diff --git a/paddle/testing/CMakeLists.txt b/paddle/testing/CMakeLists.txt index dc6245ce6b024ba10e6631d5aea307de75dc2963..cd8ce07f800596968c5d0533397f5917c5d26aac 100644 --- a/paddle/testing/CMakeLists.txt +++ b/paddle/testing/CMakeLists.txt @@ -3,3 +3,4 @@ if(WITH_TESTING) cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS device_context memory gtest gflags) endif() +cc_test(small_vector_test SRCS small_vector_test.cc DEPS gtest gflags) diff --git a/paddle/testing/small_vector_test.cc b/paddle/testing/small_vector_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..96bcec59400565c125e36b5a583a6104a96796b6 --- /dev/null +++ b/paddle/testing/small_vector_test.cc @@ -0,0 +1,77 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/utils/small_vector.h" + +#include +#include + +#include "glog/logging.h" +#include "gtest/gtest.h" + +template +static std::vector ToStdVector(const paddle::SmallVector &vec) { + std::vector std_vec; + std_vec.reserve(vec.size()); + for (size_t i = 0; i < vec.size(); ++i) { + std_vec.emplace_back(vec[i]); + } + return std_vec; +} + +template +void SmallVectorCheck(size_t n) { + std::srand(std::time(nullptr)); + + std::vector std_vec; + paddle::SmallVector vec; + + for (size_t i = 0; i < n; ++i) { + int value = rand(); // NOLINT + + std_vec.emplace_back(value); + vec.emplace_back(value); + + CHECK_EQ(std_vec.size(), vec.size()); + CHECK_EQ(std_vec.back(), vec.back()); + + CHECK_EQ(vec.back(), value); + } + + bool is_equal = (std_vec == ToStdVector(vec)); + + CHECK_EQ(is_equal, true); + + for (size_t i = 0; i < n; ++i) { + CHECK_EQ(std_vec.size(), vec.size()); + CHECK_EQ(std_vec.back(), vec.back()); + std_vec.pop_back(); + vec.pop_back(); + CHECK_EQ(std_vec.size(), vec.size()); + } + + CHECK_EQ(std_vec.size(), static_cast(0)); + CHECK_EQ(vec.size(), static_cast(0)); +} + +TEST(samll_vector, small_vector) { + for (size_t i = 0; i < 20; ++i) { + SmallVectorCheck<1>(i); + SmallVectorCheck<10>(i); + SmallVectorCheck<15>(i); + SmallVectorCheck<20>(i); + SmallVectorCheck<21>(i); + SmallVectorCheck<25>(i); + } +} diff --git a/paddle/utils/small_vector.h b/paddle/utils/small_vector.h new file mode 100644 index 0000000000000000000000000000000000000000..f51a3b623ce3be782f50ab553e1ac3701838f377 --- /dev/null +++ b/paddle/utils/small_vector.h @@ -0,0 +1,1481 @@ +// This file copy from llvm/ADT/SmallVector.h, version: 12.0.0 +// Modified the following points +// 1. remove macro +// 2. remove LLVM_LIKELY and LLVM_UNLIKELY +// 3. add at(index) method for small vector + +//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the SmallVector class. +// +//===----------------------------------------------------------------------===// + +#ifndef PADDLE_UTILS_SMALL_VECTOR_H_ +#define PADDLE_UTILS_SMALL_VECTOR_H_ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace paddle { + +/// A range adaptor for a pair of iterators. +/// +/// This just wraps two iterators into a range-compatible interface. Nothing +/// fancy at all. +template +class iterator_range { + IteratorT begin_iterator, end_iterator; + + public: + // TODO: Add SFINAE to test that the Container's iterators match the range's + // iterators. + template + iterator_range(Container &&c) + // TODO: Consider ADL/non-member begin/end calls. + : begin_iterator(c.begin()), + end_iterator(c.end()) {} + iterator_range(IteratorT begin_iterator, IteratorT end_iterator) + : begin_iterator(std::move(begin_iterator)), + end_iterator(std::move(end_iterator)) {} + + IteratorT begin() const { return begin_iterator; } + IteratorT end() const { return end_iterator; } + bool empty() const { return begin_iterator == end_iterator; } +}; + +/// Convenience function for iterating over sub-ranges. +/// +/// This provides a bit of syntactic sugar to make using sub-ranges +/// in for loops a bit easier. Analogous to std::make_pair(). +template +iterator_range make_range(T x, T y) { + return iterator_range(std::move(x), std::move(y)); +} + +template +iterator_range make_range(std::pair p) { + return iterator_range(std::move(p.first), std::move(p.second)); +} + +/// This is all the stuff common to all SmallVectors. +/// +/// The template parameter specifies the type which should be used to hold the +/// Size and Capacity of the SmallVector, so it can be adjusted. +/// Using 32 bit size is desirable to shrink the size of the SmallVector. +/// Using 64 bit size is desirable for cases like SmallVector, where a +/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for +/// buffering bitcode output - which can exceed 4GB. +template +class SmallVectorBase { + protected: + void *BeginX; + Size_T Size = 0, Capacity; + + /// The maximum value of the Size_T used. + static constexpr size_t SizeTypeMax() { + return std::numeric_limits::max(); + } + + SmallVectorBase() = delete; + SmallVectorBase(void *FirstEl, size_t TotalCapacity) + : BeginX(FirstEl), Capacity(TotalCapacity) {} + + /// This is a helper for \a grow() that's out of line to reduce code + /// duplication. This function will report a fatal error if it can't grow at + /// least to \p MinSize. + void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); + + /// This is an implementation of the grow() method which only works + /// on POD-like data types and is out of line to reduce code duplication. + /// This function will report a fatal error if it cannot increase capacity. + void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); + + public: + size_t size() const { return Size; } + size_t capacity() const { return Capacity; } + + bool empty() const { return !Size; } + + /// Set the array size to \p N, which the current array must have enough + /// capacity for. + /// + /// This does not construct or destroy any elements in the vector. + /// + /// Clients can use this in conjunction