提交 0ecc6fa8 编写于 作者: K Kexin Zhao 提交者: Yi Wang

Add float16 transpiler and image classification example (#10109)

* add float16 transpiler

* fix feed fetch target names mismatch

* fix cast op input change issue

* fix program desc flush error

* fix inconsistent var names in block desc bug

* code clean up

* add float16 infernce C++ example and fix prune bug
上级 83b1a8f6
...@@ -62,5 +62,21 @@ TEST(inference, image_classification) { ...@@ -62,5 +62,21 @@ TEST(inference, image_classification) {
LOG(INFO) << output2.dims(); LOG(INFO) << output2.dims();
CheckError<float>(output1, output2); CheckError<float>(output1, output2);
// float16 inference requires cuda GPUs with >= 5.3 compute capability
if (paddle::platform::GetCUDAComputeCapability(0) >= 53) {
paddle::framework::LoDTensor output3;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs3;
cpu_fetchs3.push_back(&output3);
LOG(INFO) << "--- GPU Runs in float16 mode: ---";
std::string fp16_dirname = dirname;
fp16_dirname.replace(fp16_dirname.find("book/"),
std::string("book/").size(), "book/float16_");
TestInference<paddle::platform::CUDAPlace, false, true>(
fp16_dirname, cpu_feeds, cpu_fetchs3, FLAGS_repeat);
CheckError<float>(output2, output3);
}
#endif #endif
} }
...@@ -1070,16 +1070,25 @@ class Program(object): ...@@ -1070,16 +1070,25 @@ class Program(object):
for t in targets: for t in targets:
if not isinstance(t, Operator): if not isinstance(t, Operator):
if isinstance(t, Variable): if isinstance(t, Variable):
if t.op is None: # After transpiler processing, the op that output this
# variable maybe has been changed, so t.op is not reliable
# and we need to find the current op that generate this
# variable here.
t.op = None
global_block = self.global_block() global_block = self.global_block()
for op in global_block.ops: for idx, op in enumerate(global_block.ops):
if t.name in op.output_arg_names: if t.name in op.output_arg_names:
t.op = op t.op = op
break break
t = t.op t = t.op
if t is None:
raise ValueError(
"The target variable must have an "
"associated operator that generates it.")
else: else:
raise ValueError(("All targets of prune() can only be " raise ValueError("All targets of prune() can only be "
"Variable or Operator.")) "Variable or Operator.")
targets_idx.append([t.block.idx, t.idx]) targets_idx.append([t.block.idx, t.idx])
res = Program() res = Program()
......
...@@ -121,7 +121,60 @@ class InferenceTranspiler: ...@@ -121,7 +121,60 @@ class InferenceTranspiler:
# And a better solution will be considered later. # And a better solution will be considered later.
program = program.clone() program = program.clone()
def float16_transpile(self, program, place, scope=None):
'''
Transpile the program desc and cast the weights to float16 data type to
enable float16 inference.
Since the operator in a program desc will automatically choose the
right compute kernel to run based on the data type of the input tensor.
We actually don't need to change the program desc to run in float16 mode.
However, in this way, users who are used to feeding and fetching tensors
of float32 data type when running typical inference may find it confusing
and difficult to run inference in float16 mode as they need to convert
input data to float16 dtype and then convert the results back to float32
dtype to match the rest of code.
So this function appends cast ops to the program desc where necessary so
that users are able to run inference in float16 mode while providing input
tensor (feed_holder) of float data type and obtaining output tensor
(fetch_holder) of float data type.
Moreover, it is desired that when we have the scope and program desc to run
inference in float32 mode, we can use a single API to do the necessary
modification and then user can run float16 inference on the fly. To make
this happen, this function also create new parameters in the scope to have the
converted float16 weights and change the operators in program desc to use
these new parameters.
:param program: program to transpile
:type program: Program
:param place: inference place
:type place: Place
:param scope: inference scope
:type scope: Scope
'''
if scope is None:
scope = global_scope()
self.scope = scope
self.place = place
self.block = program.block(0)
self.input_map = {} # store the input names should be adjusted
self._modify_feed_fetch()
self._convert_param_to_float16()
self._adjust_input(skip=True)
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
# ====================== private transpiler functions ===================== # ====================== private transpiler functions =====================
def _insert_bias_op(self, index, current_op, bn_op): def _insert_bias_op(self, index, current_op, bn_op):
''' '''
Construct elementwise_add operator for adding bias Construct elementwise_add operator for adding bias
...@@ -216,9 +269,27 @@ class InferenceTranspiler: ...@@ -216,9 +269,27 @@ class InferenceTranspiler:
# collect the renamed input # collect the renamed input
self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0] self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]
def _adjust_input(self): def _adjust_input(self, skip=False):
'''
Change the input variable name in operators.
When we are in the process of modifying a program desc, we usually
replace some variables with some other variables, where we create
a dictionary input_map to record the one-to-one correspondence
between each old variable and the new one.
After that, this function will search all the operators that use the
old variables and change the info in op to use the new variables. There
maybe some exceptions to this rule when we are using the float16 transpiler
and insert cast ops to cast float32 variable to float16 one. After we
insert the cast op to cast var_1 to var_1_fp16, we don't want to change
the input of cast op to var_1_fp16 after using this function.
