Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0fbfd2dc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0fbfd2dc
编写于
1月 28, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify the symbol description
上级
634faab1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
29 addition
and
22 deletion
+29
-22
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+29
-22
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
0fbfd2dc
...
...
@@ -435,25 +435,28 @@ def dynamic_lstmp(input,
r_t & = \overline{act_h}(W_{rh}h_t)
where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
the matrix of weights from the input gate to the input), :math:`W_{ic}`,
:math:`W_{fc}`, :math:`W_{oc}` are diagonal weight matrices for peephole
connections. In our implementation, we use vectors to reprenset these
diagonal weight matrices. The :math:`b` terms denote bias vectors
(:math:`b_i` is the input gate bias vector), :math:`\sigma` is the
activation, such as logistic sigmoid function, and :math:`i, f, o` and
:math:`c` are the input gate, forget gate, output gate, and cell activation
vectors, respectively, all of which have the same size as the cell output
activation vector :math:`h`. Here :math:`h` is usually called the hidden
state and :math:`r` denotes its recurrent projection. And
:math:`
\\
tilde{c_t}` is also called the candidate hidden state, whose
In the above formula:
* :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is
\
the matrix of weights from the input gate to the input).
* :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight
\
matrices for peephole connections. In our implementation,
\
we use vectors to reprenset these diagonal weight matrices.
* :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate
\
bias vector).
* :math:`\sigma`: The activation, such as logistic sigmoid function.
* :math:`i, f, o` and :math:`c`: The input gate, forget gate, output
\
gate, and cell activation vectors, respectively, all of which have
\
the same size as the cell output activation vector :math:`h`.
* :math:`h`: The hidden state.
* :math:`r`: The recurrent projection of the hidden state.
* :math:`
\\
tilde{c_t}`: The candidate hidden state, whose
\
computation is based on the current input and previous hidden state.
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
and :math:`act_h` are the cell input and cell output activation functions
and `tanh` is usually used for them. :math:`\overline{act_h}` is the
activation function for the projection output, usually using `identity` or
same as :math:`act_h`.
* :math:`\odot`: The element-wise product of the vectors.
* :math:`act_g` and :math:`act_h`: The cell input and cell output
\
activation functions and `tanh` is usually used for them.
* :math:`\overline{act_h}`: The activation function for the projection
\
output, usually using `identity` or same as :math:`act_h`.
Set `use_peepholes` to `False` to disable peephole connection. The formula
is omitted here, please refer to the paper
...
...
@@ -519,12 +522,16 @@ def dynamic_lstmp(input,
Examples:
.. code-block:: python
hidden_dim = 512
proj_dim = 256
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4, proj_size=proj_dim, use_peepholes=False)
size=hidden_dim * 4,
proj_size=proj_dim,
use_peepholes=False,
is_reverse=True,
cell_activation="tanh",
proj_activation="tanh")
"""
helper
=
LayerHelper
(
'lstmp'
,
**
locals
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录