with capacity() to write past the end + /// of the buffer when they know that more elements are available, and only + /// update the size later. This avoids the cost of value initializing elements + /// which will only be overwritten. + void set_size(size_t N) { + assert(N <= capacity()); + Size = N; + } +}; + +template +using SmallVectorSizeType = + typename std::conditional= 8, + uint64_t, + uint32_t>::type; + +/// Figure out the offset of the first element. +template +struct SmallVectorAlignmentAndSize { + alignas(SmallVectorBase>) char Base[sizeof( + SmallVectorBase>)]; + alignas(T) char FirstEl[sizeof(T)]; +}; + +/// This is the part of SmallVectorTemplateBase which does not depend on whether +/// the type T is a POD. The extra dummy template argument is used by ArrayRef +/// to avoid unnecessarily requiring T to be complete. +template +class SmallVectorTemplateCommon + : public SmallVectorBase> { + using Base = SmallVectorBase>; + + /// Find the address of the first element. For this pointer math to be valid + /// with small-size of 0 for T with lots of alignment, it's important that + /// SmallVectorStorage is properly-aligned even for small-size of 0. + void *getFirstEl() const { + return const_cast(reinterpret_cast( + reinterpret_cast(this) + + offsetof(SmallVectorAlignmentAndSize, FirstEl))); + } + // Space after 'FirstEl' is clobbered, do not add any instance vars after it. + + protected: + SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} + + void grow_pod(size_t MinSize, size_t TSize) { + Base::grow_pod(getFirstEl(), MinSize, TSize); + } + + /// Return true if this is a smallvector which has not had dynamic + /// memory allocated for it. + bool isSmall() const { return this->BeginX == getFirstEl(); } + + /// Put this vector in a state of being small. + void resetToSmall() { + this->BeginX = getFirstEl(); + this->Size = this->Capacity = + 0; // FIXME: Setting Capacity to 0 is suspect. + } + + /// Return true if V is an internal reference to the given range. + bool isReferenceToRange(const void *V, + const void *First, + const void *Last) const { + // Use std::less to avoid UB. + std::less<> LessThan; + return !LessThan(V, First) && LessThan(V, Last); + } + + /// Return true if V is an internal reference to this vector. + bool isReferenceToStorage(const void *V) const { + return isReferenceToRange(V, this->begin(), this->end()); + } + + /// Return true if First and Last form a valid (possibly empty) range in this + /// vector's storage. + bool isRangeInStorage(const void *First, const void *Last) const { + // Use std::less to avoid UB. + std::less<> LessThan; + return !LessThan(First, this->begin()) && !LessThan(Last, First) && + !LessThan(this->end(), Last); + } + + /// Return true unless Elt will be invalidated by resizing the vector to + /// NewSize. + bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { + // Past the end. + if (!isReferenceToStorage(Elt)) return true; + + // Return false if Elt will be destroyed by shrinking. + if (NewSize <= this->size()) return Elt < this->begin() + NewSize; + + // Return false if we need to grow. + return NewSize <= this->capacity(); + } + + /// Check whether Elt will be invalidated by resizing the vector to NewSize. + void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { + assert(isSafeToReferenceAfterResize(Elt, NewSize) && + "Attempting to reference an element of the vector in an operation " + "that invalidates it"); + } + + /// Check whether Elt will be invalidated by increasing the size of the + /// vector by N. + void assertSafeToAdd(const void *Elt, size_t N = 1) { + this->assertSafeToReferenceAfterResize(Elt, this->size() + N); + } + + /// Check whether any part of the range will be invalidated by clearing. + void assertSafeToReferenceAfterClear(const T *From, const T *To) { + if (From == To) return; + this->assertSafeToReferenceAfterResize(From, 0); + this->assertSafeToReferenceAfterResize(To - 1, 0); + } + template < + class ItTy, + std::enable_if_t, T *>::value, + bool> = false> + void assertSafeToReferenceAfterClear(ItTy, ItTy) {} + + /// Check whether any part of the range will be invalidated by growing. + void assertSafeToAddRange(const T *From, const T *To) { + if (From == To) return; + this->assertSafeToAdd(From, To - From); + this->assertSafeToAdd(To - 1, To - From); + } + template < + class ItTy, + std::enable_if_t, T *>::value, + bool> = false> + void assertSafeToAddRange(ItTy, ItTy) {} + + /// Reserve enough space to add one element, and return the updated element + /// pointer in case it was a reference to the storage. + template + static const T *reserveForParamAndGetAddressImpl(U *This, + const T &Elt, + size_t N) { + size_t NewSize = This->size() + N; + if (NewSize <= This->capacity()) return &Elt; + + bool ReferencesStorage = false; + int64_t Index = -1; + if (!U::TakesParamByValue) { + if (This->isReferenceToStorage(&Elt)) { + ReferencesStorage = true; + Index = &Elt - This->begin(); + } + } + This->grow(NewSize); + return ReferencesStorage ? This->begin() + Index : &Elt; + } + + public: + using size_type = size_t; + using difference_type = ptrdiff_t; + using value_type = T; + using iterator = T *; + using const_iterator = const T *; + + using const_reverse_iterator = std::reverse_iterator; + using reverse_iterator = std::reverse_iterator; + + using reference = T &; + using const_reference = const T &; + using pointer = T *; + using const_pointer = const T *; + + using Base::capacity; + using Base::empty; + using Base::size; + + // forward iterator creation methods. + iterator begin() { return (iterator) this->BeginX; } + const_iterator begin() const { return (const_iterator) this->BeginX; } + iterator end() { return begin() + size(); } + const_iterator end() const { return