Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1226cc01
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1226cc01
编写于
6月 16, 2021
作者:
W
wanghuancoder
提交者:
GitHub
6月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
runtimecontext (#33608)
* runtimecontext * ExecutionContextV2 * refine * refine * pass test
上级
bc8a8042
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
648 addition
and
567 deletion
+648
-567
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/new_exec.h
paddle/fluid/framework/new_exec.h
+586
-461
paddle/fluid/framework/new_exec_test.cc
paddle/fluid/framework/new_exec_test.cc
+60
-57
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-48
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
1226cc01
...
...
@@ -409,7 +409,7 @@ cc_library(custom_operator SRCS custom_operator.cc DEPS tensor attribute framewo
cc_test
(
custom_tensor_test SRCS custom_tensor_test.cc DEPS custom_tensor glog
)
#cc_binary(test_executor SRCS test_executor.cc DEPS executor op_registry ${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS} )
cc_binary
(
new_executor SRCS new_exec_test.cc DEPS operator op_registry executor
${
GLOB_OP_LIB
}
${
GLOB_OPERATOR_DEPS
}
profiler
)
cc_binary
(
new_executor SRCS new_exec_test.cc DEPS operator op_registry executor
${
GLOB_OP_LIB
}
${
GLOB_OPERATOR_DEPS
}
profiler
place
)
set
(
FLUID_FRAMEWORK_MODULES proto_desc memory lod_tensor executor data_feed_proto layer dynamic_loader custom_operator
)
...
...
paddle/fluid/framework/new_exec.h
浏览文件 @
1226cc01
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <gperftools/profiler.h>
#include <chrono>
#include <iostream>
#include <string>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
#include <chrono>
#include <gperftools/profiler.h>
namespace
paddle
{
namespace
framework
{
class
RuntimeContextV2
{
public:
RuntimeContextV2
(
std
::
vector
<
std
::
vector
<
Variable
*>>&
in_values
,
// NOLINT
std
::
vector
<
std
::
vector
<
Variable
*>>&
out_values
,
// NOLINT
const
std
::
map
<
std
::
string
,
size_t
>&
in_name_map
,
const
std
::
map
<
std
::
string
,
size_t
>&
out_name_map
)
:
input_values
(
std
::
move
(
in_values
)),
output_values
(
std
::
move
(
out_values
)),
input_name_map
(
in_name_map
),
output_name_map
(
out_name_map
)
{}
std
::
vector
<
std
::
vector
<
Variable
*>>
input_values
;
std
::
vector
<
std
::
vector
<
Variable
*>>
output_values
;
const
std
::
map
<
std
::
string
,
size_t
>&
input_name_map
;
const
std
::
map
<
std
::
string
,
size_t
>&
output_name_map
;
};
//USE_OP(fill_constant);
//USE_OP(elementwise_add);
class
ExecutionContextV2
:
public
ExecutionContext
{
public:
ExecutionContextV2
(
const
OperatorBase
&
op
,
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
device_context
,
const
RuntimeContextV2
&
ctx
)
:
ExecutionContext
(
op
,
scope
,
device_context
,
RuntimeContext
({},
{})),
ctx_
(
ctx
)
{}
const
std
::
vector
<
Variable
*>
MultiInputVar
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
it
=
ctx_
.
input_name_map
.
find
(
name
);
if
(
it
==
ctx_
.
input_name_map
.
end
())
{
return
{};
}
// return {it->second.begin(), it->second.end()};
return
ctx_
.
input_values
[
it
->
second
];
}
using
namespace
std
;
std
::
vector
<
Variable
*>
MultiOutputVar
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
output_name_map
.
find
(
name
);
if
(
it
==
ctx_
.
output_name_map
.
end
())
{
return
{};
}
// return it->second;
return
ctx_
.
output_values
[
it
->
second
];
}
namespace
paddle
{
namespace
framework
{
std
::
vector
<
std
::
string
>
InNameList
()
const
{
std
::
vector
<
std
::
string
>
vec_temp
;
vec_temp
.
reserve
(
ctx_
.
output_name_map
.
size
());
for
(
auto
&
input
:
ctx_
.
output_name_map
)
{
vec_temp
.
push_back
(
input
.
first
);
}
return
vec_temp
;
}
const
Variable
*
InputVar
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
it
=
ctx_
.
input_name_map
.
find
(
name
);
if
(
it
==
ctx_
.
input_name_map
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
ctx_
.
input_values
[
it
->
second
].
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's input %s should contain only one variable."
,
GetOp
().
Type
(),
name
));
return
ctx_
.
input_values
[
it
->
second
].
empty
()
?
nullptr
:
ctx_
.
input_values
[
it
->
second
][
0
];
}
Variable
*
OutputVar
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
output_name_map
.
find
(
name
);
if
(
it
==
ctx_
.
output_name_map
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
ctx_
.
output_values
[
it
->
second
].
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's output %s should contain only one variable."
,
GetOp
().
Type
(),
name
));
return
ctx_
.
output_values
[
it
->
second
].
empty
()
?
nullptr
:
ctx_
.
output_values
[
it
->
second
][
0
];
}
const
RuntimeContextV2
&
ctx_
;
};
class
RuntimeInferShapeContext
:
public
InferShapeContext
{
public:
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
)
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
V2
&
ctx
)
:
op_
(
op
),
ctx_
(
ctx
)
{}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
// has only one input
const
auto
&
ins
=
ctx_
.
input
s
;
const
auto
&
ins
=
ctx_
.
input
_name_map
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
const
auto
&
in
=
it
->
second
;
const
auto
&
in
=
ctx_
.
input_values
[
it
->
second
]
;
if
(
in
.
size
()
==
0
)
return
false
;
PADDLE_ENFORCE_EQ
(
in
.
size
(),
1UL
,
...
...
@@ -55,12 +151,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
// has only one output
const
auto
&
outs
=
ctx_
.
output
s
;
const
auto
&
outs
=
ctx_
.
output
_name_map
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
const
auto
&
out
=
ctx_
.
output_values
[
it
->
second
]
;
if
(
out
.
size
()
==
0
)
{
return
false
;
}
...
...
@@ -72,12 +168,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
{
const
auto
&
ins
=
ctx_
.
input
s
;
const
auto
&
ins
=
ctx_
.
input
_name_map
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
if
(
it
==
ins
.
end
()
||
ctx_
.
input_values
[
it
->
second
]
.
empty
())
{
return
false
;
}
for
(
auto
&
input
:
it
->
second
)
{
for
(
auto
&
input
:
ctx_
.
input_values
[
it
->
second
]
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
...
...
@@ -86,12 +182,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
bool
HasOutputs
(
const
std
::
string
&
name
)
const
override
{
const
auto
&
outs
=
ctx_
.
output
s
;
const
auto
&
outs
=
ctx_
.
output
_name_map
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
()
||
it
->
second
.
empty
())
{
if
(
it
==
outs
.
end
()
||
ctx_
.
output_values
[
it
->
second
]
.
empty
())
{
return
false
;
}
for
(
auto
&
output
:
it
->
second
)
{
for
(
auto
&
output
:
ctx_
.
output_values
[
it
->
second
]
)
{
if
(
output
==
nullptr
)
{
return
false
;
}
...
...
