Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1220f385
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1220f385
编写于
5月 26, 2017
作者:
Q
qingqing01
提交者:
GitHub
5月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2215 from qingqing01/variable_input
Support variable-dimension input feature for 2D convolution operation.
上级
29520d77
8e06f731
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
70 addition
and
5 deletion
+70
-5
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+30
-1
python/paddle/trainer/PyDataProvider2.py
python/paddle/trainer/PyDataProvider2.py
+14
-3
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-1
python/paddle/v2/tests/test_data_feeder.py
python/paddle/v2/tests/test_data_feeder.py
+24
-0
未找到文件。
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
1220f385
...
...
@@ -17,6 +17,7 @@ import collections
import
swig_paddle
import
numpy
import
itertools
from
functools
import
reduce
__all__
=
[
'DataProviderConverter'
]
...
...
@@ -65,6 +66,8 @@ class IScanner(object):
:param argument: Output arguments object.
:type argument: swig_paddle.Arguments
:param dat: Output arguments object.
:type dat: The Python object, numpy.array or List.
:return:
"""
pass
...
...
@@ -95,17 +98,35 @@ class DenseScanner(IScanner):
def
__init__
(
self
,
input_type
,
pos
):
IScanner
.
__init__
(
self
,
input_type
,
pos
)
self
.
__mat__
=
None
self
.
__shape__
=
None
self
.
__height__
=
0
self
.
__dim__
=
0
def
pre_scan
(
self
,
dat
):
self
.
__height__
+=
1
if
self
.
__shape__
is
None
:
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input cannot be greater than 3."
)
self
.
__dim__
=
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
__shape__
)
if
len
(
self
.
__shape__
)
==
1
and
self
.
__dim__
!=
self
.
input_type
.
dim
:
raise
ValueError
(
"The data size must be equal to it in data layer."
)
else
:
if
self
.
__shape__
!=
numpy
.
array
(
dat
).
shape
:
raise
ValueError
(
"The data shape must be same in one mini-batch."
)
def
finish_pre_scan
(
self
,
argument
):
self
.
__mat__
=
numpy
.
ndarray
(
shape
=
(
self
.
__height__
,
self
.
input_type
.
dim
),
dtype
=
numpy
.
float32
)
shape
=
(
self
.
__height__
,
self
.
__dim__
),
dtype
=
numpy
.
float32
)
self
.
__height__
=
0
def
scan
(
self
,
dat
):
# It's better to use NumPy array for speed.
dat
=
numpy
.
array
(
dat
)
dat
=
dat
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
dat
self
.
__height__
+=
1
...
...
@@ -116,6 +137,14 @@ class DenseScanner(IScanner):
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
self
.
__mat__
,
True
,
self
.
data_in_gpu
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
if
len
(
self
.
__shape__
)
>
1
:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
self
.
__shape__
=
None
class
SparseBinaryScanner
(
IScanner
):
...
...
python/paddle/trainer/PyDataProvider2.py
浏览文件 @
1220f385
...
...
@@ -72,9 +72,16 @@ class InputType(object):
def
dense_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
:param dim: dimension of this vector.
:type dim: int
...
...
@@ -135,6 +142,10 @@ sparse_binary_vector = sparse_non_value_slot
sparse_vector
=
sparse_value_slot
integer_value
=
index_slot
# dense_array can be used for variable-length input feature.
# Each feature is not a vector, but a multi-dimensional array.
dense_array
=
dense_slot
def
dense_vector_sequence
(
dim
):
"""
...
...
python/paddle/v2/data_type.py
浏览文件 @
1220f385
...
...
@@ -16,7 +16,8 @@ import paddle.trainer.PyDataProvider2 as pydp2
import_list
=
[
nm
for
nm
in
dir
(
pydp2
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
or
'array'
in
nm
)
]
import_list
.
extend
([
'InputType'
])
...
...
python/paddle/v2/tests/test_data_feeder.py
浏览文件 @
1220f385
...
...
@@ -233,6 +233,30 @@ class DataFeederTest(unittest.TestCase):
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
def
test_dense_set_shape
(
self
):
# test 2-D data
def
gen_data
(
batch_size
,
shape
):
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
random
(
shape
))
data
.
append
(
each_sample
)
return
data
feeder
=
DataFeeder
([(
'image'
,
data_type
.
dense_array
(
2352
))],
{
'image'
:
0
})
arg
=
feeder
(
gen_data
(
32
,
(
3
,
28
,
28
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
28
)
self
.
assertEqual
(
w
,
28
)
arg
=
feeder
(
gen_data
(
32
,
(
3
,
30
,
32
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
30
)
self
.
assertEqual
(
w
,
32
)
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录