Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
10737ed9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
10737ed9
编写于
7月 12, 2018
作者:
T
tangwei12
提交者:
GitHub
7月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12067 from seiriosPlus/ckpt_new_api
Ckpt new api
上级
da3f7668
c210add5
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
656 addition
and
688 deletion
+656
-688
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+1
-586
python/paddle/fluid/tests/unittests/test_checkpoint.py
python/paddle/fluid/tests/unittests/test_checkpoint.py
+0
-75
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+655
-27
未找到文件。
python/paddle/fluid/io.py
浏览文件 @
10737ed9
...
...
@@ -24,10 +24,7 @@ from . import core
__all__
=
[
'save_vars'
,
'save_params'
,
'save_persistables'
,
'load_vars'
,
'load_params'
,
'load_persistables'
,
'save_inference_model'
,
'load_inference_model'
,
'get_inference_program'
,
'save_checkpoint'
,
'load_checkpoint'
,
'clean_checkpoint'
,
'load_persist_vars_without_grad'
,
'load_lookup_table_vars'
,
'save_persist_vars_without_grad'
,
'get_latest_checkpoint_serial'
'get_inference_program'
]
...
...
@@ -794,588 +791,6 @@ def get_parameter_value_by_name(name, executor, program=None):
return
get_parameter_value
(
var
,
executor
)
SUCCESS_MARK_FILENAME
=
"_SUCCESS"
CHECKPOINT_PREFIX
=
"checkpoint"
MODEL_DIR
=
"__model__"
LOOKUP_TABLE_DIR
=
"__lookup_table__"
TRAINER_PREFIX
=
"trainer"
CHECKPOINT_SEPARATOR
=
"_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
trainer_args
=
None
,
main_program
=
None
,
max_num_checkpoints
=
3
,
lookup_table
=
None
,
ps_endpoint_list
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program|None): The program whose checkpoint variables will
be saved. If it is None, the default main program will be used.
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
AssertionError: If `trainer_args` is not a dict.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
trainer_args = {"epoch_id": 200,
"step_id": 20} # just an example
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
fluid.io.save_checkpoint(executor=exe,
checkpoint_dir=path,
trainer_id=0,
trainer_args=trainer_args,
main_program=prog,
max_num_checkpoints=3,
lookup_table=table_name,
ps_endpoint_list = ps_endpoints)
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
assert
checkpoint_dir
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
if
is_chief
:
save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
lookup_table
and
ps_endpoint_list
:
save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
ps_endpoint_list
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
,
serial
,
main_program
):
"""
This function filters out all checkpoint variables from the give
main_program and then try to load these variables from the
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
A variable is a checkpoint variable and will be loaded if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading checkpoint.
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
main_program(Program): The program whose checkpoint variables will
be loaded.
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
ValueError: If `serial` is None or `serial` is less than 0.
ValueError: If `main_program` is None.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
fluid.io.load_checkpoint(executor=exe, checkpoint_dir=path,
serial=9, main_program=prog)
# In this example, `load_checkpoint` function
# will first filters out all checkpoint variables in the default
# main program, and then try to load these variables form the
# folder "./checkpoints/checkpoint_9/__model__".
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
serial
is
None
or
serial
<
0
:
raise
ValueError
(
"'serial' should not be None or <0 "
)
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
if
delete_dir
and
not
os
.
listdir
(
checkpoint_dir
):
os
.
rmdir
(
checkpoint_dir
)
def
load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be loaded.
has_model_dir(bool): if True, the function loads variables
from a sub directory named '__model__'.
