diff --git a/paddle/fluid/operators/sum_op_npu.cc b/paddle/fluid/operators/sum_op_npu.cc new file mode 100755 index 0000000000000000000000000000000000000000..0e811d51110c06f960ad10bd023835f62af19232 --- /dev/null +++ b/paddle/fluid/operators/sum_op_npu.cc @@ -0,0 +1,67 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include + +#include "paddle/fluid/operators/sum_op.h" +#include "paddle/fluid/operators/npu_op_runner.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class SumNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + + auto x = ctx.MultiInput("X"); + auto* out = ctx.Output("Out"); + out->mutable_data(ctx.GetPlace()); + + auto place = ctx.GetPlace(); + + int n = static_cast(x.size()); + PADDLE_ENFORCE_EQ(n > 1, true, + platform::errors::InvalidArgument( + "The size of Input(x) list must larger or equal 2")); + + auto stream = + ctx.template device_context() + .stream(); + + auto runner = NpuOpRunner("Add", {*x[0], *x[1]}, {*out}, {}); + + runner.Run(stream); + for (int i = 2; i < n; i++) { + runner = NpuOpRunner("Add", {*out, *x[i]}, {*out}, {}); + runner.Run(stream); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_NPU_KERNEL( + sum, + ops::SumNPUKernel, + ops::SumNPUKernel); + diff --git a/python/paddle/fluid/tests/unittests/npu/test_sum_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_sum_op_npu.py new file mode 100755 index 0000000000000000000000000000000000000000..6cf840ac1d9346cd708f72de5a8a6d4c71b3ecff --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_sum_op_npu.py @@ -0,0 +1,85 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import unittest +import sys +sys.path.append("..") +from op_test import OpTest +import paddle +import paddle.fluid as fluid +import paddle.fluid.core as core + +paddle.enable_static() +SEED = 2021 + + +@unittest.skipIf(not paddle.is_compiled_with_npu(), + "core is not compiled with NPU") +class TestSum1(OpTest): + def setUp(self): + self.set_npu() + self.init_dtype() + self.op_type = "sum" + self.place = paddle.NPUPlace(0) + + x0 = np.random.random((3, 40)).astype(self.dtype) + x1 = np.random.random((3, 40)).astype(self.dtype) + x2 = np.random.random((3, 40)).astype(self.dtype) + self.inputs = {'X': [("x0", x0), ("x1", x1), ("x2", x2)]} + y = x0 + x1 + x2 + self.outputs = {'Out': y} + + self.attrs = {'use_mkldnn': False} + + def init_dtype(self): + self.dtype = np.float32 + + def set_npu(self): + self.__class__.use_npu = True + + def test_check_output(self): + self.check_output_with_place(self.place, check_dygraph=False) + + +class TestSum2(OpTest): + def setUp(self): + self.set_npu() + self.init_dtype() + self.op_type = "sum" + self.place = paddle.NPUPlace(0) + + x0 = np.random.random((3, 3)).astype(self.dtype) + x1 = np.random.random((3, 3)).astype(self.dtype) + x2 = np.random.random((3, 3)).astype(self.dtype) + x3 = np.random.random((3, 3)).astype(self.dtype) + self.inputs = {'X': [("x0", x0), ("x1", x1), ("x2", x2), ("x3", x3)]} + y = x0 + x1 + x2 + x3 + self.outputs = {'Out': y} + + self.attrs = {'use_mkldnn': False} + + def init_dtype(self): + self.dtype = np.float16 + + def set_npu(self): + self.__class__.use_npu = True + + def test_check_output(self): + self.check_output_with_place(self.place, check_dygraph=False) + +if __name__ == '__main__': + unittest.main()