@@ -134,27 +230,27 @@ class RuntimeInferShapeContext : public InferShapeContext {
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
{
auto
in_it
=
ctx_
.
input
s
.
find
(
in
);
auto
out_it
=
ctx_
.
output
s
.
find
(
out
);
auto
in_it
=
ctx_
.
input
_name_map
.
find
(
in
);
auto
out_it
=
ctx_
.
output
_name_map
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
input
s
.
end
(),
in_it
,
ctx_
.
input
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
output
s
.
end
(),
out_it
,
ctx_
.
output
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
PADDLE_ENFORCE_LT
(
i
,
ctx_
.
input_values
[
in_it
->
second
]
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
ctx_
.
input_values
[
in_it
->
second
]
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
ctx_
.
output_values
[
out_it
->
second
]
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
ctx_
.
output_values
[
out_it
->
second
]
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
[
i
];
Variable
*
out_var
=
out_it
->
second
[
j
];
Variable
*
in_var
=
ctx_
.
input_values
[
in_it
->
second
]
[
i
];
Variable
*
out_var
=
ctx_
.
output_values
[
out_it
->
second
]
[
j
];
PADDLE_ENFORCE_EQ
(
in_var
->
Type
(),
out_var
->
Type
(),
...
...
@@ -181,18 +277,18 @@ class RuntimeInferShapeContext : public InferShapeContext {
void
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
override
{
auto
in_it
=
ctx_
.
input
s
.
find
(
in
);
auto
out_it
=
ctx_
.
output
s
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
input
s
.
end
(),
auto
in_it
=
ctx_
.
input
_name_map
.
find
(
in
);
auto
out_it
=
ctx_
.
output
_name_map
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
input
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Input [%s] found error in Op [%s]"
,
in
,
op_
.
Type
()));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
output
s
.
end
(),
out_it
,
ctx_
.
output
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Output [%s] found error in Op [%s]"
,
out
,
op_
.
Type
()));
auto
&
in_var_list
=
in_it
->
second
;
auto
&
out_var_list
=
out_it
->
second
;
auto
&
in_var_list
=
ctx_
.
input_values
[
in_it
->
second
]
;
auto
&
out_var_list
=
ctx_
.
output_values
[
out_it
->
second
]
;
PADDLE_ENFORCE_EQ
(
in_var_list
.
size
(),
out_var_list
.
size
(),
...
...
@@ -226,28 +322,28 @@ class RuntimeInferShapeContext : public InferShapeContext {
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
auto
in_it
=
ctx_
.
input
s
.
find
(
in
);
auto
out_it
=
ctx_
.
output
s
.
find
(
out
);
auto
in_it
=
ctx_
.
input
_name_map
.
find
(
in
);
auto
out_it
=
ctx_
.
output
_name_map
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
input
s
.
end
(),
in_it
,
ctx_
.
input
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
output
s
.
end
(),
out_it
,
ctx_
.
output
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
PADDLE_ENFORCE_LT
(
i
,
ctx_
.
input_values
[
in_it
->
second
]
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
ctx_
.
input_values
[
in_it
->
second
]
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
ctx_
.
output_values
[
out_it
->
second
]
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
ctx_
.
output_values
[
out_it
->
second
]
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
.
at
(
i
);
Variable
*
in_var
=
ctx_
.
input_values
[
in_it
->
second
]
.
at
(
i
);
if
(
!
in_var
->
IsType
<
LoDTensor
>
())
return
;
Variable
*
out_var
=
out_it
->
second
.
at
(
j
);
Variable
*
out_var
=
ctx_
.
output_values
[
out_it
->
second
]
.
at
(
j
);
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -339,7 +435,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
void
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
{
//
cerr << "set out dim" <<
endl;
//
std::cerr << "set out dim" << std::
endl;
auto
&
vars
=
OutputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
...
...
@@ -385,9 +481,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
void
SetDim
(
Variable
*
var
,
const
DDim
&
dim
)
{
if
(
var
->
IsType
<
LoDTensor
>
())
{
var
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
var
->
GetMutable
<
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
...
...
@@ -438,484 +532,515 @@ class RuntimeInferShapeContext : public InferShapeContext {
private:
const
std
::
vector
<
Variable
*>&
InputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
input
s
.
find
(
name
);
auto
it
=
ctx_
.
input
_name_map
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
input
s
.
end
(),
it
,
ctx_
.
input
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the input (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
return
ctx_
.
input_values
[
it
->
second
]
;
}
const
std
::
vector
<
Variable
*>&
OutputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
output
s
.
find
(
name
);
auto
it
=
ctx_
.
output
_name_map
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
output
s
.
end
(),
it
,
ctx_
.
output
_name_map
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the outputs (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
return
ctx_
.
output_values
[
it
->
second
]
;
}
const
OperatorBase
&
op_
;
const
RuntimeContext
&
ctx_
;
const
RuntimeContext
V2
&
ctx_
;
};
framework
::
ProgramDesc
load_from_file
(
const
std
::
string
&
file_name
)
{
framework
::
ProgramDesc
load_from_file
(
const
std
::
string
&
file_name
)
{
std
::
ifstream
fin
(
file_name
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
if
(
!
fin
.
is_open
())
{
std
::
cout
<<
"open file "
<<
file_name
<<
" faild!"
<<
std
::
endl
;
}
fin
.
seekg
(
0
,
std
::
ios
::
end
);
std
::
string
buffer
(
fin
.
tellg
(),
' '
);
fin
.
seekg
(
0
,
std
::
ios
::
beg
);
fin
.
read
(
&
buffer
[
0
],
buffer
.
size
());
fin
.
close
();
ProgramDesc
program_desc
(
buffer
);
ProgramDesc
program_desc
(
buffer
);
return
program_desc
;
}
struct
VariableScope
{
std
::
vector
<
std
::
unique_ptr
<
Variable
>
>
var_list
;
std
::
map
<
std
::
string
,
int
>
name2id
;
struct
VariableScope
{
std
::
vector
<
std
::
unique_ptr
<
Variable
>>
var_list
;
std
::
map
<
std
::
string
,
size_t
>
name2id
;
};
struct
OpFuncNode
{
// int unsed;
// std::map< std::string, std::vector<int> > input_index;
// std::map< std::string, std::vector<int> > output_index;
std
::
vector
<
std
::
vector
<
size_t
>>
input_index
;
std
::
vector
<
std
::
vector
<
size_t
>>
output_index
;
std
::
map
<
std
::
string
,
size_t
>
input_name_map
;
std
::
map
<
std
::
string
,
size_t
>
output_name_map
;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
OpKernelFunc
kernel_func_
;
};
int
convert
(
const
platform
::
Place
&
place
)
{
if
(
is_cpu_place
(
place
))
{
return
0
;
}
if
(
is_gpu_place
(
place
))
{
return
1
;
}
return
-
1
;
}
struct
OpFuncNode
{
//int unsed;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
input_index
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
output_index
;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
OpKernelFunc
kernel_func_
;
};
void
build_variable_scope
(
const
framework
::
ProgramDesc
&
pdesc
,
VariableScope
*
var_scope
)
{
auto
&
global_block
=
pdesc
.
Block
(
0
);
int
convert
(
const
platform
::
Place
&
place
)
{
if
(
is_cpu_place
(
place
))
{
return
0
;
for
(
auto
&
var
:
global_block
.
