations of computation:
- Caffe, Torch, and Paddle: sequences of layers.
- TensorFlow, Caffe2, Mxnet: graphs of operators.
- PaddlePaddle: nested blocks, like C++ and Java programs.
## Block in Programming Languages and Deep Learning
In programming languages, a block is a pair of curly braces that includes local variables definitions and a sequence of instructions, or operators.
Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
| programming languages | PaddlePaddle |
|-----------------------|-----------------------|
| for, while loop | RNN, WhileOp |
| if, if-else, switch | IfElseOp, SwitchOp |
| sequential execution | a sequence of layers |
A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
## Stack Frames and the Scope Hierarchy
The existence of the backward makes the execution of a block of traditional programs and PaddlePaddle different to each other:
| programming languages | PaddlePaddle |
|-----------------------|-------------------------------|
| stack | scope hierarchy |
| stack frame | scope |
| push at entering block| push at entering block |
| pop at leaving block | destroy at minibatch completes|
1. In traditional programs:
- When the execution enters the left curly brace of a block, the runtime pushes a frame into the stack, where it realizes local variables.
- After the execution leaves the right curly brace, the runtime pops the frame.
- The maximum number of frames in the stack is the maximum depth of nested blocks.
1. In PaddlePaddle
- When the execution enters a block, PaddlePaddle adds a new scope, where it realizes variables.
- PaddlePaddle doesn't pop a scope after the execution of the block because variables therein are to be used by the backward pass. So it has a stack forest known as a *scope hierarchy*.
- The height of the highest tree is the maximum depth of nested blocks.
- After the process of a minibatch, PaddlePaddle destroys the scope hierarchy.
## Use Blocks in C++ and PaddlePaddle Programs
Let us consolidate the discussion by presenting some examples.
### Blocks with `if-else` and `IfElseOp`
The following C++ programs shows how blocks are used with the `if-else` structure:
```c++
int x = 10;
int y = 20;
int out;
bool cond = false;
if (cond) {
int z = x + y;
out = softmax(z);
} else {
int z = fc(x);
out = z;
}
```
An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator](./if_else_op.md) is as follows:
```python
import paddle as pd
x = var(10)
y = var(20)
cond = var(false)
ie = pd.create_ifelseop(inputs=[x], output_num=1)
with ie.true_block():
x = ie.inputs(true, 0)
z = operator.add(x, y)
ie.set_output(true, 0, operator.softmax(z))
with ie.false_block():
x = ie.inputs(false, 0)
z = layer.fc(x)
ie.set_output(true, 0, operator.softmax(z))
out = b(cond)
```
In both examples, the left branch computes `softmax(x+y)` and the right branch computes `fc(x)`.
A difference is that variables in the C++ program contain scalar values, whereas those in the PaddlePaddle programs are mini-batches of instances. The `ie.input(true, 0)` invocation returns instances in the 0-th input, `x`, that corresponds to true values in `cond` as the local variable `x`, where `ie.input(false, 0)` returns instances corresponding to false values.
### Blocks with `for` and `RNNOp`
The following RNN model from the [RNN design doc](./rnn.md)
```python
x = sequence([10, 20, 30])
m = var(0)
W = tensor()
U = tensor()
rnn = create_rnn(inputs=[input])
with rnn.stepnet() as net:
x = net.set_inputs(0)
h = net.add_memory(init=m)
fc_out = pd.matmul(W, x)
hidden_out = pd.matmul(U, h.pre(n=1))
sum = pd.add_two(fc_out, hidden_out)
act = pd.sigmoid(sum)
h.update(act) # update memory with act
net.set_outputs(0, act, hidden_out) # two outputs
o1, o2 = rnn()
print o1, o2
```
has its equivalent C++ program as follows
```c++
int* x = {10, 20, 30};
int m = 0;
int W = some_value();
int U = some_other_value();
int mem[sizeof(x) / sizeof(x[0]) + 1];
int o1[sizeof(x) / sizeof(x[0]) + 1];
int o2[sizeof(x) / sizeof(x[0]) + 1];
for (int i = 1; i <= sizeof(x)/sizeof(x[0]); ++i) {
int x = x[i-1];
if (i == 1) mem[0] = m;
int fc_out = W * x;
int hidden_out = Y * mem[i-1];
int sum = fc_out + hidden_out;
int act = sigmoid(sum);
mem[i] = act;
o1[i] = act;
o2[i] = hidden_out;
}
print_array(o1);
print_array(o2);
```
## Compilation and Execution
Like TensorFlow programs, a PaddlePaddle program is written in Python. The first part describes a neural network as a protobuf message, and the rest part executes the message for training or inference.
The generation of this protobuf message is like what a compiler generates a binary executable file. The execution of the message that the OS executes the binary file.
## The "Binary Executable File Format"
The definition of the protobuf message is as follows:
```protobuf
message BlockDesc {
repeated VarDesc vars = 1;
repeated OpDesc ops = 2;
}
```
The step net in above RNN example would look like
```
BlockDesc {
vars = {
VarDesc {...} // x
VarDesc {...} // h
VarDesc {...} // fc_out
VarDesc {...} // hidden_out
VarDesc {...} // sum
VarDesc {...} // act
}
ops = {
OpDesc {...} // matmul
OpDesc {...} // add_two
OpDesc {...} // sigmoid
}
};
```
Also, the RNN operator in above example is serialized into a protobuf message of type `OpDesc` and would look like:
```
OpDesc {
inputs = {0} // the index of x
outputs = {5, 3} // indices of act and hidden_out
attrs {
"memories" : {1} // the index of h
"step_net" : <above step net>
}
};
```
This `OpDesc` value is in the `ops` field of the `BlockDesc` value representing the global block.
## The Compilation of Blocks
During the generation of the Protobuf message, the Block should store VarDesc (the Protobuf message which describes Variable) and OpDesc (the Protobuf message which describes Operator).
VarDesc in a block should have its name scope to avoid local variables affect parent block's name scope.
Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that stored in parent block. For example
```python
a = pd.Varaible(shape=[20, 20])
b = pd.fc(a, params=["fc.w", "fc.b"])
rnn = pd.create_rnn()
with rnn.stepnet() as net:
x = net.set_inputs(a)
# reuse fc's parameter
fc_without_b = pd.get_variable("fc.w")
net.set_outputs(fc_without_b)
out = rnn()
```
the method `pd.get_variable` can help retrieve a Variable by a name, a Variable may store in a parent block, but might be retrieved in a child block, so block should have a variable scope that supports inheritance.
In compiler design, the symbol table is a data structure created and maintained by compilers to store information about the occurrence of various entities such as variable names, function names, classes, etc.
To store the definition of variables and operators, we define a C++ class `SymbolTable`, like the one used in compilers.
`SymbolTable` can do the following stuff:
- store the definitions (some names and attributes) of variables and operators,
- to verify if a variable was declared,
- to make it possible to implement type checking (offer Protobuf message pointers to `InferShape` handlers).
```c++
// Information in SymbolTable is enough to trace the dependency graph. So maybe
// the Eval() interface takes a SymbolTable is enough.
class SymbolTable {
public:
SymbolTable(SymbolTable* parent) : parent_(parent) {}
OpDesc* NewOp(const string& name="");
// TODO determine whether name is generated by python or C++
// currently assume that a unique name will be generated by C++ if the
// argument name left default.
VarDesc* NewVar(const string& name="");
// find a VarDesc by name, if recursive true, find parent's SymbolTable
// recursively.
// this interface is introduced to support InferShape, find protobuf messages
// of variables and operators, pass pointers into InferShape.
// operator
//
// NOTE maybe some C++ classes such as VarDescBuilder and OpDescBuilder should
// be proposed and embedded into pybind to enable python operate on C++ pointers.
VarDesc* FindVar(const string& name, bool recursive=true);
OpDesc* FindOp(const string& name);
BlockDesc Compile() const;
private:
SymbolTable* parent_;
map<string, OpDesc> ops_;
map<string, VarDesc> vars_;
};
```
After all the description of variables and operators is added into SymbolTable,
the block has enough information to run.
The `Block` class takes a `BlockDesc` as input, and provide `Run` and `InferShape` functions.
```c++
namespace {
class Block : OperatorBase {
public:
Block(const BlockDesc& desc) desc_(desc) {}
void InferShape(const framework::Scope& scope) const override {
if (!symbols_ready_) {
CreateVariables(scope);
CreateOperators();
}
// should run InferShape first.
for (auto& op : runtime_table_.ops()) {
op->InferShape(scope);
}
}
void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first.");
for (auto& op : runtime_table_.ops()) {
op->Run(scope, dev_ctx);
}
}
void CreateVariables(const framework::Scope& scope);
void CreateOperators();
// some other necessary interfaces of NetOp are list below
// ...
private:
BlockDesc desc_;
bool symbols_ready_{false};
};
```
## The Execution of Blocks
Block inherits from OperatorBase, which has a Run method.
Block's Run method will run its operators sequentially.
There is another important interface called `Eval`, which take some arguments called targets, and generate a minimal graph which takes targets as the end points and creates a new Block,
after `Run`, `Eval` will get the latest value and return the targets.
The definition of Eval is as follows:
```c++
// clean a block description by targets using the corresponding dependency graph.
// return a new BlockDesc with minimal number of operators.
// NOTE not return a Block but the block's description so that this can be distributed
// to a cluster.
BlockDesc Prune(const BlockDesc& desc, vector<string> targets);
void Block::Eval(const vector<string>& targets,
const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) {
BlockDesc min_desc = Prune(desc_, targets);
Block min_block(min_desc);
min_block.Run(scope, dev_ctx);
}
```
IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`. IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack().
```python
import paddle as pd
x = var()
y = var()
cond = var()
b = pd.create_ifop(inputs=[x], output_num=1)
with b.true_block():
x = b.inputs(0)
z = operator.add(x, y)
b.set_output(0, operator.softmax(z))
out = b(cond)
```
If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N:
```python ```python
import paddle as pd import paddle as pd
...@@ -39,7 +21,7 @@ with b.false_block(): ...@@ -39,7 +21,7 @@ with b.false_block():
out = b(cond) out = b(cond)
``` ```
If only true_block is set in an IfElseOp, we can have a default value for false as: If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as:
```python ```python
import paddle as pd import paddle as pd
......
# Design Doc: Refactorization Overview
The goal of refactorizaiton include:
1. Make it easy for external contributors to write new elementory computaiton operations.
1. Make the codebase clean and readable.
1. Introduce a new design of computation representation -- a computation graph of operators and variables.
1. The graph representation helps implementing auto-scalable and auto fault recoverable distributed computing.
## Computation Graphs
1. PaddlePaddle represent the computation, training and inference of DL models, by computation graphs.
1. Please dig into [computation graphs](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md) for a solid example.
1. Users write Python programs to describe the graphs and run it (locally or remotely).
1. A graph is composed of *variabels* and *operators*.
1. The description of graphs must be able to be serialized/deserialized, so it
1. could to be sent to the cloud for distributed execution, and
1. be sent to clients for mobile or enterprise deployment.
1. The Python program do
1. *compilation*: runs a Python program to generate a protobuf message representation of the graph and send it to
1. the C++ library `libpaddle.so` for local execution,
1. the master process of a distributed training job for training, or
1. the server process of a Kubernetes serving job for distributed serving.
1. *execution*: according to the protobuf message, constructs instances of class `Variable` and `OperatorBase`, and run them.
## Description and Realization
At compile time, the Python program generates protobuf message representation of the graph, or the description of the graph.
At runtime, the C++ program realizes the graph and run it.
| | Representation (protobuf messages) | Realization (C++ class objects) |
|---|---|---|
|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)|
|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)|
|Block|BlockDesc|Block|
The word *graph* is exchangable with *block* in this document. A graph represent computation steps and local variables as a C++/Java program block, or a pair of { and }.
## Compilation and Execution
1. Run an applicaton Python program to describe the graph. In particular,
1. create VarDesc to represent local/intermediate variables,
1. create operators and set attributes,
1. validate attribute values,
1. inference the type and the shape of variables,
1. plan for memory-reuse for variables,
1. generate backward and optimization part of the Graph.
1. possiblly split the graph for distributed training.
1. The invocation of `train` or `infer` in the application Python program:
1. create a new Scope instance in the [scope hierarchy](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md) for each run of a block,
1. realize local variables defined in the BlockDesc message in the new scope,
1. a scope is similar to the stack frame in programming languages,
1. create an instance of class `Block`, in which,
1. realize operators in the BlockDesc message,
1. run the Block by calling
1. `Block::Eval(vector<Variable>* targets)` for forward and backward computations, or
1. `Block::Eval(vector<Operator>* targets)` for optimization.
## Intermediate Representation (IR)
```text
Compile Time -> IR -> Runtime
```
### Benefit
- Optimization
```text
Compile Time -> IR -> Optimized IR -> Runtime
```
- Send automatically partitioned IR to different nodes.
- Automatic data parallel
```text
Compile Time
|-> Single GPU IR
|-> [trainer-IR-0, trainer-IR-1, pserver-IR]
|-> Node-0 (runs trainer-IR-0)
|-> Node-1 (runs trainer-IR-1)
|-> Node-2 (runs pserver-IR)
```
- Automatic model parallel (planned for future)
---
# Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
---
# Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
* `Operator` is the fundamental building block as the user interface.
* Operator stores input/output variable name, and attributes.
* The `InferShape` interface is used to infer output variable shapes by its input shapes.
* Use `Run` to compute `input variables` to `output variables`.
---
# OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map.
* `OpWithKernel::Run` get device's kernel, and invoke `OpKernel::Compute`.
* `OpKernelKey` is the map key. Only device place now, but may be data type later.
---
# Why separate Kernel and Operator
* Separate GPU and CPU code.
* Make Paddle can run without GPU.
* Make one operator (which is user interface) can contain many implementations.
* Same mul op, different FP16, FP32 Kernel. different MKL, eigen kernel.
---
# Libraries for Kernel development
* `Eigen::Tensor` contains basic math and element-wise functions.
* Note that `Eigen::Tensor` has broadcast implementation.
* Limit number of `tensor.device(dev) = ` in your code.
* `thrust::tranform` and `std::transform`.
* `thrust` has the same API as C++ standard library. Using `transform` can quickly implement a customized elementwise kernel.
* `thrust` has more complex API, like `scan`, `reduce`, `reduce_by_key`.
* Hand-writing `GPUKernel` and `CPU` code
* Do not write `.h`. CPU Kernel should be in `.cc`. CPU kernel should be in `.cu`. (`GCC` cannot compile GPU code.)
---
# Operator Register
## Why register is necessary?
We need a method to build mappings between Op type names and Op classes.
## How to do the register?
Maintain a map, whose key is the type name and value is corresponding Op constructor.
---
# The Registry Map
### `OpInfoMap`
`op_type(string)` -> `OpInfo`
`OpInfo`:
- **`creator`**: The Op constructor.
- **`grad_op_type`**: The type of the gradient Op.
- **`proto`**: The Op's Protobuf, including inputs, outputs and required attributes.
- **`checker`**: Used to check attributes.
---
# Related Concepts
### Op_Maker
It's constructor takes `proto` and `checker`. They are compeleted during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37))
### Register Macros
```cpp
REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class)
REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
```
### `USE` Macros
make sure the registration process is executed and linked.
---
# Register Process
1. Write Op class, as well as its gradient Op class if there is.
2. Write Op maker class. In the constructor, describe its inputs, outputs, and attributes.
3. Invoke macro `REGISTER_OP`. The macro will
1. call maker class to complete `proto` and `checker`
2. with the completed `proto` and `checker`, build a new key-value pair in the `OpInfoMap`
4. Invoke `USE` macro in where the Op is used to make sure it is linked.
---
# Backward Module (1/2)
### Create Backward Operator
- Mapping from forwarding Op to backward Op
![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png)
---
# Backward Module (2/2)
### Build Backward Network
- **Input** graph of forwarding operators
- **Output** graph of backward operators
- **corner case in construction**
- shared variable => insert `Add` operator
- no gradient => insert `fill_zero_grad` operator
- recursive netOp => call `Backward` recursively
- RNN Op => recursively call `Backward` on stepnet
---
# Scope, Variable, Tensor
* `Tensor` is an n-dimension array with type.
* Only dims and data pointers are stored in `Tensor`.
* All operators on `Tensor` is written in `Operator` or global functions.
* variable length Tensor design [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md)
* `Variable` is the inputs and outputs of an operator. Not just `Tensor`.
* step_scopes in RNN is a variable and not a tensor.
* `Scope` is where variables store at.
* map<string/*var name */, Variable>
* `Scope` has a hierarchical structure. The local scope can get variable from its parent scope.
---
# Block (in design)
## the difference with original RNNOp
- as an operator is more intuitive than `RNNOp`,
- offers new interface `Eval(targets)` to deduce the minimal block to `Run`,
- fits the compile-time/ runtime separation design.
- during the compilation, `SymbolTable` stores `VarDesc`s and `OpDesc`s and serialize to a `BlockDesc`
- when graph executes, a Block with `BlockDesc` passed in creates `Op` and `Var` then `Run`
---
# Milestone
- take Paddle/books as the main line, the requirement of the models motivates framework refactoring,
- model migration
- framework development gives **priority support** to model migration, for example,
- the MNIST demo needs a Python interface,
- the RNN models require the framework to support `LoDTensor`.
- determine some timelines,
- heavily-relied Ops need to be migrated first,
- different models can be migrated parallelly.
- improve the framework at the same time
- accept imperfection, concentrated on solving the specific problem at the right price.
---
# Control the migration quality
- compare the performance of migrated models with old ones.
- follow google C style
- build the automatic workflow of generating Python/C++ documentations
- the documentation of layers and ops should be written inside the code
- take the documentation quality into account when doing PR
- preview the documentations, read and improve them from users' perspective
...@@ -28,42 +28,38 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER} ...@@ -28,42 +28,38 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER}
add_dependencies(paddle_capi paddle_proto) add_dependencies(paddle_capi paddle_proto)
# combine all paddle static libraries together, into libpaddle_capi_whole.a # combine all paddle static libraries together, into libpaddle_capi_whole.a
# user should use PaddleCAPI as -lpaddle_capi_whole # user should use PaddleCAPI as -lpaddle_capi_whole
set(capi_whole_library libpaddle_capi_whole.a) set(PADDLE_CAPI_INFER_LIBS
add_custom_target(paddle_capi_whole ALL paddle_utils
COMMAND mkdir -p o_files/capi && cd o_files/capi/ && ar -x $<TARGET_FILE:paddle_capi> paddle_parameter
COMMAND mkdir -p o_files/utils && cd o_files/utils/ && ar -x $<TARGET_FILE:paddle_utils> paddle_math
COMMAND mkdir -p o_files/parameter && cd o_files/parameter/ && ar -x $<TARGET_FILE:paddle_parameter> paddle_cuda
COMMAND mkdir -p o_files/math && cd o_files/math/ && ar -x $<TARGET_FILE:paddle_math> paddle_function
COMMAND mkdir -p o_files/cuda && cd o_files/cuda/ && ar -x $<TARGET_FILE:paddle_cuda> paddle_gserver
COMMAND mkdir -p o_files/function && cd o_files/function/ && ar -x $<TARGET_FILE:paddle_function> paddle_proto
COMMAND mkdir -p o_files/gserver && cd o_files/gserver/ && ar -x $<TARGET_FILE:paddle_gserver> paddle_pserver
COMMAND mkdir -p o_files/proto && cd o_files/proto/ && ar -x $<TARGET_FILE:paddle_proto> paddle_network)
COMMAND mkdir -p o_files/network && cd o_files/network/ && ar -x $<TARGET_FILE:paddle_network>
COMMAND mkdir -p o_files/pserver && cd o_files/pserver/ && ar -x $<TARGET_FILE:paddle_pserver>
COMMAND ar crs ${capi_whole_library} `find ./o_files -name '*.o'`
COMMAND rm -rf o_files
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS paddle_capi paddle_utils paddle_parameter paddle_math
paddle_cuda paddle_function paddle_gserver
paddle_proto paddle_pserver paddle_network
)
set_target_properties(paddle_capi_whole
PROPERTIES IMPORTED_LOCATION ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library})
set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS})
# TODO: merge mkl into paddle_capi_shared
add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) # No shared library for iOS
set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") if(NOT IOS)
target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map")
link_paddle_exe(paddle_capi_shared) # TODO: merge mkl into paddle_capi_shared
add_library(paddle_capi_shared SHARED ${CAPI_SOURCES})
set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
link_paddle_exe(paddle_capi_shared)
endif()
# install library & headers. # install library & headers.
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle) install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID) if(ANDROID)
install(TARGETS paddle_capi_whole paddle_capi_shared
ARCHIVE DESTINATION lib/${ANDROID_ABI}
LIBRARY DESTINATION lib/${ANDROID_ABI})
execute_process( execute_process(
COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1 COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
OUTPUT_VARIABLE GIT_COMMITS_LIST OUTPUT_VARIABLE GIT_COMMITS_LIST
...@@ -72,9 +68,6 @@ if(ANDROID) ...@@ -72,9 +68,6 @@ if(ANDROID)
if(${GIT_COMMITS_LIST_RESULT}) if(${GIT_COMMITS_LIST_RESULT})
set(GIT_COMMITS_LIST "No commits.") set(GIT_COMMITS_LIST "No commits.")
endif() endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
\"Compiler:\n\" \"Compiler:\n\"
\"\\t${CMAKE_C_COMPILER}\\n\" \"\\t${CMAKE_C_COMPILER}\\n\"
...@@ -88,8 +81,11 @@ if(ANDROID) ...@@ -88,8 +81,11 @@ if(ANDROID)
)" )"
) )
else(ANDROID) else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib) install(TARGETS paddle_capi_whole
ARCHIVE DESTINATION lib)
if(NOT IOS)
install(TARGETS paddle_capi_shared DESTINATION lib) install(TARGETS paddle_capi_shared DESTINATION lib)
endif()
endif(ANDROID) endif(ANDROID)
# this variable used for unittest # this variable used for unittest
......
...@@ -22,10 +22,10 @@ limitations under the License. */ ...@@ -22,10 +22,10 @@ limitations under the License. */
*/ */
typedef enum { typedef enum {
HL_POOLING_MAX = 0, HL_POOLING_MAX = 0,
// average includes padded values
HL_POOLING_AVERAGE = 1,
// average does not include padded values // average does not include padded values
HL_POOLING_AVERAGE_EXCLUDE_PADDING = 2, HL_POOLING_AVERAGE = 1,
// average includes padded values
HL_POOLING_AVERAGE_INCLUDE_PADDING = 2,
HL_POOLING_END HL_POOLING_END
} hl_pooling_mode_t; } hl_pooling_mode_t;
......
...@@ -461,7 +461,7 @@ class add<float32x4_t> { ...@@ -461,7 +461,7 @@ class add<float32x4_t> {
public: public:
INLINE float32x4_t operator()(const float32x4_t a, INLINE float32x4_t operator()(const float32x4_t a,
const float32x4_t b) const { const float32x4_t b) const {
return vmulq_f32(a, b); return vaddq_f32(a, b);
} }
}; };
......
...@@ -211,13 +211,11 @@ __global__ void KeAvgPoolForward(const int nthreads, ...@@ -211,13 +211,11 @@ __global__ void KeAvgPoolForward(const int nthreads,
int hstart = ph * strideH - padH; int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW; int wstart = pw * strideW - padW;
int hend = min(hstart + sizeY, height + padH); int hend = min(hstart + sizeY, height);
int wend = min(wstart + sizeX, width + padW); int wend = min(wstart + sizeX, width);
int pool_size = (hend - hstart) * (wend - wstart);
hstart = max(hstart, 0); hstart = max(hstart, 0);
wstart = max(wstart, 0); wstart = max(wstart, 0);
hend = min(hend, height); int pool_size = (hend - hstart) * (wend - wstart);
wend = min(wend, width);
real aveval = 0; real aveval = 0;
inputData += (frameNum * channels + c) * height * width; inputData += (frameNum * channels + c) * height * width;
...@@ -299,12 +297,14 @@ __global__ void KeAvgPoolBackward(const int nthreads, ...@@ -299,12 +297,14 @@ __global__ void KeAvgPoolBackward(const int nthreads,
outGrad += (frameNum * outStride + offsetC * pooledH * pooledW); outGrad += (frameNum * outStride + offsetC * pooledH * pooledW);
for (int ph = phstart; ph < phend; ++ph) { for (int ph = phstart; ph < phend; ++ph) {
int hstart = ph * strideH - padH;
int hend = min(hstart + sizeY, height);
hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) { for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size // figure out the pooling size
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW; int wstart = pw * strideW - padW;
int hend = min(hstart + sizeY, height + padH); int wend = min(wstart + sizeX, width);
int wend = min(wstart + sizeX, width + padW); wstart = max(wstart, 0);
int poolsize = (hend - hstart) * (wend - wstart); int poolsize = (hend - hstart) * (wend - wstart);
gradient += outGrad[ph * pooledW + pw] / poolsize; gradient += outGrad[ph * pooledW + pw] / poolsize;
} }
...@@ -600,16 +600,13 @@ __global__ void KeAvgPool3DForward(const int nthreads, ...@@ -600,16 +600,13 @@ __global__ void KeAvgPool3DForward(const int nthreads,
int dstart = pd * strideD - padD; int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH; int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW; int wstart = pw * strideW - padW;
int dend = min(dstart + sizeZ, depth + padD); int dend = min(dstart + sizeZ, depth);
int hend = min(hstart + sizeY, height + padH); int hend = min(hstart + sizeY, height);
int wend = min(wstart + sizeX, width + padW); int wend = min(wstart + sizeX, width);
int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
dstart = max(dstart, 0); dstart = max(dstart, 0);
hstart = max(hstart, 0); hstart = max(hstart, 0);
wstart = max(wstart, 0); wstart = max(wstart, 0);
dend = min(dend, depth); int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
hend = min(hend, height);
wend = min(wend, width);
real aveval = 0; real aveval = 0;
inputData += (frameNum * channels + c) * depth * height * width; inputData += (frameNum * channels + c) * depth * height * width;
...@@ -712,15 +709,18 @@ __global__ void KeAvgPool3DBackward(const int nthreads, ...@@ -712,15 +709,18 @@ __global__ void KeAvgPool3DBackward(const int nthreads,
outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW; outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW;
for (int pd = pdstart; pd < pdend; ++pd) { for (int pd = pdstart; pd < pdend; ++pd) {
int dstart = pd * strideD - padD;
int dend = min(dstart + sizeZ, depth);
dstart = max(dstart, 0);
for (int ph = phstart; ph < phend; ++ph) { for (int ph = phstart; ph < phend; ++ph) {
int hstart = ph * strideH - padH;
int hend = min(hstart + sizeY, height);
hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) { for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size // figure out the pooling size
int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW; int wstart = pw * strideW - padW;
int dend = min(dstart + sizeZ, depth + padD); int wend = min(wstart + sizeX, width);
int hend = min(hstart + sizeY, height + padH); wstart = max(wstart, 0);
int wend = min(wstart + sizeX, width + padW);
int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart); int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart);
gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize; gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize;
} }
......
...@@ -432,11 +432,11 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc, ...@@ -432,11 +432,11 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
cudnn_mode = CUDNN_POOLING_MAX; cudnn_mode = CUDNN_POOLING_MAX;
break; break;
case HL_POOLING_AVERAGE: case HL_POOLING_AVERAGE:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
break;
case HL_POOLING_AVERAGE_EXCLUDE_PADDING:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING; cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
break; break;
case HL_POOLING_AVERAGE_INCLUDE_PADDING:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
break;
default: default:
LOG(FATAL) << "parameter mode error"; LOG(FATAL) << "parameter mode error";
} }
......
...@@ -22,14 +22,14 @@ namespace framework { ...@@ -22,14 +22,14 @@ namespace framework {
template <> template <>
Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< Eigen::DefaultDevice& ExecutionContext::GetEigenDevice<
platform::CPUPlace, Eigen::DefaultDevice>() const { platform::CPUPlace, Eigen::DefaultDevice>() const {
return *device_context_->get_eigen_device<Eigen::DefaultDevice>(); return *device_context_.get_eigen_device<Eigen::DefaultDevice>();
} }
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
template <> template <>
Eigen::GpuDevice& Eigen::GpuDevice&
ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const { ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
return *device_context_->get_eigen_device<Eigen::GpuDevice>(); return *device_context_.get_eigen_device<Eigen::GpuDevice>();
} }
#endif #endif
......
...@@ -366,7 +366,7 @@ struct EigenDeviceConverter<platform::GPUPlace> { ...@@ -366,7 +366,7 @@ struct EigenDeviceConverter<platform::GPUPlace> {
class ExecutionContext : public InferShapeContext { class ExecutionContext : public InferShapeContext {
public: public:
ExecutionContext(const OperatorBase& op, const Scope& scope, ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext* device_context) const platform::DeviceContext& device_context)
: InferShapeContext(op, scope), device_context_(device_context) {} : InferShapeContext(op, scope), device_context_(device_context) {}
template <typename PlaceType, template <typename PlaceType,
...@@ -374,9 +374,9 @@ class ExecutionContext : public InferShapeContext { ...@@ -374,9 +374,9 @@ class ExecutionContext : public InferShapeContext {
typename EigenDeviceConverter<PlaceType>::EigenDeviceType> typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
DeviceType& GetEigenDevice() const; DeviceType& GetEigenDevice() const;
platform::Place GetPlace() const { return device_context_->GetPlace(); } platform::Place GetPlace() const { return device_context_.GetPlace(); }
const platform::DeviceContext* device_context() const { const platform::DeviceContext& device_context() const {
return device_context_; return device_context_;
} }
...@@ -401,7 +401,8 @@ class ExecutionContext : public InferShapeContext { ...@@ -401,7 +401,8 @@ class ExecutionContext : public InferShapeContext {
return res; return res;
} }
const platform::DeviceContext* device_context_; private:
const platform::DeviceContext& device_context_;
}; };
template <> template <>
...@@ -461,7 +462,7 @@ class OperatorWithKernel : public OperatorBase { ...@@ -461,7 +462,7 @@ class OperatorWithKernel : public OperatorBase {
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const final { const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx)); auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx)); opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
} }
static std::unordered_map<std::string /* op_type */, OpKernelMap>& static std::unordered_map<std::string /* op_type */, OpKernelMap>&
......
