Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0de94cd9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0de94cd9
编写于
1月 03, 2023
作者:
L
limingshu
提交者:
GitHub
1月 03, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
H2D data transfer optimization for concat kernel (#49040)
上级
f484a61e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
342 addition
and
279 deletion
+342
-279
paddle/phi/backends/gpu/gpu_launch_config.h
paddle/phi/backends/gpu/gpu_launch_config.h
+8
-3
paddle/phi/kernels/funcs/concat_and_split_functor.cu
paddle/phi/kernels/funcs/concat_and_split_functor.cu
+264
-226
paddle/phi/kernels/gpu/stack_kernel.cu
paddle/phi/kernels/gpu/stack_kernel.cu
+70
-50
未找到文件。
paddle/phi/backends/gpu/gpu_launch_config.h
浏览文件 @
0de94cd9
...
@@ -53,20 +53,25 @@ inline T DivUp(T a, T b) {
...
@@ -53,20 +53,25 @@ inline T DivUp(T a, T b) {
// https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
// https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
// for round integer value into next highest power of 2.
// for round integer value into next highest power of 2.
inline
int64_t
RoundTo
PowerOfTwo
(
int64_t
n
)
{
inline
int64_t
RoundTo
NextHighPowOfTwo
(
int64_t
n
,
int64_t
min_val
=
1
)
{
n
--
;
n
--
;
n
|=
(
n
>>
1
);
n
|=
(
n
>>
1
);
n
|=
(
n
>>
2
);
n
|=
(
n
>>
2
);
n
|=
(
n
>>
4
);
n
|=
(
n
>>
4
);
n
|=
(
n
>>
8
);
n
|=
(
n
>>
8
);
n
|=
(
n
>>
16
);
n
|=
(
n
>>
16
);
int64_t
min_val
=
32
;
return
std
::
max
(
min_val
,
(
n
+
1
));
}
inline
int64_t
RoundToPowerOfTwo
(
int64_t
n
)
{
constexpr
int64_t
min_val
=
32
;
int64_t
num
=
RoundToNextHighPowOfTwo
(
n
,
min_val
);
#ifdef __HIPCC__
#ifdef __HIPCC__
int64_t
max_val
=
256
;
int64_t
max_val
=
256
;
#else
#else
int64_t
max_val
=
1024
;
int64_t
max_val
=
1024
;
#endif
#endif
return
std
::
min
(
max_val
,
std
::
max
(
min_val
,
(
n
+
1
))
);
return
std
::
min
(
max_val
,
num
);
}
}
#ifdef WITH_NV_JETSON
#ifdef WITH_NV_JETSON
...
...
paddle/phi/kernels/funcs/concat_and_split_functor.cu
浏览文件 @
0de94cd9
...
@@ -15,49 +15,155 @@ limitations under the License. */
...
@@ -15,49 +15,155 @@ limitations under the License. */
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/phi/backends/gpu/cuda/cuda_graph_with_memory_pool.h"
#include "paddle/phi/backends/gpu/cuda/cuda_graph_with_memory_pool.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
namespace
phi
{
namespace
phi
{
namespace
funcs
{
namespace
funcs
{
template
<
typename
T
,
int
Size
>
struct
PointerWrapper
{
public:
const
T
*
ins_addr
[
Size
];
__device__
inline
const
T
*
operator
[](
int
i
)
const
{
return
ins_addr
[
i
];
}
PointerWrapper
()
{}
PointerWrapper
(
const
phi
::
GPUContext
&
ctx
,
const
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
const
T
**
pre_alloced_host_ptr
)
{
for
(
auto
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
ins_addr
[
i
]
=
ins
[
i
].
data
<
T
>
();
}
}
};
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel_
(
const
T
**
inputs
,
struct
PointerToPointer
{
const
int64_t
*
input_cols
,
public:
int
col_size
,
T
**
ins_addr
{
nullptr
};
const
int64_t
output_rows
,
__device__
inline
const
T
*
operator
[](
int
i
)
const
{
return
ins_addr
[
i
];
}
const
int64_t
output_cols
,
T
*
output
)
{
PointerToPointer
()
{}
int64_t
curr_segment
=
0
;
PointerToPointer
(
const
phi
::
GPUContext
&
ctx
,
int64_t
curr_offset
=
input_cols
[
0
];
const
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
output_cols
,
int64_t
)
{
const
T
**
pre_alloced_host_ptr
,
int64_t
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
paddle
::
memory
::
AllocationPtr
*
dev_ins_ptr
)
{
auto
in_num
=
ins
.