begin() + size(); } + + // reverse iterator creation methods. + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const { + return const_reverse_iterator(end()); + } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { + return const_reverse_iterator(begin()); + } + + size_type size_in_bytes() const { return size() * sizeof(T); } + size_type max_size() const { + return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); + } + + size_t capacity_in_bytes() const { return capacity() * sizeof(T); } + + /// Return a pointer to the vector's buffer, even if empty(). + pointer data() { return pointer(begin()); } + /// Return a pointer to the vector's buffer, even if empty(). + const_pointer data() const { return const_pointer(begin()); } + + reference operator[](size_type idx) { + assert(idx < size()); + return begin()[idx]; + } + const_reference operator[](size_type idx) const { + assert(idx < size()); + return begin()[idx]; + } + + reference at(size_type idx) { + assert(idx < size()); + return begin()[idx]; + } + const_reference at(size_type idx) const { + assert(idx < size()); + return begin()[idx]; + } + + reference front() { + assert(!empty()); + return begin()[0]; + } + const_reference front() const { + assert(!empty()); + return begin()[0]; + } + + reference back() { + assert(!empty()); + return end()[-1]; + } + const_reference back() const { + assert(!empty()); + return end()[-1]; + } +}; + +/// SmallVectorTemplateBase - This is where we put +/// method implementations that are designed to work with non-trivial T's. +/// +/// We approximate is_trivially_copyable with trivial move/copy construction and +/// trivial destruction. While the standard doesn't specify that you're allowed +/// copy these types with memcpy, there is no way for the type to observe this. +/// This catches the important case of std::pair, which is not +/// trivially assignable. +template ::value) && + (std::is_trivially_move_constructible::value) && + std::is_trivially_destructible::value> +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { + friend class SmallVectorTemplateCommon; + + protected: + static constexpr bool TakesParamByValue = false; + using ValueParamT = const T &; + + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); + } + } + + /// Move the range [I, E) into the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy( + std::make_move_iterator(I), std::make_move_iterator(E), Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); + } + + /// Grow the allocated memory (without initializing new elements), doubling + /// the size of the allocated memory. Guarantees space for at least one more + /// element, or MinSize more elements if specified. + void grow(size_t MinSize = 0); + + /// Create a new allocation big enough for \p MinSize and pass back its size + /// in \p NewCapacity. This is the first section of \a grow(). + T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { + return static_cast( + SmallVectorBase>::mallocForGrow( + MinSize, sizeof(T), NewCapacity)); + } + + /// Move existing elements over to the new allocation \p NewElts, the middle + /// section of \a grow(). + void moveElementsForGrow(T *NewElts); + + /// Transfer ownership of the allocation, finishing up \a grow(). + void takeAllocationForGrow(T *NewElts, size_t NewCapacity); + + /// Reserve enough space to add one element, and return the updated element + /// pointer in case it was a reference to the storage. + const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { + return this->reserveForParamAndGetAddressImpl(this, Elt, N); + } + + /// Reserve enough space to add one element, and return the updated element + /// pointer in case it was a reference to the storage. + T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { + return const_cast( + this->reserveForParamAndGetAddressImpl(this, Elt, N)); + } + + static T &&forward_value_param(T &&V) { return std::move(V); } + static const T &forward_value_param(const T &V) { return V; } + + void growAndAssign(size_t NumElts, const T &Elt) { + // Grow manually in case Elt is an internal reference. + size_t NewCapacity; + T *NewElts = mallocForGrow(NumElts, NewCapacity); + std::uninitialized_fill_n(NewElts, NumElts, Elt); + this->destroy_range(this->begin(), this->end()); + takeAllocationForGrow(NewElts, NewCapacity); + this->set_size(NumElts); + } + + template + T &growAndEmplaceBack(ArgTypes &&... Args) { + // Grow manually in case one of Args is an internal reference. + size_t NewCapacity; + T *NewElts = mallocForGrow(0, NewCapacity); + ::new ((void *)(NewElts + this->size())) T(std::forward(Args)...); + moveElementsForGrow(NewElts); + takeAllocationForGrow(NewElts, NewCapacity); + this->set_size(this->size() + 1); + return this->back(); + } + + public: + void push_back(const T &Elt) { + const T *EltPtr = reserveForParamAndGetAddress(Elt); + ::new ((void *)this->end()) T(*EltPtr); + this->set_size(this->size() + 1); + } + + void push_back(T &&Elt) { + T *EltPtr = reserveForParamAndGetAddress(Elt); + ::new ((void *)this->end()) T(::std::move(*EltPtr)); + this->set_size(this->size() + 1); + } + + void pop_back() { + this->set_size(this->size() - 1); + this->end()->~T(); + } +}; + +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::grow(size_t MinSize) { + size_t NewCapacity; + T *NewElts = mallocForGrow(MinSize, NewCapacity); + moveElementsForGrow(NewElts); + takeAllocationForGrow(NewElts, NewCapacity); +} + +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::moveElementsForGrow( + T *NewElts) { + // Move the elements over. + this->uninitialized_move(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); +} + +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::takeAllocationForGrow( + T *NewElts, size_t NewCapacity) { + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) free(this->begin()); + + this->BeginX = NewElts; + this->Capacity = NewCapacity; +} + +/// SmallVectorTemplateBase - This is where we put +/// method implementations that are designed to work with trivially copyable +/// T's. This allows using memcpy in place of copy/move construction and +/// skipping destruction. +template +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { + friend class SmallVectorTemplateCommon; + + protected: + /// True if it's cheap enough to take parameters by value. Doing so avoids + /// overhead related to mitigations for reference invalidation. + static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); + + /// Either const T& or T, depending on whether it's cheap enough to take + /// parameters by value. + using ValueParamT = + typename std::conditional::type; + + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// Move the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + // Just do a copy. + uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Arbitrary iterator types; just use the basic implementation. + std::uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy( + T1 *I, + T1 *E, + T2 *Dest, + std::enable_if_t::type, + T2>::value> * = nullptr) { + // Use memcpy for PODs iterated by pointers (which includes SmallVector + // iterators): std::uninitialized_copy optimizes to memmove, but we can + // use memcpy here. Note that I and E are iterators and thus might be + // invalid for memcpy if they are equal. + if (I != E) memcpy(reinterpret_cast(Dest), I, (E - I) * sizeof(T)); + } + + /// Double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } + + /// Reserve enough space to add one element, and return the updated element + /// pointer in case it was a reference to the storage. + const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { + return this->reserveForParamAndGetAddressImpl(this, Elt, N); + } + + /// Reserve enough space to add one element, and return the updated element + /// pointer in case it was a reference to the storage. + T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { + return const_cast( + this->reserveForParamAndGetAddressImpl(this, Elt, N)); + } + + /// Copy \p V or return a reference, depending on \a ValueParamT. + static ValueParamT forward_value_param(ValueParamT V) { return V; } + + void growAndAssign(size_t NumElts, T Elt) { + // Elt has been copied in case it's an internal reference, side-stepping + // reference invalidation problems without losing the realloc optimization. + this->set_size(0); + this->grow(NumElts); + std::uninitialized_fill_n(this->begin(), NumElts, Elt); + this->set_size(NumElts); + } + + template + T &growAndEmplaceBack(ArgTypes &&... Args) { + // Use push_back with a copy in case Args has an internal reference, + // side-stepping reference invalidation problems without losing the realloc + // optimization. + push_back(T(std::forward(Args)...)); + return this->back(); + } + + public: + void push_back(ValueParamT Elt) { + const T *EltPtr = reserveForParamAndGetAddress(Elt); + memcpy(reinterpret_cast(this->end()), EltPtr, sizeof(T)); + this->set_size(this->size() + 1); + } + + void pop_back() { this->set_size(this->size() - 1); } +}; + +/// This class consists of common code factored out of the SmallVector class to +/// reduce code duplication based on the SmallVector 'N' template parameter. +template +class SmallVectorImpl : public SmallVectorTemplateBase { + using SuperClass = SmallVectorTemplateBase; + + public: + using iterator = typename SuperClass::iterator; + using const_iterator = typename SuperClass::const_iterator; + using reference = typename SuperClass::reference; + using size_type = typename SuperClass::size_type; + + protected: + using SmallVectorTemplateBase::TakesParamByValue; + using ValueParamT = typename SuperClass::ValueParamT; + + // Default ctor - Initialize to empty. + explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase(N) {} + + public: + SmallVectorImpl(const SmallVectorImpl &) = delete; + + ~SmallVectorImpl() { + // Subclass has already destructed this vector's elements. + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) free(this->begin()); + } + + void clear() { + this->destroy_range(this->begin(), this->end()); + this->Size = 0; + } + + private: + template + void resizeImpl(size_type N) { + if (N < this->size()) { + this->pop_back_n(this->size() - N); + } else if (N > this->size()) { + this->reserve(N); + for (auto I = this->end(), E = this->begin() + N; I != E; ++I) + if (ForOverwrite) + new (&*I) T; + else + new (&*I) T(); + this->set_size(N); + } + } + + public: + void resize(size_type N) { resizeImpl(N); } + + /// Like resize, but \ref T is POD, the new values won't be initialized. + void resize_for_overwrite(size_type N) { resizeImpl(N); } + + void resize(size_type N, ValueParamT NV) { + if (N == this->size()) return; + + if (N < this->size()) { + this->pop_back_n(this->size() - N); + return; + } + + // N > this->size(). Defer to append. + this->append(N - this->size(), NV); + } + + void reserve(size_type N) { + if (this->capacity() < N) this->grow(N); + } + + void pop_back_n(size_type NumItems) { + assert(this->size() >= NumItems); + this->destroy_range(this->end() - NumItems, this->end()); + this->set_size(this->size() - NumItems); + } + + T pop_back_val() { + T Result = ::std::move(this->back()); + this->pop_back(); + return Result; + } + + void swap(SmallVectorImpl &RHS); + + /// Add the specified range to the end of the SmallVector. + template ::iterator_category, + std::input_iterator_tag>::value>> + void append(in_iter in_start, in_iter in_end) { + this->assertSafeToAddRange(in_start, in_end); + size_type NumInputs = std::distance(in_start, in_end); + this->reserve(this->size() + NumInputs); + this->uninitialized_copy(in_start, in_end, this->end()); + this->set_size(this->size() + NumInputs); + } + + /// Append \p NumInputs copies of \p Elt to the end. + void append(size_type NumInputs, ValueParamT Elt) { + const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); + std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); + this->set_size(this->size() + NumInputs); + } + + void append(std::initializer_list IL) { append(IL.begin(), IL.end()); } + + void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } + + void assign(size_type NumElts, ValueParamT Elt) { + // Note that Elt could be an internal reference. + if (NumElts > this->capacity()) { + this->growAndAssign(NumElts, Elt); + return; + } + + // Assign over existing elements. + std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); + if (NumElts > this->size()) + std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); + else if (NumElts < this->size()) + this->destroy_range(this->begin() + NumElts, this->end()); + this->set_size(NumElts); + } + + // FIXME: Consider assigning over existing elements, rather than clearing & + // re-initializing them - for all assign(...) variants. + + template ::iterator_category, + std::input_iterator_tag>::value>> + void assign(in_iter in_start, in_iter in_end) { + this->assertSafeToReferenceAfterClear(in_start, in_end); + clear(); + append(in_start, in_end); + } + + void assign(std::initializer_list IL) { + clear(); + append(IL); + } + + void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } + + iterator erase(const_iterator CI) { + // Just cast away constness because this is a non-const member function. + iterator I = const_cast(CI); + + assert(this->isReferenceToStorage(CI) && + "Iterator to erase is out of bounds."); + + iterator N = I; + // Shift all elts down one. + std::move(I + 1, this->end(), I); + // Drop the last elt. + this->pop_back(); + return (N); + } + + iterator erase(const_iterator CS, const_iterator CE) { + // Just cast away constness because this is a non-const member function. + iterator S = const_cast(CS); + iterator E = const_cast(CE); + + assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); + + iterator N = S; + // Shift all elts down. + iterator I = std::move(E, this->end(), S); + // Drop the last elts. + this->destroy_range(I, this->end()); + this->set_size(I - this->begin()); + return (N); + } + + private: + template + iterator insert_one_impl(iterator I, ArgType &&Elt) { + // Callers ensure that ArgType is derived from T. + static_assert( + std::is_same>, + T>::value, + "ArgType must be derived from T!"); + + if (I == this->end()) { // Important special case for empty vector. + this->push_back(::std::forward(Elt)); + return this->end() - 1; + } + + assert(this->isReferenceToStorage(I) && + "Insertion iterator is out of bounds."); + + // Grow if necessary. + size_t Index = I - this->begin(); + std::remove_reference_t *EltPtr = + this->reserveForParamAndGetAddress(Elt); + I = this->begin() + Index; + + ::new ((void *)this->end()) T(::std::move(this->back())); + // Push everything else over. + std::move_backward(I, this->end() - 1, this->end()); + this->set_size(this->size() + 1); + + // If we just moved the element we're inserting, be sure to update + // the reference (never happens if TakesParamByValue). + static_assert(!TakesParamByValue || std::is_same::value, + "ArgType must be 'T' when taking by value!"); + if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) + ++EltPtr; + + *I = ::std::forward(*EltPtr); + return I; + } + + public: + iterator insert(iterator I, T &&Elt) { + return insert_one_impl(I, this->forward_value_param(std::move(Elt))); + } + + iterator insert(iterator I, const T &Elt) { + return insert_one_impl(I, this->forward_value_param(Elt)); + } + + iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. + append(NumToInsert, Elt); + return this->begin() + InsertElt; + } + + assert(this->isReferenceToStorage(I) && + "Insertion iterator is out of bounds."); + + // Ensure there is enough space, and get the (maybe updated) address of + // Elt. + const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); + + // Uninvalidate the iterator. + I = this->begin() + InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end() - I) >= NumToInsert) { + T *OldEnd = this->end(); + append(std::move_iterator(this->end() - NumToInsert), + std::move_iterator(this->end())); + + // Copy the existing elements that get replaced. + std::move_backward(I, OldEnd - NumToInsert, OldEnd); + + // If we just moved the element we're inserting, be sure to update + // the reference (never happens if TakesParamByValue). + if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) + EltPtr += NumToInsert; + + std::fill_n(I, NumToInsert, *EltPtr); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->set_size(this->size() + NumToInsert); + size_t NumOverwritten = OldEnd - I; + this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); + + // If we just moved the element we're inserting, be sure to update + // the reference (never happens if TakesParamByValue). + if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) + EltPtr += NumToInsert; + + // Replace the overwritten part. + std::fill_n(I, NumOverwritten, *EltPtr); + + // Insert the non-overwritten middle part. + std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); + return I; + } + + template ::iterator_category, + std::input_iterator_tag>::value>> + iterator insert(iterator I, ItTy From, ItTy To) { + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. + append(From, To); + return this->begin() + InsertElt; + } + + assert(this->isReferenceToStorage(I) && + "Insertion iterator is out of bounds."); + + // Check that the reserve that follows doesn't invalidate the iterators. + this->assertSafeToAddRange(From, To); + + size_t