...@@ -22,7 +22,7 @@ namespace framework { ...@@ -22,7 +22,7 @@ namespace framework {
template <typename T> template <typename T>
inline void Tensor::check_memory_size() const { inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first."); holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE( PADDLE_ENFORCE_GE(
holder_->size(), numel() * sizeof(T) + offset_, holder_->size(), numel() * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data " "Tensor's dims_ is out of bound. Call Tensor::mutable_data "
......
...@@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) { ...@@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) {
} catch (paddle::platform::EnforceNotMet err) { } catch (paddle::platform::EnforceNotMet err) {
caught = true; caught = true;
std::string msg = std::string msg =
"holder_ should not be null\nTenosr holds no memory. Call " "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first."; "Tensor::mutable_data first.";
const char* what = err.what(); const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) { for (size_t i = 0; i < msg.length(); ++i) {
...@@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) { ...@@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) {
} catch (paddle::platform::EnforceNotMet err) { } catch (paddle::platform::EnforceNotMet err) {
caught = true; caught = true;
std::string msg = std::string msg =
"holder_ should not be null\nTenosr holds no memory. Call " "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first."; "Tensor::mutable_data first.";
const char* what = err.what(); const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) { for (size_t i = 0; i < msg.length(); ++i) {
......
...@@ -52,7 +52,7 @@ public: ...@@ -52,7 +52,7 @@ public:
int outputHeight = output[2]; int outputHeight = output[2];
int outputWidth = output[3]; int outputWidth = output[3];
int filterMultiplier = outputChannels / groups_; int filterMultiplier = outputChannels / groups_;
CHECK_EQ(inputChannels, groups_); CHECK_EQ(static_cast<size_t>(inputChannels), groups_);
// only support strideH() == strideW() and filterHeight == filterWidth. // only support strideH() == strideW() and filterHeight == filterWidth.
CHECK_EQ(strideH(), strideW()); CHECK_EQ(strideH(), strideW());
......
...@@ -22,9 +22,12 @@ limitations under the License. */ ...@@ -22,9 +22,12 @@ limitations under the License. */
#include <type_traits> #include <type_traits>
#include "paddle/parameter/Argument.h" #include "paddle/parameter/Argument.h"
#include "paddle/utils/ClassRegistrar.h" #include "paddle/utils/ClassRegistrar.h"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
#ifdef PADDLE_USE_MKLDNN
#include "MKLDNNActivation.h"
#endif
namespace paddle { namespace paddle {
static ClassRegistrar<ActivationFunction> gActivationRegistrar; static ClassRegistrar<ActivationFunction> gActivationRegistrar;
...@@ -456,6 +459,12 @@ Error __must_check backward(Argument& act) { ...@@ -456,6 +459,12 @@ Error __must_check backward(Argument& act) {
END_DEFINE_ACTIVATION(log) END_DEFINE_ACTIVATION(log)
ActivationFunction* ActivationFunction::create(const std::string& type) { ActivationFunction* ActivationFunction::create(const std::string& type) {
#ifdef PADDLE_USE_MKLDNN
if (!type.empty() && type.compare(0, 7, "mkldnn_") == 0) {
return MKLDNNActivation::create(type);
}
#endif
return gActivationRegistrar.createByType(type); return gActivationRegistrar.createByType(type);
} }
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNActivation.h"
#include "mkldnn.hpp"
#include "paddle/utils/ClassRegistrar.h"
namespace paddle {
static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
/**
* @def MKLDNN_ACTIVATION_CLASS_NAME
* @note MKLDNN_ACTIVATION_CLASS_NAME(relu) relu_;
* means mkldnn_reluActivation relu_;
*/
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
/**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
*/
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION(ACT_TYPE, ALPHA, BWD_ALPHA) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) \
: public MKLDNNEltwiseActivation { \
private: \
static const std::string name; \
static const float alpha; \
static const float bwdAlpha; \
\
public: \
const std::string& getName() const { return name; } \
float getAlpha() const { return alpha; } \
float getBwdAlpha() const { return bwdAlpha; } \
}; \
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
"mkldnn_" #ACT_TYPE; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; \
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
gMKLDNNActivationRegistrar \
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
"mkldnn_" #ACT_TYPE); \
});
/**
* @brief MKLDNN Relu Activation.
* Actually mkldnn_relu is Leaky Relu.
* f(x) = x (x >= 0)
* f(x) = negative_slope * x (x < 0)
* @note the negative_slope should be -0.f in forward
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, -0.f, 0.f)
/**
* @brief MKLDNN Tanh Activation.
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, 0.f, 0.f)
/**
* @brief MKLDNN ELU(Exponential Linear Unit) Activation.
* f(x) = x (x >= 0)
* f(x) = negative_slope * (exp(x) - 1) (x < 0)
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, 0.f, 0.f)
ActivationFunction* MKLDNNActivation::create(const std::string& type) {
return gMKLDNNActivationRegistrar.createByType(type);
}
std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
std::vector<std::string> types;
gMKLDNNActivationRegistrar.forEachType(
[&](const std::string& type) { types.push_back(type); });
return types;
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ActivationFunction.h"
#include "mkldnn.hpp"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/math/MKLDNNMatrix.h"
#include "paddle/parameter/Argument.h"
namespace paddle {
/**
* @brief Base class of MKLDNN Activation.
* Common activation function are provieded,
* including mkldnn_relu, mkldnn_elu, mkldnn_tanh, mkldnn_softmax
*/
class MKLDNNActivation : public ActivationFunction {
protected:
// input value element count
size_t cnt_;
// should not merge the resetBwd into resetFwd,
// because the grad data would be changing before backward.
bool needResetBwd_;
// mkldnn matrix, primitive, stream and pipeline
MKLDNNMatrixPtr val_;
MKLDNNMatrixPtr grad_;
std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwd_;
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
public:
MKLDNNActivation() : cnt_(0), needResetBwd_(true) {}
~MKLDNNActivation() {}
static ActivationFunction* create(const std::string& type);
static std::vector<std::string> getAllRegisteredTypes();
virtual const std::string& getName() const = 0;
virtual Error __must_check forward(Argument& act) = 0;
virtual Error __must_check backward(Argument& act) = 0;
};
/**
* @brief Base class of MKLDNN Eltwise Activation,
* includes mkldnn_relu, mkldnn_elu and mkldnn_tanh.
*/
class MKLDNNEltwiseActivation : public MKLDNNActivation {
typedef mkldnn::eltwise_forward eltwise_fwd;
typedef mkldnn::eltwise_backward eltwise_bwd;
protected:
// save the forward primitive desc, which can be used backward
std::shared_ptr<eltwise_fwd::primitive_desc> fwdPD_;
// eltwise_bwd need src input value
MKLDNNMatrixPtr inVal_;
// use for copy data
std::shared_ptr<mkldnn::reorder> copyInVal_;
public:
MKLDNNEltwiseActivation() {}
~MKLDNNEltwiseActivation() {}
virtual const std::string& getName() const = 0;
// in common, the alpha of forward and backward should be equal.
// but for relu, to avoid negative value, they should be opposite
virtual float getAlpha() const = 0;
virtual float getBwdAlpha() const = 0;
virtual float getBeta() const { return 0.f; }
virtual mkldnn::algorithm getAlgo(const std::string& type) const {
if (type == "mkldnn_relu") {
return mkldnn::algorithm::eltwise_relu;
} else if (type == "mkldnn_tanh") {
return mkldnn::algorithm::eltwise_tanh;
} else if (type == "mkldnn_elu") {
return mkldnn::algorithm::eltwise_elu;
} else {
LOG(FATAL) << "Unkown eltwise activation type: " << type;
}
return (mkldnn::algorithm)0;
}
/**
* reshape and reset the forward primitives
*/
void resetFwd(Argument& act) {
if (cnt_ == act.value->getElementCnt()) {
return;
}
cnt_ = act.value->getElementCnt();
stream_.reset(new MKLDNNStream());
auto eng = CPUEngine::Instance().getEngine();
// get algo setting
mkldnn::algorithm algo = getAlgo(this->getName());
// note: alpha represents the NegativeSlope when used in relu.
float alpha = getAlpha();
float beta = getBeta();
/// forward
pipelineFwd_.clear();
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
if (val_ == nullptr) {
int bs = act.getBatchSize();
int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1;
int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1;
int ic = cnt_ / bs / ih / iw;
CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw);
val_ = MKLDNNMatrix::create(
act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, eng);
CHECK(val_);
}
auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training,
algo,
val_->getMemoryDesc(),
alpha,
beta);
fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, eng));
// use inplace for forward but save input value before submit
inVal_ = val_;
if (act.grad) {
// only copy when need do backward
inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc());
copyInVal_ = std::make_shared<mkldnn::reorder>(*val_, *inVal_);
CHECK(copyInVal_) << "should not be emptry";
pipelineFwd_.push_back(*copyInVal_);
}
fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_));
pipelineFwd_.push_back(*fwd_);
needResetBwd_ = true;
}
/**
* reset the backward primitives, can not merge into resetFwd as the grad data
* would be changing before backward.
*/
void resetBwd(Argument& act) {
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
mkldnn::algorithm algo = getAlgo(this->getName());
float alpha = getBwdAlpha();
float beta = getBeta();
grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc());
auto eng = CPUEngine::Instance().getEngine();
auto bwdDesc = eltwise_bwd::desc(
algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta);
auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_);
CHECK(inVal_);
bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_));
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwd_);
}
Error __must_check forward(Argument& act) {
resetFwd(act);
stream_->submit(pipelineFwd_);
return Error();
}
Error __must_check backward(Argument& act) {
resetBwd(act);
stream_->submit(pipelineBwd_);
return Error();
}
};
} // namespace paddle
...@@ -29,9 +29,9 @@ bool CudnnPoolLayer::typeCheck(const std::string &poolType, ...@@ -29,9 +29,9 @@ bool CudnnPoolLayer::typeCheck(const std::string &poolType,
if (mode) { if (mode) {
*mode = HL_POOLING_AVERAGE; *mode = HL_POOLING_AVERAGE;
} }
} else if (poolType == "cudnn-avg-excl-pad-pool") { } else if (poolType == "cudnn-avg-incl-pad-pool") {
if (mode) { if (mode) {
*mode = HL_POOLING_AVERAGE_EXCLUDE_PADDING; *mode = HL_POOLING_AVERAGE_INCLUDE_PADDING;
} }
} else { } else {
return false; return false;
......
...@@ -143,7 +143,7 @@ void DetectionOutputLayer::forward(PassType passType) { ...@@ -143,7 +143,7 @@ void DetectionOutputLayer::forward(PassType passType) {
resetOutput(numKept, 7); resetOutput(numKept, 7);
} else { } else {
MatrixPtr outV = getOutputValue(); MatrixPtr outV = getOutputValue();
outV = NULL; if (outV) outV->resize(0, 0);
return; return;
} }
MatrixPtr outV = getOutputValue(); MatrixPtr outV = getOutputValue();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
namespace paddle {
bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */
ConvBaseLayer::init(layerMap, parameterMap);
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
/* Consistent caffe mode for multiple input */
caffeMode_ = conf.caffe_mode();
// create a new weight
size_t height, width;
height = filterPixels_[index] * filterChannels_[index];
width = (!isDeconv_) ? numFilters_ : channels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
index++;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
}
}
getOutputSize();
return true;
}
size_t ExpandConvBaseLayer::getOutputSize() {
CHECK_NE(inputLayers_.size(), 0UL);
size_t layerSize = ConvBaseLayer::calOutputSize();
return layerSize;
}
void ExpandConvBaseLayer::addSharedBias() {
size_t mapW = getOutputSize() / numFilters_;
size_t mapH = getOutputValue()->getElementCnt() / mapW;
MatrixPtr out =
Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);
Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
out->transpose(transOutValue_, false); // false means no memory allocation
transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
numFilters_);
MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
1,
biases_->getW()->getElementCnt(),
false,
useGpu_);
transOutValue_->addBias(*bias, 1.0f);
transOutValue_->reshape(mapW, mapH);
transOutValue_->transpose(out, false); // false means no memory allocation
out->clear();
bias->clear();
}
void ExpandConvBaseLayer::addUnsharedBias() {
MatrixPtr outValue = getOutputValue();
MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
1,
biases_->getW()->getElementCnt(),
false,
useGpu_);
outValue->addBias(*bias, 1.0f);
}
void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
size_t mapW = getOutputSize() / numFilters_;
size_t mapH = v->getElementCnt() / mapW;
MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);
Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
vTmp->transpose(transOutValue_, false); // false means no memory allocation
transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
numFilters_);
biases->collectBias(*transOutValue_, 1.0f);
}
void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
1,
biases_->getWGrad()->getElementCnt(),
false,
useGpu_);
if (sharedBiases_) {
bpropSharedBias(biases, v);
} else {
biases->collectBias(*v, 1.0f);
}
biases->clear();
}
} // namespace paddle
...@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) { ...@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) {
bool ExpandConvLayer::init(const LayerMap &layerMap, bool ExpandConvLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) { const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */ /* Initialize the basic convolutional parent class */
ExpandConvBaseLayer::init(layerMap, parameterMap); ConvBaseLayer::init(layerMap, parameterMap);
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
/* Consistent caffe mode for multiple input */
caffeMode_ = conf.caffe_mode();
// create a new weight
size_t height, width;
height = filterPixels_[index] * filterChannels_[index];
width = (!isDeconv_) ? numFilters_ : channels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
index++;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ = std::unique_ptr<Weight>(
new Weight(1, numFilters_, biasParameter_, 0));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_, 0));
}
}
getOutputSize();
size_t numInputs = config_.inputs_size(); size_t numInputs = config_.inputs_size();
inputShape_.resize(numInputs); inputShape_.resize(numInputs);
...@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
return true; return true;
} }
size_t ExpandConvLayer::getOutputSize() {
CHECK_NE(inputLayers_.size(), 0UL);
size_t layerSize = ConvBaseLayer::calOutputSize();
return layerSize;
}
// i is the index of input layers // i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \ #define BACKWARD_INPUT(i, inputs, outputs) \
backward_[2 * i]->calc(inputs, outputs) backward_[2 * i]->calc(inputs, outputs)
...@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) { ...@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) {
/* add the bias-vector */ /* add the bias-vector */
if (biases_.get()) { if (biases_.get()) {
if (sharedBiases_) { output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_);
addSharedBias();
} else {
addUnsharedBias();
}
} }
/* activation */ /* activation */
...@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) { ...@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
MatrixPtr outGrad = getOutputGrad(); MatrixPtr outGrad = getOutputGrad();
if (biases_ && biases_->getWGrad()) { if (biases_ && biases_->getWGrad()) {
bpropBiases(outGrad); biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_);
/* Increasing the number of gradient */ /* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector> #include <vector>
#include "ExpandConvBaseLayer.h" #include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h" #include "paddle/math/Matrix.h"
namespace paddle { namespace paddle {
...@@ -28,10 +28,9 @@ namespace paddle { ...@@ -28,10 +28,9 @@ namespace paddle {
* The config file api is img_conv_layer. * The config file api is img_conv_layer.
*/ */
class ExpandConvLayer : public ExpandConvBaseLayer { class ExpandConvLayer : public ConvBaseLayer {
public: public:
explicit ExpandConvLayer(const LayerConfig& config) explicit ExpandConvLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
: ExpandConvBaseLayer(config) {}
~ExpandConvLayer() {} ~ExpandConvLayer() {}
...@@ -41,6 +40,8 @@ public: ...@@ -41,6 +40,8 @@ public:
void forward(PassType passType) override; void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override; void backward(const UpdateCallback& callback) override;
size_t getOutputSize();
protected: protected:
std::vector<TensorShape> inputShape_; std::vector<TensorShape> inputShape_;
std::vector<TensorShape> filterShape_; std::vector<TensorShape> filterShape_;
......
...@@ -285,22 +285,18 @@ void MKLDNNConvLayer::resetWgtBiasValue( ...@@ -285,22 +285,18 @@ void MKLDNNConvLayer::resetWgtBiasValue(
wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc()); wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
bias = nullptr; bias = (biases_ && biases_->getW())
if (biases_ && biases_->getW()) { ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc())
bias = MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc()); : nullptr;
}
} }
void MKLDNNConvLayer::resetOutValue( void MKLDNNConvLayer::resetOutValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) { std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc()); out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
// change original output value from cpu matrix to mkldnn matrix
output_.value = std::dynamic_pointer_cast<Matrix>(out);
// create reorder if output value has cpu device and pd do not match // create reorder if output value has cpu device and pd do not match
cpuOutVal_ = nullptr; cpuOutVal_ = nullptr;
cpuOutVal_ = nullptr; cvtOutVal_ = nullptr;
if (!outputIsOnlyMKLDNN()) { if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
...@@ -356,6 +352,7 @@ void MKLDNNConvLayer::resetBwdWgtPD( ...@@ -356,6 +352,7 @@ void MKLDNNConvLayer::resetBwdWgtPD(
void MKLDNNConvLayer::resetBwdDataPD( void MKLDNNConvLayer::resetBwdDataPD(
std::shared_ptr<conv_bwdData::primitive_desc>& pd) { std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
pd = nullptr;
if (inputLayers_[0]->getOutput().grad == nullptr) { if (inputLayers_[0]->getOutput().grad == nullptr) {
return; return;
} }
...@@ -476,6 +473,7 @@ void MKLDNNConvLayer::resetWgtBiasGrad( ...@@ -476,6 +473,7 @@ void MKLDNNConvLayer::resetWgtBiasGrad(
<< "primitive desc of weight grad and value should be equal"; << "primitive desc of weight grad and value should be equal";
VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat(); VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
bias = nullptr;
if (biasVal_ == nullptr) { if (biasVal_ == nullptr) {
return; return;
} }
......
...@@ -17,9 +17,6 @@ limitations under the License. */ ...@@ -17,9 +17,6 @@ limitations under the License. */
using namespace mkldnn; // NOLINT using namespace mkldnn; // NOLINT
typedef memory::format format; typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;
namespace paddle { namespace paddle {
...@@ -93,46 +90,105 @@ void MKLDNNFcLayer::reshape( ...@@ -93,46 +90,105 @@ void MKLDNNFcLayer::reshape(
printSizeInfo(); printSizeInfo();
} }
void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline, void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
pipeline.clear(); resetFwdBuffers(in, wgt, bias, out);
bool hasBias = biases_ && biases_->getW();
const MatrixPtr& wgtVal = weight_->getW(); resetFwdPD(fwdPD_, in, wgt, bias, out);
const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
const MatrixPtr& outVal = output_.value; resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
printValueFormatFlow();
}
void MKLDNNFcLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::shared_ptr<fc_bwdWgt::primitive_desc> bwdWgtPD;
std::shared_ptr<fc_bwdData::primitive_desc> bwdDataPD;
resetBwdBuffers(in, wgt, bias, out);
resetBwdWgtPD(bwdWgtPD, wgt, bias, out);
resetBwdDataPD(bwdDataPD, in, out);
resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
printGradFormatFlow();
}
void MKLDNNFcLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetInValue(in);
resetWgtBiasValue(wgt, bias);
resetOutValue(out);
}
void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) { if (inputIsOnlyMKLDNN()) {
const MatrixPtr& inVal = getInputValue(0); const MatrixPtr& dnnIn = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal); in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
CHECK(in) << "Input should be MKLDNNMatrix"; CHECK(in) << "Input should be MKLDNNMatrix";
} else { } else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE); const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create( in = MKLDNNMatrix::create(
inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
} }
in->downSpatial(); in->downSpatial();
}
void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
wgt = MKLDNNMatrix::create( wgt = MKLDNNMatrix::create(
wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgt->downSpatial(); wgt->downSpatial();
bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
bias = (biases_ && biases_->getW())
? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
: nullptr; : nullptr;
out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_); }
// change original output value to mkldnn output value void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
output_.value = std::dynamic_pointer_cast<Matrix>(out); out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
if (!outputIsOnlyMKLDNN()) { if (!outputIsOnlyMKLDNN()) {
// fc cpu output value do not need create convert // fc cpu output value do not need create convert
// just share point // just share point
getOutput(CPU_DEVICE).value->setData(output_.value->getData()); getOutput(CPU_DEVICE).value->setData(out->getData());
} }
}
// create forward handle void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr wgt,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out) {
CHECK(in);
CHECK(wgt);
CHECK(out);
prop_kind pk = prop_kind::forward; prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
in->getMemoryDesc(), in->getMemoryDesc(),
wgt->getMemoryDesc(), wgt->getMemoryDesc(),
bias->getMemoryDesc(), bias->getMemoryDesc(),
...@@ -141,34 +197,39 @@ void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline, ...@@ -141,34 +197,39 @@ void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
in->getMemoryDesc(), in->getMemoryDesc(),
wgt->getMemoryDesc(), wgt->getMemoryDesc(),
out->getMemoryDesc()); out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
if (hasBias) { }
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
void MKLDNNFcLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (bias) {
fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
} else { } else {
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out)); fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
} }
printValueFormatFlow();
pipeline.push_back(*fwd_); pipeline.push_back(*fwd_);
} }
void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline, void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) { MKLDNNMatrixPtr& out) {
pipeline.clear(); resetOutGrad(out);
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
bool hasBias = biases_ && biases_->getWGrad();
/// backward weight resetWgtBiasGrad(wgt, bias);
CHECK(inVal_) << "Should have input value";
const MatrixPtr& wgtGrad = weight_->getWGrad();
const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
resetInGrad(in);
}
void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad // TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
// for MKLDNN device: // for MKLDNN device:
...@@ -178,66 +239,88 @@ void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline, ...@@ -178,66 +239,88 @@ void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
// for CPU device: // for CPU device:
// fc do not need to convert from cpu device since output is always nc format // fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device // only need create from cpu device
const MatrixPtr& outGrad = getOutput(device).grad; CHECK(outVal_);
out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc()); out =
wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc()); MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc()) }
: nullptr;
// create memory primitive desc void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, MKLDNNMatrixPtr& bias) {
inVal_->getMemoryDesc(), CHECK(wgtVal_);
wgt->getMemoryDesc(), wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); bias = nullptr;
fc_bwdWgt::desc bwdWgtDesc = hasBias if (biasVal_ == nullptr) {
? fc_bwdWgt::desc(inVal_->getMemoryDesc(), return;
}
bias =
MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc());
}
void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
void MKLDNNFcLayer::resetBwdWgtPD(
std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
CHECK(inVal_);
fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgt->getMemoryDesc(), wgt->getMemoryDesc(),
bias->getMemoryDesc(), bias->getMemoryDesc(),
out->getMemoryDesc()) out->getMemoryDesc())
: fc_bwdWgt::desc(inVal_->getMemoryDesc(), : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgt->getMemoryDesc(), wgt->getMemoryDesc(),
out->getMemoryDesc()); out->getMemoryDesc());
fc_bwdWgt::primitive_desc bwdWgtPD = pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); }
void MKLDNNFcLayer::resetBwdDataPD(
std::shared_ptr<fc_bwdData::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pd = nullptr;
if (in == nullptr) {
return;
}
CHECK(wgtVal_);
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
}
if (hasBias) { void MKLDNNFcLayer::resetBwdPipeline(
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias)); std::vector<primitive>& pipeline,
std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
CHECK(inVal_);
if (bias) {
bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
} else { } else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt)); bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
} }
pipeline.push_back(*bwdWgt_); pipeline.push_back(*bwdWgt_);
/// backward data if (bwdDataPD == nullptr) {
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return; return;
} }
if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
} else {
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
CHECK(wgtVal_) << "Should have weight memory"; CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in)); bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
printGradFormatFlow();
pipeline.push_back(*bwdData_); pipeline.push_back(*bwdData_);
} }
void MKLDNNFcLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
} // namespace paddle } // namespace paddle
...@@ -18,6 +18,9 @@ limitations under the License. */ ...@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp" #include "mkldnn.hpp"
namespace paddle { namespace paddle {
typedef mkldnn::inner_product_forward fc_fwd;
typedef mkldnn::inner_product_backward_weights fc_bwdWgt;
typedef mkldnn::inner_product_backward_data fc_bwdData;
/** /**
* @brief A subclass of MKLDNNLayer fc layer. * @brief A subclass of MKLDNNLayer fc layer.
...@@ -32,6 +35,9 @@ protected: ...@@ -32,6 +35,9 @@ protected:
// if has already init the weight // if has already init the weight
bool hasInitedWgt_; bool hasInitedWgt_;
// save forward primitive_desc, which can be used backward
std::shared_ptr<fc_fwd::primitive_desc> fwdPD_;
// fc weight and bias // fc weight and bias
std::unique_ptr<Weight> weight_; std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_; std::unique_ptr<Weight> biases_;
...@@ -67,6 +73,59 @@ public: ...@@ -67,6 +73,59 @@ public:
void convertWeightsFromPaddle() override; void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override; void convertWeightsToPaddle() override;
protected:
/**
* Forward functions: reset buffers(input, output, weight and bias),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetInValue(MKLDNNMatrixPtr& in);
void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
void resetOutValue(MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr wgt,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(input, output, weight and bias),
* reset primitive descriptor for backward weight,
* reset primitive descriptor for backward data,
* reset pipeline.
*/
void resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetOutGrad(MKLDNNMatrixPtr& out);
void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
void resetInGrad(MKLDNNMatrixPtr& in);
void resetBwdWgtPD(std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetBwdDataPD(std::shared_ptr<fc_bwdData::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
}; };
} // namespace paddle } // namespace paddle
...@@ -119,6 +119,10 @@ public: ...@@ -119,6 +119,10 @@ public:
inputElemenCnt_ = elemenCnt; inputElemenCnt_ = elemenCnt;
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
if (outVal_) {
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
}
convertWeightsFromPaddle(); convertWeightsFromPaddle();
needResetBwd_ = true; needResetBwd_ = true;
} }
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNPoolLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
namespace paddle {
REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);
bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
/* the size of inputs for pool-layer is 1 */
CHECK_EQ(config_.inputs_size(), 1);
const PoolConfig& conf = config_.inputs(0).pool_conf();
ic_ = conf.channels();
ih_ = conf.img_size_y();
iw_ = conf.img_size();
oc_ = ic_;
oh_ = conf.output_y();
ow_ = conf.output_x();
fh_ = conf.size_y();
fw_ = conf.size_x();
ph_ = conf.padding_y();
pw_ = conf.padding();
sh_ = conf.stride_y();
sw_ = conf.stride();
const std::string& type = conf.pool_type();
if (type == "max-projection") {
poolAlgo_ = algorithm::pooling_max;
} else if (type == "avg-projection") {
// paddle only use exclude_padding
poolAlgo_ = algorithm::pooling_avg_exclude_padding;
} else {
LOG(FATAL) << "unknow pooling type!";
}
return true;
}
void MKLDNNPoolLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
reshapeInput(bs, ih, iw);
// ic_ and oc can not be changed
CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
<< "Input channel can not be changed";
// cal output sizes
// paddle used false caffeMode for pooling
oh = outputSize(ih, fh_, ph_, sh_, false);
ow = outputSize(iw, fw_, pw_, sw_, false);
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetFwdBuffers(in, out);
resetFwdPD(fwdPD_, in, out);
resetFwdPipeline(pipeline, fwdPD_, in, out);
printValueFormatFlow();
}
void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::shared_ptr<pool_bwd::primitive_desc> pd;
resetBwdBuffers(in, out);
resetBwdPD(pd, in, out);
resetBwdPipeline(pipeline, pd, in, out);
printGradFormatFlow();
}
void MKLDNNPoolLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
resetInValue(in);
resetOutValue(out);
}
void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) {
const MatrixPtr& dnnIn = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create(
cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
}
void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
CHECK(inVal_) << "Should reset input value first";
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
out = MKLDNNMatrix::create(
output_.value, outDims, inVal_->getFormat(), engine_);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_ = nullptr;
cvtOutVal_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
CHECK(cvtOutVal_) << "should not be emptry";
} else {
// CPU output share the same data of MKLDNN output
cpuOut->setData(out->getData());
cpuOutVal_ = out;
}
}
}
void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr out) {
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
memory::dims kernels = memory::dims{fh_, fw_};
memory::dims strides = memory::dims{sh_, sw_};
memory::dims padL = memory::dims{ph_, pw_};
memory::dims padR = getPaddingR();
padding_kind padKind = padding_kind::zero;
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
: prop_kind::forward_training;
auto fwdDesc = pool_fwd::desc(pk,
poolAlgo_,
in->getMemoryDesc(),
out->getMemoryDesc(),
strides,
kernels,
padL,
padR,
padKind);
pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));
// prepare workspace if necessary
workspace_ =
(passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
: nullptr;
}
void MKLDNNPoolLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
fwd_ = workspace_
? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
: std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
pipeline.push_back(*fwd_);
if (cvtOutVal_) {
pipeline.push_back(*cvtOutVal_);
}
}
void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
resetOutGrad(out);
resetInGrad(in);
}
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
CHECK(outVal_) << "Should have output value";
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
// create reorder if output value has cpu device and pd do not match
cpuOutGrad_ = nullptr;
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
cpuOutGrad_ = MKLDNNMatrix::create(
cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
if (cpuOutGrad_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_) << "should not be emptry";
} else {
// share the same data of CPU output
output_.grad->setData(cpuOut->getData());
out = cpuOutGrad_;
}
}
}
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
memory::dims kernels = memory::dims{fh_, fw_};
memory::dims strides = memory::dims{sh_, sw_};
memory::dims padL = memory::dims{ph_, pw_};
memory::dims padR = getPaddingR();
CHECK(in);
CHECK(out);
auto bwdDesc = pool_bwd::desc(poolAlgo_,
in->getMemoryDesc(),
out->getMemoryDesc(),
strides,
kernels,
padL,
padR,
padding_kind::zero);
pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
void MKLDNNPoolLayer::resetBwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtOutGrad_) {
pipeline.push_back(*cvtOutGrad_);
}
bwdData_ =
workspace_
? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
: std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
pipeline.push_back(*bwdData_);
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
typedef mkldnn::pooling_forward pool_fwd;
typedef mkldnn::pooling_backward pool_bwd;
/**
* @brief A subclass of MKLDNNLayer pool layer.