Default: False
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog, has_model_dir=True)
# In this example, `load_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then trys to load these variables form the
# folder "./my_paddle_model/__model__".
"""
if
has_model_dir
:
dirname
=
_get_model_dir
(
dirname
)
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
def
load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
executor(Executor): The executor to run for loading persistable variables
dirname(str): The directory path
main_program(Program): Find the variable named table_name in main_program
pserver_id(int): the serial number in pserver_endpoints list
table_name(str): lookup table name
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
dirname = "./checkpoints/checkpoint_9/__model__"
prog = fluid.default_main_program()
pserver_id = 1
table_name = "share_w"
fluid.io.load_lookup_table_vars(executor=exe,
dirname=dirname, program=prog, pserver_id=pserver_id,
table_name=table_name)
"""
for
var
in
program
.
list_vars
():
if
var
.
name
==
table_name
:
lookup_table_var
=
var
break
assert
lookup_table_var
is
not
None
lookup_table_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
table_file
=
table_name
+
CHECKPOINT_SEPARATOR
+
str
(
pserver_id
)
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
lookup_table_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
lookup_table_dir
,
table_file
)})
executor
.
run
(
load_prog
)
def
save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be saved.
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.save_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog)
# In this example, `save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
def
save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
executor(Executor): The executor to run for send checkpoint notify.
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
fluid.io.save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
checkpoint_notify_program
=
Program
()
checkpoint_notify_block
=
checkpoint_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
ps_endpoint_list
attrs
[
'dir'
]
=
cur_dir
attrs
[
'lookup_table'
]
=
lookup_table
checkpoint_notify_block
.
append_op
(
type
=
'checkpoint_notify'
,
inputs
=
{},
outputs
=
{},
attrs
=
attrs
)
executor
.
run
(
checkpoint_notify_program
)
def
save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
trainer_args
.
iteritems
():
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
_write_success
(
cur_dir
)
def
load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
trainer_id(int): current trainer id.
trainer_args(list): list about load trainer args
Return:
None
Examples:
.. code-block:: python
param_path = "./checkpoint/"
serial = 7
trainer_id = 2
trainer_args = ["epoch_id", "step_id"]
fluid.io.load_trainer_args(checkpoint_dir=param_path, serial=serial,
trainer_id=trainer_id, trainer_args=trainer_args)
"""
assert
isinstance
(
trainer_args
,
list
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
cur_dir
=
_get_trainer_dir
(
cur_dir
,
trainer_id
)
ret_values
=
[]
for
arg
in
trainer_args
:
cur_file
=
os
.
path
.
join
(
cur_dir
,
arg
)
with
open
(
cur_file
,
'r'
)
as
f
:
contents
=
f
.
read
()
ret_values
.
append
(
contents
.
strip
())
return
ret_values
def
_is_checkpoint_var
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_make_chekcpoint_dirs
(
dirs
):
"""
_make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
"""
assert
dirs
is
not
None
if
os
.
path
.
isfile
(
dirs
):
raise
OSError
(
errno
.
ENOTDIR
,
"dirs path shoule be a Directory."
,
dirs
)
if
not
os
.
path
.
isdir
(
dirs
):
try
:
os
.
makedirs
(
dirs
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
EEXIST
:
raise
err
def
_get_dir_serial
(
dirname
):
_
,
serial
=
dirname
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
serial_num
=
int
(
serial
)
except
ValueError
:
serial_num
=
-
1
return
serial_num
def
_get_serial_dir
(
dirname
,
serial
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
serial_dir
=
os
.
path
.
join
(
dirname
,
serial_folder
)
_make_chekcpoint_dirs
(
serial_dir
)
return
serial_dir
def
_get_model_dir
(
dirname
):
model_dir
=
os
.
path
.
join
(
dirname
,
MODEL_DIR
)
_make_chekcpoint_dirs
(
model_dir
)
return
model_dir
def
_get_lookuptable_dir
(
dirname
):
lookuptable_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
_make_chekcpoint_dirs
(
lookuptable_dir
)
return
lookuptable_dir
def
_get_trainer_dir
(
dirname
,
trainer_id
):
trainer_folder
=
TRAINER_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
trainer_id
)
trainer_dir
=
os
.
path
.
join
(
dirname
,
trainer_folder
)
_make_chekcpoint_dirs
(
trainer_dir
)
return
trainer_dir
def
_scroll_delete
(
dirname
,
max_num_checkpoints
=
3
):
dirs
=
os
.
listdir
(
dirname
)
serial_map
=
{}
for
serial
in
dirs
:
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
serial_map
.