'''
skip_ops = {"cast"}
for i in range(len(self.block.ops)): for i in range(len(self.block.ops)):
current_op = self.block.ops[i] current_op = self.block.ops[i]
if skip and current_op.type in skip_ops:
continue
for input_arg in current_op.input_arg_names: for input_arg in current_op.input_arg_names:
if input_arg in self.input_map: if input_arg in self.input_map:
current_op.rename_input(input_arg, current_op.rename_input(input_arg,
...@@ -238,3 +309,138 @@ class InferenceTranspiler: ...@@ -238,3 +309,138 @@ class InferenceTranspiler:
for var in self.block.vars.keys(): for var in self.block.vars.keys():
if var not in args: if var not in args:
self.block.remove_var(var) self.block.remove_var(var)
def _modify_feed_fetch(self):
'''
Modify feed fetch op/vars for float16 inference.
For each feed op:
feed_op->feed_target_var
Change it to:
feed_op->feed_target_var->cast_op(from other dtype to float16)->tmp_var
For each fetch op:
fetch_target_var->fetch_op
Change it to:
tmp_var->cast_op(from float16 to other dtype)->fetch_target_var->fetch_op
:return: None
'''
def find_op(var):
# It is possible that var.op is not up to date after some
# modifications to program desc. Here we force to make it up to date.
var.op = None
for op in self.block.ops:
if var.name in op.output_arg_names:
var.op = op
break
if var.op is None:
raise ValueError("The target variable must have an "
"associated operator that generates it.")
i = 0
while i < len(self.block.ops):
cur_op = self.block.ops[i]
if cur_op.type == "feed":
var_name = cur_op.output("Out")[0]
tmp_var_name = var_name + ".fp16"
var = self.block.vars[var_name]
tmp_var = self.block.create_var(
name=tmp_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape,
persistable=var.persistable)
self.block.insert_op(
i + 1,
type="cast",
inputs={"X": var},
outputs={"Out": tmp_var},
attrs={
'in_dtype': int(var.dtype),
'out_dtype': int(tmp_var.dtype)
})
self.input_map[var_name] = tmp_var_name
i = i + 1
elif cur_op.type == "fetch":
var_name = cur_op.input("X")[0]
tmp_var_name = var_name + ".fp16"
var = self.block.vars[var_name]
tmp_var = self.block.create_var(
name=tmp_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape,
persistable=var.persistable)
find_op(var)
var.op.rename_output(var_name, tmp_var_name)
self.block.insert_op(
i,
type="cast",
inputs={"X": tmp_var},
outputs={"Out": var},
attrs={
'in_dtype': int(tmp_var.dtype),
'out_dtype': int(var.dtype)
})
i = i + 1
i = i + 1
def _convert_param_to_float16(self):
def _get_no_fp16_conversion_var_names():
'''
Get the set of input variable names that shouldn't be converted to float16.
When we want to run inference in float16 mode, most parameters need to be
firstly converted to float16. However, there are some parameters that
shouldn't be converted to float16 because the corresponding operator
requires float32 parameters even in float16 mode (when the input data is
of float16 data type). Currently, the only operator that has this exclusion
is the batch norm op.
:return: set of input variable names
:type var_names: set
'''
op_names = {'batch_norm'}
var_names = []
for op in self.block.ops:
if op.type in op_names:
var_names += op.input_arg_names
return set(var_names)
def _should_be_converted(var):
return var.persistable and \
var.name not in self.no_conversion_vars and \
var.type != core.VarDesc.VarType.FEED_MINIBATCH and \
var.type != core.VarDesc.VarType.FETCH_LIST
self.no_conversion_vars = _get_no_fp16_conversion_var_names()
conversion_var_list = filter(_should_be_converted,
self.block.vars.values())
for var in conversion_var_list:
fp16_var_name = var.name + ".fp16"
fp16_var = self.block.create_parameter(
name=fp16_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape)
# cast the data in the tensor of the original var to float16
# data type and store it in the tensor of the new float16 var
self.scope.var(fp16_var_name)
fp16_tensor = self.scope.find_var(fp16_var_name).get_tensor()
tensor = np.array(self.scope.find_var(var.name).get_tensor())
# After the old tensor data is converted to np.float16, view(np.uint16)
# is used so that the internal memory of the numpy array will be
# reinterpreted to be of np.uint16 data type, which is binded to fluid
# float16 data type via the help of pybind in tensor_py.h.
fp16_tensor.set(
tensor.astype(np.float16).view(np.uint16), self.place)
# old var will be replaced by the fp16 var in program desc
self.input_map[var.name] = fp16_var_name
self.block.remove_var(var.name)
...@@ -336,7 +336,7 @@ def save_inference_model(dirname, ...@@ -336,7 +336,7 @@ def save_inference_model(dirname,
if main_program is None: if main_program is None:
main_program = default_main_program() main_program = default_main_program()
copy_program = main_program copy_program = main_program.clone()
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
os.makedirs(dirname) os.makedirs(dirname)
......
...@@ -252,6 +252,26 @@ def infer(use_cuda, save_dirname=None): ...@@ -252,6 +252,26 @@ def infer(use_cuda, save_dirname=None):
fetch_targets, exe, fetch_targets, exe,
inference_transpiler_program) inference_transpiler_program)
if use_cuda and fluid.core.is_float16_supported(place):
# Use float16_transpiler to speedup
fp16_transpiler_program = inference_transpiler_program.clone()
t.float16_transpile(fp16_transpiler_program, place)
fp16_results = exe.run(fp16_transpiler_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
assert len(results[0]) == len(fp16_results[0])
for i in range(len(results[0])):
np.testing.assert_almost_equal(
results[0][i], fp16_results[0][i], decimal=2)
print("float16 infer results: ", fp16_results[0])
fluid.io.save_inference_model("float16_" + save_dirname,
feed_target_names, fetch_targets, exe,
fp16_transpiler_program)
def main(net_type, use_cuda, is_local=True): def main(net_type, use_cuda, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册