NumToInsert = std::distance(From, To); + + // Ensure there is enough space. + reserve(this->size() + NumToInsert); + + // Uninvalidate the iterator. + I = this->begin() + InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end() - I) >= NumToInsert) { + T *OldEnd = this->end(); + append(std::move_iterator(this->end() - NumToInsert), + std::move_iterator(this->end())); + + // Copy the existing elements that get replaced. + std::move_backward(I, OldEnd - NumToInsert, OldEnd); + + std::copy(From, To, I); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->set_size(this->size() + NumToInsert); + size_t NumOverwritten = OldEnd - I; + this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); + + // Replace the overwritten part. + for (T *J = I; NumOverwritten > 0; --NumOverwritten) { + *J = *From; + ++J; + ++From; + } + + // Insert the non-overwritten middle part. + this->uninitialized_copy(From, To, OldEnd); + return I; + } + + void insert(iterator I, std::initializer_list IL) { + insert(I, IL.begin(), IL.end()); + } + + template + reference emplace_back(ArgTypes &&... Args) { + if (this->size() >= this->capacity()) + return this->growAndEmplaceBack(std::forward(Args)...); + + ::new ((void *)this->end()) T(std::forward(Args)...); + this->set_size(this->size() + 1); + return this->back(); + } + + SmallVectorImpl &operator=(const SmallVectorImpl &RHS); + + SmallVectorImpl &operator=(SmallVectorImpl &&RHS); + + bool operator==(const SmallVectorImpl &RHS) const { + if (this->size() != RHS.size()) return false; + return std::equal(this->begin(), this->end(), RHS.begin()); + } + bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } + + bool operator<(const SmallVectorImpl &RHS) const { + return std::lexicographical_compare( + this->begin(), this->end(), RHS.begin(), RHS.end()); + } +}; + +template +void SmallVectorImpl::swap(SmallVectorImpl &RHS) { + if (this == &RHS) return; + + // We can only avoid copying elements if neither vector is small. + if (!this->isSmall() && !RHS.isSmall()) { + std::swap(this->BeginX, RHS.BeginX); + std::swap(this->Size, RHS.Size); + std::swap(this->Capacity, RHS.Capacity); + return; + } + this->reserve(RHS.size()); + RHS.reserve(this->size()); + + // Swap the shared elements. + size_t NumShared = this->size(); + if (NumShared > RHS.size()) NumShared = RHS.size(); + for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]); + + // Copy over the extra elts. + if (this->size() > RHS.size()) { + size_t EltDiff = this->size() - RHS.size(); + this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end()); + RHS.set_size(RHS.size() + EltDiff); + this->destroy_range(this->begin() + NumShared, this->end()); + this->set_size(NumShared); + } else if (RHS.size() > this->size()) { + size_t EltDiff = RHS.size() - this->size(); + this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end()); + this->set_size(this->size() + EltDiff); + this->destroy_range(RHS.begin() + NumShared, RHS.end()); + RHS.set_size(NumShared); + } +} + +template +SmallVectorImpl &SmallVectorImpl::operator=( + const SmallVectorImpl &RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd; + if (RHSSize) + NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin()); + else + NewEnd = this->begin(); + + // Destroy excess elements. + this->destroy_range(NewEnd, this->end()); + + // Trim. + this->set_size(RHSSize); + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: don't do this if they're efficiently moveable. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->clear(); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin()); + } + + // Copy construct the new elements in place. + this->uninitialized_copy( + RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); + + // Set end. + this->set_size(RHSSize); + return *this; +} + +template +SmallVectorImpl &SmallVectorImpl::operator=(SmallVectorImpl &&RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If the RHS isn't small, clear this vector and then steal its buffer. + if (!RHS.isSmall()) { + this->destroy_range(this->begin(), this->end()); + if (!this->isSmall()) free(this->begin()); + this->BeginX = RHS.BeginX; + this->Size = RHS.Size; + this->Capacity = RHS.Capacity; + RHS.resetToSmall(); + return *this; + } + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd = this->begin(); + if (RHSSize) NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); + + // Destroy excess elements and trim the bounds. + this->destroy_range(NewEnd, this->end()); + this->set_size(RHSSize); + + // Clear the RHS. + RHS.clear(); + + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: this may not actually make any sense if we can efficiently move + // elements. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->clear(); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + std::move(RHS.begin(), RHS.begin() + CurSize, this->begin()); + } + + // Move-construct the new elements in place. + this->uninitialized_move( + RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); + + // Set end. + this->set_size(RHSSize); + + RHS.clear(); + return *this; +} + +/// Storage for the SmallVector elements. This is specialized for the N=0 case +/// to avoid allocating unnecessary storage. +template +struct SmallVectorStorage { + alignas(T) char InlineElts[N * sizeof(T)]; +}; + +/// We need the storage to be properly aligned even for small-size of 0 so that +/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is +/// well-defined. +template +struct alignas(T) SmallVectorStorage {}; + +/// Forward declaration of SmallVector so that +/// calculateSmallVectorDefaultInlinedElements can reference +/// `sizeof(SmallVector)`. +template +class SmallVector; + +/// Helper class for calculating the default number of inline elements for +/// `SmallVector`. +/// +/// This should be migrated to a constexpr function when our minimum +/// compiler support is enough for multi-statement constexpr functions. +template +struct CalculateSmallVectorDefaultInlinedElements { + // Parameter controlling the default number of inlined elements + // for `SmallVector`. + // + // The default number of inlined elements ensures that + // 1. There is at least one inlined element. + // 2. `sizeof(SmallVector) <= kPreferredSmallVectorSizeof` unless + // it contradicts 1. + static constexpr size_t kPreferredSmallVectorSizeof = 64; + + // static_assert that sizeof(T) is not "too big". + // + // Because our policy guarantees at least one inlined element, it is possible + // for an arbitrarily large inlined element to allocate an arbitrarily large + // amount of inline storage. We generally consider it an antipattern for a + // SmallVector to allocate an excessive amount of inline storage, so we want + // to call attention to these cases and make sure that users are making an + // intentional decision if they request a lot of inline storage. + // + // We want this assertion to trigger in pathological cases, but otherwise + // not be too easy to hit. To accomplish that, the cutoff is actually somewhat + // larger than kPreferredSmallVectorSizeof (otherwise, + // `SmallVector>` would be one easy way to trip it, and that + // pattern seems useful in practice). + // + // One wrinkle is that this assertion is in theory non-portable, since + // sizeof(T) is in general platform-dependent. However, we don't expect this + // to be much of an issue, because most LLVM development happens on 64-bit + // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for + // 32-bit hosts, dodging the issue. The reverse situation, where development + // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a + // 64-bit host, is expected to be very rare. + static_assert( + sizeof(T) <= 256, + "You are trying to use a default number of inlined elements for " + "`SmallVector` but `sizeof(T)` is really big! Please use an " + "explicit number of inlined elements with `SmallVector` to make " + "sure you really want that much inline storage."); + + // Discount the size of the header itself when calculating the maximum inline + // bytes. + static constexpr size_t PreferredInlineBytes = + kPreferredSmallVectorSizeof - sizeof(SmallVector); + static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); + static constexpr size_t value = + NumElementsThatFit == 0 ? 1 : NumElementsThatFit; +}; + +/// This is a 'vector' (really, a variable-sized array), optimized +/// for the case when the array is small. It contains some number of elements +/// in-place, which allows it to avoid heap allocation when the actual number of +/// elements is below that threshold. This allows normal "small" cases to be +/// fast without losing generality for large inputs. +/// +/// \note +/// In the absence of a well-motivated choice for the number of inlined +/// elements \p N, it is recommended to use \c SmallVector (that is, +/// omitting the \p N). This will choose a default number of inlined elements +/// reasonable for allocation on the stack (for example, trying to keep \c +/// sizeof(SmallVector) around 64 bytes). +/// +/// \warning This does not attempt to be exception safe. +/// +/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h +template ::value> +class SmallVector : public SmallVectorImpl, SmallVectorStorage { + public: + SmallVector() : SmallVectorImpl(N) {} + + ~SmallVector() { + // Destroy the constructed elements in the vector. + this->destroy_range(this->begin(), this->end()); + } + + explicit SmallVector(size_t Size, const T &Value = T()) + : SmallVectorImpl(N) { + this->assign(Size, Value); + } + + template ::iterator_category, + std::input_iterator_tag>::value>> + SmallVector(ItTy S, ItTy E) : SmallVectorImpl(N) { + this->append(S, E); + } + + template + explicit SmallVector(const iterator_range &R) + : SmallVectorImpl(N) { + this->append(R.begin(), R.end()); + } + + SmallVector(std::initializer_list IL) : SmallVectorImpl(N) { + this->assign(IL); + } + + SmallVector(const SmallVector &RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) SmallVectorImpl::operator=(RHS); + } + + SmallVector &operator=(const SmallVector &RHS) { + SmallVectorImpl::operator=(RHS); + return *this; + } + + SmallVector(SmallVector &&RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) SmallVectorImpl::operator=(::std::move(RHS)); + } + + SmallVector(SmallVectorImpl &&RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) SmallVectorImpl::operator=(::std::move(RHS)); + } + + SmallVector &operator=(SmallVector &&RHS) { + SmallVectorImpl::operator=(::std::move(RHS)); + return *this; + } + + SmallVector &operator=(SmallVectorImpl &&RHS) { + SmallVectorImpl::operator=(::std::move(RHS)); + return *this; + } + + SmallVector &operator=(std::initializer_list IL) { + this->assign(IL); + return *this; + } +}; + +template +inline size_t capacity_in_bytes(const SmallVector &X) { + return X.capacity_in_bytes(); +} + +/// Given a range of type R, iterate the entire range and return a +/// SmallVector with elements of the vector. This is useful, for example, +/// when you want to iterate a range and then sort the results. +template +SmallVector()))>::type>::type, + Size> +to_vector(R &&Range) { + return {std::begin(Range), std::end(Range)}; +} + +inline void *safe_malloc(size_t Sz) { + void *Result = std::malloc(Sz); + if (Result == nullptr) { + // It is implementation-defined whether allocation occurs if the space + // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting + // non-zero, if the space requested was zero. + if (Sz == 0) return safe_malloc(1); + throw std::bad_alloc(); + } + return Result; +} + +inline void *safe_calloc(size_t Count, size_t Sz) { + void *Result = std::calloc(Count, Sz); + if (Result == nullptr) { + // It is implementation-defined whether allocation occurs if the space + // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting + // non-zero, if the space requested was zero. + if (Count == 0 || Sz == 0) return safe_malloc(1); + throw std::bad_alloc(); + } + return Result; +} + +inline void *safe_realloc(void *Ptr, size_t Sz) { + void *Result = std::realloc(Ptr, Sz); + if (Result == nullptr) { + // It is implementation-defined whether allocation occurs if the space + // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting + // non-zero, if the space requested was zero. + if (Sz == 0) return safe_malloc(1); + throw std::bad_alloc(); + } + return Result; +} + +// Check that no bytes are wasted and everything is well-aligned. +namespace { +struct Struct16B { + alignas(16) void *X; +}; +struct Struct32B { + alignas(32) void *X; +}; +} +static_assert(sizeof(SmallVector) == + sizeof(unsigned) * 2 + sizeof(void *), + "wasted space in SmallVector size 0"); +static_assert(alignof(SmallVector) >= alignof(Struct16B), + "wrong alignment for 16-byte aligned T"); +static_assert(alignof(SmallVector) >= alignof(Struct32B), + "wrong alignment for 32-byte aligned T"); +static_assert(sizeof(SmallVector) >= alignof(Struct16B), + "missing padding for 16-byte aligned T"); +static_assert(sizeof(SmallVector) >= alignof(Struct32B), + "missing padding for 32-byte aligned T"); +static_assert(sizeof(SmallVector) == + sizeof(unsigned) * 2 + sizeof(void *) * 2, + "wasted space in SmallVector size 1"); + +static_assert(sizeof(SmallVector) == + sizeof(void *) * 2 + sizeof(void *), + "1 byte elements have word-sized type for size and capacity"); + +/// Report that MinSize doesn't fit into this vector's size type. Throws +/// std::length_error or calls report_fatal_error. +static void report_size_overflow(size_t MinSize, size_t MaxSize); +static void report_size_overflow(size_t MinSize, size_t MaxSize) { + std::string Reason = "SmallVector unable to grow. Requested capacity (" + + std::to_string(MinSize) + + ") is larger than maximum value for size type (" + + std::to_string(MaxSize) + ")"; + throw std::length_error(Reason); +} + +/// Report that this vector is already at maximum capacity. Throws +/// std::length_error or calls report_fatal_error. +static void report_at_maximum_capacity(size_t MaxSize); +static void report_at_maximum_capacity(size_t MaxSize) { + std::string Reason = + "SmallVector capacity unable to grow. Already at maximum size " + + std::to_string(MaxSize); + throw std::length_error(Reason); +} + +// Note: Moving this function into the header may cause performance regression. +template +static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) { + constexpr size_t MaxSize = std::numeric_limits::max(); + + // Ensure we can fit the new capacity. + // This is only going to be applicable when the capacity is 32 bit. + if (MinSize > MaxSize) report_size_overflow(MinSize, MaxSize); + + // Ensure we can meet the guarantee of space for at least one more element. + // The above check alone will not catch the case where grow is called with a + // default MinSize of 0, but the current capacity cannot be increased. + // This is only going to be applicable when the capacity is 32 bit. + if (OldCapacity == MaxSize) report_at_maximum_capacity(MaxSize); + + // In theory 2*capacity can overflow if the capacity is 64 bit, but the + // original capacity would never be large enough for this to be a problem. + size_t NewCapacity = 2 * OldCapacity + 1; // Always grow. + return std::min(std::max(NewCapacity, MinSize), MaxSize); +} + +// Note: Moving this function into the header may cause performance regression. +template +void *SmallVectorBase::mallocForGrow(size_t MinSize, + size_t TSize, + size_t &NewCapacity) { + NewCapacity = getNewCapacity(MinSize, TSize, this->capacity()); + return safe_malloc(NewCapacity * TSize); +} + +// Note: Moving this function into the header may cause performance regression. +template +void SmallVectorBase::grow_pod(void *FirstEl, + size_t MinSize, + size_t TSize) { + size_t NewCapacity = getNewCapacity(MinSize, TSize, this->capacity()); + void *NewElts; + if (BeginX == FirstEl) { + NewElts = safe_malloc(NewCapacity * TSize); + + // Copy the elements over. No need to run dtors on PODs. + memcpy(NewElts, this->BeginX, size() * TSize); + } else { + // If this wasn't grown from the inline copy, grow the allocated space. + NewElts = safe_realloc(this->BeginX, NewCapacity * TSize); + } + + this->BeginX = NewElts; + this->Capacity = NewCapacity; +} + +template class paddle::SmallVectorBase; + +// Disable the uint64_t instantiation for 32-bit builds. +// Both uint32_t and uint64_t instantiations are needed for 64-bit builds. +// This instantiation will never be used in 32-bit builds, and will cause +// warnings when sizeof(Size_T) > sizeof(size_t). +#if SIZE_MAX > UINT32_MAX +template class paddle::SmallVectorBase; + +// Assertions to ensure this #if stays in sync with SmallVectorSizeType. +static_assert(sizeof(SmallVectorSizeType) == sizeof(uint64_t), + "Expected SmallVectorBase variant to be in use."); +#else +static_assert(sizeof(SmallVectorSizeType) == sizeof(uint32_t), + "Expected SmallVectorBase variant to be in use."); +#endif + +} // end namespace paddle + +namespace std { + +/// Implement std::swap in terms of SmallVector swap. +template +inline void swap(paddle::SmallVectorImpl &LHS, + paddle::SmallVectorImpl &RHS) { + LHS.swap(RHS); +} + +/// Implement std::swap in terms of SmallVector swap. +template +inline void swap(paddle::SmallVector &LHS, + paddle::SmallVector &RHS) { + LHS.swap(RHS); +} + +} // end namespace std + +#endif // PADDLE_UTILS_SMALL_VECTOR_H_