*
* The config file api is mkldnn_pool
*/
class MKLDNNPoolLayer : public MKLDNNLayer {
protected:
// padding height and width
int ph_, pw_;
// stride height and width
int sh_, sw_;
// filter(kenerl) height and width
int fh_, fw_;
// pooling_avg or pooling_max
mkldnn::algorithm poolAlgo_;
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr cpuOutVal_;
MKLDNNMatrixPtr cpuOutGrad_;
// convert handle between CPU device and MKLDNN device
std::shared_ptr<mkldnn::reorder> cvtOutVal_;
std::shared_ptr<mkldnn::reorder> cvtOutGrad_;
// save forward primitive_desc, which can be used backward
std::shared_ptr<pool_fwd::primitive_desc> fwdPD_;
// according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
// test_pooling_forward.cpp, pool need workspace for backward
std::shared_ptr<mkldnn::memory> workspace_;
public:
explicit MKLDNNPoolLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
~MKLDNNPoolLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateInputData() override;
void printSizeInfo() override {
MKLDNNLayer::printSizeInfo();
VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
<< ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
<< ", sw: " << sw_;
}
protected:
/**
* Forward functions: reset buffers(input, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
void resetInValue(MKLDNNMatrixPtr& in);
void resetOutValue(MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(input, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
void resetOutGrad(MKLDNNMatrixPtr& out);
void resetInGrad(MKLDNNMatrixPtr& in);
void resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
/**
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* test_pooling_forward.cpp
*/
mkldnn::memory::dims getPaddingR() const {
mkldnn::memory::dims padR = {ph_, pw_};
for (int i = 0; i < 2; ++i) {
if ((ih_ + ph_ + padR[0] - fh_) / sh_ + 1 < oh_) {
++padR[0];
}
if ((iw_ + pw_ + padR[1] - fw_) / sw_ + 1 < ow_) {
++padR[1];
}
}
return padR;
}
};
} // namespace paddle
...@@ -73,9 +73,10 @@ void SequenceSliceLayer::checkInputs() { ...@@ -73,9 +73,10 @@ void SequenceSliceLayer::checkInputs() {
CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer " CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer "
<< "must be a sequence."; << "must be a sequence.";
const MatrixPtr indices1 = getInputValue(1); const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(static_cast<size_t>(indices1->getHeight()), CHECK_EQ(
inputSeq.hasSubseq() ? inputSeq.getNumSubSequences() indices1->getHeight(),
: inputSeq.getNumSequences()) static_cast<size_t>(inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences()))
<< "Height of the second input should be equal to number of sequence " << "Height of the second input should be equal to number of sequence "
<< "in the first input."; << "in the first input.";
if (inputLayers_.size() == 3) { if (inputLayers_.size() == 3) {
...@@ -151,7 +152,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts, ...@@ -151,7 +152,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k); if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);
int seqLen = endPos - begPos + 1; int seqLen = endPos - begPos + 1;
CHECK_GT(seqLen, 0U); CHECK_GT(seqLen, 0);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m); for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
hasSubseq hasSubseq
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen) ? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
......
...@@ -64,15 +64,17 @@ void MKLDNNTester::reset(const TestConfig& dnn, ...@@ -64,15 +64,17 @@ void MKLDNNTester::reset(const TestConfig& dnn,
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i])); configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
} }
refLayer_ = testLayers_[REF]; refLayer_ = testLayers_[REF];
dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]); dnnLayer_ = testLayers_[DNN];
CHECK(dnnLayer_);
// for comparison with Paddle reference results,
// need manually add cpu device output for test
dnnLayer_->addOutputArgument(CPU_DEVICE);
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size()); EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize(); setInputImgSize();
// for comparison with Paddle reference results,
// need manually add cpu device output for test
MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
if (dnnLayer) {
dnnLayer->addOutputArgument(CPU_DEVICE);
}
} }
void MKLDNNTester::setInputImgSize() { void MKLDNNTester::setInputImgSize() {
...@@ -122,7 +124,7 @@ void MKLDNNTester::randomTopDiffs() { ...@@ -122,7 +124,7 @@ void MKLDNNTester::randomTopDiffs() {
void MKLDNNTester::checkForward() { void MKLDNNTester::checkForward() {
VLOG(MKLDNN_ALL) << "Check Forward"; VLOG(MKLDNN_ALL) << "Check Forward";
printTopDatas(); printTopDatas();
double delta = compareMatrix(dnnLayer_->getOutput(-1).value, double delta = compareMatrix(dnnLayer_->getOutput(CPU_DEVICE).value,
refLayer_->getOutputValue()); refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_); EXPECT_LE(fabs(delta), eps_);
} }
...@@ -155,7 +157,10 @@ void MKLDNNTester::checkBackwardWgts() { ...@@ -155,7 +157,10 @@ void MKLDNNTester::checkBackwardWgts() {
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts); saveWgt(parameters_[DNN], dnnWgts);
dnnLayer_->convertWeightsToPaddle(); MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
if (dnnLayer) {
dnnLayer->convertWeightsToPaddle();
}
for (size_t i = 0; i < parameters_[DNN].size(); ++i) { for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
...@@ -322,6 +327,10 @@ void MKLDNNTester::runOnce() { ...@@ -322,6 +327,10 @@ void MKLDNNTester::runOnce() {
// and clearTopDatas(REF) should be coverd by ref layers // and clearTopDatas(REF) should be coverd by ref layers
clearBotDiffs(REF); clearBotDiffs(REF);
clearWgtDiffs(REF); clearWgtDiffs(REF);
// it is necessary to clear bottom diffs when only activation is dnn type
if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) {
clearBotDiffs(DNN);
}
} }
void MKLDNNTester::run(const TestConfig& dnn, void MKLDNNTester::run(const TestConfig& dnn,
...@@ -333,8 +342,19 @@ void MKLDNNTester::run(const TestConfig& dnn, ...@@ -333,8 +342,19 @@ void MKLDNNTester::run(const TestConfig& dnn,
float epsilon, float epsilon,
bool log, bool log,
int level) { int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type() CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 ||
<< " vs " << ref.layerConfig.type(); dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0)
<< "should be MKLDNN layer or MKLDNN activation";
if (dnn.layerConfig.type() == ref.layerConfig.type()) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
<< dnn.layerConfig.active_type() << " vs "
<< ref.layerConfig.active_type();
} else {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
<< dnn.layerConfig.type() << " vs "
<< ref.layerConfig.type();
}
ih_ = inputImgH; ih_ = inputImgH;
iw_ = inputImgW; iw_ = inputImgW;
iter_ = iter; iter_ = iter;
......
...@@ -41,8 +41,7 @@ protected: ...@@ -41,8 +41,7 @@ protected:
vector<LayerMap> layerMaps_; vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_; vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_; vector<LayerPtr> testLayers_;
LayerPtr refLayer_; LayerPtr refLayer_, dnnLayer_;
MKLDNNLayerPtr dnnLayer_;
/// run some iterations, all the result should pass /// run some iterations, all the result should pass
size_t iter_; size_t iter_;
......
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <vector> #include <vector>
#include "MKLDNNTester.h" #include "MKLDNNTester.h"
#include "ModelConfig.pb.h" #include "ModelConfig.pb.h"
#include "paddle/gserver/activations/MKLDNNActivation.h"
#include "paddle/math/MathUtils.h" #include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT using namespace paddle; // NOLINT
...@@ -141,6 +142,110 @@ TEST(MKLDNNLayer, ConvLayer) { ...@@ -141,6 +142,110 @@ TEST(MKLDNNLayer, ConvLayer) {
testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
} }
struct testPoolDesc {
int bs, ch; // input channel and output channel are the same
int ih, iw;
int oh, ow;
int fh, fw;
int ph, pw;
int sh, sw;
};
void testPoolLayer(const testPoolDesc& pm) {
const std::string compareTypes[] = {"mkldnn_pool", "pool"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
cfg.layerConfig.set_size(pm.ch * pm.oh * pm.ow);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw),
0});
LayerInputConfig* input = cfg.layerConfig.add_inputs();
PoolConfig* pool = input->mutable_pool_conf();
pool->set_channels(pm.ch);
pool->set_img_size(pm.iw);
pool->set_img_size_y(pm.ih);
pool->set_output_x(pm.ow);
pool->set_output_y(pm.oh);
pool->set_size_x(pm.fw);
pool->set_size_y(pm.fh);
pool->set_padding(pm.pw);
pool->set_padding_y(pm.ph);
pool->set_stride(pm.sw);
pool->set_stride_y(pm.sh);
int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false);
int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false);
CHECK_EQ(ow, pm.ow) << "output size check failed";
CHECK_EQ(oh, pm.oh) << "output size check failed";
MKLDNNTester tester;
for (auto type : {"max-projection", "avg-projection"}) {
pool->set_pool_type(type);
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
}
TEST(MKLDNNLayer, PoolLayer) {
/* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw*/
testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2});
testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2});
testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2});
testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2});
testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2});
testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1});
testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1});
testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2});
}
struct testActDesc {
int bs, ch;
int ih, iw;
};
static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
cfg.biasSize = 0;
cfg.layerConfig.set_type("addto");
cfg.layerConfig.set_size(pm.ch * pm.ih * pm.iw);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw),
0});
cfg.layerConfig.add_inputs();
}
void testActivation(std::string& type, const testActDesc& pm) {
const std::string compareTypes[] = {type, type.erase(0, 7)};
TestConfig cfg;
getAddtoConfig(cfg, pm);
TestConfig ref = cfg;
cfg.layerConfig.set_active_type(compareTypes[0]);
ref.layerConfig.set_active_type(compareTypes[1]);
MKLDNNTester tester;
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
TEST(MKLDNNActivation, Activations) {
auto types = MKLDNNActivation::getAllRegisteredTypes();
// TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation
std::set<string> excluded{"mkldnn_softmax", "mkldnn_elu"};
for (auto type : types) {
if (excluded.count(type)) {
continue;
}
testActivation(type, {16, 64, 32, 32});
}
}
// TODO(TJ): add branch test // TODO(TJ): add branch test
int main(int argc, char** argv) { int main(int argc, char** argv) {
......
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <cmath> #include <cmath>
#include "BaseMatrix.h" #include "BaseMatrix.h"
#include "MathFunctions.h" #include "MathFunctions.h"
#include "NEONFunctions.h"
#include "SIMDFunctions.h" #include "SIMDFunctions.h"
#include "hl_matrix_apply.cuh" #include "hl_matrix_apply.cuh"
#include "hl_matrix_base.cuh" #include "hl_matrix_base.cuh"
...@@ -666,6 +667,13 @@ void BaseMatrixT<T>::relu(BaseMatrixT& b) { ...@@ -666,6 +667,13 @@ void BaseMatrixT<T>::relu(BaseMatrixT& b) {
applyBinary(binary::Relu<T>(), b); applyBinary(binary::Relu<T>(), b);
} }
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <>
void BaseMatrixT<float>::relu(BaseMatrixT& b) {
neon::relu(data_, b.data_, height_ * width_);
}
#endif
DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f)); DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f));
template <class T> template <class T>
void BaseMatrixT<T>::reluDerivative(BaseMatrixT& b) { void BaseMatrixT<T>::reluDerivative(BaseMatrixT& b) {
......
...@@ -66,11 +66,12 @@ public: ...@@ -66,11 +66,12 @@ public:
/** /**
* Create reorder primitive. * Create reorder primitive.
* Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst. * Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
* checkData: for whether to check the data handle of src and dst is the same. * checkData: whether to check the data handle of src and dst.
* if true, means check it and do not want support inplace reorder; * if true, it will check the data and do not allow them equal;
* otherwise do not check data which means the created reorder * otherwise, it will not check them, then the reorder created
* maybe inplace buffer and do not guarantee the logical is correct * may have inplace buffer.
* since not all format or conversion support inplace. * Do not set false, if you can not guarantee the inplace logical
* would work with your reorder.
*/ */
static std::shared_ptr<mkldnn::reorder> createReorder( static std::shared_ptr<mkldnn::reorder> createReorder(
const MKLDNNMatrixPtr& src, const MKLDNNMatrixPtr& src,
......
...@@ -26,7 +26,7 @@ limitations under the License. */ ...@@ -26,7 +26,7 @@ limitations under the License. */
#include <mkl_lapacke.h> #include <mkl_lapacke.h>
#endif #endif
#ifdef PADDLE_USE_ATLAS #if defined(PADDLE_USE_ATLAS) || defined(PADDLE_USE_VECLIB)
extern "C" { extern "C" {
#include <cblas.h> #include <cblas.h>
#include <clapack.h> #include <clapack.h>
......
...@@ -1033,17 +1033,15 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1033,17 +1033,15 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight(); size_t frameNum = inputMat.getHeight();
size_t width = imgSizeW; CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
size_t height = imgSizeH;
CHECK(height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputH * outputW * channels); CHECK(width_ == outputH * outputW * channels);
hl_maxpool_forward(frameNum, hl_maxpool_forward(frameNum,
inputData, inputData,
channels, channels,
height, imgSizeH,
width, imgSizeW,
outputH, outputH,
outputW, outputW,
sizeX, sizeX,
...@@ -1080,11 +1078,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat, ...@@ -1080,11 +1078,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat,
real* outDiff = outGrad.getData(); real* outDiff = outGrad.getData();
size_t frameNum = inputMat.getHeight(); size_t frameNum = inputMat.getHeight();
size_t channels = outV.getWidth() / outputH / outputW; size_t channels = outV.getWidth() / outputH / outputW;
size_t width = imgSizeW; CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
size_t height = imgSizeH;
CHECK(height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == width * height * channels);
CHECK(outGrad.getHeight() == outV.getHeight() && CHECK(outGrad.getHeight() == outV.getHeight() &&
outGrad.getWidth() == outV.getWidth()); outGrad.getWidth() == outV.getWidth());
...@@ -1093,8 +1088,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat, ...@@ -1093,8 +1088,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat,
outData, outData,
outDiff, outDiff,
channels, channels,
height, imgSizeH,
width, imgSizeW,
outputH, outputH,
outputW, outputW,
sizeX, sizeX,
...@@ -1125,17 +1120,15 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat, ...@@ -1125,17 +1120,15 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight(); size_t frameNum = inputMat.getHeight();
size_t height = imgSizeH; CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
size_t width = imgSizeW;
CHECK(height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputH * outputW * channels); CHECK(width_ == outputH * outputW * channels);
hl_avgpool_forward(frameNum, hl_avgpool_forward(frameNum,
inputData, inputData,
channels, channels,
height, imgSizeH,
width, imgSizeW,
outputH, outputH,
outputW, outputW,
sizeX, sizeX,
...@@ -1166,17 +1159,15 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, ...@@ -1166,17 +1159,15 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad,
real* outDiff = outGrad.getData(); real* outDiff = outGrad.getData();
size_t frameNum = outGrad.getHeight(); size_t frameNum = outGrad.getHeight();
size_t channels = outGrad.getWidth() / outputH / outputW; size_t channels = outGrad.getWidth() / outputH / outputW;
size_t height = imgSizeH; CHECK(imgSizeH * imgSizeW * channels == width_);
size_t width = imgSizeW;
CHECK(height * width * channels == width_);
CHECK(height_ == outGrad.getHeight()); CHECK(height_ == outGrad.getHeight());
CHECK(outGrad.getWidth() == outputH * outputW * channels); CHECK(outGrad.getWidth() == outputH * outputW * channels);
hl_avgpool_backward(frameNum, hl_avgpool_backward(frameNum,
outDiff, outDiff,
channels, channels,
height, imgSizeH,
width, imgSizeW,
outputH, outputH,
outputW, outputW,
sizeX, sizeX,
...@@ -1214,19 +1205,16 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat, ...@@ -1214,19 +1205,16 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat,
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
real* maxPoolIdxData = maxPoolIdx.getData(); real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight(); size_t num = inputMat.getHeight();
size_t width = imgSizeW; CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth());
size_t height = imgSizeH;
size_t depth = imgSizeD;
CHECK(depth * height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputD * outputH * outputW * channels); CHECK(width_ == outputD * outputH * outputW * channels);
hl_maxpool3D_forward(num, hl_maxpool3D_forward(num,
inputData, inputData,
channels, channels,
depth, imgSizeD,
height, imgSizeH,
width, imgSizeW,
outputD, outputD,
outputH, outputH,
outputW, outputW,
...@@ -1269,20 +1257,16 @@ void GpuMatrix::maxPool3DBackward(Matrix& outGrad, ...@@ -1269,20 +1257,16 @@ void GpuMatrix::maxPool3DBackward(Matrix& outGrad,
real* maxPoolIdxData = maxPoolIdx.getData(); real* maxPoolIdxData = maxPoolIdx.getData();
size_t frameNum = getHeight(); size_t frameNum = getHeight();
size_t channels = outGrad.getWidth() / outputD / outputH / outputW; size_t channels = outGrad.getWidth() / outputD / outputH / outputW;
size_t width = imgSizeW; CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth());
size_t height = imgSizeH;
size_t depth = imgSizeD;
CHECK(depth * height * width * channels == getWidth());
CHECK(width_ == depth * width * height * channels);
CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() && CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() &&
outGrad.getWidth() == maxPoolIdx.getWidth()); outGrad.getWidth() == maxPoolIdx.getWidth());
hl_maxpool3D_backward(frameNum, hl_maxpool3D_backward(frameNum,
outDiff, outDiff,
channels, channels,
depth, imgSizeD,
height, imgSizeH,
width, imgSizeW,
outputD, outputD,
outputH, outputH,
outputW, outputW,
...@@ -1323,19 +1307,16 @@ void GpuMatrix::avgPool3DForward(Matrix& inputMat, ...@@ -1323,19 +1307,16 @@ void GpuMatrix::avgPool3DForward(Matrix& inputMat,
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
size_t frameNum = inputMat.getHeight(); size_t frameNum = inputMat.getHeight();
size_t height = imgSizeH; CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth());
size_t width = imgSizeW;
size_t depth = imgSizeD;
CHECK(depth * height * width * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputD * outputH * outputW * channels); CHECK(width_ == outputD * outputH * outputW * channels);
hl_avgpool3D_forward(frameNum, hl_avgpool3D_forward(frameNum,
inputData, inputData,
channels, channels,
depth, imgSizeD,
height, imgSizeH,
width, imgSizeW,
outputD, outputD,
outputH, outputH,
outputW, outputW,
...@@ -1375,19 +1356,16 @@ void GpuMatrix::avgPool3DBackward(Matrix& outGrad, ...@@ -1375,19 +1356,16 @@ void GpuMatrix::avgPool3DBackward(Matrix& outGrad,
real* outDiff = outGrad.getData(); real* outDiff = outGrad.getData();
size_t frameNum = outGrad.getHeight(); size_t frameNum = outGrad.getHeight();
size_t channels = outGrad.getWidth() / outputD / outputH / outputW; size_t channels = outGrad.getWidth() / outputD / outputH / outputW;
size_t height = imgSizeH; CHECK(imgSizeD * imgSizeH * imgSizeW * channels == width_);
size_t width = imgSizeW;
size_t depth = imgSizeD;
CHECK(depth * height * width * channels == width_);
CHECK(height_ == outGrad.getHeight()); CHECK(height_ == outGrad.getHeight());
CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels); CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels);
hl_avgpool3D_backward(frameNum, hl_avgpool3D_backward(frameNum,
outDiff, outDiff,
channels, channels,
depth, imgSizeD,
height, imgSizeH,
width, imgSizeW,
outputD, outputD,
outputH, outputH,
outputW, outputW,
...@@ -1999,11 +1977,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1999,11 +1977,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
real* outData = data_; real* outData = data_;
size_t num = inputMat.getHeight(); size_t num = inputMat.getHeight();
size_t inWidth = imgSizeW; size_t inLength = imgSizeH * imgSizeW;
size_t inHeight = imgSizeH; size_t outLength = outputH * outputW;
CHECK(inHeight * inWidth == inputMat.getWidth() / channels); CHECK(inLength == inputMat.getWidth() / channels);
CHECK_EQ(num, this->getHeight()); CHECK_EQ(num, this->getHeight());
CHECK_EQ(channels * outputH * outputW, this->getWidth()); CHECK_EQ(channels * outLength, this->getWidth());
size_t outStride = getStride(); size_t outStride = getStride();
/* initialize the data_ */ /* initialize the data_ */
...@@ -2020,24 +1998,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -2020,24 +1998,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
} }
for (size_t c = 0; c < channels; ++c) { // channel by channel for (size_t c = 0; c < channels; ++c) { // channel by channel
for (size_t ph = 0; ph < outputH; ++ph) { for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int hstart = ph * strideH - paddingH; int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW; int hend = std::min(hstart + sizeY, imgSizeH);
int hend = std::min(hstart + sizeY, inHeight);
int wend = std::min(wstart + sizeX, inWidth);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
outData[ph * outputW + pw] = std::max(outData[ph * outputW + pw], outData[ph * outputW + pw] = std::max(
inputData[h * inWidth + w]); outData[ph * outputW + pw], inputData[h * imgSizeW + w]);
} }
} }
} }
} }
// compute offset // compute offset
inputData += inHeight * inWidth; inputData += inLength;
outData += outputH * outputW; outData += outLength;
} }
} }
} }
...@@ -2058,8 +2036,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image, ...@@ -2058,8 +2036,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
size_t paddingH, size_t paddingH,
size_t paddingW) { size_t paddingW) {
size_t num = image.getHeight(); size_t num = image.getHeight();
size_t channels = size_t(width_ / imgSizeH / imgSizeW); size_t inLength = imgSizeH * imgSizeW;
CHECK(image.getWidth() == imgSizeH * imgSizeW * channels); size_t outLength = outputH * outputW;
size_t channels = size_t(width_ / inLength);
CHECK(image.getWidth() == inLength * channels);
CHECK(image.getHeight() == height_ && image.getWidth() == width_); CHECK(image.getHeight() == height_ && image.getWidth() == width_);
CHECK(outV.getHeight() == outGrad.getHeight() && CHECK(outV.getHeight() == outGrad.getHeight() &&
outV.getWidth() == outGrad.getWidth()); outV.getWidth() == outGrad.getWidth());
...@@ -2080,12 +2060,12 @@ void CpuMatrix::maxPoolBackward(Matrix& image, ...@@ -2080,12 +2060,12 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
} }
for (size_t c = 0; c < channels; ++c) { for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) { for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int hstart = ph * strideH - paddingH; int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW;
int hend = std::min(hstart + sizeY, imgSizeH); int hend = std::min(hstart + sizeY, imgSizeH);
int wend = std::min(wstart + sizeX, imgSizeW);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
...@@ -2098,10 +2078,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image, ...@@ -2098,10 +2078,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image,
} }
} }
// offset // offset
inData += imgSizeH * imgSizeW; inData += inLength;
tgtGrad += imgSizeH * imgSizeW; tgtGrad += inLength;
otData += outputH * outputW; otData += outLength;
otGrad += outputH * outputW; otGrad += outLength;
} }
} }
} }
...@@ -2120,10 +2100,10 @@ void CpuMatrix::avgPoolForward(Matrix& input, ...@@ -2120,10 +2100,10 @@ void CpuMatrix::avgPoolForward(Matrix& input,
size_t paddingW) { size_t paddingW) {
// The main loop // The main loop
size_t num = input.getHeight(); size_t num = input.getHeight();
size_t inHeight = imgSizeH; size_t inLength = imgSizeH * imgSizeW;
size_t inWidth = imgSizeW; size_t outLength = outputH * outputW;
CHECK(inHeight * inWidth * channels == input.getWidth()); CHECK(inLength * channels == input.getWidth());
CHECK(outputH * outputW * channels * num == height_ * width_); CHECK(outLength * channels * num == height_ * width_);
real* tgtData = data_; real* tgtData = data_;
real* inData = input.getData(); real* inData = input.getData();
...@@ -2133,30 +2113,27 @@ void CpuMatrix::avgPoolForward(Matrix& input, ...@@ -2133,30 +2113,27 @@ void CpuMatrix::avgPoolForward(Matrix& input,
} }
for (size_t c = 0; c < channels; ++c) { for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) { for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int hstart = ph * strideH - paddingH; int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW; int hend = std::min(hstart + sizeY, imgSizeH);
int hend = std::min(hstart + sizeY, inHeight + paddingH);
int wend = std::min(wstart + sizeX, inWidth + paddingW);
int poolSize = (hend - hstart) * (wend - wstart);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
hend = std::min(hend, static_cast<int>(inHeight));
wend = std::min(wend, static_cast<int>(inWidth));
CHECK(poolSize);
tgtData[ph * outputW + pw] = 0; // clear tgtData[ph * outputW + pw] = 0; // clear
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
tgtData[ph * outputW + pw] += inData[h * inWidth + w]; tgtData[ph * outputW + pw] += inData[h * imgSizeW + w];
} }
} }
int poolSize = (hend - hstart) * (wend - wstart);
CHECK(poolSize);
tgtData[ph * outputW + pw] /= poolSize; tgtData[ph * outputW + pw] /= poolSize;
} }
} }
// compute offset // compute offset
inData += inHeight * inWidth; inData += inLength;
tgtData += outputH * outputW; tgtData += outLength;
} }
} }
} }
...@@ -2176,7 +2153,9 @@ void CpuMatrix::avgPoolBackward(Matrix& input, ...@@ -2176,7 +2153,9 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
size_t paddingW) { size_t paddingW) {
size_t num = input.getHeight(); size_t num = input.getHeight();
size_t channels = input.getWidth() / outputH / outputW; size_t channels = input.getWidth() / outputH / outputW;
CHECK(imgSizeH * imgSizeW * channels == getWidth()); size_t inLength = imgSizeH * imgSizeW;
size_t outLength = outputH * outputW;
CHECK(inLength * channels == getWidth());
real* inData = input.getData(); real* inData = input.getData();
real* outData = getData(); real* outData = getData();
...@@ -2186,16 +2165,14 @@ void CpuMatrix::avgPoolBackward(Matrix& input, ...@@ -2186,16 +2165,14 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
} }
for (size_t c = 0; c < channels; ++c) { for (size_t c = 0; c < channels; ++c) {
for (size_t ph = 0; ph < outputH; ++ph) { for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int hstart = ph * strideH - paddingH; int hstart = ph * strideH - paddingH;
int wstart = pw * strideW - paddingW; int hend = std::min(hstart + sizeY, imgSizeH);
int hend = std::min(hstart + sizeY, imgSizeH + paddingH);
int wend = std::min(wstart + sizeX, imgSizeW + paddingW);
int poolSize = (hend - hstart) * (wend - wstart);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
hend = std::min(hend, static_cast<int>(imgSizeH)); int poolSize = (hend - hstart) * (wend - wstart);
wend = std::min(wend, static_cast<int>(imgSizeW));
CHECK(poolSize); CHECK(poolSize);
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
...@@ -2206,8 +2183,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input, ...@@ -2206,8 +2183,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input,
} }
} }
// offset // offset
outData += imgSizeH * imgSizeW; outData += inLength;
inData += outputH * outputW; inData += outLength;
} }
} }
} }
...@@ -2234,12 +2211,11 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, ...@@ -2234,12 +2211,11 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
real* outData = getData(); real* outData = getData();
real* maxPoolIdxData = maxPoolIdx.getData(); real* maxPoolIdxData = maxPoolIdx.getData();
size_t num = inputMat.getHeight(); size_t num = inputMat.getHeight();
size_t inWidth = imgSizeW; size_t inLength = imgSizeH * imgSizeW * imgSizeD;
size_t inHeight = imgSizeH; size_t outLength = outputH * outputW * outputD;
size_t inDepth = imgSizeD; CHECK(inLength == inputMat.getWidth() / channels);
CHECK(inHeight * inWidth * inDepth == inputMat.getWidth() / channels);
CHECK_EQ(num, this->getHeight()); CHECK_EQ(num, this->getHeight());
CHECK_EQ(channels * outputH * outputW * outputD, this->getWidth()); CHECK_EQ(channels * outLength, this->getWidth());
size_t outStride = getStride(); size_t outStride = getStride();
/* initialize the data_ */ /* initialize the data_ */
...@@ -2258,16 +2234,16 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, ...@@ -2258,16 +2234,16 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
} }
for (size_t c = 0; c < channels; ++c) { // channel by channel for (size_t c = 0; c < channels; ++c) { // channel by channel
for (size_t pd = 0; pd < outputD; ++pd) { for (size_t pd = 0; pd < outputD; ++pd) {
for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int dstart = pd * strideD - paddingD; int dstart = pd * strideD - paddingD;
int hstart = ph * strideH - paddingH; int dend = std::min(dstart + sizeZ, imgSizeD);
int wstart = pw * strideW - paddingW;
int dend = std::min(dstart + sizeZ, inDepth);
int hend = std::min(hstart + sizeY, inHeight);
int wend = std::min(wstart + sizeX, inWidth);
