未验证 提交 0eb03ed7 编写于 作者: zhouweiwei2014's avatar zhouweiwei2014 提交者: GitHub

add new API: paddle.clone;Tensor.element_size;nn.utils.parameters_to_vector (#38020)

* add new API: paddle.clone;Tensor.element_size;nn.utils.parameters_to_vector

* fix comment
上级 aa059885
......@@ -126,6 +126,8 @@ if(WIN32)
endforeach(flag_var)
endif()
# NOTE(zhouwei): msvc max/min macro conflict with std::min/max, define NOMINMAX globally
add_definitions("-DNOMINMAX")
# windows build turn off warnings, use parallel compiling.
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/var_desc.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -116,6 +117,10 @@ proto::VarType::Type VarDesc::GetDataType() const {
return tensor_desc().data_type();
}
size_t VarDesc::ElementSize() const {
return framework::SizeOfType(GetDataType());
}
std::vector<proto::VarType::Type> VarDesc::GetDataTypes() const {
std::vector<proto::VarType::TensorDesc> descs = tensor_descs();
std::vector<proto::VarType::Type> res;
......
......@@ -96,6 +96,8 @@ class VarDesc {
proto::VarType::Type GetDataType() const;
size_t ElementSize() const;
std::vector<proto::VarType::Type> GetDataTypes() const;
void SetLoDLevel(int32_t lod_level);
......
......@@ -25,6 +25,7 @@
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/framework/var_type.h"
......@@ -37,7 +38,6 @@
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/pten/include/core.h"
namespace paddle {
namespace framework {
class Variable;
......@@ -212,6 +212,8 @@ class VarBase {
framework::proto::VarType::Type DataType() const { return var_->DataType(); }
size_t ElementSize() const { return framework::SizeOfType(var_->DataType()); }
void SetForwardDataType(framework::proto::VarType::Type data_type) {
var_->SetForwardDataType(data_type);
}
......
......@@ -2013,6 +2013,29 @@ void BindImperative(py::module *m_ptr) {
auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
return t->numel();
})
.def("element_size", &imperative::VarBase::ElementSize, R"DOC(
Returns the size in bytes of an element in the Tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor(1, dtype='bool')
x.element_size() # 1
x = paddle.to_tensor(1, dtype='float16')
x.element_size() # 2
x = paddle.to_tensor(1, dtype='float32')
x.element_size() # 4
x = paddle.to_tensor(1, dtype='float64')
x.element_size() # 8
x = paddle.to_tensor(1, dtype='complex128')
x.element_size() # 16
)DOC")
.def_property("name", &imperative::VarBase::Name,
&imperative::VarBase::SetName)
.def_property("stop_gradient",
......@@ -2020,21 +2043,33 @@ void BindImperative(py::module *m_ptr) {
&imperative::VarBase::SetOverridedStopGradient)
.def_property("persistable", &imperative::VarBase::Persistable,
&imperative::VarBase::SetPersistable)
.def_property_readonly(
"shape",
.def_property_readonly("shape",
[](imperative::VarBase &self) {
if (self.Var().IsType<framework::LoDTensor>()) {
return framework::vectorize<int>(
self.Var().Get<framework::LoDTensor>().dims());
} else if (self.Var().IsType<framework::SelectedRows>()) {
self.Var()
.Get<framework::LoDTensor>()
.dims());
} else if (self.Var()
.IsType<
framework::SelectedRows>()) {
return framework::vectorize<int>(
self.Var().Get<framework::SelectedRows>().value().dims());
} else if (self.Var().IsType<framework::Strings>()) {
self.Var()
.Get<framework::SelectedRows>()
.value()
.dims());
} else if (self.Var()
.IsType<framework::Strings>()) {
return std::vector<int>{static_cast<int>(
self.Var()
.Get<framework::Strings>()
.size())};
} else if (self.Var()
.IsType<framework::Vocab>()) {
return std::vector<int>{static_cast<int>(
self.Var().Get<framework::Strings>().size())};
} else if (self.Var().IsType<framework::Vocab>()) {
return std::vector<int>{
static_cast<int>(self.Var().Get<framework::Vocab>().size())};
self.Var()
.Get<framework::Vocab>()
.size())};
} else {
VLOG(2) << "It is meaningless to get shape of "
"variable type "
......