AllVars
())
{
if
(
var
->
Name
()
==
framework
::
kEmptyVarName
)
{
continue
;
}
if
(
is_gpu_place
(
place
))
{
return
1
;
// std::cerr << "var name " << var->Name() << std::endl;
if
(
var_scope
->
name2id
.
find
(
var
->
Name
())
==
var_scope
->
name2id
.
end
())
{
var_scope
->
name2id
[
var
->
Name
()]
=
var_scope
->
var_list
.
size
();
}
return
-
1
;
auto
v
=
new
Variable
();
// v->GetMutable<LoDTensor>();
InitializeVariable
(
v
,
var
->
GetType
());
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
}
}
void
build_variable_scope
(
const
framework
::
ProgramDesc
&
pdesc
,
VariableScope
*
var_scope
)
{
void
build_op_func_list
(
const
framework
::
ProgramDesc
&
pdesc
,
std
::
vector
<
OperatorBase
*>&
op_list
,
// NOLINT
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
// NOLINT
VariableScope
*
var_scope
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
pdesc
.
Block
(
0
);
for
(
auto
&
var
:
global_block
.
AllVars
())
{
if
(
var
->
Name
()
==
framework
::
kEmptyVarName
)
{
continue
;
}
//cerr << "var name " << var->Name() << endl;
if
(
var_scope
->
name2id
.
find
(
var
->
Name
()
)
==
var_scope
->
name2id
.
end
()
)
{
var_scope
->
name2id
[
var
->
Name
()
]
=
var_scope
->
var_list
.
size
();
for
(
auto
&
op
:
global_block
.
AllOps
())
{
// std::cerr << op->Type() << std::endl;
// bool debug = op->Type() == "softmax_with_cross_entropy_grad";
bool
debug
=
false
;
// std::cerr << "create op" << std::endl;
// auto op_base_u = OpRegistry::CreateOp(*op);
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
op
->
Type
());
VariableNameMap
inputs_1
=
op
->
Inputs
();
VariableNameMap
outputs_1
=
op
->
Outputs
();
AttributeMap
attrs_1
=
op
->
GetAttrMap
();
if
(
info
.
Checker
()
!=
nullptr
)
{
info
.
Checker
()
->
Check
(
&
attrs_1
);
}
auto
op_base
=
info
.
Creator
()(
op
->
Type
(),
inputs_1
,
outputs_1
,
attrs_1
);
auto
input_names
=
op
->
Inputs
();
auto
output_names
=
op
->
Outputs
();
OpFuncNode
op_func_node
;
// VariableValueMap ins_map;
// std::map<std::string, std::vector<int> > ins_name2id;
std
::
vector
<
std
::
vector
<
Variable
*>>
ins_value
;
std
::
vector
<
std
::
vector
<
size_t
>>
ins_index
;
std
::
map
<
std
::
string
,
size_t
>
ins_name_map
;
for
(
auto
&
var_name_item
:
input_names
)
{
std
::
vector
<
Variable
*>
input_vars
;
std
::
vector
<
size_t
>
vec_ids
;
input_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
());
input_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
());
vec_ids
.
push_back
(
it
->
second
);
}
auto
v
=
new
Variable
();
//v->GetMutable<LoDTensor>();
InitializeVariable
(
v
,
var
->
GetType
());
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
}
}
ins_value
.
emplace_back
(
std
::
move
(
input_vars
));
ins_index
.
emplace_back
(
std
::
move
(
vec_ids
));
ins_name_map
[
var_name_item
.
first
]
=
ins_index
.
size
()
-
1
;
// ins_map[ var_name_item.first ] = input_vars;
// ins_name2id[ var_name_item.first ] = vec_ids;
}
if
(
debug
)
std
::
cerr
<<
"1"
<<
std
::
endl
;
// VariableValueMap outs_map;
// std::map<std::string, std::vector<int> > outs_name2id;
std
::
vector
<
std
::
vector
<
Variable
*>>
outs_value
;
std
::
vector
<
std
::
vector
<
size_t
>>
outs_index
;
std
::
map
<
std
::
string
,
size_t
>
outs_name_map
;
for
(
auto
&
var_name_item
:
output_names
)
{
std
::
vector
<
Variable
*>
output_vars
;
std
::
vector
<
size_t
>
vec_ids
;
output_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
());
// std::cerr << it->second << "\t" << var_scope.var_list.size() <<
// std::endl;
output_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
());
vec_ids
.
push_back
(
it
->
second
);
}
outs_value
.
emplace_back
(
std
::
move
(
output_vars
));
outs_index
.
emplace_back
(
std
::
move
(
vec_ids
));
outs_name_map
[
var_name_item
.
first
]
=
outs_index
.
size
()
-
1
;
// outs_map[ var_name_item.first ] = output_vars;
// //std::cerr << ToTypeName(output_vars[0]->Type() ) << std::endl;
// outs_name2id[ var_name_item.first ] = vec_ids;
}
void
build_op_func_list
(
const
framework
::
ProgramDesc
&
pdesc
,
std
::
vector
<
OperatorBase
*
>&
op_list
,
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
VariableScope
*
var_scope
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
pdesc
.
Block
(
0
);
for
(
auto
&
op
:
global_block
.
AllOps
()
)
{
//cerr << op->Type() << endl;
//bool debug = op->Type() == "softmax_with_cross_entropy_grad";
bool
debug
=
false
;
//cerr << "create op" << endl;
//auto op_base_u = OpRegistry::CreateOp(*op);
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
op
->
Type
()
);
VariableNameMap
inputs_1
=
op
->
Inputs
();
VariableNameMap
outputs_1
=
op
->
Outputs
();
AttributeMap
attrs_1
=
op
->
GetAttrMap
();
if
(
info
.
Checker
()
!=
nullptr
)
{
info
.
Checker
()
->
Check
(
&
attrs_1
);
}
auto
op_base
=
info
.
Creator
()(
op
->
Type
(),
inputs_1
,
outputs_1
,
attrs_1
);
auto
input_names
=
op
->
Inputs
();
auto
output_names
=
op
->
Outputs
();
OpFuncNode
op_func_node
;
VariableValueMap
ins_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
ins_name2id
;
for
(
auto
&
var_name_item
:
input_names
)
{
std
::
vector
<
Variable
*>
input_vars
;
std
::
vector
<
int
>
vec_ids
;
input_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
()
);
input_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
());
vec_ids
.
push_back
(
it
->
second
);
}
ins_map
[
var_name_item
.
first
]
=
input_vars
;
ins_name2id
[
var_name_item
.
first
]
=
vec_ids
;
// op_func_node.input_index = ins_name2id;
// op_func_node.output_index = outs_name2id;
op_func_node
.
input_index
=
ins_index
;
op_func_node
.
input_name_map
=
ins_name_map
;
op_func_node
.
output_index
=
outs_index
;
op_func_node
.
output_name_map
=
outs_name_map
;
RuntimeContextV2
runtime_context
(
ins_value
,
outs_value
,
ins_name_map
,
outs_name_map
);
// runtime_context.inputs.swap( ins_map );
// runtime_context.outputs.swap( outs_map );
// runtime_context.input_values.swap(ins_value);
// runtime_context.input_name_map = ins_name_map;
// runtime_context.output_values.swap(outs_value);
// runtime_context.output_name_map = outs_name_map;
// std::cerr << "create runtime context" << std::endl;
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
// std::cerr << "fin infer shape" << std::endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
op
->
Type
());
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in the %s operator."