keys
())
<=
max_num_checkpoints
:
return
serials
=
serial_map
.
keys
()
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
cur_dir
=
_get_serial_dir
(
dirname
,
serial
)
try
:
shutil
.
rmtree
(
cur_dir
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
ENOENT
:
raise
err
def
_write_success
(
dirname
):
"""
write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
: param dirname
"""
success_file
=
os
.
path
.
join
(
dirname
,
SUCCESS_MARK_FILENAME
)
with
open
(
success_file
,
'a'
)
as
f
:
now
=
time
.
ctime
()
f
.
write
(
now
)
def
get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
: param checkpoint_dir
"""
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
is _SUCCESS in this dir
"""
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
_get_serial_dir
(
checkpoint_dir
,
serial
),
MODEL_DIR
,
SUCCESS_MARK_FILENAME
)
if
os
.
path
.
isfile
(
success_path
):
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
current_dir
=
-
1
dirs
=
os
.
listdir
(
checkpoint_dir
)
for
cur_dir
in
dirs
:
success_num
=
has_success
(
checkpoint_dir
,
cur_dir
)
if
success_num
>
current_dir
:
current_dir
=
success_num
return
current_dir
def
get_test_program
(
filelist
,
program
=
None
,
startup_program
=
None
):
"""
Transpile current train program to a program to read test dataset
...
...
python/paddle/fluid/tests/unittests/test_checkpoint.py
已删除
100644 → 0
浏览文件 @
da3f7668
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
unittest
import
os
import
tempfile
class
TestCheckpoint
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dirname
=
tempfile
.
mktemp
()
self
.
max_num_checkpoints
=
3
self
.
epoch_interval
=
1
self
.
step_interval
=
1
self
.
trainer_id
=
0
self
.
chief
=
self
.
trainer_id
==
0
self
.
place
=
fluid
.
CPUPlace
()
self
.
epoch_id
=
100
self
.
step_id
=
20
def
test_checkpoint
(
self
):
self
.
save_checkpoint
()
serial
=
fluid
.
io
.
get_latest_checkpoint_serial
(
self
.
dirname
)
self
.
assertTrue
(
serial
>=
0
)
trainer_args
=
[
"epoch_id"
,
"step_id"
]
epoch_id
,
step_id
=
fluid
.
io
.
load_trainer_args
(
self
.
dirname
,
serial
,
self
.
trainer_id
,
trainer_args
)
self
.
assertEqual
(
self
.
step_id
,
int
(
step_id
))
self
.
assertEqual
(
self
.
epoch_id
,
int
(
epoch_id
))
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
exe
=
fluid
.
Executor
(
self
.
place
)
fluid
.
io
.
load_checkpoint
(
exe
,
self
.
dirname
,
serial
,
program
)
fluid
.
io
.
clean_checkpoint
(
self
.
dirname
,
delete_dir
=
True
)
self
.
assertFalse
(
os
.
path
.
isdir
(
self
.
dirname
))
def
save_checkpoint
(
self
):
config
=
fluid
.
CheckpointConfig
(
self
.
dirname
,
self
.
max_num_checkpoints
,
self
.
epoch_interval
,
self
.
step_interval
)
trainer_args
=
{}
trainer_args
[
"epoch_id"
]
=
self
.
epoch_id
trainer_args
[
"step_id"
]
=
self
.
step_id
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
program
.
global_block
().
create_var
(
name
=
"scale_0"
,
psersistable
=
True
,
dtype
=
"float32"
,
shape
=
[
32
,
32
])
exe
=
fluid
.
Executor
(
self
.
place
)
for
i
in
xrange
(
10
):
fluid
.
io
.
save_checkpoint
(
exe
,
config
.
checkpoint_dir
,
self
.
trainer_id
,
trainer_args
,
program
,
config
.
max_num_checkpoints
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
10737ed9
...
...
@@ -14,6 +14,9 @@
import
contextlib
import
os
import
errno
import
shutil
import
time
import
core
...
...