......@@ -179,6 +179,8 @@ void BindVarDsec(pybind11::module *m) {
pybind11::return_value_policy::reference)
.def("dtype", &pd::VarDesc::GetDataType,
pybind11::return_value_policy::reference)
.def("element_size", &pd::VarDesc::ElementSize,
pybind11::return_value_policy::reference)
.def("dtypes", &pd::VarDesc::GetDataTypes,
pybind11::return_value_policy::reference)
.def("lod_level", &pd::VarDesc::GetLoDLevel)
......
......@@ -91,6 +91,7 @@ from .tensor.creation import empty # noqa: F401
from .tensor.creation import empty_like # noqa: F401
from .tensor.creation import assign # noqa: F401
from .tensor.creation import complex # noqa: F401
from .tensor.creation import clone # noqa: F401
from .tensor.linalg import matmul # noqa: F401
from .tensor.linalg import dot # noqa: F401
from .tensor.linalg import norm # noqa: F401
......@@ -587,4 +588,5 @@ __all__ = [ # noqa
'fmin',
'moveaxis',
'repeat_interleave',
'clone',
]
......@@ -1396,6 +1396,33 @@ class Variable(object):
__repr__ = __str__
def element_size(self):
"""
Returns the size in bytes of an element in the Tensor.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
x.element_size() # 1
x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
x.element_size() # 2
x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
x.element_size() # 2
x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
x.element_size() # 4
x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
x.element_size() # 8
"""
return self.desc.element_size()
@property
def stop_gradient(self):
"""
......
......@@ -169,6 +169,31 @@ class TestAssignOApi(unittest.TestCase):
self.assertTrue(np.allclose(result3.numpy(), np.array([1])))
paddle.enable_static()
def test_clone(self):
paddle.disable_static()
x = paddle.ones([2])
x.stop_gradient = False
clone_x = paddle.clone(x)
y = clone_x**3
y.backward()
self.assertTrue(np.array_equal(x, [1, 1]), True)
self.assertTrue(np.array_equal(clone_x.grad.numpy(), [3, 3]), True)
self.assertTrue(np.array_equal(x.grad.numpy(), [3, 3]), True)
paddle.enable_static()
with program_guard(Program(), Program()):
x_np = np.random.randn(2, 3).astype('float32')
x = paddle.static.data("X", shape=[2, 3])
clone_x = paddle.clone(x)
exe = paddle.static.Executor()
y_np = exe.run(paddle.static.default_main_program(),
feed={'X': x_np},
fetch_list=[clone_x])[0]
self.assertTrue(np.array_equal(y_np, x_np), True)
class TestAssignOpErrorApi(unittest.TestCase):
def test_errors(self):
......
......@@ -18,18 +18,19 @@ import unittest
import copy
import paddle
from paddle.fluid.dygraph import guard
from paddle.fluid.framework import default_main_program
from paddle.fluid.framework import default_main_program, Variable
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
import paddle.fluid.io as io
from paddle.fluid.initializer import ConstantInitializer
import numpy as np
paddle.enable_static()
main_program = default_main_program()
class ParameterChecks(unittest.TestCase):
def check_parameter(self):
def test_parameter(self):
shape = [784, 100]
val = 1.0625
b = main_program.global_block()
......@@ -43,13 +44,13 @@ class ParameterChecks(unittest.TestCase):
self.assertEqual((784, 100), param.shape)
self.assertEqual(core.VarDesc.VarType.FP32, param.dtype)
self.assertEqual(0, param.block.idx)
exe = Executor(core.CPUPlace())
exe = Executor(paddle.CPUPlace())
p = exe.run(main_program, fetch_list=[param])[0]
self.assertTrue(np.allclose(p, np.ones(shape) * val))
self.assertTrue(np.array_equal(p, np.ones(shape) * val))
p = io.get_parameter_value_by_name('fc.w', exe, main_program)
self.assertTrue(np.allclose(np.array(p), np.ones(shape) * val))
self.assertTrue(np.array_equal(p, np.ones(shape) * val))
def check_parambase(self):
def test_parambase(self):
with guard():
linear = paddle.nn.Linear(10, 10)
param = linear.weight
......@@ -71,7 +72,7 @@ class ParameterChecks(unittest.TestCase):
pram_copy2 = copy.deepcopy(param, memo)
self.assertEqual(id(param_copy), id(pram_copy2))
def check_exceptions(self):
def test_exception(self):
b = main_program.global_block()
with self.assertRaises(ValueError):
b.create_parameter(
......@@ -86,16 +87,30 @@ class ParameterChecks(unittest.TestCase):
b.create_parameter(
name='test', shape=[-1], dtype='float32', initializer=None)
def test_parambase_to_vector(self):
with guard():
initializer = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(3.))