dstart = std::max(dstart, 0); dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
int hstart = ph * strideH - paddingH;
int hend = std::min(hstart + sizeY, imgSizeH);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
int maxIdx = -1; int maxIdx = -1;
real maxOutData = outData[(pd * outputH + ph) * outputW + pw]; real maxOutData = outData[(pd * outputH + ph) * outputW + pw];
...@@ -2275,9 +2251,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, ...@@ -2275,9 +2251,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
if (maxOutData < if (maxOutData <
inputData[(d * inHeight + h) * inWidth + w]) { inputData[(d * imgSizeH + h) * imgSizeW + w]) {
maxOutData = inputData[(d * inHeight + h) * inWidth + w]; maxOutData = inputData[(d * imgSizeH + h) * imgSizeW + w];
maxIdx = (d * inHeight + h) * inWidth + w; maxIdx = (d * imgSizeH + h) * imgSizeW + w;
} }
} }
} }
...@@ -2288,9 +2264,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, ...@@ -2288,9 +2264,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat,
} }
} }
// compute offset // compute offset
inputData += inDepth * inHeight * inWidth; inputData += inLength;
outData += outputD * outputH * outputW; outData += outLength;
maxPoolIdxData += outputD * outputH * outputW; maxPoolIdxData += outLength;
} }
} }
} }
...@@ -2315,7 +2291,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad, ...@@ -2315,7 +2291,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
real scaleTargets, real scaleTargets,
real scaleOutput) { real scaleOutput) {
size_t num = getHeight(); size_t num = getHeight();
size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW); size_t inLength = imgSizeH * imgSizeW * imgSizeD;
size_t outLength = outputH * outputW * outputD;
size_t channels = size_t(width_ / inLength);
CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() && CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() &&
maxPoolIdx.getWidth() == outGrad.getWidth()); maxPoolIdx.getWidth() == outGrad.getWidth());
...@@ -2341,9 +2319,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad, ...@@ -2341,9 +2319,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad,
} }
} }
// offset // offset
tgtGrad += imgSizeD * imgSizeH * imgSizeW; tgtGrad += inLength;
otGrad += outputD * outputH * outputW; otGrad += outLength;
maxPoolIdxData += outputD * outputH * outputW; maxPoolIdxData += outLength;
} }
} }
} }
...@@ -2367,11 +2345,10 @@ void CpuMatrix::avgPool3DForward(Matrix& input, ...@@ -2367,11 +2345,10 @@ void CpuMatrix::avgPool3DForward(Matrix& input,
size_t paddingW) { size_t paddingW) {
// The main loop // The main loop
size_t num = input.getHeight(); size_t num = input.getHeight();
size_t inDepth = imgSizeD; size_t inLength = imgSizeH * imgSizeW * imgSizeD;
size_t inHeight = imgSizeH; size_t outLength = outputH * outputW * outputD;
size_t inWidth = imgSizeW; CHECK(inLength * channels == input.getWidth());
CHECK(inDepth * inHeight * inWidth * channels == input.getWidth()); CHECK(outLength * channels * num == height_ * width_);
CHECK(outputD * outputH * outputW * channels * num == height_ * width_);
real* tgtData = getData(); real* tgtData = getData();
real* inData = input.getData(); real* inData = input.getData();
...@@ -2381,39 +2358,36 @@ void CpuMatrix::avgPool3DForward(Matrix& input, ...@@ -2381,39 +2358,36 @@ void CpuMatrix::avgPool3DForward(Matrix& input,
} }
for (size_t c = 0; c < channels; ++c) { for (size_t c = 0; c < channels; ++c) {
for (size_t pd = 0; pd < outputD; ++pd) { for (size_t pd = 0; pd < outputD; ++pd) {
for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int dstart = pd * strideD - paddingD; int dstart = pd * strideD - paddingD;
int hstart = ph * strideH - paddingH; int dend = std::min(dstart + sizeZ, imgSizeD);
int wstart = pw * strideW - paddingW;
int dend = std::min(dstart + sizeZ, inDepth + paddingD);
int hend = std::min(hstart + sizeY, inHeight + paddingH);
int wend = std::min(wstart + sizeX, inWidth + paddingW);
int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
dstart = std::max(dstart, 0); dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
int hstart = ph * strideH - paddingH;
int hend = std::min(hstart + sizeY, imgSizeH);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
dend = std::min(dend, static_cast<int>(inDepth));
hend = std::min(hend, static_cast<int>(inHeight));
wend = std::min(wend, static_cast<int>(inWidth));
CHECK(poolSize);
tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear
for (int d = dstart; d < dend; ++d) { for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
tgtData[(pd * outputH + ph) * outputW + pw] += tgtData[(pd * outputH + ph) * outputW + pw] +=
inData[(d * inHeight + h) * inWidth + w]; inData[(d * imgSizeH + h) * imgSizeW + w];
} }
} }
} }
int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
CHECK(poolSize);
tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize; tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize;
} }
} }
} }
// compute offset // compute offset
inData += inDepth * inHeight * inWidth; inData += inLength;
tgtData += outputD * outputH * outputW; tgtData += outLength;
} }
} }
} }
...@@ -2437,8 +2411,10 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, ...@@ -2437,8 +2411,10 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
real scaleTargets, real scaleTargets,
real scaleOutput) { real scaleOutput) {
size_t num = input.getHeight(); size_t num = input.getHeight();
size_t channels = input.getWidth() / outputD / outputH / outputW; size_t inLength = imgSizeH * imgSizeW * imgSizeD;
CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth()); size_t outLength = outputH * outputW * outputD;
size_t channels = input.getWidth() / outLength;
CHECK(inLength * channels == getWidth());
real* inData = input.getData(); real* inData = input.getData();
real* outData = getData(); real* outData = getData();
...@@ -2448,21 +2424,18 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, ...@@ -2448,21 +2424,18 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
} }
for (size_t c = 0; c < channels; ++c) { for (size_t c = 0; c < channels; ++c) {
for (size_t pd = 0; pd < outputD; ++pd) { for (size_t pd = 0; pd < outputD; ++pd) {
for (size_t ph = 0; ph < outputH; ++ph) {
for (size_t pw = 0; pw < outputW; ++pw) {
int dstart = pd * strideD - paddingD; int dstart = pd * strideD - paddingD;
int hstart = ph * strideH - paddingH; int dend = std::min(dstart + sizeZ, imgSizeD);
int wstart = pw * strideW - paddingW;
int dend = std::min(dstart + sizeZ, imgSizeD + paddingD);
int hend = std::min(hstart + sizeY, imgSizeH + paddingH);
int wend = std::min(wstart + sizeX, imgSizeW + paddingW);
int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
dstart = std::max(dstart, 0); dstart = std::max(dstart, 0);
for (size_t ph = 0; ph < outputH; ++ph) {
int hstart = ph * strideH - paddingH;
int hend = std::min(hstart + sizeY, imgSizeH);
hstart = std::max(hstart, 0); hstart = std::max(hstart, 0);
for (size_t pw = 0; pw < outputW; ++pw) {
int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
dend = std::min(dend, static_cast<int>(imgSizeD)); int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart);
hend = std::min(hend, static_cast<int>(imgSizeH));
wend = std::min(wend, static_cast<int>(imgSizeW));
CHECK(poolSize); CHECK(poolSize);
for (int d = dstart; d < dend; ++d) { for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
...@@ -2476,8 +2449,8 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, ...@@ -2476,8 +2449,8 @@ void CpuMatrix::avgPool3DBackward(Matrix& input,
} }
} }
// offset // offset
outData += imgSizeD * imgSizeH * imgSizeW; outData += inLength;
inData += outputD * outputH * outputW; inData += outLength;
} }
} }
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include "NEONFunctions.h"
#include <arm_neon.h>
namespace paddle {
namespace neon {
// b[i] = a[i] > 0.0f ? a[i] : 0.0f
void relu(const float* a, float* b, int len) {
int offset = len % 16;
float32x4_t ma0, ma1, ma2, ma3;
float32x4_t mb0, mb1, mb2, mb3;
float32x4_t zero = vdupq_n_f32(0.f);
for (int k = 0; k < len / 16; k++, a += 16, b += 16) {
ma0 = vld1q_f32(a);
ma1 = vld1q_f32(a + 4);
ma2 = vld1q_f32(a + 8);
ma3 = vld1q_f32(a + 12);
mb0 = vmaxq_f32(ma0, zero);
mb1 = vmaxq_f32(ma1, zero);
mb2 = vmaxq_f32(ma2, zero);
mb3 = vmaxq_f32(ma3, zero);
vst1q_f32(b, mb0);
vst1q_f32(b + 4, mb1);
vst1q_f32(b + 8, mb2);
vst1q_f32(b + 12, mb3);
}
for (int i = 0; i < offset; i++) {
b[i] = a[i] > 0.0f ? a[i] : 0.0f;
}
}
} // namespace neon
} // namespace paddle
#endif
...@@ -14,44 +14,10 @@ limitations under the License. */ ...@@ -14,44 +14,10 @@ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle { namespace paddle {
namespace neon {
/** void relu(const float* a, float* b, int len);
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class ExpandConvBaseLayer : public ConvBaseLayer {
protected:
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr transOutValue_;
public:
explicit ExpandConvBaseLayer(const LayerConfig& config)
: ConvBaseLayer(config) {}
~ExpandConvBaseLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
size_t getOutputSize();
/**
* Add shared bias.
*/
void addSharedBias();
/**
* Add unshared bias.
*/
void addUnsharedBias();
void bpropSharedBias(MatrixPtr biases, MatrixPtr v);
void bpropBiases(MatrixPtr v);
};
} // namespace neon
} // namespace paddle } // namespace paddle
...@@ -825,9 +825,8 @@ void testMaxPoolFwdBwd(int numSamples, ...@@ -825,9 +825,8 @@ void testMaxPoolFwdBwd(int numSamples,
int strideW, int strideW,
int padH, int padH,
int padW) { int padW) {
int outH = 0, outW = 0; int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1; int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
int inWidth = imgSizeH * imgSizeW * channels; int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
...@@ -927,9 +926,8 @@ void testAvgPoolFwdBwd(int numSamples, ...@@ -927,9 +926,8 @@ void testAvgPoolFwdBwd(int numSamples,
int strideW, int strideW,
int padH, int padH,
int padW) { int padW) {
int outH = 0, outW = 0; int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1; int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
int inWidth = imgSizeH * imgSizeW * channels; int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
......
...@@ -62,6 +62,24 @@ void Copy<platform::GPUPlace, platform::GPUPlace>(platform::GPUPlace dst_place, ...@@ -62,6 +62,24 @@ void Copy<platform::GPUPlace, platform::GPUPlace>(platform::GPUPlace dst_place,
} }
} }
template <>
void Copy<platform::CPUPlace, platform::GPUPlace>(platform::CPUPlace dst_place,
void* dst,
platform::GPUPlace src_place,
const void* src, size_t num) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
template <>
void Copy<platform::GPUPlace, platform::CPUPlace>(platform::GPUPlace dst_place,
void* dst,
platform::CPUPlace src_place,
const void* src, size_t num) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
#endif // PADDLE_ONLY_CPU #endif // PADDLE_ONLY_CPU
} // namespace memory } // namespace memory
......
...@@ -80,9 +80,11 @@ endfunction() ...@@ -80,9 +80,11 @@ endfunction()
add_subdirectory(math) add_subdirectory(math)
set(DEPS_OPS set(DEPS_OPS
recurrent_op) recurrent_op
cond_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor net_op) DEPS framework_proto tensor net_op)
op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
......
...@@ -23,10 +23,15 @@ class AccuracyOp : public framework::OperatorWithKernel { ...@@ -23,10 +23,15 @@ class AccuracyOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Inference"), PADDLE_ENFORCE_NOT_NULL(
"Input of Inference must be initialized."); ctx.InputVar("Inference"),
"Input(Inference) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input of Inference must be initialized."); "Input(Label) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Accuracy"),
"Output(Accuracy) of AccuracyOp should not be null.");
auto *inference = ctx.Input<framework::Tensor>("Inference"); auto *inference = ctx.Input<framework::Tensor>("Inference");
auto *label = ctx.Input<framework::Tensor>("Label"); auto *label = ctx.Input<framework::Tensor>("Label");
......
...@@ -12,26 +12,38 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,26 +12,38 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/reduce.h>
#include "paddle/operators/accuracy_op.h" #include "paddle/operators/accuracy_op.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
__global__ void AccuracySingleKernel(const int N, const int D, const int top_k, template <int BlockSize>
const int* Xdata, const int* labelData, __global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata,
float* accuracy) { const int* labeldata, float* accuracy) {
int correct = 0; int count = 0;
for (int row = 0; row < N; row++) { __shared__ int total[BlockSize];
const int label = labelData[row];
for (int col = 0; col < D; col++) { // support only 1 block
const int pred = Xdata[row * D + col]; for (int i = threadIdx.x; i < (N); i += BlockSize) {
if (pred == label) { for (int j = 0; j < D; ++j) {
++correct; if (Xdata[i * D + j] == labeldata[i]) {
++count;
break; break;
} }
} }
} }
*accuracy = static_cast<float>(correct) / static_cast<float>(N); total[threadIdx.x] = count;
__syncthreads();
// reduce the count with init value 0, and output accuracy.
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
if (threadIdx.x == 0) {
*accuracy = static_cast<float>(result) / static_cast<float>(N);
}
} }
template <typename T> template <typename T>
...@@ -57,8 +69,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { ...@@ -57,8 +69,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel {
return; return;
} }
AccuracySingleKernel<<<1, 1>>>(num_samples, infer_width, 1, inference_data, AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS>>>(
label_data, accuracy_data); num_samples, infer_width, inference_data, label_data, accuracy_data);
} }
}; };
......
...@@ -23,6 +23,13 @@ class AddOp : public framework::OperatorWithKernel { ...@@ -23,6 +23,13 @@ class AddOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of AddOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(), PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(), ctx.Input<Tensor>("Y")->dims(),
"Two input of Add Op's dimension must be same."); "Two input of Add Op's dimension must be same.");
......
...@@ -25,6 +25,9 @@ class ConcatOp : public framework::OperatorWithKernel { ...@@ -25,6 +25,9 @@ class ConcatOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out"); auto *out = ctx.Output<framework::LoDTensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis")); size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/cond_op.h"
#include <cstring>
#include <sstream>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/gather.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/scatter.h"
namespace paddle {
namespace operators {
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;
void CondOp::CreateScope(const Scope& scope) const {
auto sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
auto& sub_scope = scope.NewScope();
sub_scopes->push_back(&sub_scope);
}
void CondOp::CreateIndexTensor(const Scope& scope) const {
auto index_tensors_var = scope.FindVar("IndexTensors");
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
"Output(IndexTensors) of CondOp should not be null.");
auto& index_tensors =
*index_tensors_var->GetMutable<std::vector<LoDTensor>>();
index_tensors.push_back(LoDTensor());
}
void CondOp::InferShape(const Scope& scope) const {
auto sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();
for (int i = 0; i < 2; ++i) {
// Create two sub scopes for true and false branches
// sub_scopes[0] for the true branch and sub_scopes[1] for the false
// branch
CreateScope(scope);
// Create two tensors for true and false indices
// index_tensors[0] for the true branch and index_tensors[1] for the false
// branch
CreateIndexTensor(scope);
PADDLE_ENFORCE(!Inputs("Xs").empty(),
"Inputs(Xs) of CondOp can't be empty.");
for (auto& input : Inputs("Xs")) {
// Create a new tensor in sub-scope for input-type tensor
Variable* v = sub_scopes[i]->NewVar(input);
LoDTensor* sub_input = v->GetMutable<LoDTensor>();
sub_input->Resize(scope.FindVar(input)->GetMutable<LoDTensor>()->dims());
}
for (auto& output : (*sub_net_op_[i]).Outputs()) {
for (auto& var_name : output.second) {
sub_scopes[i]->NewVar(var_name);
}
}
// each net calls InferShape
sub_net_op_[i]->InferShape(*sub_scopes[i]);
}
for (auto& output : Outputs("Outs")) {
LoDTensor* tensor_t_out =
sub_scopes[0]->FindVar(output)->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL");
LoDTensor* tensor_f_out =
sub_scopes[1]->FindVar(output)->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL");
auto* tensor_out_var = scope.FindVar(output);
PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
LoDTensor* tensor_out = tensor_out_var->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_t_out,
"True output tensor should not be NULL");
// check output size should be same
PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
"Outputs not of the same shape");
tensor_out->Resize(tensor_t_out->dims());
// tensor_out->mutable_data<float>(tensor_out->dims(),
// platform::CPUPlace());
tensor_out->mutable_data<float>(platform::CPUPlace());
}
}
void CondOp::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
auto* sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto sub_scopes = sub_scopes_var->Get<std::vector<Scope*>>();
auto* index_tensors_var = scope.FindVar("IndexTensors");
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
"Output(IndexTensors) of CondOp should not be null.");
auto index_tensors = index_tensors_var->Get<std::vector<LoDTensor>>();
std::string cond_name = Input("Cond");
Variable* cond_var = scope.FindVar(cond_name);
PADDLE_ENFORCE_NOT_NULL(cond_var,
"Input(Cond) of CondOp should not be null.");
const LoDTensor* cond = cond_var->GetMutable<LoDTensor>();
// Step 1: get the true/false index at runtime
// index_[0]: vector<int>, contains all index for cond[i] == true
// index_[1]: vector<int>, contains all index for cond[i] == false
for (int i = 0; i < 2; ++i) index_[i].clear();
const int* cond_data = cond->data<int>();
for (int i = 0; i < cond->dims()[0]; ++i) {
if (cond_data[i])
index_[0].push_back(i);
else
index_[1].push_back(i);
}
// put index_[0] and index_[1] into two tensors:
// index_tensor_[0] and index_tensor_[1]
DDim dim = paddle::framework::make_ddim({0});
for (int i = 0; i < 2; ++i) {
dim[0] = index_[i].size();
int* tmp_ptr =
index_tensors[i].mutable_data<int>(dim, platform::CPUPlace());
index_tensors[i].Resize(dim);
memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
}
// Step 2: collect data by calling gather
for (int i = 0; i < 2; ++i) {
// i= 0/i for True and False branches respectively
for (auto& input : Inputs("Xs")) {
// find Tensor
Variable* v = scope.FindVar(input);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
v = sub_scopes[i]->FindVar(input);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
// Resize child
DDim dim = tensor_child->dims();
dim[0] = index_[i].size();
tensor_child->Resize(dim);
tensor_child->mutable_data<float>(dim, platform::CPUPlace());
Gather<float>(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
tensor_child);
}
}
// Step 3: run
for (int i = 0; i < 2; ++i) {
sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
}
// Step 4: merge output results
PADDLE_ENFORCE(!Outputs("Outs").empty(),
"Outputs(Outs) of CondOp can't be empty.");
for (int i = 0; i < 2; ++i) {
// i= 0/i for True and False branches respectively
for (auto& output : Outputs("Outs")) {
// find Tensor
Variable* v = scope.FindVar(output);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
v = sub_scopes[i]->FindVar(output);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
tensor_parent);
}
}
}
class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
public:
CondOpProtoAndCheckerMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Cond", "The condition, which is a bool vector");
AddInput("Xs", "Inputs of Subnets").AsDuplicable();
AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();
AddOutput("SubScopes", "sub scopes for true and false branches");
AddOutput("IndexTensors", "Index Tensors contains indices for true/false");
AddComment(R"DOC(
Sample dependent Cond Operator:
Given Cond[i] as a 1/0 vector to indicate true/false
The equation is:
Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
paddle::operators::CondOpProtoAndCheckerMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "glog/logging.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
/*
* @brief CondOp is a dynamic if-else Operator
*
* It has a input tensor named cond indicating which netop each instance will
* run.
*
* if cond == 1, it will run true_net, which is a NetOp.
*
* if cond == 0, it will run false_net, which is another NetOp.
*/
class CondOp : public framework::OperatorBase {
public:
CondOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
index_.resize(2);
sub_net_op_.resize(2);
}
CondOp(const CondOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW("Not implemented");
}
void CreateScope(const framework::Scope& scope) const;
void CreateIndexTensor(const framework::Scope& scope) const;
/*
* InferShape must be called before Run.
*/
void InferShape(const framework::Scope& scope) const override;
/*
* Set True Block
*/
void set_truenet(std::unique_ptr<OperatorBase>&& net) {
sub_net_op_[0] = std::move(net);
}
/*
* Set False Block
*/
void set_falsenet(std::unique_ptr<OperatorBase>&& net) {
sub_net_op_[1] = std::move(net);
}
void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override;
private:
// sub_net_op_[0]: subnet_t
// sub_net_op_[1]: subnet_f
std::vector<std::unique_ptr<framework::OperatorBase>> sub_net_op_;
// index_[0]: True_index;
// index_[1]: False_index;
mutable std::vector<std::vector<int>> index_;
};
} // namespace operators
} // namespace paddle
...@@ -26,8 +26,16 @@ class CosSimOp : public framework::OperatorWithKernel { ...@@ -26,8 +26,16 @@ class CosSimOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
// notnull check // notnull check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null."); "Input(X) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("XNorm"),
"Output(XNorm) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("YNorm"),
"Output(YNorm) of CosSimOp should not be null.");
// shape check // shape check
auto x_dims = ctx.Input<Tensor>("X")->dims(); auto x_dims = ctx.Input<Tensor>("X")->dims();
......
...@@ -56,7 +56,7 @@ class CosSimKernel : public framework::OpKernel { ...@@ -56,7 +56,7 @@ class CosSimKernel : public framework::OpKernel {
x_norm.device(place) = x.square().sum(row_along).sqrt(); x_norm.device(place) = x.square().sum(row_along).sqrt();
y_norm.device(place) = y.square().sum(row_along).sqrt(); y_norm.device(place) = y.square().sum(row_along).sqrt();
if (rows_x == rows_y) { if (rows_x == rows_y) {
auto xy = (x * y).sum(Eigen::array<int, 1>({1})); auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
z.device(place) = xy / x_norm / y_norm; z.device(place) = xy / x_norm / y_norm;
} else { } else {
Eigen::DSizes<int, 2> bcast(rows_x, 1); Eigen::DSizes<int, 2> bcast(rows_x, 1);
...@@ -134,7 +134,7 @@ class CosSimGradKernel : public framework::OpKernel { ...@@ -134,7 +134,7 @@ class CosSimGradKernel : public framework::OpKernel {
out_grad_y->mutable_data<T>(context.GetPlace()); out_grad_y->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1); auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast; auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({0})); dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({{0}}));
} }
} }
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/cross_entropy_op.h"
namespace paddle {
namespace operators {
using framework::LoDTensor;
class CrossEntropyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"), "Output(Y) must not be null.");
auto x = ctx.Input<Tensor>("X");
auto label = ctx.Input<Tensor>("Label");
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
if (ctx.Attr<int>("soft_label") == 1) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"Input(Label) must be 1.");
}
ctx.Output<LoDTensor>("Y")->Resize({x->dims()[0], 1});
}
};
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
"Input(Y@GRAD) must not be null.");
auto x = ctx.Input<Tensor>("X");
auto label = ctx.Input<Tensor>("Label");
auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0],
"The 1st dimension of Input(X) and Input(Y@Grad) must "
"be equal.");
PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
"The 2nd dimension of Input(Y@Grad) must be 1.");
if (ctx.Attr<int>("soft_label") == 1) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"Input(Label) must be 1.");
}
auto dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
dx->Resize(x->dims());
}
};
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CrossEntropyOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of CrossEntropyOp");
AddInput("Label", "The second input of CrossEntropyOp");
AddOutput("Y", "The output of CrossEntropyOp");
AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);
AddComment(R"DOC(
CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label = 0, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft_label = 1, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summuation of each row of Label
equals one.
3) One-hot cross-entropy with vecterized Input(Label):
As a special case of 2), when each row of Input(Label) has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
ops::CrossEntropyGradientOpKernel<float>);
...@@ -13,27 +13,13 @@ ...@@ -13,27 +13,13 @@
limitations under the License. */ limitations under the License. */
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/platform/assert.h" #include "paddle/platform/assert.h"
#include "paddle/platform/hostdevice.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor;
template <typename T>
__host__ __device__ T clipping_log(const T x) {
PADDLE_ASSERT(std::is_floating_point<T>::value);
const T kApproInf = 1e20;
T v = log(x);
if (v == INFINITY) {
return kApproInf;
}
if (v == -INFINITY) {
return -kApproInf;
}
return v;
}
template <typename T> template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
const int N, const int D) { const int N, const int D) {
...@@ -42,7 +28,20 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, ...@@ -42,7 +28,20 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) { i += blockDim.x * gridDim.x) {
PADDLE_ASSERT(label[i] >= 0 && label[i] < D); PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
Y[i] = -clipping_log(X[i * D + label[i]]); Y[i] = -tolerable_value(log(X[i * D + label[i]]));
}
}
template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
const int N, const int D) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
T sum = static_cast<T>(0);
for (int j = 0; j < D; j++) {
sum += label[i * D + j] * tolerable_value(log(X[i * D + j]));
}
Y[i] = -sum;
} }
} }
...@@ -69,57 +68,84 @@ __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X, ...@@ -69,57 +68,84 @@ __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
} }
template <typename T> template <typename T>
class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel { __global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
const T* label, const int N,
const int D) {
// TOOD(qingqing): optimize for this kernel
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
for (int j = 0; j < D; ++j) {
int idx = i * D + j;
dX[idx] = -label[idx] * dY[i] / X[idx];
}
}
}
template <typename T>
class CrossEntropyOpCUDAKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace."); "It must use GPUPlace.");
auto X = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>(); auto y = ctx.Output<Tensor>("Y");
const int* label_data = ctx.Input<Tensor>("label")->data<int>(); auto label = ctx.Input<Tensor>("Label");
auto Y = ctx.Output<Tensor>("Y");
Y->mutable_data<T>(ctx.GetPlace()); auto* x_data = x->data<T>();
T* Ydata = Y->data<T>(); y->mutable_data<T>(ctx.GetPlace());
auto* y_data = y->data<T>();
int N = X->dims()[0]; int n = x->dims()[0];
int D = X->dims()[1]; int d = x->dims()[1];
int block = 512; int block = 512;
int grid = (N + block - 1) / block; int grid = (n + block - 1) / block;
// TODO(qingqing) launch kernel on specified stream // TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext. // base on ExecutionContext.
CrossEntropyKernel<T><<<grid, block>>>(Ydata, Xdata, label_data, N, D); if (ctx.Attr<int>("soft_label") == 1) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n,
d);
} else {
auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
CrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n, d);
}
} }
}; };
template <typename T> template <typename T>
class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel { class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace."); "It must use GPUPlace.");
auto X = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X")); auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y")); auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto label = ctx.Input<Tensor>("label"); auto label = ctx.Input<Tensor>("Label");
auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace()); auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto* dYdata = dY->template data<T>(); auto* dy_data = dy->data<T>();
auto* Xdata = X->template data<T>(); auto* x_data = x->data<T>();
auto* label_data = label->data<int>();
int N = X->dims()[0]; int n = x->dims()[0];
int D = X->dims()[1]; int d = x->dims()[1];
int block = 512; int block = 512;
int grid = (N * D + block - 1) / block; int grid = (n * d + block - 1) / block;
zero<T><<<grid, block>>>(dXdata, N * D); zero<T><<<grid, block>>>(dx_data, n * d);
grid = (n + block - 1) / block;
grid = (N + block - 1) / block;
// TODO(qingqing): launch kernel on specified stream // TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext. // base on ExecutionContext.