,
op
->
Type
()));
// std::cerr << "create kernel" << std::endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
if
(
debug
)
std
::
cerr
<<
"2"
<<
std
::
endl
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
// auto place = platform::CPUPlace();
// auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_ctx
=
ExecutionContextV2
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
if
(
debug
)
std
::
cerr
<<
"21"
<<
std
::
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetExpectedKernelType
(
exec_ctx
);
if
(
debug
)
std
::
cerr
<<
"22"
<<
std
::
endl
;
// std::cerr << "22" << std::endl;
// add transfer log
// std::cerr << "in map size " << ins_map.size() << std::endl;
// VariableValueMap& ins_map_temp = runtime_context.inputs;
auto
ins_map_temp
=
runtime_context
.
input_name_map
;
// std::cerr << "ins map siz" << ins_map_temp.size() << std::endl;
for
(
auto
&
var_name_item
:
ins_map_temp
)
{
// std::cerr << "in name " << var_name_item.first << std::endl;
// auto& vec_ids = ins_name2id[ var_name_item.first ];
for
(
size_t
i
=
0
;
i
<
runtime_context
.
input_values
[
var_name_item
.
second
].
size
();
++
i
)
{
auto
var
=
runtime_context
.
input_values
[
var_name_item
.
second
][
i
];
auto
tensor_in
=
static_cast
<
const
Tensor
*>
(
&
(
var
->
Get
<
LoDTensor
>
()));
if
(
!
tensor_in
->
IsInitialized
())
{
continue
;
}
if
(
debug
)
cerr
<<
"1"
<<
endl
;
VariableValueMap
outs_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
outs_name2id
;
for
(
auto
&
var_name_item
:
output_names
)
{
std
::
vector
<
Variable
*>
output_vars
;
std
::
vector
<
int
>
vec_ids
;
output_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
it
=
var_scope
->
name2id
.
find
(
var_name
);
assert
(
it
!=
var_scope
->
name2id
.
end
()
);
//cerr << it->second << "\t" << var_scope.var_list.size() << endl;
output_vars
.
push_back
(
var_scope
->
var_list
[
it
->
second
].
get
()
);
vec_ids
.
push_back
(
it
->
second
);
}
outs_map
[
var_name_item
.
first
]
=
output_vars
;
//cerr << ToTypeName(output_vars[0]->Type() ) << endl;
outs_name2id
[
var_name_item
.
first
]
=
vec_ids
;
// std::cerr << "i " << i << "\t" << tensor_in->IsInitialized() <<
// std::endl;
auto
kernel_type_for_var
=
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetKernelTypeForVar
(
var_name_item
.
first
,
*
tensor_in
,
expected_kernel_key
);
if
(
debug
)
{
std
::
cerr
<<
"var name "
<<
var_name_item
.
first
<<
std
::
endl
;
std
::
cerr
<<
expected_kernel_key
.
place_
<<
"
\t
"
<<
kernel_type_for_var
.
place_
<<
std
::
endl
;
}
op_func_node
.
input_index
=
ins_name2id
;
op_func_node
.
output_index
=
outs_name2id
;
RuntimeContext
runtime_context
(
{},
{});
runtime_context
.
inputs
.
swap
(
ins_map
);
runtime_context
.
outputs
.
swap
(
outs_map
);
//cerr << "create runtime context" << endl;
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
//cerr << "fin infer shape" << endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
op
->
Type
()
);
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in the %s operator."
,
op
->
Type
()
));
//cerr << "create kernel" << endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
if
(
debug
)
cerr
<<
"2"
<<
endl
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_ctx
=
ExecutionContext
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
if
(
debug
)
cerr
<<
"21"
<<
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetExpectedKernelType
(
exec_ctx
);
if
(
debug
)
cerr
<<
"22"
<<
endl
;
//cerr << "22" << endl;
// add transfer log
//cerr << "in map size " << ins_map.size() << endl;
VariableValueMap
&
ins_map_temp
=
runtime_context
.
inputs
;
//cerr << "ins map siz" << ins_map_temp.size() << endl;
for
(
auto
&
var_name_item
:
ins_map_temp
)
{
//auto& vec_ids = ins_name2id[ var_name_item.first ];
for
(
size_t
i
=
0
;
i
<
var_name_item
.
second
.
size
();
++
i
)
{
auto
var
=
var_name_item
.
second
[
i
];
auto
tensor_in
=
static_cast
<
const
Tensor
*>
(
&
(
var
->
Get
<
LoDTensor
>
()));
if
(
!
tensor_in
->
IsInitialized
()
)
{
continue
;
}
//cerr << "i " << i << "\t" << tensor_in->IsInitialized() << endl;
auto
kernel_type_for_var
=
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
GetKernelTypeForVar
(
var_name_item
.
first
,
*
tensor_in
,
expected_kernel_key
);
if
(
debug
)
{
cerr
<<
"var name "
<<
var_name_item
.
first
<<
endl
;
cerr
<<
expected_kernel_key
.
place_
<<
"
\t
"
<<
kernel_type_for_var
.
place_
<<
endl
;
}
if
(
!
platform
::
is_same_place
(
kernel_type_for_var
.
place_
,
expected_kernel_key
.
place_
)
)
{
if
(
debug
)
cerr
<<
"add data transfer"
<<
endl
;
// need trans place
// add var in scope
// add copy op
std
::
string
new_var_name
=
"temp_1"
+
to_string
(
var_scope
->
var_list
.
size
()
+
1
);
auto
v
=
new
Variable
();
v
->
GetMutable
<
LoDTensor
>
();
var_scope
->
name2id
[
new_var_name
]
=
var_scope
->
var_list
.
size
();
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
VariableNameMap
copy_in_map
;
//cerr << "ints name is " << input_names[var_name_item.first][i] << endl;
copy_in_map
[
"X"
]
=
{
input_names
[
var_name_item
.
first
][
i
]
};
VariableNameMap
copy_out_map
;
copy_out_map
[
"Out"
]
=
{
new_var_name
};
AttributeMap
attr_map
;
attr_map
[
"dst_place_type"
]
=
convert
(
place
);
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
copy_ins_name2id
;
copy_ins_name2id
[
"X"
]
=
ins_name2id
[
var_name_item
.
first
];
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>
copy_out_name2id
;
copy_out_name2id
[
"Out"
]
=
{
var_scope
->
name2id
[
new_var_name
]};
//vec_ids[i] = var_scope->name2id[new_var_name];
// update out runtime_context
op_func_node
.
input_index
[
var_name_item
.
first
][
i
]
=
var_scope
->
name2id
[
new_var_name
];
VariableValueMap
copy_ins_value_map
;
copy_ins_value_map
[
"X"
]
=
{
var
};
VariableValueMap
copy_outs_value_map
;
copy_outs_value_map
[
"Out"
]
=
{
v
};
auto
&
copy_info
=
OpInfoMap
::
Instance
().
Get
(
"memcpy"
);
auto
copy_op
=
copy_info
.
Creator
()(
"memcpy"
,
copy_in_map
,
copy_out_map
,
attr_map
);
if
(
debug
)
cerr
<<
"create memcpy"
<<
endl
;
OpFuncNode
copy_op_func_node
;
copy_op_func_node
.
input_index
=
copy_ins_name2id
;
copy_op_func_node
.
output_index
=
copy_out_name2id
;
RuntimeContext
copy_runtime_context
(
{},
{});
copy_runtime_context
.
inputs
.
swap
(
copy_ins_value_map
);
copy_runtime_context
.
outputs
.
swap
(
copy_outs_value_map
);
//cerr << "create runtime context" << endl;
RuntimeInferShapeContext
copy_infer_shape_ctx
(
*
copy_op
,
copy_runtime_context
);
if
(
debug
)
cerr
<<
"before infer shape"
<<
endl
;
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
InferShape
(
&
copy_infer_shape_ctx
);
if
(
debug
)
cerr
<<
"infer shape"
<<
endl
;
//cerr << "fin infer shape" << endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
"memcpy"
);
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in the memcpy operator."