linear1 = paddle.nn.Linear(10, 15, initializer)
class TestParameter(ParameterChecks):
def _test_parameter(self):
self.check_parameter()
def test_parambase(self):
self.check_parambase()
vec = paddle.nn.utils.parameters_to_vector(linear1.parameters())
self.assertEqual(linear1.weight.shape, [10, 15])
self.assertEqual(linear1.bias.shape, [15])
self.assertTrue(isinstance(vec, Variable))
self.assertTrue(vec.shape, [165])
def test_exceptions(self):
self.check_exceptions()
linear2 = paddle.nn.Linear(10, 15)
paddle.nn.utils.vector_to_parameters(vec, linear2.parameters())
self.assertEqual(linear2.weight.shape, [10, 15])
self.assertEqual(linear2.bias.shape, [15])
self.assertTrue(
np.array_equal(linear1.weight.numpy(), linear2.weight.numpy()),
True)
self.assertTrue(
np.array_equal(linear1.bias.numpy(), linear2.bias.numpy()),
True)
self.assertTrue(linear2.weight.is_leaf, True)
self.assertTrue(linear2.bias.is_leaf, True)
if __name__ == '__main__':
......
......@@ -497,6 +497,41 @@ class TestVarBase(unittest.TestCase):
var = fluid.dygraph.to_variable(self.array)
self.assertTrue(isinstance(str(var), str))
def test_element_size(self):
with fluid.dygraph.guard():
x = paddle.to_tensor(1, dtype='bool')
self.assertEqual(x.element_size(), 1)
x = paddle.to_tensor(1, dtype='float16')
self.assertEqual(x.element_size(), 2)
x = paddle.to_tensor(1, dtype='float32')
self.assertEqual(x.element_size(), 4)
x = paddle.to_tensor(1, dtype='float64')
self.assertEqual(x.element_size(), 8)
x = paddle.to_tensor(1, dtype='int8')
self.assertEqual(x.element_size(), 1)
x = paddle.to_tensor(1, dtype='int16')
self.assertEqual(x.element_size(), 2)
x = paddle.to_tensor(1, dtype='int32')
self.assertEqual(x.element_size(), 4)
x = paddle.to_tensor(1, dtype='int64')
self.assertEqual(x.element_size(), 8)
x = paddle.to_tensor(1, dtype='uint8')
self.assertEqual(x.element_size(), 1)
x = paddle.to_tensor(1, dtype='complex64')
self.assertEqual(x.element_size(), 8)
x = paddle.to_tensor(1, dtype='complex128')
self.assertEqual(x.element_size(), 16)
def test_backward(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
......
......@@ -63,6 +63,35 @@ class TestVariable(unittest.TestCase):
self.assertRaises(ValueError,
lambda: b.create_var(name="fc.w", shape=(24, 100)))
def test_element_size(self):
with fluid.program_guard(Program(), Program()):
x = paddle.static.data(name='x1', shape=[2], dtype='bool')
self.assertEqual(x.element_size(), 1)
x = paddle.static.data(name='x2', shape=[2], dtype='float16')
self.assertEqual(x.element_size(), 2)
x = paddle.static.data(name='x3', shape=[2], dtype='float32')
self.assertEqual(x.element_size(), 4)
x = paddle.static.data(name='x4', shape=[2], dtype='float64')
self.assertEqual(x.element_size(), 8)
x = paddle.static.data(name='x5', shape=[2], dtype='int8')
self.assertEqual(x.element_size(), 1)
x = paddle.static.data(name='x6', shape=[2], dtype='int16')
self.assertEqual(x.element_size(), 2)
x = paddle.static.data(name='x7', shape=[2], dtype='int32')
self.assertEqual(x.element_size(), 4)
x = paddle.static.data(name='x8', shape=[2], dtype='int64')
self.assertEqual(x.element_size(), 8)
x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
self.assertEqual(x.element_size(), 1)
def test_step_scopes(self):
prog = Program()
b = prog.current_block()
......