CrossEntropyGradientKernel<T><<<grid, block>>>(dXdata, dYdata, Xdata, if (ctx.Attr<int>("soft_label") == 1) {
label_data, N, D); auto* label_data = label->data<T>();
SoftCrossEntropyGradientKernel<T><<<grid, block>>>(
dx_data, dy_data, x_data, label_data, n, d);
} else {
auto* label_data = label->data<int>();
CrossEntropyGradientKernel<T><<<grid, block>>>(dx_data, dy_data, x_data,
label_data, n, d);
}
} }
}; };
...@@ -127,7 +153,6 @@ class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel { ...@@ -127,7 +153,6 @@ class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy, REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>);
ops::OnehotCrossEntropyOpCUDAKernel<float>); REGISTER_OP_GPU_KERNEL(cross_entropy_grad,
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad, ops::CrossEntropyGradientOpCUDAKernel<float>);
ops::OnehotCrossEntropyGradientOpCUDAKernel<float>);
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -21,75 +22,93 @@ namespace operators { ...@@ -21,75 +22,93 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename T> template <typename T>
inline T tolerable_value(const T x) { HOSTDEVICE T tolerable_value(const T x) {
static_assert(std::is_floating_point<T>::value, PADDLE_ASSERT(std::is_floating_point<T>::value);
"tolerable_value works only on float, "
"double and double double.");
const T kApproInf = 1e20; const T kApproInf = 1e20;
if (x == INFINITY) { if (x == INFINITY) {
return kApproInf; return kApproInf;
} }
if (x == -INFINITY) { if (x == -INFINITY) {
return -kApproInf; return -kApproInf;
} }
return x; return x;
} }
template <typename T> template <typename T>
class OnehotCrossEntropyOpKernel : public framework::OpKernel { class CrossEntropyOpKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace."); "It must use CPUPlace.");
auto X = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>(); auto y = ctx.Output<Tensor>("Y");
const int* label_data = ctx.Input<Tensor>("label")->data<int>();
auto Y = ctx.Output<Tensor>("Y");
Y->mutable_data<T>(ctx.GetPlace()); auto* x_data = x->data<T>();
y->mutable_data<T>(ctx.GetPlace());
auto* y_data = y->data<T>();
T* Ydata = Y->data<T>(); int batch_size = x->dims()[0];
int class_num = x->dims()[1];
int batch_size = X->dims()[0];
int class_num = X->dims()[1];
if (ctx.Attr<int>("soft_label") == 1) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) {
T sum = static_cast<T>(0);
for (int j = 0; j < class_num; ++j) {
sum += label_data[index] * tolerable_value(std::log(x_data[index]));
y_data[i] = -sum;
index++;
}
}
} else {
auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
int index = i * class_num + label_data[i]; int index = i * class_num + label_data[i];
Ydata[i] = -tolerable_value(std::log(Xdata[index])); y_data[i] = -tolerable_value(std::log(x_data[index]));
}
} }
} }
}; };
template <typename T> template <typename T>
class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel { class CrossEntropyGradientOpKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace."); "It must use CPUPlace.");
auto X = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X")); auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y")); auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto label = ctx.Input<Tensor>("label"); auto label = ctx.Input<Tensor>("Label");
auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace()); auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto* dYdata = dY->template data<T>(); auto* dy_data = dy->data<T>();
auto* Xdata = X->template data<T>(); auto* x_data = x->data<T>();
auto* label_data = label->data<int>();
const int batch_size = X->dims()[0]; int batch_size = x->dims()[0];
const int class_num = X->dims()[1]; int class_num = x->dims()[1];
// TODO(qingqing): make zero setting an common function. // TODO(qingqing): make zero setting an common function.
memset(dXdata, 0, sizeof(T) * batch_size * class_num); if (ctx.Attr<int>("soft_label") == 1) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
for (int j = 0; j < class_num; ++j) {
dx_data[index] = -label_data[index] * dy_data[i] / x_data[index];
index++;
}
}
} else {
auto* label_data = label->data<int>();
memset(dx_data, 0, sizeof(T) * batch_size * class_num);
for (int i = 0; i < batch_size; ++i) {
PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
int index = i * class_num + label_data[i]; int index = i * class_num + label_data[i];
dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]); dx_data[index] = -dy_data[i] / x_data[index];
}
} }
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/dropout_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
class DropoutOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_GE(ctx.Attr<float>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<float>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<LoDTensor>("Out")->Resize(dims);
if (ctx.Attr<int>("is_training") == 1) {
ctx.Output<LoDTensor>("Mask")->Resize(dims);
}
}
};
template <typename AttrType>
class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DropoutOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<AttrType>("dropout_prob", "Probability of setting units to zero.")
.SetDefault(.5f);
// TODO(xinghai-sun): use bool for is_training after bool is supported.
AddAttr<int>("is_training", "Whether in training phase.").SetDefault(1);
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
AddInput("X", "The input of dropout op.");
AddOutput("Out", "The output of dropout op.");
AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
AddComment(R"DOC(
Dropout Operator.
"Dropout" refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
being set to their inputs.
)DOC");
}
};
template <typename AttrType>
class DropoutOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Mask"), "Mask must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) must not be null.");
PADDLE_ENFORCE_GE(ctx.Attr<AttrType>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<AttrType>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_EQ(x_dims, out_dims,
"Dimensions of Input(X) and Out@Grad must be the same.");
auto mask_dims = ctx.Input<Tensor>("Mask")->dims();
PADDLE_ENFORCE_EQ(x_dims, mask_dims,
"Dimensions of Input(X) and Mask must be the same.");
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
x_grad->Resize(x_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker<float>, dropout_grad,
ops::DropoutOpGrad<float>);
REGISTER_OP_CPU_KERNEL(
dropout, ops::CPUDropoutKernel<paddle::platform::CPUPlace, float, float>);
REGISTER_OP_CPU_KERNEL(
dropout_grad, ops::DropoutGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/operators/dropout_op.h"
namespace paddle {
namespace operators {
template <typename T, typename AttrType>
struct MaskGenerator {
AttrType dropout_prob;
int seed;
__host__ __device__ MaskGenerator(AttrType dropout_prob, int seed)
: dropout_prob(dropout_prob), seed(seed) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed);
thrust::uniform_real_distribution<AttrType> dist(0, 1);
rng.discard(n);
if (dist(rng) < dropout_prob) {
return static_cast<T>(0);
} else {
return static_cast<T>(1);
}
}
};
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename Place, typename T, typename AttrType>
class GPUDropoutKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
y->mutable_data<T>(context.GetPlace());
AttrType dropout_prob = context.Attr<AttrType>("dropout_prob");
auto X = EigenMatrix<T>::Reshape(*x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
auto place = context.GetEigenDevice<Place>();
if (context.Attr<int>("is_training") == 1) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int size = framework::product(mask->dims());
int seed = context.Attr<int>("seed");
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(mask_data),
MaskGenerator<T, AttrType>(dropout_prob, seed));
auto M = EigenMatrix<T>::Reshape(*mask, 1);
Y.device(place) = X * M;
} else {
Y.device(place) = X * dropout_prob;
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
dropout, ops::GPUDropoutKernel<paddle::platform::GPUPlace, float, float>);
REGISTER_OP_GPU_KERNEL(
dropout_grad, ops::DropoutGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <random>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T, typename AttrType>
class CPUDropoutKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
const auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
AttrType dropout_prob = context.Attr<AttrType>("dropout_prob");
if (context.Attr<int>("is_training") == 1) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int seed = context.Attr<int>("seed");
std::minstd_rand engine;
engine.seed(seed);
std::uniform_real_distribution<AttrType> dist(0, 1);
size_t size = framework::product(mask->dims());
for (size_t i = 0; i < size; ++i) {
if (dist(engine) < dropout_prob) {
mask_data[i] = 0;
y_data[i] = 0;
} else {
mask_data[i] = 1;
y_data[i] = x_data[i];
}
}
} else {
auto X = EigenMatrix<T>::Reshape(*x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
auto place = context.GetEigenDevice<Place>();
Y.device(place) = X * dropout_prob;
}
}
};
template <typename Place, typename T>
class DropoutGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(context.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = context.Input<Tensor>("Mask");
grad_x->mutable_data<T>(context.GetPlace());
auto M = EigenMatrix<T>::Reshape(*mask, 1);
auto dX = EigenMatrix<T>::Reshape(*grad_x, 1);
auto dY = EigenMatrix<T>::Reshape(*grad_y, 1);
auto place = context.GetEigenDevice<Place>();
dX.device(place) = dY * M;
}
};
} // namespace operators
} // namespace paddle
...@@ -25,8 +25,14 @@ class ElementWiseMulOp : public framework::OperatorWithKernel { ...@@ -25,8 +25,14 @@ class ElementWiseMulOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); "Input(X) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of ElementWiseMulOp should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims(); auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims(); auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(), PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
......
...@@ -13,10 +13,8 @@ ...@@ -13,10 +13,8 @@
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <iostream>
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class FCOp : public NetOp {
public:
FCOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
PADDLE_ENFORCE(!Inputs("X").empty(),
"Inputs(X) of FCOp should not be null.");
PADDLE_ENFORCE(!Inputs("W").empty(),
"Inputs(W) of FCOp should not be null.");
PADDLE_ENFORCE(!Outputs("MulOut").empty(),
"Outputs(MulOut) of FCOp should not be null.");
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
"Output(Out) of FCOp should not be null.");
auto x = Inputs("X");
auto w = Inputs("W");
auto mul_out = Outputs("MulOut");
PADDLE_ENFORCE_EQ(
x.size(), w.size(),
"The size of inputs X(%d) should be the same as that of weights W(%d).",
x.size(), w.size());
PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
"The size of intermediate mul_out(%d) should be the same "
"as that of inputs X(%d).",
mul_out.size(), x.size());
size_t n = x.size();
PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
"The size of inputs X(%d) should be no less than 1.", n);
auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
// Set all values or set no values (use the default value)
if (!x_num_col_dims.empty()) {
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
"The size of attribute xNumColDims(%d) should be the "
"same as that of inputs X(%d).",
x_num_col_dims.size(), n);
} else {
x_num_col_dims.resize(n);
for (size_t i = 0; i < n; i++) {
x_num_col_dims[i] = 1;
}
}
// mul_out[i] = X[i] * W[i]
for (size_t i = 0; i < n; i++) {
framework::AttributeMap mul_attr;
mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
mul_attr["y_num_col_dims"] = static_cast<int>(1);
AppendOp(
framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
{{"Out", {mul_out[i]}}}, mul_attr));
}
// sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
auto sum_out = mul_out[0];
if (n > 1) {
PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName,
"Output(SumOut) of FCOp should not be null when the "
"size of Inputs(X) > 1.");
sum_out = Output("SumOut");
AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}},
{{"Out", {sum_out}}}, {}));
} else {
if (Output("SumOut") != framework::kEmptyVarName) {
this->Rename(Output("SumOut"), framework::kEmptyVarName);
}
}
// add_out = sum_out + b
auto b = Input("B");
auto add_out = sum_out;
if (b != framework::kEmptyVarName) {
PADDLE_ENFORCE_NE(
Output("AddOut"), framework::kEmptyVarName,
"Output(AddOut) of FCOp should not be null when Input(B) is set.");
add_out = Output("AddOut");
AppendOp(framework::OpRegistry::CreateOp(
"rowwise_add", {{"X", {sum_out}}, {"b", {Input("B")}}},
{{"Out", {add_out}}}, {}));
} else {
if (Output("AddOut") != framework::kEmptyVarName) {
this->Rename(Output("AddOut"), framework::kEmptyVarName);
}
}
auto activation = Attr<std::string>("activation");
AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}},
{{"Y", {Output("Out")}}}, {}));
CompleteAddOp(false);
}
};
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(A vector of Tensors) each input Tensor can be of arbitrary "
"dimension, and will be reshaped to a 2-D matrix of size "
"(minibatch, number_of_input_features) according to attribute "
"xNumColDims.")
.AsDuplicable();
AddInput("W",
"(A vector of Tensors) the weights of FC operator, a "
"vector of 2-D matrix of size "
"(number_of_input_features, number_of_neurons).")
.AsDuplicable();
AddInput("B",
"(Tensor) the bias of FC operator, a 1-D vector of size "
"number_of_neurons.");
AddOutput("Out",
"(Tensor) the activated output matrix of FC operator, a 2-D "
"matrix of size (minibatch, number_of_neurons).");
AddOutput("MulOut",
"(A vector of Tensors) the intermediate outputs of FC operator, "
"each Tensor saving the product of X_i * W_i.")
.AsIntermediate()
.AsDuplicable();
AddOutput(
"SumOut",
"(Tensor) the intermediate output of FC operator, "
"saving the sum of the products of X and W, that is sum{X_i * W_i}.")
.AsIntermediate();
AddOutput("AddOut",
"(Tensor) the non-actived output of FC operator, "
"saving sum{X_i * W_i} + B.")
.AsIntermediate();
AddAttr<std::string>(
"activation",
"(string, default identity) the activation type of FC operator.")
.SetDefault("identity")
.InEnum({"identity", "sigmoid", "softmax"});
AddAttr<std::vector<int>>(
"xNumColDims",
"(std::vector<int>) The inputs Tensors of FC operator can be of "
"more than 2 dimensions. In that case, each input Tensor `X_i` will be "
"reshaped to a 2-D matrix. The matrix's first dimension "
"(the length of column) will be the product of `X_i`'s last "
"`xNumColDims_i` dimensions, that is "
"`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
"The matrix's second dimension (the length of row) will be the product "
"of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
"`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)")
.SetDefault(std::vector<int>{});
AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).
Equation:
Out = Act(sum_n{X_i * W_i} + B)
where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
usually M is the minibatch size and K is the number of input features.
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
Thus, the output Out is a 2-D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);
...@@ -23,6 +23,13 @@ class FillZerosLikeOp : public framework::OperatorWithKernel { ...@@ -23,6 +23,13 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Src"),
"Input(Src) of FillZerosLikeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Dst"),
"Output(Dst) of FillZerosLikeOp should not be null.");
ctx.Output<framework::LoDTensor>("Dst")->Resize( ctx.Output<framework::LoDTensor>("Dst")->Resize(
ctx.Input<framework::Tensor>("Src")->dims()); ctx.Input<framework::Tensor>("Src")->dims());
} }
......
...@@ -24,6 +24,13 @@ class GatherOp : public framework::OperatorWithKernel { ...@@ -24,6 +24,13 @@ class GatherOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of GatherOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Index"),
"Input(Index) of GatherOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of GatherOp should not be null.");
int batch_size = ctx.Input<Tensor>("Index")->dims()[0]; int batch_size = ctx.Input<Tensor>("Index")->dims()[0];
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0"); PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx.Input<Tensor>("X")->dims()); framework::DDim output_dims(ctx.Input<Tensor>("X")->dims());
......
...@@ -43,8 +43,12 @@ class GaussianRandomOp : public framework::OperatorWithKernel { ...@@ -43,8 +43,12 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& context) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
auto* tensor = context.Output<framework::LoDTensor>("Out"); PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of GaussianRandomOp should not be null.");
auto* tensor = ctx.Output<framework::LoDTensor>("Out");
auto dims = Attr<std::vector<int>>("dims"); auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp; std::vector<int64_t> temp;
temp.reserve(dims.size()); temp.reserve(dims.size());
......
...@@ -27,7 +27,7 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -27,7 +27,7 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker *op_checker) framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of identity operator."); AddInput("X", "The input tensor of identity operator.");
AddOutput("Out", "The output tensor of identity operator."); AddOutput("Y", "The output tensor of identity operator.");
AddComment(R"DOC( AddComment(R"DOC(
The identity operator is an alias of the scale operator The identity operator is an alias of the scale operator
with the attribute scale fixed to 1.0. with the attribute scale fixed to 1.0.
...@@ -42,9 +42,15 @@ class IdentityOp : public NetOp { ...@@ -42,9 +42,15 @@ class IdentityOp : public NetOp {
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) { : NetOp(type, inputs, outputs, attrs) {
PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName,
"Input(X) of IdentityOp should not be null.");
PADDLE_ENFORCE_NE(Output("Y"), framework::kEmptyVarName,
"Output(Y) of IdentityOp should not be null.");
AppendOp(framework::OpRegistry::CreateOp( AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}}, "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Y")}}},
{{"scale", static_cast<AttrType>(1)}})); {{"scale", static_cast<AttrType>(1)}}));
CompleteAddOp(false);
} }
}; };
......
...@@ -22,10 +22,17 @@ class LookupTableOp : public framework::OperatorWithKernel { ...@@ -22,10 +22,17 @@ class LookupTableOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &context) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
auto table_t = context.Input<Tensor>("W"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("W"),
auto ids_t = context.Input<Tensor>("Ids"); "Input(W) of LookupTableOp should not be null.");
auto output_t = context.Output<framework::LoDTensor>("Out"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Ids"),
"Input(Ids) of LookupTableOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of LookupTableOp should not be null.");
auto table_t = ctx.Input<Tensor>("W");
auto ids_t = ctx.Input<Tensor>("Ids");
auto output_t = ctx.Output<framework::LoDTensor>("Out");
output_t->Resize({ids_t->dims()[0], table_t->dims()[1]}); output_t->Resize({ids_t->dims()[0], table_t->dims()[1]});
} }
......
...@@ -19,12 +19,13 @@ namespace operators { ...@@ -19,12 +19,13 @@ namespace operators {
namespace math { namespace math {
template <> template <>
void gemm<platform::CPUPlace, float>(const CBLAS_TRANSPOSE transA, void gemm<platform::CPUPlace, float>(const platform::DeviceContext& context,
const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K, const int N, const int K,
const float alpha, const float* A, const float alpha, const float* A,
const float* B, const float beta, float* C, const float* B, const float beta,
platform::DeviceContext* context) { float* C) {
int lda = (transA == CblasNoTrans) ? K : M; int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K; int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N; int ldc = N;
...@@ -33,13 +34,13 @@ void gemm<platform::CPUPlace, float>(const CBLAS_TRANSPOSE transA, ...@@ -33,13 +34,13 @@ void gemm<platform::CPUPlace, float>(const CBLAS_TRANSPOSE transA,
} }
template <> template <>
void gemm<platform::CPUPlace, double>(const CBLAS_TRANSPOSE transA, void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K, const int N, const int K,
const double alpha, const double* A, const double alpha, const double* A,
const double* B, const double beta, const double* B, const double beta,
double* C, double* C) {
platform::DeviceContext* context) {
int lda = (transA == CblasNoTrans) ? K : M; int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K; int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N; int ldc = N;
...@@ -48,13 +49,10 @@ void gemm<platform::CPUPlace, double>(const CBLAS_TRANSPOSE transA, ...@@ -48,13 +49,10 @@ void gemm<platform::CPUPlace, double>(const CBLAS_TRANSPOSE transA,
} }
template <> template <>
void matmul<platform::CPUPlace, float>(const framework::Tensor& matrix_a, void matmul<platform::CPUPlace, float>(
bool trans_a, const platform::DeviceContext& context, const framework::Tensor& matrix_a,
const framework::Tensor& matrix_b, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) {
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims(); auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims(); auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims(); auto dim_out = matrix_out->dims();
...@@ -74,18 +72,15 @@ void matmul<platform::CPUPlace, float>(const framework::Tensor& matrix_a, ...@@ -74,18 +72,15 @@ void matmul<platform::CPUPlace, float>(const framework::Tensor& matrix_a,
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, float>( gemm<platform::CPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(), context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context); matrix_b.data<float>(), beta, matrix_out->data<float>());
} }
template <> template <>
void matmul<platform::CPUPlace, double>(const framework::Tensor& matrix_a, void matmul<platform::CPUPlace, double>(
bool trans_a, const platform::DeviceContext& context, const framework::Tensor& matrix_a,
const framework::Tensor& matrix_b, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) {
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims(); auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims(); auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims(); auto dim_out = matrix_out->dims();
...@@ -105,8 +100,8 @@ void matmul<platform::CPUPlace, double>(const framework::Tensor& matrix_a, ...@@ -105,8 +100,8 @@ void matmul<platform::CPUPlace, double>(const framework::Tensor& matrix_a,
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, double>( gemm<platform::CPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(), context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context); matrix_b.data<double>(), beta, matrix_out->data<double>());
} }
} // namespace math } // namespace math
......
...@@ -19,12 +19,13 @@ namespace operators { ...@@ -19,12 +19,13 @@ namespace operators {
namespace math { namespace math {
template <> template <>
void gemm<platform::GPUPlace, float>(const CBLAS_TRANSPOSE transA, void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K, const int N, const int K,
const float alpha, const float* A, const float alpha, const float* A,
const float* B, const float beta, float* C, const float* B, const float beta,
platform::DeviceContext* context) { float* C) {
// Note that cublas follows fortran order, so the order is different from // Note that cublas follows fortran order, so the order is different from
// the cblas convention. // the cblas convention.
int lda = (transA == CblasNoTrans) ? K : M; int lda = (transA == CblasNoTrans) ? K : M;
...@@ -35,18 +36,19 @@ void gemm<platform::GPUPlace, float>(const CBLAS_TRANSPOSE transA, ...@@ -35,18 +36,19 @@ void gemm<platform::GPUPlace, float>(const CBLAS_TRANSPOSE transA,
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
PADDLE_ENFORCE(platform::dynload::cublasSgemm( PADDLE_ENFORCE(platform::dynload::cublasSgemm(
reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(), reinterpret_cast<const platform::CUDADeviceContext&>(context)
.cublas_handle(),
cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
} }
template <> template <>
void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA, void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K, const int N, const int K,
const double alpha, const double* A, const double alpha, const double* A,
const double* B, const double beta, const double* B, const double beta,
double* C, double* C) {
platform::DeviceContext* context) {
// Note that cublas follows fortran order, so the order is different from // Note that cublas follows fortran order, so the order is different from
// the cblas convention. // the cblas convention.
int lda = (transA == CblasNoTrans) ? K : M; int lda = (transA == CblasNoTrans) ? K : M;
...@@ -56,18 +58,16 @@ void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA, ...@@ -56,18 +58,16 @@ void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA,
cublasOperation_t cuTransB = cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
PADDLE_ENFORCE(platform::dynload::cublasDgemm( PADDLE_ENFORCE(platform::dynload::cublasDgemm(
reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(), reinterpret_cast<const platform::CUDADeviceContext&>(context)
.cublas_handle(),
cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
} }
template <> template <>
void matmul<platform::GPUPlace, float>(const framework::Tensor& matrix_a, void matmul<platform::GPUPlace, float>(
bool trans_a, const platform::DeviceContext& context, const framework::Tensor& matrix_a,
const framework::Tensor& matrix_b, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) {
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims(); auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims(); auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims(); auto dim_out = matrix_out->dims();
...@@ -87,18 +87,15 @@ void matmul<platform::GPUPlace, float>(const framework::Tensor& matrix_a, ...@@ -87,18 +87,15 @@ void matmul<platform::GPUPlace, float>(const framework::Tensor& matrix_a,
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, float>( gemm<platform::GPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(), context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context); matrix_b.data<float>(), beta, matrix_out->data<float>());
} }
template <> template <>
void matmul<platform::GPUPlace, double>(const framework::Tensor& matrix_a, void matmul<platform::GPUPlace, double>(
bool trans_a, const platform::DeviceContext& context, const framework::Tensor& matrix_a,
const framework::Tensor& matrix_b, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) {
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims(); auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims(); auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims(); auto dim_out = matrix_out->dims();
...@@ -118,8 +115,8 @@ void matmul<platform::GPUPlace, double>(const framework::Tensor& matrix_a, ...@@ -118,8 +115,8 @@ void matmul<platform::GPUPlace, double>(const framework::Tensor& matrix_a,
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, double>( gemm<platform::GPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(), context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context); matrix_b.data<double>(), beta, matrix_out->data<double>());
} }
} // namespace math } // namespace math
......
...@@ -66,16 +66,16 @@ namespace math { ...@@ -66,16 +66,16 @@ namespace math {
// For more detailed info, please refer to // For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
template <typename Place, typename T> template <typename Place, typename T>
void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, void gemm(const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
const int M, const int N, const int K, const T alpha, const T* A, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const T* B, const T beta, T* C, platform::DeviceContext* context); const T alpha, const T* A, const T* B, const T beta, T* C);
// matrix multiply with continuous memory // matrix multiply with continuous memory
template <typename Place, typename T> template <typename Place, typename T>
void matmul(const framework::Tensor& matrix_a, bool trans_a, void matmul(const platform::DeviceContext& context,
const framework::Tensor& matrix_a, bool trans_a,
const framework::Tensor& matrix_b, bool trans_b, T alpha, const framework::Tensor& matrix_b, bool trans_b, T alpha,
framework::Tensor* matrix_out, T beta, framework::Tensor* matrix_out, T beta);
platform::DeviceContext* context);
} // namespace math } // namespace math
} // namespace operators } // namespace operators
......
...@@ -15,8 +15,7 @@ TEST(math_function, notrans_mul_trans) { ...@@ -15,8 +15,7 @@ TEST(math_function, notrans_mul_trans) {
memcpy(input1_ptr, arr, 6 * sizeof(float)); memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0); auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::DeviceContext* context = paddle::platform::CUDADeviceContext context(*gpu_place);
new paddle::platform::CUDADeviceContext(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place); input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place); input2_gpu.CopyFrom<float>(input1, *gpu_place);
...@@ -24,7 +23,7 @@ TEST(math_function, notrans_mul_trans) { ...@@ -24,7 +23,7 @@ TEST(math_function, notrans_mul_trans) {
out_gpu.mutable_data<float>({2, 2}, *gpu_place); out_gpu.mutable_data<float>({2, 2}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>( paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0, context); context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place); out.CopyFrom<float>(out_gpu, *cpu_place);
...@@ -33,6 +32,7 @@ TEST(math_function, notrans_mul_trans) { ...@@ -33,6 +32,7 @@ TEST(math_function, notrans_mul_trans) {
EXPECT_EQ(out_ptr[1], 14); EXPECT_EQ(out_ptr[1], 14);
EXPECT_EQ(out_ptr[2], 14); EXPECT_EQ(out_ptr[2], 14);
EXPECT_EQ(out_ptr[3], 50); EXPECT_EQ(out_ptr[3], 50);
delete gpu_place;
} }
TEST(math_function, trans_mul_notrans) { TEST(math_function, trans_mul_notrans) {
...@@ -48,8 +48,7 @@ TEST(math_function, trans_mul_notrans) { ...@@ -48,8 +48,7 @@ TEST(math_function, trans_mul_notrans) {
memcpy(input1_ptr, arr, 6 * sizeof(float)); memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0); auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::DeviceContext* context = paddle::platform::CUDADeviceContext context(*gpu_place);
new paddle::platform::CUDADeviceContext(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place); input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place); input2_gpu.CopyFrom<float>(input1, *gpu_place);
...@@ -57,7 +56,7 @@ TEST(math_function, trans_mul_notrans) { ...@@ -57,7 +56,7 @@ TEST(math_function, trans_mul_notrans) {
out_gpu.mutable_data<float>({3, 3}, *gpu_place); out_gpu.mutable_data<float>({3, 3}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>( paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0, context); context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place); out.CopyFrom<float>(out_gpu, *cpu_place);
...@@ -71,5 +70,6 @@ TEST(math_function, trans_mul_notrans) { ...@@ -71,5 +70,6 @@ TEST(math_function, trans_mul_notrans) {
EXPECT_EQ(out_ptr[6], 15); EXPECT_EQ(out_ptr[6], 15);
EXPECT_EQ(out_ptr[7], 22); EXPECT_EQ(out_ptr[7], 22);
EXPECT_EQ(out_ptr[8], 29); EXPECT_EQ(out_ptr[8], 29);
delete gpu_place;
} }
#endif #endif
...@@ -24,7 +24,9 @@ class MeanOp : public framework::OperatorWithKernel { ...@@ -24,7 +24,9 @@ class MeanOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of MeanOp must be initialized."); "Input(X) of MeanOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MeanOp should not be null.");
ctx.Output<framework::LoDTensor>("Out")->Resize({1}); ctx.Output<framework::LoDTensor>("Out")->Resize({1});
} }
}; };
......
...@@ -27,6 +27,13 @@ class MinusOp : public framework::OperatorWithKernel { ...@@ -27,6 +27,13 @@ class MinusOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of MinusOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of MinusOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MinusOp should not be null.");
auto *left_tensor = ctx.Input<framework::Tensor>("X"); auto *left_tensor = ctx.Input<framework::Tensor>("X");
auto *right_tensor = ctx.Input<framework::Tensor>("Y"); auto *right_tensor = ctx.Input<framework::Tensor>("Y");
...@@ -64,7 +71,7 @@ class MinusGradOp : public NetOp { ...@@ -64,7 +71,7 @@ class MinusGradOp : public NetOp {
// x_grad = out_grad // x_grad = out_grad
AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}}, AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}},
{{"Out", {x_grad}}}, {})); {{"Y", {x_grad}}}, {}));
framework::AttributeMap scale_attr; framework::AttributeMap scale_attr;
scale_attr["scale"] = static_cast<AttrType>(-1); scale_attr["scale"] = static_cast<AttrType>(-1);
...@@ -77,8 +84,6 @@ class MinusGradOp : public NetOp { ...@@ -77,8 +84,6 @@ class MinusGradOp : public NetOp {
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
USE_OP(scale);
USE_NO_KERNEL_OP(identity);
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad, REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad,
ops::MinusGradOp<float>); ops::MinusGradOp<float>);
......
...@@ -26,6 +26,13 @@ class MulOp : public framework::OperatorWithKernel { ...@@ -26,6 +26,13 @@ class MulOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of MulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of MulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MulOp should not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims(); auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims(); auto y_dims = ctx.Input<Tensor>("Y")->dims();
int x_num_col_dims = Attr<int>("x_num_col_dims"); int x_num_col_dims = Attr<int>("x_num_col_dims");
......
...@@ -46,10 +46,8 @@ class MulKernel : public framework::OpKernel { ...@@ -46,10 +46,8 @@ class MulKernel : public framework::OpKernel {
: *y; : *y;
z->mutable_data<T>(context.GetPlace()); z->mutable_data<T>(context.GetPlace());
auto* device_context = math::matmul<Place, T>(context.device_context(), x_matrix, false, y_matrix,
const_cast<platform::DeviceContext*>(context.device_context_); false, 1, z, 0);
math::matmul<Place, T>(x_matrix, false, y_matrix, false, 1, z, 0,
device_context);
} }
}; };
...@@ -71,16 +69,14 @@ class MulGradKernel : public framework::OpKernel { ...@@ -71,16 +69,14 @@ class MulGradKernel : public framework::OpKernel {
Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X")); Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* dy = ctx.Output<Tensor>(framework::GradVarName("Y")); Tensor* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto* device_context =
const_cast<platform::DeviceContext*>(ctx.device_context_);
if (dx) { if (dx) {
dx->mutable_data<T>(ctx.GetPlace()); dx->mutable_data<T>(ctx.GetPlace());
Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix<T>( Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix<T>(
*dx, x_num_col_dims) *dx, x_num_col_dims)
: *dx; : *dx;
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
math::matmul<Place, T>(*dout, false, y_matrix, true, 1, &dx_matrix, 0, math::matmul<Place, T>(ctx.device_context(), *dout, false, y_matrix, true,
device_context); 1, &dx_matrix, 0);
} }
if (dy) { if (dy) {
dy->mutable_data<T>(ctx.GetPlace()); dy->mutable_data<T>(ctx.GetPlace());
...@@ -88,8 +84,8 @@ class MulGradKernel : public framework::OpKernel { ...@@ -88,8 +84,8 @@ class MulGradKernel : public framework::OpKernel {
*dy, y_num_col_dims) *dy, y_num_col_dims)
: *dy; : *dy;
// dy = x' * dout. dy K x N, dout : M x N, x : M x K // dy = x' * dout. dy K x N, dout : M x N, x : M x K
math::matmul<Place, T>(x_matrix, true, *dout, false, 1, &dy_matrix, 0, math::matmul<Place, T>(ctx.device_context(), x_matrix, true, *dout, false,
device_context); 1, &dy_matrix, 0);
} }
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/onehot_cross_entropy_op.h"
namespace paddle {
namespace operators {
class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
auto *label = ctx.Input<Tensor>("label");
PADDLE_ENFORCE_EQ(X->dims().size(), 2, "X's dimension must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label's dimension must be 1.");
PADDLE_ENFORCE_EQ(X->dims()[0], label->dims()[0]);
ctx.Output<framework::LoDTensor>("Y")->Resize({X->dims()[0], 1});
}
};
class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dX = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
dX->Resize(X->dims());
}
};
class OnehotCrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
OnehotCrossEntropyOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of OnehotCrossEntropyOp");
AddInput("label", "The second input of OnehotCrossEntropyOp");
AddOutput("Y", "The output of OnehotCrossEntropyOp");
AddComment(R"DOC(
OnehotCrossEntropy Operator.