)
);
//cerr << "create kernel" << endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
copy_exec_ctx
=
ExecutionContext
(
*
copy_op
,
scope
,
*
dev_ctx
,
copy_runtime_context
);
if
(
debug
)
cerr
<<
"21"
<<
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
GetExpectedKernelType
(
copy_exec_ctx
);
if
(
debug
)
cerr
<<
"22"
<<
endl
;
//cerr << "22" << endl;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
copy_op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
copy_op_func_node
.
kernel_func_
(
copy_exec_ctx
);
if
(
debug
)
cerr
<<
"run exe ctx"
<<
endl
;
op_list
.
push_back
(
copy_op
);
vec_func_list
.
push_back
(
copy_op_func_node
);
var_name_item
.
second
[
i
]
=
v
;
}
}
if
(
!
platform
::
is_same_place
(
kernel_type_for_var
.
place_
,
expected_kernel_key
.
place_
))
{
if
(
debug
)
std
::
cerr
<<
"add data transfer"
<<
std
::
endl
;
// need trans place
// add var in scope
// add copy op
std
::
string
new_var_name
=
"temp_1"
+
std
::
to_string
(
var_scope
->
var_list
.
size
()
+
1
);
auto
v
=
new
Variable
();
v
->
GetMutable
<
LoDTensor
>
();
var_scope
->
name2id
[
new_var_name
]
=
var_scope
->
var_list
.
size
();
var_scope
->
var_list
.
push_back
(
std
::
unique_ptr
<
Variable
>
(
v
));
VariableNameMap
copy_in_map
;
// std::cerr << "ints name is " << input_names[var_name_item.first][i]
// << std::endl;
copy_in_map
[
"X"
]
=
{
input_names
[
var_name_item
.
first
][
i
]};
VariableNameMap
copy_out_map
;
copy_out_map
[
"Out"
]
=
{
new_var_name
};
AttributeMap
attr_map
;
attr_map
[
"dst_place_type"
]
=
convert
(
place
);
// std::map< std::string, std::vector<int> > copy_ins_name2id;
// copy_ins_name2id["X"] = ins_name2id[ var_name_item.first ];
// std::map< std::string, std::vector<int> > copy_out_name2id;
// copy_out_name2id["Out"] = { var_scope->name2id[new_var_name]};
// vec_ids[i] = var_scope->name2id[new_var_name];
// update out runtime_context
op_func_node
.
input_index
[
op_func_node
.
input_name_map
[
var_name_item
.
first
]]
[
i
]
=
var_scope
->
name2id
[
new_var_name
];
// VariableValueMap copy_ins_value_map;
// copy_ins_value_map["X"] = { var };
// VariableValueMap copy_outs_value_map;
// copy_outs_value_map["Out"] = { v };
auto
&
copy_info
=
OpInfoMap
::
Instance
().
Get
(
"memcpy"
);
auto
copy_op
=
copy_info
.
Creator
()(
"memcpy"
,
copy_in_map
,
copy_out_map
,
attr_map
);
if
(
debug
)
std
::
cerr
<<
"create memcpy"
<<
std
::
endl
;
OpFuncNode
copy_op_func_node
;
// copy_op_func_node.input_index = copy_ins_name2id;
// copy_op_func_node.output_index = copy_out_name2id;
copy_op_func_node
.
input_index
.
push_back
(
ins_index
[
ins_name_map
[
var_name_item
.
first
]]);
copy_op_func_node
.
input_name_map
[
"X"
]
=
0
;
copy_op_func_node
.
output_index
.
push_back
(
{
var_scope
->
name2id
[
new_var_name
]});
copy_op_func_node
.
output_name_map
[
"Out"
]
=
0
;
std
::
vector
<
std
::
vector
<
Variable
*>>
in_values
;
std
::
vector
<
std
::
vector
<
Variable
*>>
out_values
;
in_values
.
push_back
({
var
});
out_values
.
push_back
({
v
});
RuntimeContextV2
copy_runtime_context
(
in_values
,
out_values
,
copy_op_func_node
.
input_name_map
,
copy_op_func_node
.
output_name_map
);
// copy_runtime_context.input_values.push_back({var});
// copy_runtime_context.input_name_map["X"] = 0;
// copy_runtime_context.output_values.push_back({v});
// copy_runtime_context.output_name_map["Out"] = 0;
// copy_runtime_context.inputs.swap( copy_ins_value_map );
// copy_runtime_context.outputs.swap( copy_outs_value_map );
// std::cerr << "create runtime context" << std::endl;
RuntimeInferShapeContext
copy_infer_shape_ctx
(
*
copy_op
,
copy_runtime_context
);
if
(
debug
)
std
::
cerr
<<
"before infer shape"
<<
std
::
endl
;
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
InferShape
(
&
copy_infer_shape_ctx
);
if
(
debug
)
std
::
cerr
<<
"infer shape"
<<
std
::
endl
;
// std::cerr << "fin infer shape" << std::endl;
auto
&
all_op_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
"memcpy"
);
PADDLE_ENFORCE_NE
(
kernels_iter
,
all_op_kernels
.
end
(),
platform
::
errors
::
Unavailable
(
"There are no kernels which are registered in "
"the memcpy operator."
));
// std::cerr << "create kernel" << std::endl;
using
OpKernelFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelType
,
OpKernelFunc
,
OpKernelType
::
Hash
>
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
// auto place = platform::CPUPlace();
// auto place = platform::CUDAPlace(0);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
copy_exec_ctx
=
ExecutionContextV2
(
*
copy_op
,
scope
,
*
dev_ctx
,
copy_runtime_context
);
if
(
debug
)
std
::
cerr
<<
"21"
<<
std
::
endl
;
auto
expected_kernel_key
=
dynamic_cast
<
const
framework
::
OperatorWithKernel
*>
(
copy_op
)
->
GetExpectedKernelType
(
copy_exec_ctx
);
if
(
debug
)
std
::
cerr
<<
"22"
<<
std
::
endl
;
// std::cerr << "22" << std::endl;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
copy_op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
copy_op_func_node
.
kernel_func_
(
copy_exec_ctx
);
if
(
debug
)
std
::
cerr
<<
"run exe ctx"
<<
std
::
endl
;
op_list
.
push_back
(
copy_op
);
vec_func_list
.
push_back
(
copy_op_func_node
);
runtime_context
.
input_values
[
var_name_item
.
second
][
i
]
=
v
;
}
op_list
.
push_back
(
op_base
);
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
if
(
debug
)
cerr
<<
"3"
<<
endl
;
op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
if
(
debug
)
cerr
<<
"3-1"
<<
endl
;
op_func_node
.
kernel_func_
(
exec_ctx
);
vec_func_list
.
push_back
(
op_func_node
);
if
(
debug
)
cerr
<<
"5"
<<
endl
;
}
}
}
op_list
.
push_back
(
op_base
);
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
void
exec_op_func_list
(
const
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
std
::
vector
<
OperatorBase
*
>&
op_list
,
const
VariableScope
&
var_scope
,
const
platform
::
Place
&
place
)
{
for
(
size_t
i
=
0
;
i
<
vec_func_list
.
size
();
++
i
)
{
auto
&
func_node
=
vec_func_list
[
i
];
auto
op_base
=
op_list
[
i
];
// build runtime cost
VariableValueMap
ins_map
;
for
(
auto
&
var_name_item
:
func_node
.