......@@ -14,7 +14,8 @@
from .spectral_norm_hook import spectral_norm
from .weight_norm_hook import weight_norm, remove_weight_norm # noqa: F401
from .transform_parameters import parameters_to_vector, vector_to_parameters # noqa: F401
__all__ = [ #noqa
'weight_norm', 'remove_weight_norm', 'spectral_norm'
'weight_norm', 'remove_weight_norm', 'spectral_norm', 'parameters_to_vector', 'vector_to_parameters'
]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import reduce
import paddle
from paddle.fluid.framework import dygraph_only, _dygraph_tracer, _varbase_creator
from paddle import _C_ops
#input==output, inplace strategy of reshape has no cost almostly
def _inplace_reshape_dygraph(x, shape):
x_shape = _varbase_creator(dtype=x.dtype)
_dygraph_tracer().trace_op(
type="reshape2",
inputs={'X': x},
outputs={'Out': x,
'XShape': x_shape},
attrs={'shape': shape},
stop_gradient=True)
@dygraph_only
def parameters_to_vector(parameters, name=None):
"""
Flatten parameters to a 1-D Tensor.
Args:
parameters(Iterable[Tensor]): Iterable Tensors that are trainable parameters of a Layer.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
A 1-D Tensor, which represents the parameters of a Layer.
Examples:
.. code-block:: python
import paddle
linear = paddle.nn.Linear(10, 15)
paddle.nn.utils.parameters_to_vector(linear.parameters())
# 1-D Tensor: [165]
"""
dtype = parameters[0].dtype
origin_shapes = []
for param in parameters:
origin_shapes.append(param.shape)
_inplace_reshape_dygraph(param, [-1])
out = _varbase_creator(dtype=dtype)
_dygraph_tracer().trace_op(
type='concat',
inputs={'X': parameters},
outputs={'Out': [out]},
attrs={'axis': 0},
stop_gradient=True)
for i, param in enumerate(parameters):
_inplace_reshape_dygraph(param, origin_shapes[i])
return out
@dygraph_only
def vector_to_parameters(vec, parameters, name=None):
"""
Transform a Tensor with 1-D shape to the parameters.
Args:
vec (Tensor): A Tensor with 1-D shape, which represents the parameters of a Layer.
parameters (Iterable[Tensor]): Iterable Tensors that are trainable parameters of a Layer.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
import paddle
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(3.))
linear1 = paddle.nn.Linear(10, 15, weight_attr)
vec = paddle.nn.utils.parameters_to_vector(linear1.parameters())
linear2 = paddle.nn.Linear(10, 15)
# copy weight of linear1 to linear2
paddle.nn.utils.vector_to_parameters(vec, linear2.parameters())
# weight: Tensor(shape=[10, 15], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
# [[3. , ..., 3. ],
# [..., ..., ...],
# [3. , ..., 3. ]])
"""
origin_shapes = []
sections = []
for param in parameters:
shape = param.shape
origin_shapes.append(shape)
numel = reduce(lambda x, y: x * y, shape)
sections.append(numel)
_dygraph_tracer().trace_op(
type='split',
inputs={'X': [vec]},
outputs={'Out': parameters},
attrs={'axis': 0,
'sections': sections},
stop_gradient=True)
for i, param in enumerate(parameters):
_inplace_reshape_dygraph(param, origin_shapes[i])
return
......@@ -1159,7 +1159,6 @@ def empty_like(x, dtype=None, name=None):
def assign(x, output=None):
"""
The OP copies the :attr:`x` to the :attr:`output`.
Parameters:
......@@ -1192,6 +1191,36 @@ def assign(x, output=None):
return tensor.assign(x, output)
def clone(x, name=None):
"""
Returns a copy of input Tensor. It will always have a Tensor copy.
In addition, This function is derivable, so gradients will flow back from the output to input.
Parameters:
x (Tensor): The input Tensor.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns: A Tensor copied from ``input`` .
Examples:
.. code-block:: python
import paddle
x = paddle.ones([2])
x.stop_gradient = False
clone_x = paddle.clone(x)
y = clone_x**3
y.backward()
print(clone_x.grad) # [3]
print(x.grad) # [3]
"""
return x.clone()
#NOTE(zhiqiu): not public
def _memcpy(input, place=None, output=None):
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册