Y[i] = -log(X[i][j])
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<float>);
...@@ -25,6 +25,11 @@ class PadOp : public framework::OperatorWithKernel { ...@@ -25,6 +25,11 @@ class PadOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of PadOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of PadOp should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims(); auto x_dim = ctx.Input<Tensor>("X")->dims();
auto paddings = Attr<std::vector<int>>("paddings"); auto paddings = Attr<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()), PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/prelu_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class PReluOp : public framework::OperatorWithKernel {
public:
PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
auto *in = ctx.Input<framework::Tensor>("X");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Alpha"),
"Input(Alpha) should not be null");
auto *alpha = ctx.Input<framework::Tensor>("Alpha");
PADDLE_ENFORCE(alpha->numel() == 1, "Size of weight Alpha must be one.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) should not be null");
auto *out = ctx.Output<framework::LoDTensor>("Out");
out->Resize(in->dims());
}
};
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of prelu operator.");
AddInput("Alpha", "The alpha weight of PRelu operator.");
AddOutput("Out", "The output tensor of PRelu operator.");
AddComment(R"DOC(PRelu operator
The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
)DOC");
}
};
// The operator to calculate gradients of a prelu operator.
class PReluGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto *dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *x = ctx.Input<framework::Tensor>("X");
auto *dalpha =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Alpha"));
auto *alpha = ctx.Input<framework::Tensor>("Alpha");
dx->Resize(x->dims());
dalpha->Resize(alpha->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad,
ops::PReluGradOp);
REGISTER_OP_CPU_KERNEL(prelu,
ops::PReluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(prelu_grad,
ops::PReluGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/prelu_op.h"
REGISTER_OP_GPU_KERNEL(
prelu, paddle::operators::PReluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
prelu_grad,
paddle::operators::PReluGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using platform::Transform;
template <typename T>
class PReluFunctor {
public:
explicit PReluFunctor(const T* alpha) : alpha_(alpha) {}
HOSTDEVICE T operator()(const T& x) const {
if (x > 0)
return x;
else
return x * (*alpha_);
}
private:
const T* alpha_;
};
template <typename Place, typename T>
class PReluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* alpha = context.Input<Tensor>("Alpha");
auto* out = context.Output<Tensor>("Out");
const T* x_ptr = x->data<T>();
T* o_ptr = out->mutable_data<T>(context.GetPlace());
auto* alpha_ptr = alpha->data<T>();
int numel = x->numel();
Transform<Place> trans;
trans(context.device_context(), x_ptr, x_ptr + numel, o_ptr,
PReluFunctor<T>(alpha_ptr));
}
};
template <typename T>
class PReluGradFunctor {
public:
explicit PReluGradFunctor(const T* alpha) : alpha_(alpha) {}
HOSTDEVICE T operator()(const T& out, const T& dout) const {
if (out > 0)
return dout;
else
return dout * (*alpha_);
}
private:
const T* alpha_;
};
template <typename Place, typename T>
class PReluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
auto* out = context.Input<Tensor>("Out");
auto* alpha = context.Input<Tensor>("Alpha");
auto* alpha_ptr = alpha->data<T>();
T* dx_ptr = dx->mutable_data<T>(context.GetPlace());
const T* dout_ptr = dout->data<T>();
const T* out_ptr = out->data<T>();
int numel = dx->numel();
Transform<Place> trans;
trans(context.device_context(), out_ptr, out_ptr + numel, dout_ptr, dx_ptr,
PReluGradFunctor<T>(alpha_ptr));
// TODO (Zhuoyuan): add dalpha upgrade when GPU kernels ready
}
};
} // namespace operators
} // namespace paddle
...@@ -28,7 +28,11 @@ class ReshapeOp : public framework::OperatorWithKernel { ...@@ -28,7 +28,11 @@ class ReshapeOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
// input check // input check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ReshapeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ReshapeOp should not be null.");
auto shape = ctx.Attr<std::vector<int>>("shape"); auto shape = ctx.Attr<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
for (auto dim : shape) { for (auto dim : shape) {
......
...@@ -25,6 +25,13 @@ class RowwiseAddOp : public framework::OperatorWithKernel { ...@@ -25,6 +25,13 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of RowwiseAddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"),
"Input(b) of RowwiseAddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of RowwiseAddOp should not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims(); auto x_dims = ctx.Input<Tensor>("X")->dims();
auto b_dims = ctx.Input<Tensor>("b")->dims(); auto b_dims = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GT(
......
...@@ -27,6 +27,11 @@ class ScaleOp : public framework::OperatorWithKernel { ...@@ -27,6 +27,11 @@ class ScaleOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ScaleOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ScaleOp should not be null.");
auto *in = ctx.Input<framework::Tensor>("X"); auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out"); auto *out = ctx.Output<framework::LoDTensor>("Out");
out->Resize(in->dims()); out->Resize(in->dims());
......
...@@ -24,6 +24,15 @@ class ScatterOp : public framework::OperatorWithKernel { ...@@ -24,6 +24,15 @@ class ScatterOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Ref"),
"Input(Ref) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Index"),
"Input(Index) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Updates"),
"Input(Updates) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ScatterOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Index")->dims().size(), 1, PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Index")->dims().size(), 1,
"Update Index should be 1-D."); "Update Index should be 1-D.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Ref")->dims().size(), PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Ref")->dims().size(),
......
...@@ -23,9 +23,12 @@ class SequenceAvgPoolOp : public framework::OperatorWithKernel { ...@@ -23,9 +23,12 @@ class SequenceAvgPoolOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), PADDLE_ENFORCE_NOT_NULL(
"Input of SequenceAvgPoolOp" ctx.InputVar("X"), "Input(X) of SequenceAvgPoolOp should not be null.");
"must be initialized."); PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of SequenceAvgPoolOp should not be null.");
auto* x = ctx.Input<framework::LoDTensor>("X"); auto* x = ctx.Input<framework::LoDTensor>("X");
auto dims = x->dims(); auto dims = x->dims();
auto lod = x->lod(); auto lod = x->lod();
...@@ -60,7 +63,9 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel { ...@@ -60,7 +63,9 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Gradient of Out should not be null"); "Gradient of Out should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"The input X should not be null.");
auto og_dims = auto og_dims =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims(); ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims();
auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims(); auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims();
......
...@@ -21,6 +21,9 @@ namespace operators { ...@@ -21,6 +21,9 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor, template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
...@@ -43,8 +46,8 @@ class SequenceAvgPoolKernel : public framework::OpKernel { ...@@ -43,8 +46,8 @@ class SequenceAvgPoolKernel : public framework::OpKernel {
static_cast<int>(lod[0][i + 1])); static_cast<int>(lod[0][i + 1]));
Tensor out_t = out->Slice<T>(i, i + 1); Tensor out_t = out->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]); int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_e = EigenMatrix<T>::From(in_t, {h, w}); auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
auto out_e = EigenMatrix<T>::From(out_t, {h, w}); auto out_e = EigenVector<T>::Flatten(out_t);
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}})); out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
} }
} }
...@@ -54,9 +57,9 @@ template <typename Place, typename T> ...@@ -54,9 +57,9 @@ template <typename Place, typename T>
class SequenceAvgPoolGradKernel : public framework::OpKernel { class SequenceAvgPoolGradKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Output<LoDTensor>("X"); auto* in = context.Input<LoDTensor>("X");
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out")); auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto dims = in->dims(); auto dims = in->dims();
auto lod = in->lod(); auto lod = in->lod();
...@@ -71,7 +74,7 @@ class SequenceAvgPoolGradKernel : public framework::OpKernel { ...@@ -71,7 +74,7 @@ class SequenceAvgPoolGradKernel : public framework::OpKernel {
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]); int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w}); auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w}); auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
Eigen::DSizes<int, 2> bcast(h, w); Eigen::DSizes<int, 2> bcast(h, 1);
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast); in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
} }
} }
......
...@@ -23,6 +23,13 @@ class SGDOp : public framework::OperatorWithKernel { ...@@ -23,6 +23,13 @@ class SGDOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("param"),
"Input(param) of SGDOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("grad"),
"Input(grad) of SGDOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("param_out"),
"Output(param_out) of SGDOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("param")->dims(), PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("param")->dims(),
ctx.Input<Tensor>("grad")->dims(), ctx.Input<Tensor>("grad")->dims(),
"Two input of SGD Op's dimension must be same."); "Two input of SGD Op's dimension must be same.");
......
...@@ -23,6 +23,11 @@ class SigmoidOp : public framework::OperatorWithKernel { ...@@ -23,6 +23,11 @@ class SigmoidOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of SigmoidOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) of SigmoidOp should not be null.");
ctx.Output<framework::LoDTensor>("Y")->Resize( ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<Tensor>("X")->dims()); ctx.Input<Tensor>("X")->dims());
} }
......
...@@ -23,6 +23,11 @@ class SoftmaxOp : public framework::OperatorWithKernel { ...@@ -23,6 +23,11 @@ class SoftmaxOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of SoftmaxOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) of SoftmaxOp should not be null.");
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL, PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be a matrix."); "The input of softmax op must be a matrix.");
ctx.Output<framework::LoDTensor>("Y")->Resize( ctx.Output<framework::LoDTensor>("Y")->Resize(
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/split_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SplitOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
// infershape
auto *in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t num = static_cast<size_t>(ctx.Attr<int>("num"));
std::vector<int> sections =
static_cast<std::vector<int>>(ctx.Attr<std::vector<int>>("sections"));
const size_t n = outs.size();
if (num > 0) {
int64_t in_axis_dim = in->dims()[axis];
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
"tensor split does not result"
" in an equal division");
size_t out_axis_dim = in_axis_dim / num;
for (size_t i = 0; i < n; ++i) {
auto dim = in->dims();
dim[axis] = out_axis_dim;
outs[i]->Resize(dim);
}
} else if (sections.size() > 0) {
PADDLE_ENFORCE_EQ(sections.size(), n,
"tensor split sections size"
"should be equal to output size.");
for (size_t i = 0; i < n; ++i) {
auto dim = in->dims();
dim[axis] = sections[i];
outs[i]->Resize(dim);
}
} else {
PADDLE_ENFORCE_NOT_NULL(nullptr, "split operator should",
" specify indices or sections.");
}
}
};
class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensor of split operator.");
AddOutput("Out", "the output tensors of split operator.").AsDuplicable();
AddComment(R"DOC(
Split the input tensor into multiple sub-tensors.
Example:
Input = [[1,2],
[3,4],
[5,6]]
sections = [2,1]
axis = 0
Output[0] = [[1,2],
[3,4]]
Output[1] = [[5,6]]
)DOC");
AddAttr<std::vector<int>>("sections",
"the length for each"
"output along with the specify axis.")
.SetDefault(std::vector<int>{});
AddAttr<int>("num",
"number of the sub-tensors, it must evenly divide "
"Input.dims()[axis]")
.SetDefault(0);
AddAttr<int>("axis", "The axis which the input will be splited on.")
.SetDefault(0);
}
};
class SplitOpGrad : public NetOp {
public:
SplitOpGrad(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
auto out_grad = Inputs(framework::GradVarName("Out"));
auto x_grad = Output(framework::GradVarName("X"));
AppendOp(framework::OpRegistry::CreateOp("concat", {{"X", out_grad}},
{{"Out", {x_grad}}}, attrs));
CompleteAddOp(false);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
USE_CPU_ONLY_OP(concat);
REGISTER_OP(split, ops::SplitOp, ops::SplitOpMaker, split_grad,
ops::SplitOpGrad);
REGISTER_OP_CPU_KERNEL(split,
ops::SplitKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class SplitKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
size_t before = 1, after = 1;
const size_t n = outs.size();
size_t input_axis_dim = in->dims()[axis];
for (int64_t i = 0; i < in->dims().size(); ++i) {
if (i == axis) {
continue;
}
if (i < axis) {
before *= in->dims()[i];
} else {
after *= in->dims()[i];
}
}
size_t input_offset = 0;
for (size_t i = 0; i < n; i++) {
auto& out = outs[i];
size_t axis_dim = out->dims()[axis];
for (size_t j = 0; j < before; j++) {
size_t len = axis_dim * after * sizeof(T);
T* dest =
out->mutable_data<T>(platform::CPUPlace()) + axis_dim * after * j;
const T* src =
in->data<T>() + input_offset + input_axis_dim * after * j;
memcpy(dest, src, len);
}
input_offset += axis_dim * after;
}
}
};
} // namespace operators
} // namespace paddle
...@@ -23,12 +23,18 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { ...@@ -23,12 +23,18 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), PADDLE_ENFORCE_NOT_NULL(
"Input of SquaredL2DistanceOp " ctx.InputVar("X"),
"must be initialized."); "Input(X) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), PADDLE_ENFORCE_NOT_NULL(
"Target of SquaredL2DistanceOp " ctx.InputVar("Y"),
"must be initialized."); "Input(Y) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("sub_result"),
"Output(sub_result) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of SquaredL2DistanceOp should not be null.");
auto* x = ctx.Input<Tensor>("X"); auto* x = ctx.Input<Tensor>("X");
auto x_dims = x->dims(); auto x_dims = x->dims();
......
...@@ -22,6 +22,11 @@ class SumOp : public framework::OperatorWithKernel { ...@@ -22,6 +22,11 @@ class SumOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) of SumOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of SumOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out"); auto *out = ctx.Output<framework::LoDTensor>("Out");
int N = ins.size(); int N = ins.size();
......
...@@ -24,7 +24,12 @@ class TopkOp : public framework::OperatorWithKernel { ...@@ -24,7 +24,12 @@ class TopkOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of TopkOP must be initialized."); "Input(X) of TopkOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of TopkOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Indices"),
"Output(Indices) of TopkOp should not be null.");
auto *input = ctx.Input<framework::Tensor>("X"); auto *input = ctx.Input<framework::Tensor>("X");
const int k = static_cast<int>(ctx.Attr<int>("k")); const int k = static_cast<int>(ctx.Attr<int>("k"));
......
...@@ -48,6 +48,10 @@ class UniformRandomOp : public framework::OperatorWithKernel { ...@@ -48,6 +48,10 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of UniformRandomOp should not be null.");
PADDLE_ENFORCE(Attr<float>("min") < Attr<float>("max"), PADDLE_ENFORCE(Attr<float>("min") < Attr<float>("max"),
"uniform_random's min must less then max"); "uniform_random's min must less then max");
auto* tensor = ctx.Output<framework::LoDTensor>("Out"); auto* tensor = ctx.Output<framework::LoDTensor>("Out");
......
...@@ -24,3 +24,4 @@ cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator ...@@ -24,3 +24,4 @@ cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context)
...@@ -24,6 +24,11 @@ namespace platform { ...@@ -24,6 +24,11 @@ namespace platform {
#define USE_CUDA_ATOMIC(op, T) \ #define USE_CUDA_ATOMIC(op, T) \
CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); } CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }
// Default thread count per block(or block size).
// TODO(typhoonzero): need to benchmark against setting this value
// to 1024.
constexpr int PADDLE_CUDA_NUM_THREADS = 512;
// For atomicAdd. // For atomicAdd.
USE_CUDA_ATOMIC(Add, float); USE_CUDA_ATOMIC(Add, float);
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifndef __NVCC__
#error device_ptr_cast must be include by .cu file
#endif
#include <thrust/device_ptr.h>
namespace paddle {
namespace platform {
namespace details {
template <typename T, bool is_ptr>
struct DevicePtrCast;
template <typename T>
struct DevicePtrCast<T, true> {
using ELEM = typename std::remove_pointer<T>::type;
using RTYPE = thrust::device_ptr<ELEM>;
inline thrust::device_ptr<ELEM> operator()(ELEM* ele) const {
return thrust::device_pointer_cast(ele);
}
};
template <typename T>
struct DevicePtrCast<T, false> {
using RTYPE = T;
inline RTYPE operator()(RTYPE it) const { return it; }
};
// Cast T to thrust::device_ptr if T is a pointer.
// Otherwise, e.g., T is a iterator, return T itself.
template <typename T>
auto DevPtrCast(T t) ->
typename DevicePtrCast<T, std::is_pointer<T>::value>::RTYPE {
DevicePtrCast<T, std::is_pointer<T>::value> cast;
return cast(t);
}
} // namespace details
} // namespace platform
} // namespace paddle
...@@ -101,19 +101,17 @@ CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { ...@@ -101,19 +101,17 @@ CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) {
eigen_stream_.reset(new EigenCudaStreamDevice()); eigen_stream_.reset(new EigenCudaStreamDevice());
eigen_stream_->Reinitialize(&stream_, place); eigen_stream_->Reinitialize(&stream_, place);
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
} }
CUDADeviceContext::~CUDADeviceContext() { CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId(place_.device); SetDeviceId(place_.device);
Wait(); Wait();
if (cublas_handle_) {
PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
}
if (cudnn_handle_) {
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
eigen_stream_.reset(); eigen_stream_.reset();
eigen_device_.reset(); eigen_device_.reset();
PADDLE_ENFORCE(cudaStreamDestroy(stream_)); PADDLE_ENFORCE(cudaStreamDestroy(stream_));
...@@ -129,25 +127,13 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { ...@@ -129,25 +127,13 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
return eigen_device_.get(); return eigen_device_.get();
} }
cublasHandle_t CUDADeviceContext::cublas_handle() { cublasHandle_t CUDADeviceContext::cublas_handle() const {
if (!cublas_handle_) {
SetDeviceId(place_.device);
PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
}
return cublas_handle_; return cublas_handle_;
} }
cudnnHandle_t CUDADeviceContext::cudnn_handle() { cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
if (!cudnn_handle_) {
SetDeviceId(place_.device);
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
}
return cudnn_handle_;
}
cudaStream_t CUDADeviceContext::stream() { return stream_; } cudaStream_t CUDADeviceContext::stream() const { return stream_; }
#endif // PADDLE_ONLY_CPU #endif // PADDLE_ONLY_CPU
......
...@@ -67,16 +67,14 @@ class CUDADeviceContext : public DeviceContext { ...@@ -67,16 +67,14 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return eigen device in the device context. */ /*! \brief Return eigen device in the device context. */
Eigen::GpuDevice* eigen_device() const; Eigen::GpuDevice* eigen_device() const;
// clang-format off
/*! \brief Return cublas handle in the device context. */ /*! \brief Return cublas handle in the device context. */
cublasHandle_t cublas_handle(); cublasHandle_t cublas_handle() const;
/*! \brief Return cudnn handle in the device context. */ /*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle(); cudnnHandle_t cudnn_handle() const;
/*! \brief Return cuda stream in the device context. */ /*! \brief Return cuda stream in the device context. */
cudaStream_t stream(); cudaStream_t stream() const;
// clang-format on
private: private:
GPUPlace place_; GPUPlace place_;
...@@ -84,11 +82,9 @@ class CUDADeviceContext : public DeviceContext { ...@@ -84,11 +82,9 @@ class CUDADeviceContext : public DeviceContext {
std::unique_ptr<Eigen::GpuDevice> eigen_device_; std::unique_ptr<Eigen::GpuDevice> eigen_device_;
std::unique_ptr<EigenCudaStreamDevice> eigen_stream_; std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
// clang-format off cudaStream_t stream_;
cudaStream_t stream_{nullptr}; cudnnHandle_t cudnn_handle_;
cudnnHandle_t cudnn_handle_{nullptr}; cublasHandle_t cublas_handle_;
cublasHandle_t cublas_handle_{nullptr};
// clang-format on
}; };
#endif #endif
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/hostdevice.h"
#include "paddle/platform/place.h"
#include <algorithm>
#include <type_traits>
#ifdef __NVCC__
#include <thrust/execution_policy.h>
#include <thrust/transform.h>
#include "paddle/platform/details/device_ptr_cast.h"
#endif
namespace paddle {
namespace platform {
// Transform on host or device. It provides the same API in std library.
template <typename Place>
struct Transform {
template <typename InputIter, typename OutputIter, typename UnaryOperation>
void operator()(const DeviceContext& context, InputIter first, InputIter last,
OutputIter result, UnaryOperation op);
template <typename InputIter1, typename InputIter2, typename OutputIter,
typename BinaryOperation>
void operator()(const DeviceContext& context, InputIter1 first1,
InputIter1 last1, InputIter2 first2, OutputIter result,
BinaryOperation op);
};
template <>
struct Transform<platform::CPUPlace> {
template <typename InputIter, typename OutputIter, typename UnaryOperation>
void operator()(const DeviceContext& context, InputIter first, InputIter last,
OutputIter result, UnaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place.");
std::transform(first, last, result, op);
}
template <typename InputIter1, typename InputIter2, typename OutputIter,
typename BinaryOperation>
void operator()(const DeviceContext& context, InputIter1 first1,
InputIter1 last1, InputIter2 first2, OutputIter result,
BinaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place.");
std::transform(first1, last1, first2, result, op);
}
};
#ifdef __NVCC__
template <>
struct Transform<platform::GPUPlace> {
template <typename InputIter, typename OutputIter, typename UnaryOperation>
void operator()(const DeviceContext& context, InputIter first, InputIter last,
OutputIter result, UnaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place.");
auto& ctx = reinterpret_cast<const CUDADeviceContext&>(context);
thrust::transform(thrust::cuda::par.on(ctx.stream()),
details::DevPtrCast(first), details::DevPtrCast(last),
details::DevPtrCast(result), op);
}
template <typename InputIter1, typename InputIter2, typename OutputIter,
typename BinaryOperation>
void operator()(const DeviceContext& context, InputIter1 first1,
InputIter1 last1, InputIter2 first2, OutputIter result,
BinaryOperation op) {
auto place = context.GetPlace();
PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place.");
auto& ctx = reinterpret_cast<const CUDADeviceContext&>(context);
thrust::transform(thrust::cuda::par.on(ctx.stream()),
details::DevPtrCast(first1), details::DevPtrCast(last1),
details::DevPtrCast(first2), details::DevPtrCast(result),
op);
}
};
#endif
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"
#include "paddle/platform/hostdevice.h"
#include "paddle/platform/transform.h"
template <typename T>
class Scale {
public:
explicit Scale(const T& scale) : scale_(scale) {}
HOSTDEVICE T operator()(const T& a) const { return a * scale_; }
private:
T scale_;
};
template <typename T>
class Multiply {
public:
HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; }
};
TEST(Transform, CPUUnary) {
using namespace paddle::platform;
CPUDeviceContext ctx;
float buf[4] = {0.1, 0.2, 0.3, 0.4};
Transform<paddle::platform::CPUPlace> trans;
trans(ctx, buf, buf + 4, buf, Scale<float>(10));
for (int i = 0; i < 4; ++i) {
ASSERT_NEAR(buf[i], static_cast<float>(i + 1), 1e-5);
}
}
TEST(Transform, GPUUnary) {
using namespace paddle::platform;
using namespace paddle::memory;
GPUPlace gpu0(0);
CUDADeviceContext ctx(gpu0);
float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4};
float* gpu_buf = static_cast<float*>(Alloc(gpu0, sizeof(float) * 4));
Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf));
Transform<paddle::platform::GPUPlace> trans;
trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale<float>(10));
ctx.Wait();
Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf));
Free(gpu0, gpu_buf);
for (int i = 0; i < 4; ++i) {
ASSERT_NEAR(cpu_buf[i], static_cast<float>(i + 1), 1e-5);
}
}
TEST(Transform, CPUBinary) {
using namespace paddle::platform;
using namespace paddle::memory;
int buf[4] = {1, 2, 3, 4};
Transform<paddle::platform::CPUPlace> trans;
CPUDeviceContext ctx;
trans(ctx, buf, buf + 4, buf, buf, Multiply<int>());
for (int i = 0; i < 4; ++i) {
ASSERT_EQ((i + 1) * (i + 1), buf[i]);
}
}
TEST(Transform, GPUBinary) {
using namespace paddle::platform;
using namespace paddle::memory;
int buf[4] = {1, 2, 3, 4};
GPUPlace gpu0(0);
CUDADeviceContext ctx(gpu0);
int* gpu_buf = static_cast<int*>(Alloc(gpu0, sizeof(buf)));
Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf));
Transform<paddle::platform::GPUPlace> trans;
trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply<int>());
ctx.Wait();
Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf));
Free(gpu0, gpu_buf);
for (int i = 0; i < 4; ++i) {
ASSERT_EQ((i + 1) * (i + 1), buf[i]);
}
}
...@@ -45,14 +45,18 @@ add_dependencies(paddle_pserver paddle_proto ${external_project_dependencies}) ...@@ -45,14 +45,18 @@ add_dependencies(paddle_pserver paddle_proto ${external_project_dependencies})
set(PSERVER_MAIN_SOURCES set(PSERVER_MAIN_SOURCES
ParameterServer2Main.cpp) ParameterServer2Main.cpp)
add_executable(paddle_pserver_main
${PSERVER_MAIN_SOURCES})
link_paddle_exe(paddle_pserver_main)
if(WITH_TESTING) if(WITH_TESTING)
add_subdirectory(test) add_subdirectory(test)
endif() endif()
install(TARGETS paddle_pserver_main
if(NOT WITH_C_API)
add_executable(paddle_pserver_main ${PSERVER_MAIN_SOURCES})
link_paddle_exe(paddle_pserver_main)
install(TARGETS paddle_pserver_main
RUNTIME DESTINATION opt/paddle/bin RUNTIME DESTINATION opt/paddle/bin
PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ)
set_target_properties(paddle_pserver_main PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE)
set_target_properties(paddle_pserver_main PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE)
endif()
if(WITH_PYTHON) if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc SRCS pybind.cc
DEPS pybind python backward DEPS pybind python backward
${GLOB_OP_LIB}) ${GLOB_OP_LIB})
......
...@@ -19,6 +19,7 @@ limitations under the License. */ ...@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h" #include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
...@@ -288,6 +289,28 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -288,6 +289,28 @@ All parameter, weight, gradient are variables in Paddle.
[](operators::RecurrentOp &self, const operators::NetOp &net) [](operators::RecurrentOp &self, const operators::NetOp &net)
-> void { self.set_stepnet(net.Clone()); }); -> void { self.set_stepnet(net.Clone()); });
// cond_op
py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
.def_static("create",
[](py::bytes protobin) -> operators::CondOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto cond_op = OpRegistry::CreateOp(desc);
return static_cast<operators::CondOp *>(cond_op.release());
})
.def("set_truenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_truenet(net.Clone());
})
.def("set_falsenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_falsenet(net.Clone());
});
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
m.def("is_compile_gpu", IsCompileGPU); m.def("is_compile_gpu", IsCompileGPU);
......
#!/bin/bash
set -e
# Create the build directory for CMake.
mkdir -p $TRAVIS_BUILD_DIR/build_ios
cd $TRAVIS_BUILD_DIR/build_ios
# Compile paddle binaries
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DWITH_C_API=ON \
-DUSE_EIGEN_FOR_BLAS=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
-DWITH_STYLE_CHECK=OFF \
-DCMAKE_BUILD_TYPE=Release \
..
make -j 2
...@@ -8,6 +8,12 @@ function abort(){ ...@@ -8,6 +8,12 @@ function abort(){
trap 'abort' 0 trap 'abort' 0
set -e set -e
# install glide
curl https://glide.sh/get | bash
eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
go get -u github.com/alecthomas/gometalinter
gometalinter --install
cd $TRAVIS_BUILD_DIR cd $TRAVIS_BUILD_DIR
export PATH=/usr/bin:$PATH export PATH=/usr/bin:$PATH
pre-commit install pre-commit install
......