input_index
)
{
std
::
vector
<
Variable
*>
input_vars
;
input_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
id
:
var_name_item
.
second
)
{
//cerr << var_name_item.first << "\t " << id << endl;
input_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
()
);
}
ins_map
.
emplace
(
var_name_item
.
first
,
std
::
move
(
input_vars
)
);
}
if
(
debug
)
std
::
cerr
<<
"3"
<<
std
::
endl
;
op_func_node
.
kernel_func_
=
OpKernelFunc
(
kernel_iter
->
second
);
if
(
debug
)
std
::
cerr
<<
"3-1"
<<
std
::
endl
;
op_func_node
.
kernel_func_
(
exec_ctx
);
vec_func_list
.
push_back
(
op_func_node
);
if
(
debug
)
std
::
cerr
<<
"5"
<<
std
::
endl
;
}
}
VariableValueMap
outs_map
;
for
(
auto
&
var_name_item
:
func_node
.
output_index
)
{
std
::
vector
<
Variable
*>
out_vars
;
out_vars
.
reserve
(
var_name_item
.
second
.
size
());
for
(
auto
&
id
:
var_name_item
.
second
)
{
//cerr << var_name_item.first << "\t " << id << endl;
out_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
());
}
outs_map
.
emplace
(
var_name_item
.
first
,
std
::
move
(
out_vars
)
);
}
void
exec_op_func_list
(
const
std
::
vector
<
OpFuncNode
>&
vec_func_list
,
std
::
vector
<
OperatorBase
*>&
op_list
,
// NOLINT
const
VariableScope
&
var_scope
,
const
platform
::
Place
&
place
)
{
for
(
size_t
i
=
0
;
i
<
vec_func_list
.
size
();
++
i
)
{
auto
&
func_node
=
vec_func_list
[
i
];
auto
op_base
=
op_list
[
i
];
// build runtime cost
// VariableValueMap ins_map;
std
::
vector
<
std
::
vector
<
Variable
*>>
ins_map
;
for
(
auto
&
var_name_item
:
func_node
.
input_name_map
)
{
std
::
vector
<
Variable
*>
input_vars
;
input_vars
.
reserve
(
func_node
.
input_index
[
var_name_item
.
second
].
size
());
for
(
auto
&
id
:
func_node
.
input_index
[
var_name_item
.
second
])
{
// std::cerr << var_name_item.first << "\t " << id << std::endl;
input_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
());
}
// ins_map.emplace( var_name_item.first, std::move(input_vars) );
ins_map
.
emplace_back
(
std
::
move
(
input_vars
));
}
// VariableValueMap outs_map;
std
::
vector
<
std
::
vector
<
Variable
*>>
outs_map
;
for
(
auto
&
var_name_item
:
func_node
.
output_name_map
)
{
std
::
vector
<
Variable
*>
out_vars
;
RuntimeContext
runtime_context
(
{},
{});
runtime_context
.
inputs
.
swap
(
ins_map
);
runtime_context
.
outputs
.
swap
(
outs_map
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
//dynamic_cast<const framework::OperatorWithKernel*>(op_base)->InferShape( &infer_shape_ctx );
//RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
//auto place = platform::CPUPlace();
//auto place = platform::CUDAPlace(0);
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_context
=
ExecutionContext
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
func_node
.
kernel_func_
(
exec_context
);
out_vars
.
reserve
(
func_node
.
output_index
[
var_name_item
.
second
].
size
());
for
(
auto
&
id
:
func_node
.
output_index
[
var_name_item
.
second
])
{
// std::cerr << var_name_item.first << "\t " << id << std::endl;
out_vars
.
emplace_back
(
var_scope
.
var_list
[
id
].
get
());
}
// outs_map.emplace( var_name_item.first, std::move( out_vars ) );
outs_map
.
emplace_back
(
std
::
move
(
out_vars
));
}
RuntimeContextV2
runtime_context
(
ins_map
,
outs_map
,
func_node
.
input_name_map
,
func_node
.
output_name_map
);
// runtime_context.inputs.swap( ins_map );
// runtime_context.outputs.swap( outs_map );
// runtime_context.input_values.swap(ins_map);
// runtime_context.output_values.swap(outs_map);
// runtime_context.input_name_map = func_node.input_name_map;
// runtime_context.output_name_map = func_node.output_name_map;
RuntimeInferShapeContext
infer_shape_ctx
(
*
op_base
,
runtime_context
);
// dynamic_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
// &infer_shape_ctx );
// RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
static_cast
<
const
framework
::
OperatorWithKernel
*>
(
op_base
)
->
InferShape
(
&
infer_shape_ctx
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
// auto place = platform::CPUPlace();
// auto place = platform::CUDAPlace(0);
auto
*
dev_ctx
=
pool
.
Get
(
place
);
Scope
scope
;
auto
exec_context
=
ExecutionContextV2
(
*
op_base
,
scope
,
*
dev_ctx
,
runtime_context
);
func_node
.
kernel_func_
(
exec_context
);
}
}
class
InterpreterCore
{
public:
InterpreterCore
(
const
platform
::
Place
&
place
,
const
ProgramDesc
&
prog
,
const
ProgramDesc
&
startup_prog
)
:
place_
(
place
),
prog_
(
prog
)
{
class
InterpreterCore
{
public:
InterpreterCore
(
const
platform
::
Place
&
place
,
const
ProgramDesc
&
prog
,
const
ProgramDesc
&
startup_prog
)
:
place_
(
place
),
prog_
(
prog
)
{
paddle
::
framework
::
InitDevices
();
is_build
=
false
;
paddle
::
framework
::
build_variable_scope
(
startup_prog
,
&
global_scope
);
paddle
::
framework
::
build_variable_scope
(
startup_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*
>
op_list
;
paddle
::
framework
::
build_op_func_list
(
startup_prog
,
op_list
,
vec_func_list
,
&
global_scope
,
place_
);
}
void
run
(
const
std
::
vector
<
std
::
string
>
vec_name
,
const
std
::
vector
<
framework
::
Tensor
>&
vec_tensor
,
const
vector
<
std
::
string
>&
vec_fetch_name
,
std
::
vector
<
framework
::
Tensor
>&
vec_out
)
{
//cerr << "run" << endl;
// set static data
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_variable_scope
(
prog_
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OperatorBase
*
>
op_list
;
paddle
::
framework
::
build_op_func_list
(
startup_prog
,
op_list
,
vec_func_list
,
&
global_scope
,
place_
);
}
void
run
(
const
std
::
vector
<
std
::
string
>
vec_name
,
const
std
::
vector
<
framework
::
Tensor
>&
vec_tensor
,
const
std
::
vector
<
std
::
string
>&
vec_fetch_name
,
std
::
vector
<
framework
::
Tensor
>&
vec_out
)
{
// NOLINT
// std::cerr << "run" << std::endl;
// set static data
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_variable_scope
(
prog_
,
&
global_scope
);
}
for
(
size_t
i
=
0
;
i
<
vec_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_name
[
i
]
);
//cerr << "find " << ( it != global_scope.name2id.end() ) <<endl;
assert
(
it
!=
global_scope
.
name2id
.
end
()
);
auto
feed_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
//cerr << " get tensor" << endl;
feed_tensor
->
ShareDataWith
(
vec_tensor
[
i
]
);
//cerr << "share buffer with" << endl;
for
(
size_t
i
=
0
;
i
<
vec_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_name
[
i
]);
// std::cerr << "find " << (it != global_scope.name2id.end()) <<
// std::endl;
assert
(
it
!=
global_scope
.