@@ -94,7 +97,7 @@ class EndStepEvent(object):
class
CheckpointConfig
(
object
):
"""
Parameter object for :code:`
fluid.io.
save_checkpoint` and
Parameter object for :code:`save_checkpoint` and
:code:`fluid.Trainer`. Used to configuration how to save checkpoint.
Args:
...
...
@@ -237,7 +240,7 @@ class Trainer(object):
self
.
checkpoint_cfg
=
checkpoint_config
if
self
.
checkpoint_cfg
:
assert
isinstance
(
self
.
checkpoint_cfg
,
CheckpointConfig
)
serial
=
io
.
get_latest_checkpoint_serial
(
serial
=
_
get_latest_checkpoint_serial
(
self
.
checkpoint_cfg
.
checkpoint_dir
)
self
.
checkpoint_cfg
.
load_serial
=
serial
if
serial
>=
0
else
None
...
...
@@ -276,32 +279,15 @@ class Trainer(object):
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
)
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
:
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
place
)
io
.
load_checkpoint
(
exe
,
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
epoch_id
,
step_id
=
io
.
load_trainer_args
(
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
trainer_id
,
self
.
_get_checkpoint_load_args
())
self
.
checkpoint_cfg
.
epoch_id
=
int
(
epoch_id
)
self
.
checkpoint_cfg
.
step_id
=
int
(
step_id
)
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
io
.
load_lookup_table_vars
(
exe
,
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
startup_program
,
self
.
checkpoint_cfg
.
pserver_id
,
self
.
checkpoint_cfg
.
lookup_table_name
)
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
is
not
None
:
self
.
_load_checkpoint
()
if
param_path
and
os
.
path
.
isdir
(
param_path
):
# load params from param_path into scope
io
.
load_persist_vars_without_grad
(
exe
,
dirname
=
param_path
,
program
=
self
.
startup_program
)
io
.
load_persistables
(
executor
=
exe
,
dirname
=
param_path
,
main_program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
...
...
@@ -549,7 +535,7 @@ class Trainer(object):
def
_clean_checkpoint
(
self
):
assert
self
.
checkpoint_cfg
io
.
clean_checkpoint
(
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
)
clean_checkpoint
(
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
)
def
_get_checkpoint_load_args
(
self
):
"""
...
...
@@ -572,7 +558,7 @@ class Trainer(object):
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
\
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_checkpoint
(
save_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
trainer_id
=
self
.
trainer_id
,
...
...
@@ -580,6 +566,41 @@ class Trainer(object):
main_program
=
self
.
train_program
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
_load_checkpoint
(
self
):
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
load_trainer_args
=
self
.
_get_checkpoint_load_args
()
trainer_args
=
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
trainer_id
,
is_trainer
=
True
,
load_trainer_args
=
load_trainer_args
)
if
len
(
trainer_args
)
!=
2
:
raise
ValueError
(
"the return trainer_args length do not equal _get_checkpoint_load_args"
)
self
.
checkpoint_cfg
.
epoch_id
=
int
(
trainer_args
[
0
])
self
.
checkpoint_cfg
.
step_id
=
int
(
trainer_args
[
1
])
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
is_trainer
=
False
,
load_trainer_args
=
None
,
load_lookup_table
=
self
.
checkpoint_cfg
.
lookup_table_name
)
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
...
...
@@ -602,3 +623,610 @@ def build_feed_var_list(program, feed_order):
program
.
global_block
().
var
(
pair
[
0
])
for
pair
in
sorted_pair_list
]
return
feed_var_list
# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME
=
"_SUCCESS"
CHECKPOINT_PREFIX
=
"checkpoint"
MODEL_DIR
=
"__model__"
LOOKUP_TABLE_DIR
=
"__lookup_table__"
TRAINER_PREFIX
=
"trainer"
CHECKPOINT_SEPARATOR
=
"_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
main_program
,
trainer_args
=
None
,
max_num_checkpoints
=
3
,
lookup_table
=
None
,
pserver_endpoints
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
AssertionError: If `trainer_args` is not a dict.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
trainer_args = {"epoch_id": 200,
"step_id": 20} # just an example
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
save_checkpoint(executor=exe,
checkpoint_dir=path,
trainer_id=0,
trainer_args=trainer_args,
main_program=prog,
max_num_checkpoints=3,
lookup_table=table_name,
pserver_endpoints = ps_endpoints)
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
if
is_chief
:
_save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
lookup_table
and
pserver_endpoints
:
_save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
pserver_endpoints
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
,
main_program
,
role_id
=
0
,
is_trainer
=
True
,
load_trainer_args
=
None
,
load_lookup_table
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then try to load these variables from the
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
A variable is a checkpoint variable and will be loaded if it meets
all following conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading checkpoint.