...@@ -50,22 +50,22 @@ macro(add_paddle_exe TARGET_NAME) ...@@ -50,22 +50,22 @@ macro(add_paddle_exe TARGET_NAME)
link_paddle_exe(${TARGET_NAME}) link_paddle_exe(${TARGET_NAME})
endmacro() endmacro()
add_paddle_exe(paddle_trainer
TrainerMain.cpp)
add_paddle_exe(paddle_merge_model
MergeModel.cpp)
if(WITH_TESTING) if(WITH_TESTING)
add_subdirectory(tests) add_subdirectory(tests)
endif() endif()
install(TARGETS paddle_trainer paddle_merge_model
if(NOT WITH_C_API)
add_paddle_exe(paddle_trainer TrainerMain.cpp)
add_paddle_exe(paddle_merge_model MergeModel.cpp)
install(TARGETS paddle_trainer paddle_merge_model
RUNTIME DESTINATION opt/paddle/bin RUNTIME DESTINATION opt/paddle/bin
PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ)
set_target_properties(paddle_trainer PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) set_target_properties(paddle_trainer PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE)
set_target_properties(paddle_merge_model PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) set_target_properties(paddle_merge_model PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE)
endif()
if(APPLE) if(APPLE)
set(CMAKE_EXE_LINKER_FLAGS "-framework CoreFoundation -framework Security") set(CMAKE_EXE_LINKER_FLAGS "-framework CoreFoundation -framework Security")
...@@ -73,6 +73,8 @@ endif() ...@@ -73,6 +73,8 @@ endif()
if(WITH_GOLANG) if(WITH_GOLANG)
add_dependencies(paddle_trainer_lib paddle_pserver_cclient) add_dependencies(paddle_trainer_lib paddle_pserver_cclient)
target_link_libraries(paddle_trainer paddle_pserver_cclient)
target_link_libraries(paddle_trainer_lib paddle_pserver_cclient) target_link_libraries(paddle_trainer_lib paddle_pserver_cclient)
if(NOT WITH_C_API)
target_link_libraries(paddle_trainer paddle_pserver_cclient)
endif()
endif(WITH_GOLANG) endif(WITH_GOLANG)
...@@ -17,7 +17,8 @@ limitations under the License. */ ...@@ -17,7 +17,8 @@ limitations under the License. */
#include <fenv.h> #include <fenv.h>
#if defined(__APPLE__) || defined(__OSX__) #if (defined(__APPLE__) || defined(__OSX__)) && !defined(__arm__) && \
!defined(__aarch64__)
int fegetexcept(void); int fegetexcept(void);
int feenableexcept(unsigned int excepts); int feenableexcept(unsigned int excepts);
......
...@@ -40,6 +40,8 @@ void Semaphore::wait() { sem_wait(&m->sem); } ...@@ -40,6 +40,8 @@ void Semaphore::wait() { sem_wait(&m->sem); }
void Semaphore::post() { sem_post(&m->sem); } void Semaphore::post() { sem_post(&m->sem); }
/// SpinLockPrivate
#ifdef PADDLE_USE_PTHREAD_SPINLOCK #ifdef PADDLE_USE_PTHREAD_SPINLOCK
class SpinLockPrivate { class SpinLockPrivate {
...@@ -79,6 +81,8 @@ SpinLock::~SpinLock() { delete m; } ...@@ -79,6 +81,8 @@ SpinLock::~SpinLock() { delete m; }
void SpinLock::lock() { m->lock(); } void SpinLock::lock() { m->lock(); }
void SpinLock::unlock() { m->unlock(); } void SpinLock::unlock() { m->unlock(); }
/// ThreadBarrierPrivate
#ifdef PADDLE_USE_PTHREAD_BARRIER #ifdef PADDLE_USE_PTHREAD_BARRIER
class ThreadBarrierPrivate { class ThreadBarrierPrivate {
...@@ -136,6 +140,8 @@ public: ...@@ -136,6 +140,8 @@ public:
#endif #endif
/// ThreadBarrier
ThreadBarrier::ThreadBarrier(int count) : m(new ThreadBarrierPrivate(count)) {} ThreadBarrier::ThreadBarrier(int count) : m(new ThreadBarrierPrivate(count)) {}
ThreadBarrier::~ThreadBarrier() { delete m; } ThreadBarrier::~ThreadBarrier() { delete m; }
void ThreadBarrier::wait() { m->wait(); } void ThreadBarrier::wait() { m->wait(); }
......
...@@ -14,7 +14,8 @@ limitations under the License. */ ...@@ -14,7 +14,8 @@ limitations under the License. */
#include "paddle/utils/Excepts.h" #include "paddle/utils/Excepts.h"
#if defined(__APPLE__) || defined(__OSX__) #if (defined(__APPLE__) || defined(__OSX__)) && !defined(__arm__) && \
!defined(__aarch64__)
int fegetexcept(void) { int fegetexcept(void) {
static fenv_t fenv; static fenv_t fenv;
......
...@@ -2286,8 +2286,15 @@ class NormLayer(LayerBase): ...@@ -2286,8 +2286,15 @@ class NormLayer(LayerBase):
@config_layer('pool') @config_layer('pool')
class PoolLayer(LayerBase): class PoolLayer(LayerBase):
layer_type = 'pool'
def __init__(self, name, inputs, ceil_mode=True, **xargs): def __init__(self, name, inputs, ceil_mode=True, **xargs):
super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs) use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
if self.layer_type == "mkldnn_pool":
config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
super(PoolLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)): for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index) input_layer = self.get_input_layer(input_index)
pool_conf = self.config.inputs[input_index].pool_conf pool_conf = self.config.inputs[input_index].pool_conf
...@@ -2297,6 +2304,11 @@ class PoolLayer(LayerBase): ...@@ -2297,6 +2304,11 @@ class PoolLayer(LayerBase):
pool_conf.channels) pool_conf.channels)
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
layer_type = 'mkldnn_pool'
@config_layer('pool3d') @config_layer('pool3d')
class Pool3DLayer(LayerBase): class Pool3DLayer(LayerBase):
def __init__(self, name, inputs, ceil_mode=True, **xargs): def __init__(self, name, inputs, ceil_mode=True, **xargs):
......
...@@ -1224,8 +1224,8 @@ def detection_output_layer(input_loc, ...@@ -1224,8 +1224,8 @@ def detection_output_layer(input_loc,
name=None): name=None):
""" """
Apply the NMS to the output of network and compute the predict bounding Apply the NMS to the output of network and compute the predict bounding
box location. The output of this layer could be None if there is no valid box location. The output's shape of this layer could be zero if there is
bounding box. no valid bounding box.
:param name: The Layer Name. :param name: The Layer Name.
:type name: basestring :type name: basestring
......
...@@ -11,10 +11,8 @@ ...@@ -11,10 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
"""
# from activations import *
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \ from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
IdentityActivation, TanhActivation, SequenceSoftmaxActivation IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr from attrs import ExtraAttr
...@@ -55,49 +53,49 @@ def sequence_conv_pool(input, ...@@ -55,49 +53,49 @@ def sequence_conv_pool(input,
context_attr=None, context_attr=None,
pool_attr=None): pool_attr=None):
""" """
Text convolution pooling layers helper. Text convolution pooling group.
Text input => Context Projection => FC Layer => Pooling => Output. Text input => Context Projection => FC Layer => Pooling => Output.
:param name: name of output layer(pooling layer name) :param name: group name.
:type name: basestring :type name: basestring
:param input: name of input layer :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param context_len: context projection length. See :param context_len: context projection length. See
context_projection's document. context_projection's document.
:type context_len: int :type context_len: int
:param hidden_size: FC Layer size. :param hidden_size: FC Layer size.
:type hidden_size: int :type hidden_size: int
:param context_start: context projection length. See :param context_start: context start position. See
context_projection's context_start. context_projection's context_start.
:type context_start: int or None :type context_start: int|None
:param pool_type: pooling layer type. See pooling_layer's document. :param pool_type: pooling layer type. See pooling_layer's document.
:type pool_type: BasePoolingType. :type pool_type: BasePoolingType
:param context_proj_layer_name: context projection layer name. :param context_proj_layer_name: context projection layer name.
None if user don't care. None if user don't care.
:type context_proj_layer_name: basestring :type context_proj_layer_name: basestring
:param context_proj_param_attr: context projection parameter attribute. :param context_proj_param_attr: padding parameter attribute of context projection layer.
None if user don't care. If false, it means padding always be zero.
:type context_proj_param_attr: ParameterAttribute or None. :type context_proj_param_attr: ParameterAttribute|None
:param fc_layer_name: fc layer name. None if user don't care. :param fc_layer_name: fc layer name. None if user don't care.
:type fc_layer_name: basestring :type fc_layer_name: basestring
:param fc_param_attr: fc layer parameter attribute. None if user don't care. :param fc_param_attr: fc layer parameter attribute. None if user don't care.
:type fc_param_attr: ParameterAttribute or None :type fc_param_attr: ParameterAttribute|None
:param fc_bias_attr: fc bias parameter attribute. False if no bias, :param fc_bias_attr: fc bias parameter attribute. False if no bias,
None if user don't care. None if user don't care.
:type fc_bias_attr: ParameterAttribute or None :type fc_bias_attr: ParameterAttribute|False|None
:param fc_act: fc layer activation type. None means tanh :param fc_act: fc layer activation type. None means tanh.
:type fc_act: BaseActivation :type fc_act: BaseActivation
:param pool_bias_attr: pooling layer bias attr. None if don't care. :param pool_bias_attr: pooling layer bias attr. False if no bias.
False if no bias. None if user don't care.
:type pool_bias_attr: ParameterAttribute or None. :type pool_bias_attr: ParameterAttribute|False|None
:param fc_attr: fc layer extra attribute. :param fc_attr: fc layer extra attribute.
:type fc_attr: ExtraLayerAttribute :type fc_attr: ExtraLayerAttribute
:param context_attr: context projection layer extra attribute. :param context_attr: context projection layer extra attribute.
:type context_attr: ExtraLayerAttribute :type context_attr: ExtraLayerAttribute
:param pool_attr: pooling layer extra attribute. :param pool_attr: pooling layer extra attribute.
:type pool_attr: ExtraLayerAttribute :type pool_attr: ExtraLayerAttribute
:return: output layer name. :return: layer's output.
:rtype: LayerOutput :rtype: LayerOutput
""" """
# Set Default Value to param # Set Default Value to param
...@@ -163,45 +161,45 @@ def simple_img_conv_pool(input, ...@@ -163,45 +161,45 @@ def simple_img_conv_pool(input,
""" """
Simple image convolution and pooling group. Simple image convolution and pooling group.
Input => conv => pooling Img input => Conv => Pooling => Output.
:param name: group name :param name: group name.
:type name: basestring :type name: basestring
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param filter_size: see img_conv_layer for details :param filter_size: see img_conv_layer for details.
:type filter_size: int :type filter_size: int
:param num_filters: see img_conv_layer for details :param num_filters: see img_conv_layer for details.
:type num_filters: int :type num_filters: int
:param pool_size: see img_pool_layer for details :param pool_size: see img_pool_layer for details.
:type pool_size: int :type pool_size: int
:param pool_type: see img_pool_layer for details :param pool_type: see img_pool_layer for details.
:type pool_type: BasePoolingType :type pool_type: BasePoolingType
:param act: see img_conv_layer for details :param act: see img_conv_layer for details.
:type act: BaseActivation :type act: BaseActivation
:param groups: see img_conv_layer for details :param groups: see img_conv_layer for details.
:type groups: int :type groups: int
:param conv_stride: see img_conv_layer for details :param conv_stride: see img_conv_layer for details.
:type conv_stride: int :type conv_stride: int
:param conv_padding: see img_conv_layer for details :param conv_padding: see img_conv_layer for details.
:type conv_padding: int :type conv_padding: int
:param bias_attr: see img_conv_layer for details :param bias_attr: see img_conv_layer for details.
:type bias_attr: ParameterAttribute :type bias_attr: ParameterAttribute
:param num_channel: see img_conv_layer for details :param num_channel: see img_conv_layer for details.
:type num_channel: int :type num_channel: int
:param param_attr: see img_conv_layer for details :param param_attr: see img_conv_layer for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param shared_bias: see img_conv_layer for details :param shared_bias: see img_conv_layer for details.
:type shared_bias: bool :type shared_bias: bool
:param conv_layer_attr: see img_conv_layer for details :param conv_layer_attr: see img_conv_layer for details.
:type conv_layer_attr: ExtraLayerAttribute :type conv_layer_attr: ExtraLayerAttribute
:param pool_stride: see img_pool_layer for details :param pool_stride: see img_pool_layer for details.
:type pool_stride: int :type pool_stride: int
:param pool_padding: see img_pool_layer for details :param pool_padding: see img_pool_layer for details.
:type pool_padding: int :type pool_padding: int
:param pool_layer_attr: see img_pool_layer for details :param pool_layer_attr: see img_pool_layer for details.
:type pool_layer_attr: ExtraLayerAttribute :type pool_layer_attr: ExtraLayerAttribute
:return: Layer's output :return: layer's output
:rtype: LayerOutput :rtype: LayerOutput
""" """
_conv_ = img_conv_layer( _conv_ = img_conv_layer(
...@@ -253,47 +251,51 @@ def img_conv_bn_pool(input, ...@@ -253,47 +251,51 @@ def img_conv_bn_pool(input,
""" """
Convolution, batch normalization, pooling group. Convolution, batch normalization, pooling group.
:param name: group name Img input => Conv => BN => Pooling => Output.
:param name: group name.
:type name: basestring :type name: basestring
:param input: layer's input :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param filter_size: see img_conv_layer's document :param filter_size: see img_conv_layer for details.
:type filter_size: int :type filter_size: int
:param num_filters: see img_conv_layer's document :param num_filters: see img_conv_layer for details.
:type num_filters: int :type num_filters: int
:param pool_size: see img_pool_layer's document. :param pool_size: see img_pool_layer for details.
:type pool_size: int :type pool_size: int
:param pool_type: see img_pool_layer's document. :param pool_type: see img_pool_layer for details.
:type pool_type: BasePoolingType :type pool_type: BasePoolingType
:param act: see batch_norm_layer's document. :param act: see batch_norm_layer for details.
:type act: BaseActivation :type act: BaseActivation
:param groups: see img_conv_layer's document :param groups: see img_conv_layer for details.
:type groups: int :type groups: int
:param conv_stride: see img_conv_layer's document. :param conv_stride: see img_conv_layer for details.
:type conv_stride: int :type conv_stride: int
:param conv_padding: see img_conv_layer's document. :param conv_padding: see img_conv_layer for details.
:type conv_padding: int :type conv_padding: int
:param conv_bias_attr: see img_conv_layer's document. :param conv_bias_attr: see img_conv_layer for details.
:type conv_bias_attr: ParameterAttribute :type conv_bias_attr: ParameterAttribute
:param num_channel: see img_conv_layer's document. :param num_channel: see img_conv_layer for details.
:type num_channel: int :type num_channel: int
:param conv_param_attr: see img_conv_layer's document. :param conv_param_attr: see img_conv_layer for details.
:type conv_param_attr: ParameterAttribute :type conv_param_attr: ParameterAttribute
:param shared_bias: see img_conv_layer's document. :param shared_bias: see img_conv_layer for details.
:type shared_bias: bool :type shared_bias: bool
:param conv_layer_attr: see img_conv_layer's document. :param conv_layer_attr: see img_conv_layer for details.
:type conv_layer_attr: ExtraLayerOutput :type conv_layer_attr: ExtraLayerOutput
:param bn_param_attr: see batch_norm_layer's document. :param bn_param_attr: see batch_norm_layer for details.
:type bn_param_attr: ParameterAttribute. :type bn_param_attr: ParameterAttribute
:param bn_bias_attr: see batch_norm_layer's document. :param bn_bias_attr: see batch_norm_layer for details.
:param bn_layer_attr: ParameterAttribute. :type bn_bias_attr: ParameterAttribute
:param pool_stride: see img_pool_layer's document. :param bn_layer_attr: see batch_norm_layer for details.
:type bn_layer_attr: ExtraLayerAttribute
:param pool_stride: see img_pool_layer for details.
:type pool_stride: int :type pool_stride: int
:param pool_padding: see img_pool_layer's document. :param pool_padding: see img_pool_layer for details.
:type pool_padding: int :type pool_padding: int
:param pool_layer_attr: see img_pool_layer's document. :param pool_layer_attr: see img_pool_layer for details.
:type pool_layer_attr: ExtraLayerAttribute :type pool_layer_attr: ExtraLayerAttribute
:return: Layer groups output :return: layer's output
:rtype: LayerOutput :rtype: LayerOutput
""" """
__conv__ = img_conv_layer( __conv__ = img_conv_layer(
...@@ -348,10 +350,10 @@ def img_conv_group(input, ...@@ -348,10 +350,10 @@ def img_conv_group(input,
:param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true, :param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true,
conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm. conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.
:type conv_batchnorm_drop_rate: list :type conv_batchnorm_drop_rate: list
:param input: layer's input. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param conv_num_filter: output channels num. :param conv_num_filter: list of output channels num.
:type conv_num_filter: int :type conv_num_filter: list|tuple
:param pool_size: pooling filter size. :param pool_size: pooling filter size.
:type pool_size: int :type pool_size: int
:param num_channels: input channels num. :param num_channels: input channels num.
...@@ -362,18 +364,18 @@ def img_conv_group(input, ...@@ -362,18 +364,18 @@ def img_conv_group(input,
:type conv_filter_size: int :type conv_filter_size: int
:param conv_act: activation funciton after convolution. :param conv_act: activation funciton after convolution.
:type conv_act: BaseActivation :type conv_act: BaseActivation
:param conv_with_batchnorm: conv_with_batchnorm[i] represents :param conv_with_batchnorm: if conv_with_batchnorm[i] is true,
if there is a batch normalization after each convolution. there is a batch normalization operation after each convolution.
:type conv_with_batchnorm: list :type conv_with_batchnorm: list
:param pool_stride: pooling stride size. :param pool_stride: pooling stride size.
:type pool_stride: int :type pool_stride: int
:param pool_type: pooling type. :param pool_type: pooling type.
:type pool_type: BasePoolingType :type pool_type: BasePoolingType
:param param_attr: Convolution param attribute. :param param_attr: param attribute of convolution layer,
None means default attribute. None means default attribute.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: Layer's output :return: layer's output
:type: LayerOutput :rtype: LayerOutput
""" """
tmp = input tmp = input
...@@ -466,12 +468,14 @@ def vgg_16_network(input_image, num_channels, num_classes=1000): ...@@ -466,12 +468,14 @@ def vgg_16_network(input_image, num_channels, num_classes=1000):
""" """
Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8 Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8
:param num_classes: :param num_classes: number of class.
:param input_image: :type num_classes: int
:param input_image: input layer.
:type input_image: LayerOutput :type input_image: LayerOutput
:param num_channels: :param num_channels: input channels num.
:type num_channels: int :type num_channels: int
:return: :return: layer's output
:rtype: LayerOutput
""" """
tmp = img_conv_group( tmp = img_conv_group(
...@@ -560,8 +564,8 @@ def simple_lstm(input, ...@@ -560,8 +564,8 @@ def simple_lstm(input,
""" """
Simple LSTM Cell. Simple LSTM Cell.
It just combine a mixed layer with fully_matrix_projection and a lstmemory It just combines a mixed layer with fully_matrix_projection and a lstmemory
layer. The simple lstm cell was implemented as follow equations. layer. The simple lstm cell was implemented with follow equations.
.. math:: .. math::
...@@ -575,37 +579,37 @@ def simple_lstm(input, ...@@ -575,37 +579,37 @@ def simple_lstm(input,
h_t & = o_t tanh(c_t) h_t & = o_t tanh(c_t)
Please refer **Generating Sequences With Recurrent Neural Networks** if you Please refer to **Generating Sequences With Recurrent Neural Networks** for more
want to know what lstm is. Link_ is here. details about lstm. Link_ is here.
.. _Link: http://arxiv.org/abs/1308.0850 .. _Link: http://arxiv.org/abs/1308.0850
:param name: lstm layer name. :param name: lstm layer name.
:type name: basestring :type name: basestring
:param input: input layer name. :param input: layer's input.
:type input: LayerOutput :type input: LayerOutput
:param size: lstm layer size. :param size: lstm layer size.
:type size: int :type size: int
:param reverse: whether to process the input data in a reverse order :param reverse: process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param mat_param_attr: mixed layer's matrix projection parameter attribute. :param mat_param_attr: parameter attribute of matrix projection in mixed layer.
:type mat_param_attr: ParameterAttribute :type mat_param_attr: ParameterAttribute
:param bias_param_attr: bias parameter attribute. False means no bias, None :param bias_param_attr: bias parameter attribute. False means no bias, None
means default bias. means default bias.
:type bias_param_attr: ParameterAttribute|False :type bias_param_attr: ParameterAttribute|False
:param inner_param_attr: lstm cell parameter attribute. :param inner_param_attr: parameter attribute of lstm cell.
:type inner_param_attr: ParameterAttribute :type inner_param_attr: ParameterAttribute
:param act: lstm final activiation type :param act: last activiation type of lstm.
:type act: BaseActivation :type act: BaseActivation
:param gate_act: lstm gate activiation type :param gate_act: gate activiation type of lstm.
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param state_act: lstm state activiation type. :param state_act: state activiation type of lstm.
:type state_act: BaseActivation :type state_act: BaseActivation
:param mixed_layer_attr: mixed layer's extra attribute. :param mixed_layer_attr: extra attribute of mixed layer.
:type mixed_layer_attr: ExtraLayerAttribute :type mixed_layer_attr: ExtraLayerAttribute
:param lstm_cell_attr: lstm layer's extra attribute. :param lstm_cell_attr: extra attribute of lstm.
:type lstm_cell_attr: ExtraLayerAttribute :type lstm_cell_attr: ExtraLayerAttribute
:return: lstm layer name. :return: layer's output.
:rtype: LayerOutput :rtype: LayerOutput
""" """
fc_name = 'lstm_transform_%s' % name fc_name = 'lstm_transform_%s' % name
...@@ -643,9 +647,9 @@ def lstmemory_unit(input, ...@@ -643,9 +647,9 @@ def lstmemory_unit(input,
lstm_bias_attr=None, lstm_bias_attr=None,
lstm_layer_attr=None): lstm_layer_attr=None):
""" """
Define calculations that a LSTM unit performs during a single time step. lstmemory_unit defines the caculation process of a LSTM unit during a
This function itself is not a recurrent layer, so it can not be single time step. This function is not a recurrent layer, so it can not be
directly used to process sequence inputs. This function is always used in directly used to process sequence input. This function is always used in
recurrent_group (see layers.py for more details) to implement attention recurrent_group (see layers.py for more details) to implement attention
mechanism. mechanism.
...@@ -676,7 +680,7 @@ def lstmemory_unit(input, ...@@ -676,7 +680,7 @@ def lstmemory_unit(input,
state_act=TanhActivation()) state_act=TanhActivation())
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param out_memory: output of previous time step :param out_memory: output of previous time step
:type out_memory: LayerOutput | None :type out_memory: LayerOutput | None
...@@ -684,15 +688,15 @@ def lstmemory_unit(input, ...@@ -684,15 +688,15 @@ def lstmemory_unit(input,
:type name: basestring :type name: basestring
:param size: lstmemory unit size. :param size: lstmemory unit size.
:type size: int :type size: int
:param param_attr: Parameter config, None if use default. :param param_attr: parameter attribute, None means default attribute.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param act: lstm final activiation type :param act: last activiation type of lstm.
:type act: BaseActivation :type act: BaseActivation
:param gate_act: lstm gate activiation type :param gate_act: gate activiation type of lstm.
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param state_act: lstm state activiation type. :param state_act: state activiation type of lstm.
:type state_act: BaseActivation :type state_act: BaseActivation
:param input_proj_bias_attr: bias attribute for input-to-hidden projection. :param input_proj_bias_attr: bias attribute for input to hidden projection.
False means no bias, None means default bias. False means no bias, None means default bias.
:type input_proj_bias_attr: ParameterAttribute|False|None :type input_proj_bias_attr: ParameterAttribute|False|None
:param input_proj_layer_attr: extra layer attribute for input to hidden :param input_proj_layer_attr: extra layer attribute for input to hidden
...@@ -700,8 +704,8 @@ def lstmemory_unit(input, ...@@ -700,8 +704,8 @@ def lstmemory_unit(input,
:type input_proj_layer_attr: ExtraLayerAttribute :type input_proj_layer_attr: ExtraLayerAttribute
:param lstm_bias_attr: bias parameter attribute of lstm layer. :param lstm_bias_attr: bias parameter attribute of lstm layer.
False means no bias, None means default bias. False means no bias, None means default bias.
:type lstm_bias_attr: ParameterAttribute|False :type lstm_bias_attr: ParameterAttribute|False|None
:param lstm_layer_attr: lstm layer's extra attribute. :param lstm_layer_attr: extra attribute of lstm layer.
:type lstm_layer_attr: ExtraLayerAttribute :type lstm_layer_attr: ExtraLayerAttribute
:return: lstmemory unit name. :return: lstmemory unit name.
:rtype: LayerOutput :rtype: LayerOutput
...@@ -758,9 +762,9 @@ def lstmemory_group(input, ...@@ -758,9 +762,9 @@ def lstmemory_group(input,
lstm_group is a recurrent_group version of Long Short Term Memory. It lstm_group is a recurrent_group version of Long Short Term Memory. It
does exactly the same calculation as the lstmemory layer (see lstmemory in does exactly the same calculation as the lstmemory layer (see lstmemory in
layers.py for the maths) does. A promising benefit is that LSTM memory layers.py for the maths) does. A promising benefit is that LSTM memory
cell states, or hidden states in every time step are accessible to the cell states(or hidden states) in every time step are accessible to the
user. This is especially useful in attention model. If you do not need to user. This is especially useful in attention model. If you do not need to
access the internal states of the lstm, but merely use its outputs, access the internal states of the lstm and merely use its outputs,
it is recommended to use the lstmemory, which is relatively faster than it is recommended to use the lstmemory, which is relatively faster than
lstmemory_group. lstmemory_group.
...@@ -781,28 +785,28 @@ def lstmemory_group(input, ...@@ -781,28 +785,28 @@ def lstmemory_group(input,
gate_act=SigmoidActivation(), gate_act=SigmoidActivation(),
state_act=TanhActivation()) state_act=TanhActivation())
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param size: lstmemory group size. :param size: lstmemory group size.
:type size: int :type size: int
:param name: name of the lstmemory group. :param name: name of lstmemory group.
:type name: basestring :type name: basestring
:param out_memory: output of previous time step :param out_memory: output of previous time step.
:type out_memory: LayerOutput | None :type out_memory: LayerOutput | None
:param reverse: is lstm reversed :param reverse: process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param param_attr: Parameter config, None if use default. :param param_attr: parameter attribute, None means default attribute.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param act: lstm final activiation type :param act: last activiation type of lstm.
:type act: BaseActivation :type act: BaseActivation
:param gate_act: lstm gate activiation type :param gate_act: gate activiation type of lstm.
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param state_act: lstm state activiation type. :param state_act: state activiation type of lstm.
:type state_act: BaseActivation :type state_act: BaseActivation
:param lstm_bias_attr: bias parameter attribute of lstm layer. :param lstm_bias_attr: bias parameter attribute of lstm layer.
False means no bias, None means default bias. False means no bias, None means default bias.
:type lstm_bias_attr: ParameterAttribute|False :type lstm_bias_attr: ParameterAttribute|False|None
:param input_proj_bias_attr: bias attribute for input-to-hidden projection. :param input_proj_bias_attr: bias attribute for input to hidden projection.
False means no bias, None means default bias. False means no bias, None means default bias.
:type input_proj_bias_attr: ParameterAttribute|False|None :type input_proj_bias_attr: ParameterAttribute|False|None
:param input_proj_layer_attr: extra layer attribute for input to hidden :param input_proj_layer_attr: extra layer attribute for input to hidden
...@@ -848,15 +852,15 @@ def gru_unit(input, ...@@ -848,15 +852,15 @@ def gru_unit(input,
gru_layer_attr=None, gru_layer_attr=None,
naive=False): naive=False):
""" """
Define calculations that a gated recurrent unit performs in a single time gru_unit defines the calculation process of a gated recurrent unit during a single
step. This function itself is not a recurrent layer, so it can not be time step. This function is not a recurrent layer, so it can not be
directly used to process sequence inputs. This function is always used in directly used to process sequence input. This function is always used in
the recurrent_group (see layers.py for more details) to implement attention the recurrent_group (see layers.py for more details) to implement attention
mechanism. mechanism.
Please see grumemory in layers.py for the details about the maths. Please see grumemory in layers.py for the details about the maths.
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell. :param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None :type memory_boot: LayerOutput | None
...@@ -864,12 +868,12 @@ def gru_unit(input, ...@@ -864,12 +868,12 @@ def gru_unit(input,
:type name: basestring :type name: basestring
:param size: hidden size of the gru. :param size: hidden size of the gru.
:type size: int :type size: int
:param act: type of the activation :param act: activation type of gru
:type act: BaseActivation :type act: BaseActivation
:param gate_act: type of the gate activation :param gate_act: gate activation type or gru
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param gru_layer_attr: Extra parameter attribute of the gru layer. :param gru_layer_attr: Extra attribute of the gru layer.
:type gru_layer_attr: ParameterAttribute|False :type gru_layer_attr: ExtraLayerAttribute
:return: the gru output layer. :return: the gru output layer.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -915,7 +919,7 @@ def gru_group(input, ...@@ -915,7 +919,7 @@ def gru_group(input,
does exactly the same calculation as the grumemory layer does. A promising does exactly the same calculation as the grumemory layer does. A promising
benefit is that gru hidden states are accessible to the user. This is benefit is that gru hidden states are accessible to the user. This is
especially useful in attention model. If you do not need to access especially useful in attention model. If you do not need to access
any internal state, but merely use the outputs of a GRU, it is recommended any internal state and merely use the outputs of a GRU, it is recommended
to use the grumemory, which is relatively faster. to use the grumemory, which is relatively faster.
Please see grumemory in layers.py for more detail about the maths. Please see grumemory in layers.py for more detail about the maths.
...@@ -924,12 +928,12 @@ def gru_group(input, ...@@ -924,12 +928,12 @@ def gru_group(input,
.. code-block:: python .. code-block:: python
gru = gur_group(input=[layer1], gru = gru_group(input=[layer1],
size=256, size=256,
act=TanhActivation(), act=TanhActivation(),
gate_act=SigmoidActivation()) gate_act=SigmoidActivation())
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell. :param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None :type memory_boot: LayerOutput | None
...@@ -937,16 +941,17 @@ def gru_group(input, ...@@ -937,16 +941,17 @@ def gru_group(input,
:type name: basestring :type name: basestring
:param size: hidden size of the gru. :param size: hidden size of the gru.