name2id
.
end
());
auto
feed_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
// std::cerr << " get tensor" << std::endl;
feed_tensor
->
ShareDataWith
(
vec_tensor
[
i
]);
// std::cerr << "share buffer with" << std::endl;
}
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_op_func_list
(
prog_
,
op_list
,
vec_func_list
,
&
global_scope
,
place_
);
if
(
is_build
==
false
)
{
paddle
::
framework
::
build_op_func_list
(
prog_
,
op_list
,
vec_func_list
,
&
global_scope
,
place_
);
is_build
=
true
;
}
else
{
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
,
place_
);
}
else
{
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
,
place_
);
}
for
(
size_t
i
=
0
;
i
<
vec_fetch_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_fetch_name
[
i
]
);
assert
(
it
!=
global_scope
.
name2id
.
end
()
);
auto
fetch_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
//cerr << "out " << fetch_tensor->data<float>()[0] << endl;
if
(
platform
::
is_gpu_place
(
fetch_tensor
->
place
()
)
)
{
//cerr << "fetch gpu" << endl;
Tensor
out
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place_
);
dev_ctx
->
Wait
();
TensorCopySync
(
*
fetch_tensor
,
platform
::
CPUPlace
(),
&
out
);
dev_ctx
->
Wait
();
//cerr << "out " << out << endl;
//cout << out.data<float>()[0] << endl;
vec_out
.
push_back
(
out
);
}
else
{
cerr
<<
"out "
<<
*
fetch_tensor
<<
endl
;
}
for
(
size_t
i
=
0
;
i
<
vec_fetch_name
.
size
();
++
i
)
{
auto
it
=
global_scope
.
name2id
.
find
(
vec_fetch_name
[
i
]);
assert
(
it
!=
global_scope
.
name2id
.
end
());
auto
fetch_tensor
=
global_scope
.
var_list
[
it
->
second
]
->
GetMutable
<
framework
::
LoDTensor
>
();
// std::cerr << "out " << fetch_tensor->data<float>()[0] << std::endl;
if
(
platform
::
is_gpu_place
(
fetch_tensor
->
place
()))
{
// std::cerr << "fetch gpu" << std::endl;
Tensor
out
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place_
);
dev_ctx
->
Wait
();
TensorCopySync
(
*
fetch_tensor
,
platform
::
CPUPlace
(),
&
out
);
dev_ctx
->
Wait
();
// std::cerr << "out " << out << std::endl;
vec_out
.
push_back
(
out
);
}
else
{
// std::cerr << "out " << *fetch_tensor << std::endl;
}
}
}
private:
private:
const
platform
::
Place
&
place_
;
const
ProgramDesc
&
prog_
;
paddle
::
framework
::
VariableScope
global_scope
;
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*
>
op_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*
>
op_list
;
bool
is_build
;
};
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_exec_test.cc
浏览文件 @
1226cc01
#include <iostream>
#include <string>
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gperftools/profiler.h>
#include <chrono>
#include <iostream>
#include <map>
#include <memory>
#include <string>
...
...
@@ -9,69 +23,58 @@
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/new_exec.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/framework/new_exec.h"
#include <chrono>
#include <gperftools/profiler.h>
int
main
()
{
paddle
::
framework
::
InitDevices
();
paddle
::
framework
::
VariableScope
global_scope
;
{
auto
test_prog
=
paddle
::
framework
::
load_from_file
(
"lm_startup_program"
);
paddle
::
framework
::
build_variable_scope
(
test_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
std
::
unique_ptr
<
paddle
::
framework
::
OperatorBase
>>
op_list
;
paddle
::
framework
::
build_op_func_list
(
test_prog
,
op_list
,
vec_func_list
,
global_scope
);
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
);
}
cerr
<<
"run main"
<<
endl
;
auto
main_prog
=
paddle
::
framework
::
load_from_file
(
"lm_main_program"
);
paddle
::
framework
::
build_variable_scope
(
main_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_main_func_list
;
std
::
vector
<
std
::
unique_ptr
<
paddle
::
framework
::
OperatorBase
>>
op_main_list
;
paddle
::
framework
::
build_op_func_list
(
main_prog
,
op_main_list
,
vec_main_func_list
,
global_scope
);
#include "paddle/fluid/pybind/pybind.h"
auto
start
=
std
::
chrono
::
steady_clock
::
now
();
ProfilerStart
(
"new_executor.prof"
);
for
(
size_t
i
=
0
;
i
<
2320
;
++
i
)
{
if
(
i
%
200
==
0
)
{
cerr
<<
i
<<
endl
;
}
paddle
::
framework
::
exec_op_func_list
(
vec_main_func_list
,
op_main_list
,
global_scope
);
int
main
()
{
paddle
::
framework
::
InitDevices
();
paddle
::
framework
::
VariableScope
global_scope
;
auto
place
=
paddle
::
platform
::
CUDAPlace
(
0
);
{
auto
test_prog
=
paddle
::
framework
::
load_from_file
(
"lm_startup_program"
);
paddle
::
framework
::
build_variable_scope
(
test_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_func_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*>
op_list
;
paddle
::
framework
::
build_op_func_list
(
test_prog
,
op_list
,
vec_func_list
,
&
global_scope
,
place
);
paddle
::
framework
::
exec_op_func_list
(
vec_func_list
,
op_list
,
global_scope
,
place
);
}
std
::
cerr
<<
"run main"
<<
std
::
endl
;
auto
main_prog
=
paddle
::
framework
::
load_from_file
(
"lm_main_program"
);
paddle
::
framework
::
build_variable_scope
(
main_prog
,
&
global_scope
);
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>
vec_main_func_list
;
std
::
vector
<
paddle
::
framework
::
OperatorBase
*>
op_main_list
;
paddle
::
framework
::
build_op_func_list
(
main_prog
,
op_main_list
,
vec_main_func_list
,
&
global_scope
,
place
);
auto
start
=
std
::
chrono
::
steady_clock
::
now
();
// ProfilerStart("new_executor.prof");
for
(
size_t
i
=
0
;
i
<
2320
;
++
i
)
{
if
(
i
%
200
==
0
)
{
std
::
cerr
<<
i
<<
std
::
endl
;
}
ProfilerStop
();
auto
end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
cerr
<<
"time cost "
<<
diff
.
count
()
<<
endl
;
paddle
::
framework
::
exec_op_func_list
(
vec_main_func_list
,
op_main_list
,
global_scope
,
place
);
33
}
// ProfilerStop();
auto
end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
return
1
;
std
::
cerr
<<
"time cost "
<<
diff
.
count
()
<<
std
::
endl
;
return
1
;
}
paddle/fluid/framework/operator.h
浏览文件 @
1226cc01
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -586,7 +583,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
public:
RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
: op_(op), ctx_(ctx) {}
bool HasInput(const std::string& name) const override {
// has only one input
const auto& ins = ctx_.inputs;
...
...
@@ -602,7 +598,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
"Input %s should not contain more than one inputs.", name));
return in[0] != nullptr;
}
bool HasOutput(const std::string& name) const override {
// has only one output
const auto& outs = ctx_.outputs;
...
...
@@ -620,7 +615,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
"Output %s should not contain more than one outputs.", name));
return out[0] != nullptr;
}
bool HasInputs(const std::string& name) const override {
const auto& ins = ctx_.inputs;
auto it = ins.find(name);
...
...
@@ -634,7 +628,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
return true;
}
bool HasOutputs(const std::string& name) const override {
const auto& outs = ctx_.outputs;
auto it = outs.find(name);
...