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
main_program(Program): The program whose checkpoint variables will
be loaded.
role_id(int): the trainer id or the parameter server id.
is_trainer(bool): trainer is True and parameter server is False.
load_trainer_args(list|None): list about load trainer args.
load_lookup_table(str|None): the lookup table name
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
ValueError: If `main_program` is None.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./checkpoints"
prog = fluid.default_main_program()
load_checkpoint(executor=exe, checkpoint_dir=path,
serial=9, main_program=prog)
# In this example, `load_checkpoint` function
# will first filters out all checkpoint variables in the default
# main program, and then try to load these variables form the
# folder "./checkpoints/checkpoint_9/__model__".
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
# there are nothing need to be loaded
if
serial
is
None
or
serial
<
0
:
return
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
is_trainer
and
load_trainer_args
is
None
:
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
return
if
is_trainer
and
load_trainer_args
:
return
_load_trainer_args
(
checkpoint_dir
,
serial
,
role_id
,
load_trainer_args
)
if
not
is_trainer
and
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
if
delete_dir
and
not
os
.
listdir
(
checkpoint_dir
):
os
.
rmdir
(
checkpoint_dir
)
def
_load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be loaded.
has_model_dir(bool): if True, the function loads variables
from a sub directory named '__model__'.
Default: False
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_load_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog, has_model_dir=True)
# In this example, `_load_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then trys to load these variables form the
# folder "./my_paddle_model/__model__".
"""
if
has_model_dir
:
dirname
=
_get_model_dir
(
dirname
)
io
.
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
executor(Executor): The executor to run for loading persistable variables
dirname(str): The directory path
main_program(Program): Find the variable named table_name in main_program
pserver_id(int): the serial number in pserver_endpoints list
table_name(str): lookup table name
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
dirname = "./checkpoints/checkpoint_9/"
prog = fluid.default_main_program()
pserver_id = 1
table_name = "share_w"
_load_lookup_table_vars(executor=exe,
dirname=dirname, program=prog, pserver_id=pserver_id,
table_name=table_name)
"""
for
var
in
program
.
list_vars
():
if
var
.
name
==
table_name
:
lookup_table_var
=
var
break
assert
lookup_table_var
is
not
None
lookup_table_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
table_file
=
table_name
+
CHECKPOINT_SEPARATOR
+
str
(
pserver_id
)
load_prog
=
framework
.
Program
()
load_block
=
load_prog
.
global_block
()
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
lookup_table_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
lookup_table_dir
,
table_file
)})
executor
.
run
(
load_prog
)
def
_save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
conditions:
1. It's persistable.
2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
program(Program): The program whose checkpoint variables will
be saved.
Returns:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
_save_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog)
# In this example, `_save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
io
.
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
def
_save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
executor(Executor): The executor to run for send checkpoint notify.
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
checkpoint_notify_program
=
framework
.
Program
()
checkpoint_notify_block
=
checkpoint_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
ps_endpoint_list
attrs
[
'dir'
]
=
cur_dir
attrs
[
'lookup_table'
]
=
lookup_table
checkpoint_notify_block
.
append_op
(
type
=
'checkpoint_notify'
,
inputs
=
{},
outputs
=
{},
attrs
=
attrs
)
executor
.
run
(
checkpoint_notify_program
)
def
_save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
trainer_args
.
iteritems
():
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
_write_success
(
cur_dir
)
def
_load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
checkpoint_dir(str): The folder where all checkpoints are.