:type size: int :type size: int
:param reverse: whether to process the input data in a reverse order :param reverse: process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param act: type of the activiation :param act: activiation type of gru
:type act: BaseActivation :type act: BaseActivation
:param gate_act: type of the gate activiation :param gate_act: gate activiation type of gru
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param gru_bias_attr: bias. False means no bias, None means default bias. :param gru_bias_attr: bias parameter attribute of gru layer,
:type gru_bias_attr: ParameterAttribute|False False means no bias, None means default bias.
:param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_bias_attr: ParameterAttribute|False|None
:type gru_layer_attr: ParameterAttribute|False :param gru_layer_attr: Extra attribute of the gru layer.
:type gru_layer_attr: ExtraLayerAttribute
:return: the gru group. :return: the gru group.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -986,11 +991,11 @@ def simple_gru(input, ...@@ -986,11 +991,11 @@ def simple_gru(input,
gru_layer_attr=None, gru_layer_attr=None,
naive=False): naive=False):
""" """
You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group, You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
simple_gru in network.py. The reason why there are so many interfaces is simple_gru in network.py. The reason why there are so many interfaces is
that we have two ways to implement recurrent neural network. One way is to that we have two ways to implement recurrent neural network. One way is to
use one complete layer to implement rnn (including simple rnn, gru and lstm) use one complete layer to implement rnn (including simple rnn, gru and lstm)
with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But, with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But
the multiplication operation :math:`W x_t` is not computed in these layers. the multiplication operation :math:`W x_t` is not computed in these layers.
See details in their interfaces in layers.py. See details in their interfaces in layers.py.
The other implementation is to use an recurrent group which can ensemble a The other implementation is to use an recurrent group which can ensemble a
...@@ -1018,22 +1023,23 @@ def simple_gru(input, ...@@ -1018,22 +1023,23 @@ def simple_gru(input,
gru = simple_gru(input=[layer1], size=256) gru = simple_gru(input=[layer1], size=256)
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param name: name of the gru group. :param name: name of the gru group.
:type name: basestring :type name: basestring
:param size: hidden size of the gru. :param size: hidden size of the gru.
:type size: int :type size: int
:param reverse: whether to process the input data in a reverse order :param reverse: process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param act: type of the activiation :param act: activiation type of gru
:type act: BaseActivation :type act: BaseActivation
:param gate_act: type of the gate activiation :param gate_act: gate activiation type of gru
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param gru_bias_attr: bias. False means no bias, None means default bias. :param gru_bias_attr: bias parameter attribute of gru layer,
:type gru_bias_attr: ParameterAttribute|False False means no bias, None means default bias.
:param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_bias_attr: ParameterAttribute|False|None
:type gru_layer_attr: ParameterAttribute|False :param gru_layer_attr: Extra attribute of the gru layer.
:type gru_layer_attr: ExtraLayerAttribute
:return: the gru group. :return: the gru group.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -1071,8 +1077,8 @@ def simple_gru2(input, ...@@ -1071,8 +1077,8 @@ def simple_gru2(input,
mixed_layer_attr=None, mixed_layer_attr=None,
gru_cell_attr=None): gru_cell_attr=None):
""" """
simple_gru2 is the same with simple_gru, but using grumemory instead simple_gru2 is the same with simple_gru, but using grumemory instead.
Please see grumemory in layers.py for more detail about the maths. Please refer to grumemory in layers.py for more detail about the math.
simple_gru2 is faster than simple_gru. simple_gru2 is faster than simple_gru.
The example usage is: The example usage is:
...@@ -1081,22 +1087,23 @@ def simple_gru2(input, ...@@ -1081,22 +1087,23 @@ def simple_gru2(input,
gru = simple_gru2(input=[layer1], size=256) gru = simple_gru2(input=[layer1], size=256)
:param input: input layer name. :param input: input layer.
:type input: LayerOutput :type input: LayerOutput
:param name: name of the gru group. :param name: name of the gru group.
:type name: basestring :type name: basestring
:param size: hidden size of the gru. :param size: hidden size of the gru.
:type size: int :type size: int
:param reverse: whether to process the input data in a reverse order :param reverse: process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param act: type of the activiation :param act: activiation type of gru
:type act: BaseActivation :type act: BaseActivation
:param gate_act: type of the gate activiation :param gate_act: gate activiation type of gru
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param gru_bias_attr: bias. False means no bias, None means default bias. :param gru_bias_attr: bias parameter attribute of gru layer,
:type gru_bias_attr: ParameterAttribute|False False means no bias, None means default bias.
:param gru_layer_attr: Extra parameter attribute of the gru layer. :type gru_bias_attr: ParameterAttribute|False|None
:type gru_layer_attr: ParameterAttribute|False :param gru_layer_attr: Extra attribute of the gru layer.
:type gru_layer_attr: ExtraLayerAttribute
:return: the gru group. :return: the gru group.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -1145,7 +1152,7 @@ def bidirectional_gru(input, ...@@ -1145,7 +1152,7 @@ def bidirectional_gru(input,
concat_act=None): concat_act=None):
""" """
A bidirectional_gru is a recurrent unit that iterates over the input A bidirectional_gru is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two sequence both in forward and backward orders, and then concatenate two
outputs to form a final output. However, concatenation of two outputs outputs to form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example, is not the only way to form the final output, you can also, for example,
just add them together. just add them together.
...@@ -1162,11 +1169,10 @@ def bidirectional_gru(input, ...@@ -1162,11 +1169,10 @@ def bidirectional_gru(input,
:type input: LayerOutput :type input: LayerOutput
:param size: gru layer size. :param size: gru layer size.
:type size: int :type size: int
:param return_seq: If set False, outputs of the last time step are :param return_seq: If set False, the last time step of output are
concatenated and returned.
If set True, the entire output sequences that are
processed in forward and backward directions are
concatenated and returned. concatenated and returned.
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.
:type return_seq: bool :type return_seq: bool
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
...@@ -1230,8 +1236,8 @@ def bidirectional_lstm(input, ...@@ -1230,8 +1236,8 @@ def bidirectional_lstm(input,
concat_act=None): concat_act=None):
""" """
A bidirectional_lstm is a recurrent unit that iterates over the input A bidirectional_lstm is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two sequence both in forward and backward orders, and then concatenate two
outputs form a final output. However, concatenation of two outputs outputs to form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example, is not the only way to form the final output, you can also, for example,
just add them together. just add them together.
...@@ -1252,13 +1258,12 @@ def bidirectional_lstm(input, ...@@ -1252,13 +1258,12 @@ def bidirectional_lstm(input,
:type input: LayerOutput :type input: LayerOutput
:param size: lstm layer size. :param size: lstm layer size.
:type size: int :type size: int
:param return_seq: If set False, outputs of the last time step are :param return_seq: If set False, the last time step of output are
concatenated and returned.
If set True, the entire output sequences that are
processed in forward and backward directions are
concatenated and returned. concatenated and returned.
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.
:type return_seq: bool :type return_seq: bool
:return: LayerOutput object accroding to the return_seq. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
args = locals() args = locals()
...@@ -1303,7 +1308,7 @@ def simple_attention(encoded_sequence, ...@@ -1303,7 +1308,7 @@ def simple_attention(encoded_sequence,
weight_act=None, weight_act=None,
name=None): name=None):
""" """
Calculate and then return a context vector by attention machanism. Calculate and return a context vector with attention mechanism.
Size of the context vector equals to size of the encoded_sequence. Size of the context vector equals to size of the encoded_sequence.
.. math:: .. math::
...@@ -1336,10 +1341,10 @@ def simple_attention(encoded_sequence, ...@@ -1336,10 +1341,10 @@ def simple_attention(encoded_sequence,
:param name: name of the attention model. :param name: name of the attention model.
:type name: basestring :type name: basestring
:param softmax_param_attr: parameter attribute of sequence softmax :param softmax_param_attr: parameter attribute of sequence softmax
that is used to produce attention weight that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute :type softmax_param_attr: ParameterAttribute
:param weight_act: activation of the attention model :param weight_act: activation of the attention model.
:type weight_act: Activation :type weight_act: BaseActivation
:param encoded_sequence: output of the encoder :param encoded_sequence: output of the encoder
:type encoded_sequence: LayerOutput :type encoded_sequence: LayerOutput
:param encoded_proj: attention weight is computed by a feed forward neural :param encoded_proj: attention weight is computed by a feed forward neural
...@@ -1411,7 +1416,7 @@ def inputs(layers, *args): ...@@ -1411,7 +1416,7 @@ def inputs(layers, *args):
def outputs(layers, *args): def outputs(layers, *args):
""" """
Declare the outputs of network. If user have not defined the inputs of Declare the outputs of network. If user has not defined the inputs of
network, this method will calculate the input order by dfs travel. network, this method will calculate the input order by dfs travel.
:param layers: Output layers. :param layers: Output layers.
......
...@@ -215,5 +215,27 @@ class __RecurrentOp__(object): ...@@ -215,5 +215,27 @@ class __RecurrentOp__(object):
return core.RecurrentOp.create(proto.SerializeToString()) return core.RecurrentOp.create(proto.SerializeToString())
class __CondOp__(object):
__proto__ = None
type = "cond"
def __init__(self):
# cache recurrent_op's proto
if self.__proto__ is None:
for op_proto in get_all_op_protos():
if op_proto.type == self.type:
self.__proto__ = op_proto
def __call__(self, *args, **kwargs):
if self.type not in args and "type" not in kwargs:
kwargs["type"] = self.type
# create proto
create_method = OpDescCreationMethod(self.__proto__)
proto = create_method(*args, **kwargs)
# create condop
return core.CondOp.create(proto.SerializeToString())
Operator = OperatorFactory() # The default global factory Operator = OperatorFactory() # The default global factory
RecurrentOp = __RecurrentOp__() RecurrentOp = __RecurrentOp__()
CondOp = __CondOp__()
...@@ -28,10 +28,10 @@ def create_op(scope, op_type, inputs, outputs, attrs): ...@@ -28,10 +28,10 @@ def create_op(scope, op_type, inputs, outputs, attrs):
if out_name in outputs: if out_name in outputs:
kwargs[out_name] = [] kwargs[out_name] = []
if out_dup: if out_dup:
sub_in = outputs[out_name] sub_out = outputs[out_name]
for sub_in_name, _ in sub_in: for sub_out_name, _ in sub_out:
var = scope.new_var(sub_in_name) var = scope.new_var(sub_out_name)
kwargs[out_name].append(sub_in_name) kwargs[out_name].append(sub_out_name)
else: else:
var = scope.new_var(out_name) var = scope.new_var(out_name)
kwargs[out_name].append(out_name) kwargs[out_name].append(out_name)
...@@ -39,6 +39,7 @@ def create_op(scope, op_type, inputs, outputs, attrs): ...@@ -39,6 +39,7 @@ def create_op(scope, op_type, inputs, outputs, attrs):
for attr_name in Operator.get_op_attr_names(op_type): for attr_name in Operator.get_op_attr_names(op_type):
if attr_name in attrs: if attr_name in attrs:
kwargs[attr_name] = attrs[attr_name] kwargs[attr_name] = attrs[attr_name]
return Operator(op_type, **kwargs) return Operator(op_type, **kwargs)
...@@ -47,17 +48,24 @@ def set_input(scope, op, inputs, place): ...@@ -47,17 +48,24 @@ def set_input(scope, op, inputs, place):
if in_name in inputs: if in_name in inputs:
if in_dup: if in_dup:
sub_in = inputs[in_name] sub_in = inputs[in_name]
for sub_in_name, sub_in_array in sub_in: for sub_in_name, sub_in_val in sub_in:
var = scope.find_var(sub_in_name) var = scope.find_var(sub_in_name)
tensor = var.get_tensor() tensor = var.get_tensor()
sub_in_array = sub_in_val[0] \
if isinstance(sub_in_val, tuple) else sub_in_val
tensor.set_dims(sub_in_array.shape) tensor.set_dims(sub_in_array.shape)
tensor.set(sub_in_array, place) tensor.set(sub_in_array, place)
if isinstance(sub_in_val, tuple):
tensor.set_lod(sub_in_val[1])
else: else:
var = scope.find_var(in_name) var = scope.find_var(in_name)
tensor = var.get_tensor() tensor = var.get_tensor()
arr = inputs[in_name] in_val = inputs[in_name]
tensor.set_dims(arr.shape) in_array = in_val[0] if isinstance(in_val, tuple) else in_val
tensor.set(arr, place) tensor.set_dims(in_array.shape)
tensor.set(in_array, place)
if isinstance(in_val, tuple):
tensor.set_lod(in_val[1])
def set_output_grad(scope, op, outputs, place): def set_output_grad(scope, op, outputs, place):
...@@ -172,8 +180,9 @@ class OpTest(unittest.TestCase): ...@@ -172,8 +180,9 @@ class OpTest(unittest.TestCase):
def check_output_with_place(self, place): def check_output_with_place(self, place):
self.scope = core.Scope() self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict() op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs, self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
op_attrs) op_attrs)
if isinstance(place, core.GPUPlace) and not self.op.support_gpu(): if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
return return
...@@ -183,23 +192,29 @@ class OpTest(unittest.TestCase): ...@@ -183,23 +192,29 @@ class OpTest(unittest.TestCase):
self.op.run(self.scope, ctx) self.op.run(self.scope, ctx)
for out_name, out_dup in Operator.get_op_outputs(self.op.type()): for out_name, out_dup in Operator.get_op_outputs(self.op.type()):
if out_name not in self.outputs:
continue
if out_dup: if out_dup:
sub_out = self.outputs[out_name] sub_out = self.outputs[out_name]
for sub_out_name in sub_out: if not isinstance(sub_out, list):
raise AssertionError("sub_out type %s is not list",
type(sub_out))
for sub_out_name, expect in sub_out:
actual = np.array( actual = np.array(
self.scope.find_var(sub_out_name).get_tensor()) self.scope.find_var(sub_out_name).get_tensor())
expect = sub_out[sub_out_name]
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
actual, expect, atol=1e-05), actual, expect, atol=1e-05),
"output name: " + out_name + "has diff") "output name: " + out_name + " has diff")
else: else:
actual = np.array(self.scope.find_var(out_name).get_tensor()) actual = np.array(self.scope.find_var(out_name).get_tensor())
expect = self.outputs[out_name] expect = self.outputs[out_name]
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
actual, expect, atol=1e-05), actual, expect, atol=1e-05),
"output name: " + out_name + "has diff") "output name: " + out_name + " has diff")
def check_output(self): def check_output(self):
places = [core.CPUPlace()] places = [core.CPUPlace()]
...@@ -234,8 +249,9 @@ class OpTest(unittest.TestCase): ...@@ -234,8 +249,9 @@ class OpTest(unittest.TestCase):
max_relative_error=0.005): max_relative_error=0.005):
self.scope = core.Scope() self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict() op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs, self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
op_attrs) op_attrs)
if no_grad_set is None: if no_grad_set is None:
no_grad_set = set() no_grad_set = set()
......
...@@ -6,16 +6,17 @@ from op_test import OpTest ...@@ -6,16 +6,17 @@ from op_test import OpTest
class TestAccuracyOp(OpTest): class TestAccuracyOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "accuracy" self.op_type = "accuracy"
infer = np.random.randint(0, 2, (32, 1)).astype("int") n = 8192
label = np.random.randint(0, 2, (32, )).astype("int") infer = np.random.randint(0, 2, (n, 1)).astype("int")
label = np.random.randint(0, 2, (n, )).astype("int")
self.inputs = {'Inference': infer, "Label": label} self.inputs = {'Inference': infer, "Label": label}
num_correct = 0 num_correct = 0
for rowid in xrange(32): for rowid in xrange(n):
for ele in infer[rowid]: for ele in infer[rowid]:
if ele == label[rowid]: if ele == label[rowid]:
num_correct += 1 num_correct += 1
break break
self.outputs = {'Accuracy': [num_correct / 32.0]} self.outputs = {'Accuracy': [num_correct / float(n)]}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
......
import logging
import paddle.v2.framework.core as core
import unittest
import numpy as np
from paddle.v2.framework.op import Operator, CondOp
class PySimpleCond(object):
'''
A simple implementation of dynamic if-else based on numpy
'''
def __init__(self):
array = [1] * 10
for i in range(1, 10, 2):
array[i] = 0
self.cond = np.array(array)
self.x = np.ones(shape=(10, 1))
def forward(self):
self.index_t = np.where(self.cond == 1)
self.index_f = np.where(self.cond == 0)
y_t = self.x[self.index_t]
y_f = self.x[self.index_f]
y_t = y_t * 2.
y_f = y_f * (-2.)
output = np.zeros(shape=(10, 1))
output[self.index_t] = y_t
output[self.index_f] = y_f
return output
class PySimpleCondTest(unittest.TestCase):
def setUp(self):
self.condnn = PySimpleCond()
def test_forward(self):
output = self.condnn.forward()
def create_tensor(scope, name, shape, np_data):
tensor = scope.new_var(name).get_tensor()
tensor.set_dims(shape)
tensor.set(np_data, core.CPUPlace())
return tensor
class TestCondOp(unittest.TestCase):
'''
Test CondOp
equation:
cond = [True, False, True, False, ...]
y[index_t] = x[index_t] * 2.
y[index_f] = x[index_f] * -2.
outputs:
y
'''
def setUp(self):
self.py_cond = PySimpleCond()
def forward(self):
self.scope = core.Scope()
self.create_global_variables()
self.create_cond_op()
self.create_sub_net()
ctx = core.DeviceContext.create(core.CPUPlace())
self.condop.infer_shape(self.scope)
self.condop.run(self.scope, ctx)
return np.array(self.scope.find_var("Out").get_tensor())
def create_global_variables(self):
x_np_data = self.py_cond.x
create_tensor(self.scope, "X", [10, 1], x_np_data)
cond_np_data = self.py_cond.cond.astype("int32")
create_tensor(self.scope, "cond", [10, 1], cond_np_data)
self.scope.new_var("SubScopes")
self.scope.new_var("IndexTensors")
self.scope.new_var("Out")
def create_cond_op(self):
self.condop = CondOp(
Cond="cond",
Xs=["X"],
Outs=["Out"],
SubScopes="SubScopes",
IndexTensors="IndexTensors")
def create_sub_net(self):
truenet = core.Net.create()
scale_op_t = Operator("scale", X='X', Out='Out', scale=2.)
truenet.append_op(scale_op_t)
truenet.complete_add_op(True)
self.condop.set_truenet(truenet)
falsenet = core.Net.create()
scale_op_t = Operator("scale", X='X', Out='Out', scale=-2.)
falsenet.append_op(scale_op_t)
falsenet.complete_add_op(True)
self.condop.set_falsenet(falsenet)
def test_forward(self):
print 'test cond op forward'
pd_output = self.forward()
py_output = self.py_cond.forward()
print 'pd_output', pd_output
print
print 'py_output', py_output
self.assertEqual(pd_output.shape, py_output.shape)
print 'test passed'
return 0
if __name__ == "__main__":
unittest.main()
import unittest import unittest
import numpy import numpy as np
from op_test import OpTest from op_test import OpTest
class TestCrossEntropy(OpTest): class TestCrossEntropyOp1(OpTest):
"""Test standard cross-entropy, with index representation of labels.
"""
def setUp(self): def setUp(self):
self.op_type = "onehot_cross_entropy" self.op_type = "cross_entropy"
batch_size = 30 batch_size = 30
class_num = 10 class_num = 10
X = np.random.uniform(0.1, 1.0,
X = numpy.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32") [batch_size, class_num]).astype("float32")
labels = numpy.random.randint(0, class_num, batch_size, dtype="int32") label = np.random.randint(0, class_num, (batch_size, 1), dtype="int32")
cross_entropy = np.asmatrix(
cross_entropy = numpy.asmatrix( [[-np.log(X[i][label[i][0]])] for i in range(X.shape[0])],
[[-numpy.log(X[i][labels[i]])] for i in range(X.shape[0])],
dtype="float32") dtype="float32")
self.inputs = {"X": X, "label": labels} self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy} self.outputs = {"Y": cross_entropy}
self.attrs = {'soft_label': 0}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -26,5 +28,62 @@ class TestCrossEntropy(OpTest): ...@@ -26,5 +28,62 @@ class TestCrossEntropy(OpTest):
self.check_grad(["X"], "Y") self.check_grad(["X"], "Y")
class TestCrossEntropyOp2(OpTest):
"""Test soft-label cross-entropy, with vecterized soft labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
batch_size = 10
class_num = 5
X = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32")
label = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32")
label /= label.sum(axis=1, keepdims=True)
cross_entropy = (-label * np.log(X)).sum(
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
class TestCrossEntropyOp3(OpTest):
"""Test one-hot cross-entropy, with vecterized one-hot representation of
labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
batch_size = 30
class_num = 10
X = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32")
label_index = np.random.randint(
0, class_num, (batch_size), dtype="int32")
label = np.zeros(X.shape)
label[np.arange(batch_size), label_index] = 1
cross_entropy = np.asmatrix(
[[-np.log(X[i][label_index[i]])] for i in range(X.shape[0])],
dtype="float32")
cross_entropy2 = (-label * np.log(X)).sum(
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestDropoutOp(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64))}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out', max_relative_error=0.05)
class TestDropoutOp2(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 1.0, 'is_training': 1}
self.outputs = {'Out': np.zeros((32, 64)), 'Mask': np.zeros((32, 64))}
class TestDropoutOp3(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64, 2))}
class TestDropoutOp4(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.35, 'is_training': 0}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
self.check_output()
class TestDropoutOp5(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
self.attrs = {'dropout_prob': 0.75, 'is_training': 0}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestFCOp1(OpTest):
def setUp(self):
x0 = np.random.random((16, 32)).astype("float32")
w0 = np.random.random((32, 10)).astype("float32")
mul_out0 = np.dot(x0, w0)
identity_out = mul_out0
self.op_type = "fc"
self.inputs = {"X": [("X0", x0)], "W": [("W0", w0)]}
self.outputs = {"MulOut": [("MulOut0", mul_out0)], "Out": identity_out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X0", "W0"], "Out", max_relative_error=0.01)
class TestFCOp2(OpTest):
def setUp(self):
x0 = np.random.random((16, 4, 8)).astype("float32")
x1 = np.random.random((4, 4, 32)).astype("float32")
w0 = np.random.random((32, 10)).astype("float32")
w1 = np.random.random((32, 10)).astype("float32")
b = np.random.random(10).astype("float32")
mul_out0 = np.dot(x0.reshape(16, 4 * 8), w0)
mul_out1 = np.dot(x1.reshape(4 * 4, 32), w1)
sum_out = mul_out0 + mul_out1
add_out = np.add(sum_out, b)
sigmoid_out = 1 / (1 + np.exp(-add_out))
self.op_type = "fc"
self.inputs = {
"X": [("X0", x0), ("X1", x1)],
"W": [("W0", w0), ("W1", w1)],
"B": b
}
self.attrs = {"xNumColDims": [1, 2], "activation": "sigmoid"}
self.outputs = {
"MulOut": [("MulOut0", mul_out0), ("MulOut1", mul_out1)],
"SumOut": sum_out,
"AddOut": add_out,
"Out": sigmoid_out
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
["X0", "X1", "W0", "W1", "B"], "Out", max_relative_error=0.01)
if __name__ == '__main__':
unittest.main()
...@@ -4,7 +4,7 @@ from paddle.v2.framework.op import Operator ...@@ -4,7 +4,7 @@ from paddle.v2.framework.op import Operator
import numpy import numpy
class GaussianRandomTest(unittest.TestCase): class TestGaussianRandomOp(unittest.TestCase):
def test_cpu(self): def test_cpu(self):
self.gaussian_random_test(place=core.CPUPlace()) self.gaussian_random_test(place=core.CPUPlace())
......
import unittest
import numpy as np
from op_test import OpTest
class TestIdentityOp(OpTest):
def setUp(self):
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Y': self.inputs['X']}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
if __name__ == "__main__":
unittest.main()
...@@ -3,7 +3,7 @@ import numpy as np ...@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
class MinusOpTest(OpTest): class TestMinusOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "minus" self.op_type = "minus"
self.inputs = { self.inputs = {
......
...@@ -128,7 +128,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): ...@@ -128,7 +128,7 @@ def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
def cross_entropy_layer(net, input, label): def cross_entropy_layer(net, input, label):
cost_name = "cross_entropy_%d" % uniq_id() cost_name = "cross_entropy_%d" % uniq_id()
cross_entropy_op = Operator( cross_entropy_op = Operator(
"onehot_cross_entropy", X=input, label=label, Y=cost_name) "cross_entropy", X=input, Label=label, Y=cost_name)
net.append_op(cross_entropy_op) net.append_op(cross_entropy_op)
scope.new_var(cost_name) scope.new_var(cost_name)
net.infer_shape(scope) net.infer_shape(scope)
...@@ -181,7 +181,7 @@ def error_rate(predict, label): ...@@ -181,7 +181,7 @@ def error_rate(predict, label):
images = data_layer(name="pixel", dims=[BATCH_SIZE, 784]) images = data_layer(name="pixel", dims=[BATCH_SIZE, 784])
labels = data_layer(name="label", dims=[BATCH_SIZE]) labels = data_layer(name="label", dims=[BATCH_SIZE, 1])
fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid") fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid")
fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid") fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid")
predict = fc_layer(net=forward_net, input=fc2, size=10, act="softmax") predict = fc_layer(net=forward_net, input=fc2, size=10, act="softmax")
...@@ -215,6 +215,7 @@ def test(cost_name): ...@@ -215,6 +215,7 @@ def test(cost_name):
for data in test_reader(): for data in test_reader():
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
label_data = numpy.expand_dims(label_data, axis=1)
feed_data(images, image_data) feed_data(images, image_data)
feed_data(labels, label_data) feed_data(labels, label_data)
...@@ -235,6 +236,7 @@ for pass_id in range(PASS_NUM): ...@@ -235,6 +236,7 @@ for pass_id in range(PASS_NUM):
for data in train_reader(): for data in train_reader():
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
label_data = numpy.expand_dims(label_data, axis=1)
feed_data(images, image_data) feed_data(images, image_data)
feed_data(labels, label_data) feed_data(labels, label_data)
......
import unittest
import numpy as np
from op_test import OpTest
class PReluTest(OpTest):
def setUp(self):
self.op_type = "prelu"
x_np = np.random.normal(size=(10, 10)).astype("float32")
x_np_sign = np.sign(x_np)
x_np = x_np_sign * np.maximum(x_np, .005)
alpha_np = np.array([.1])
self.inputs = {'X': x_np, 'Alpha': alpha_np}
out_np = np.maximum(self.inputs['X'], 0.)
out_np = out_np + np.minimum(self.inputs['X'],
0.) * self.inputs['Alpha']
assert out_np is not self.inputs['X']
self.outputs = {'Out': out_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == "__main__":
unittest.main()
...@@ -3,20 +3,7 @@ import numpy as np ...@@ -3,20 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
class IdentityTest(OpTest): class TestScaleOp(OpTest):
def setUp(self):
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class ScaleTest(OpTest):
def setUp(self): def setUp(self):
self.op_type = "scale" self.op_type = "scale"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")} self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
......
import unittest
import numpy as np
from op_test import OpTest
class TestSeqAvgPool1D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]]
out = np.zeros((4, 23)).astype('float32')
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0)
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSeqAvgPool2D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
out = np.zeros((4, 3, 17)).astype('float32')
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()
...@@ -3,7 +3,7 @@ import numpy as np ...@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
class TestSGD(OpTest): class TestSGDOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "sgd" self.op_type = "sgd"
w = np.random.random((102, 105)).astype("float32") w = np.random.random((102, 105)).astype("float32")
......
...@@ -3,7 +3,7 @@ import numpy as np ...@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
class TestSigmoid(OpTest): class TestSigmoidOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "sigmoid" self.op_type = "sigmoid"
self.inputs = { self.inputs = {
......
import unittest
import numpy as np
from op_test import OpTest
class TestSplitOp(OpTest):
def setUp(self):
self.op_type = "split"
axis = 0
num = 2
x = np.random.random((4, 2)).astype('float32')
out = np.split(x, num, axis)
self.inputs = {'X': x}
self.attrs = {'axis': axis, 'num': num}
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in xrange(len(out))]}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1'])
if __name__ == '__main__':
unittest.main()
...@@ -21,6 +21,9 @@ class TestTopkOp(OpTest): ...@@ -21,6 +21,9 @@ class TestTopkOp(OpTest):
self.outputs = {'Out': output, 'Indices': indices} self.outputs = {'Out': output, 'Indices': indices}
def test_check_output(self):
self.check_output()
class TestTopkOp3d(OpTest): class TestTopkOp3d(OpTest):
def setUp(self): def setUp(self):
...@@ -42,6 +45,9 @@ class TestTopkOp3d(OpTest): ...@@ -42,6 +45,9 @@ class TestTopkOp3d(OpTest):
self.outputs = {'Out': output, 'Indices': indices} self.outputs = {'Out': output, 'Indices': indices}
def test_check_output(self):
self.check_output()
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -4,7 +4,7 @@ import paddle.v2.framework.core as core ...@@ -4,7 +4,7 @@ import paddle.v2.framework.core as core
import numpy import numpy
class UniformRandomTest(unittest.TestCase): class TestUniformRandomOp(unittest.TestCase):
def test_uniform_random_cpu(self): def test_uniform_random_cpu(self):
self.uniform_random_test(place=core.CPUPlace()) self.uniform_random_test(place=core.CPUPlace())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册