...
@@ -648,17 +641,13 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
return true;
}
AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }
std::vector<std::string> Inputs(const std::string& name) const override {
return op_.Inputs(name);
}
std::vector<std::string> Outputs(const std::string& name) const override {
return op_.Outputs(name);
}
std::string GetInputNameByIdx(size_t idx) const override {
auto& op_proto =
paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
...
...
@@ -669,7 +658,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
op_.Type(), idx, op_proto->inputs().size()));
return op_proto->inputs()[idx].name();
}
std::string GetOutputNameByIdx(size_t idx) const override {
auto& op_proto =
paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
...
...
@@ -681,7 +669,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
op_.Type(), idx, op_proto->outputs().size()));
return op_proto->outputs()[idx].name();
}
void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) override {
auto in_it = ctx_.inputs.find(in);
...
...
@@ -702,16 +689,13 @@ class RuntimeInferShapeContext : public InferShapeContext {
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu.",
out_it->second.size(), j));
Variable* in_var = in_it->second[i];
Variable* out_var = out_it->second[j];
PADDLE_ENFORCE_EQ(
in_var->Type(), out_var->Type(),
platform::errors::InvalidArgument(
"The type of input (%s) and output (%s) are inconsistent.", in,
out));
if (in_var->IsType<framework::SelectedRows>()) {
auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
...
...
@@ -728,7 +712,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
"or SelectedRows."));
}
}
void ShareAllLoD(const std::string& in,
const std::string& out) const override {
auto in_it = ctx_.inputs.find(in);
...
...
@@ -740,23 +723,18 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_it, ctx_.outputs.end(),
platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
op_.Type()));
auto& in_var_list = in_it->second;
auto& out_var_list = out_it->second;
PADDLE_ENFORCE_EQ(
in_var_list.size(), out_var_list.size(),
platform::errors::PreconditionNotMet(
"Op [%s]: Input var size should be equal with output var size",
op_.Type()));
auto& out_var_names = op_.Outputs(out);
for (size_t i = 0; i < in_var_list.size(); ++i) {
if (out_var_names[i] == framework::kEmptyVarName) {
continue;
}
Variable* in_var = in_var_list[i];
if (!in_var->IsType<LoDTensor>()) return;
Variable* out_var = out_var_list[i];
...
...
@@ -773,7 +751,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_tensor->set_layout(in_tensor.layout());
}
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const override {
auto in_it = ctx_.inputs.find(in);
...
...
@@ -794,7 +771,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu.",
out_it->second.size(), j));
Variable* in_var = in_it->second.at(i);
if (!in_var->IsType<LoDTensor>()) return;
Variable* out_var = out_it->second.at(j);
...
...
@@ -805,7 +781,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
auto& in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_lod(in_tensor.lod());
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
...
...
@@ -826,14 +801,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
#endif
out_tensor->set_layout(in_tensor.layout());
}
int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
PADDLE_THROW(platform::errors::PreconditionNotMet(
"GetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."));
}
void SetLoDLevel(const std::string& out, int32_t lod_level,
size_t j = 0) const override {
PADDLE_THROW(platform::errors::PreconditionNotMet(
...
...
@@ -841,9 +814,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."));
}
bool IsRuntime() const override { return true; }
// TODO(paddle-dev): Can this be template?
std::vector<InferShapeVarPtr> GetInputVarPtrs(
const std::string& name) override {
...
...
@@ -853,7 +824,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
res.insert(res.begin(), vars.begin(), vars.end());
return res;
}
std::vector<InferShapeVarPtr> GetOutputVarPtrs(
const std::string& name) override {
const std::vector<Variable*>& vars = OutputVars(name);
...
...
@@ -862,7 +832,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
res.insert(res.begin(), vars.begin(), vars.end());
return res;
}
DDim GetInputDim(const std::string& name) const override {
const std::vector<Variable*>& vars = InputVars(name);
PADDLE_ENFORCE_EQ(
...
...
@@ -872,22 +841,18 @@ class RuntimeInferShapeContext : public InferShapeContext {
name, vars.size()));
return this->GetDim(vars[0]);
}
std::vector<DDim> GetInputsDim(const std::string& name) const override {
const std::vector<Variable*>& vars = InputVars(name);
return GetDims(vars);
}
std::vector<proto::VarType::Type> GetInputsVarType(
const std::string& name) const override {
return GetVarTypes(InputVars(name));
}
std::vector<proto::VarType::Type> GetOutputsVarType(
const std::string& name) const override {
return GetVarTypes(OutputVars(name));
}
void SetOutputDim(const std::string& name, const DDim& dim) override {
auto& vars = OutputVars(name);
PADDLE_ENFORCE_EQ(
...
...
@@ -897,13 +862,11 @@ class RuntimeInferShapeContext : public InferShapeContext {
name, vars.size()));
SetDim(vars[0], dim);
}
void SetOutputsDim(const std::string& name,
const std::vector<DDim>& dims) override {
auto& vars = OutputVars(name);
SetDims(vars, dims);
}
protected:
DDim GetDim(Variable* var) const {
PADDLE_ENFORCE_NOT_NULL(
...
...
@@ -919,7 +882,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
ToTypeName(var->Type())));
}
}
std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
std::vector<DDim> ret;
ret.reserve(vars.size());
...
...
@@ -927,12 +889,10 @@ class RuntimeInferShapeContext : public InferShapeContext {
[this](Variable* var) { return this->GetDim(var); });
return ret;
}
std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
PADDLE_THROW(platform::errors::PreconditionNotMet(
"GetRepeatedDims method only ban be used in compile time."));
}
void SetDim(Variable* var, const DDim& dim) {
if (var->IsType<LoDTensor>()) {
var->GetMutable<LoDTensor>()->Resize(dim);
...
...
@@ -945,7 +905,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
ToTypeName(var->Type())));
}
}
void SetDims(const std::vector<Variable*>& vars,
const std::vector<DDim>& dims) {
size_t length = vars.size();
...
...
@@ -962,13 +921,11 @@ class RuntimeInferShapeContext : public InferShapeContext {
SetDim(vars[i], dims[i]);
}
}
void SetRepeatedDims(const std::string& name,
const std::vector<DDim>& dims) override {
PADDLE_THROW(platform::errors::PreconditionNotMet(
"SetRepeatedDims method only can be used in compile time."));
}
std::vector<proto::VarType::Type> GetVarTypes(
const std::vector<Variable*>& vars) const {
std::vector<proto::VarType::Type> retv;
...
...
@@ -978,11 +935,9 @@ class RuntimeInferShapeContext : public InferShapeContext {
this, std::placeholders::_1));
return retv;
}
proto::VarType::Type GetVarType(Variable* var) const {
return ToVarType(var->Type());
}
private:
const std::vector<Variable*>& InputVars(const std::string& name) const {
auto it = ctx_.inputs.find(name);
...
...
@@ -992,7 +947,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
"Operator (%s) does not have the input (%s).", op_.Type(), name));
return it->second;
}
const std::vector<Variable*>& OutputVars(const std::string& name) const {
auto it = ctx_.outputs.find(name);
PADDLE_ENFORCE_NE(
...
...
@@ -1001,11 +955,10 @@ class RuntimeInferShapeContext : public InferShapeContext {
"Operator (%s) does not have the outputs (%s).", op_.Type(), name));
return it->second;
}
const OperatorBase& op_;
const RuntimeContext& ctx_;
};
*/
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录