serial(int): The serial of checkpoint you would like to load.
trainer_id(int): current trainer id.
trainer_args(list): list about load trainer args
Return:
None
Examples:
.. code-block:: python
param_path = "./checkpoint/"
serial = 7
trainer_id = 2
trainer_args = ["epoch_id", "step_id"]
_load_trainer_args(checkpoint_dir=param_path, serial=serial,
trainer_id=trainer_id, trainer_args=trainer_args)
"""
assert
isinstance
(
trainer_args
,
list
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
cur_dir
=
_get_trainer_dir
(
cur_dir
,
trainer_id
)
ret_values
=
[]
for
arg
in
trainer_args
:
cur_file
=
os
.
path
.
join
(
cur_dir
,
arg
)
with
open
(
cur_file
,
'r'
)
as
f
:
contents
=
f
.
read
()
ret_values
.
append
(
contents
.
strip
())
return
ret_values
def
_is_checkpoint_var
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_make_chekcpoint_dirs
(
dirs
):
"""
_make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
"""
assert
dirs
is
not
None
if
os
.
path
.
isfile
(
dirs
):
raise
OSError
(
errno
.
ENOTDIR
,
"dirs path shoule be a Directory."
,
dirs
)
if
not
os
.
path
.
isdir
(
dirs
):
try
:
os
.
makedirs
(
dirs
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
EEXIST
:
raise
err
def
_get_dir_serial
(
dirname
):
_
,
serial
=
dirname
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
serial_num
=
int
(
serial
)
except
ValueError
:
serial_num
=
-
1
return
serial_num
def
_get_serial_dir
(
dirname
,
serial
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
serial_dir
=
os
.
path
.
join
(
dirname
,
serial_folder
)
_make_chekcpoint_dirs
(
serial_dir
)
return
serial_dir
def
_get_model_dir
(
dirname
):
model_dir
=
os
.
path
.
join
(
dirname
,
MODEL_DIR
)
_make_chekcpoint_dirs
(
model_dir
)
return
model_dir
def
_get_lookuptable_dir
(
dirname
):
lookuptable_dir
=
os
.
path
.
join
(
dirname
,
LOOKUP_TABLE_DIR
)
_make_chekcpoint_dirs
(
lookuptable_dir
)
return
lookuptable_dir
def
_get_trainer_dir
(
dirname
,
trainer_id
):
trainer_folder
=
TRAINER_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
trainer_id
)
trainer_dir
=
os
.
path
.
join
(
dirname
,
trainer_folder
)
_make_chekcpoint_dirs
(
trainer_dir
)
return
trainer_dir
def
_scroll_delete
(
dirname
,
max_num_checkpoints
=
3
):
dirs
=
os
.
listdir
(
dirname
)
serial_map
=
{}
for
serial
in
dirs
:
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
serial_map
.
keys
())
<=
max_num_checkpoints
:
return
serials
=
serial_map
.
keys
()
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
cur_dir
=
_get_serial_dir
(
dirname
,
serial
)
try
:
shutil
.
rmtree
(
cur_dir
)
except
OSError
as
err
:
if
err
.
errno
!=
errno
.
ENOENT
:
raise
err
def
_write_success
(
dirname
):
"""
write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
: param dirname
"""
success_file
=
os
.
path
.
join
(
dirname
,
SUCCESS_MARK_FILENAME
)
with
open
(
success_file
,
'a'
)
as
f
:
now
=
time
.
ctime
()
f
.
write
(
now
)
def
_get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
: param checkpoint_dir
"""
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
is _SUCCESS in this dir
"""
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
_get_serial_dir
(
checkpoint_dir
,
serial
),
MODEL_DIR
,
SUCCESS_MARK_FILENAME
)
if
os
.
path
.
isfile
(
success_path
):
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
current_dir
=
-
1
dirs
=
os
.
listdir
(
checkpoint_dir
)
for
cur_dir
in
dirs
:
success_num
=
has_success
(
checkpoint_dir
,
cur_dir
)
if
success_num
>
current_dir
:
current_dir
=
success_num
return
current_dir
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录