size
();
for
(
auto
i
=
0
;
i
<
in_num
;
++
i
)
{
pre_alloced_host_ptr
[
i
]
=
ins
[
i
].
data
<
T
>
();
}
*
dev_ins_ptr
=
paddle
::
memory
::
Alloc
(
ctx
.
GetPlace
(),
in_num
*
sizeof
(
T
*
),
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
ctx
.
stream
())));
auto
*
restored
=
phi
::
backends
::
gpu
::
RestoreHostMemIfCapturingCUDAGraph
(
pre_alloced_host_ptr
,
in_num
);
paddle
::
memory
::
Copy
(
ctx
.
GetPlace
(),
(
*
dev_ins_ptr
)
->
ptr
(),
phi
::
CPUPlace
(),
restored
,
in_num
*
sizeof
(
T
*
),
ctx
.
stream
());
ins_addr
=
reinterpret_cast
<
T
**>
((
*
dev_ins_ptr
)
->
ptr
());
}
};
template
<
typename
T
,
typename
IndexT
,
int
Size
>
struct
PointerAndColWrapper
{
public:
IndexT
col_length
[
Size
];
PointerAndColWrapper
(
const
phi
::
GPUContext
&
ctx
,
const
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
const
IndexT
&
inputs_col_num
,
const
T
**
pre_alloced_host_ptr
,
IndexT
*
inputs_col
)
{
for
(
auto
i
=
0
;
i
<
inputs_col_num
;
++
i
)
{
col_length
[
i
]
=
inputs_col
[
i
];
}
ins_ptr_wrapper
=
PointerWrapper
<
T
,
Size
>
(
ctx
,
ins
,
pre_alloced_host_ptr
);
}
__device__
inline
const
T
*
operator
[](
int
i
)
const
{
return
ins_ptr_wrapper
[
i
];
}
private:
PointerWrapper
<
T
,
Size
>
ins_ptr_wrapper
;
};
template
<
typename
T
,
typename
IndexT
>
struct
PointerToPointerAndCol
{
public:
IndexT
*
col_length
{
nullptr
};
PointerToPointerAndCol
(
const
phi
::
GPUContext
&
ctx
,
const
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
const
IndexT
inputs_col_num
,
const
T
**
pre_alloced_host_ptr
,
IndexT
*
inputs_col
,
paddle
::
memory
::
AllocationPtr
*
dev_ins_ptr
,
paddle
::
memory
::
AllocationPtr
*
dev_col_ptr
)
{
*
dev_col_ptr
=
paddle
::
memory
::
Alloc
(
ctx
.
GetPlace
(),
inputs_col_num
*
sizeof
(
IndexT
),
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
ctx
.
stream
())));
auto
*
restored
=
phi
::
backends
::
gpu
::
RestoreHostMemIfCapturingCUDAGraph
(
inputs_col
,
inputs_col_num
);
paddle
::
memory
::
Copy
(
ctx
.
GetPlace
(),
(
*
dev_col_ptr
)
->
ptr
(),
phi
::
CPUPlace
(),
restored
,
inputs_col_num
*
sizeof
(
IndexT
),
ctx
.
stream
());
col_length
=
static_cast
<
IndexT
*>
((
*
dev_col_ptr
)
->
ptr
());
ins_ptr_wrapper
=
PointerToPointer
<
T
>
(
ctx
,
ins
,
pre_alloced_host_ptr
,
dev_ins_ptr
);
}
__device__
inline
const
T
*
operator
[](
int
i
)
const
{
return
ins_ptr_wrapper
[
i
];
}
private:
PointerToPointer
<
T
>
ins_ptr_wrapper
;
};
template
<
typename
T
,
typename
IndexT
,
typename
PointerAndColWrapperT
>
__global__
void
ConcatTensorWithDifferentShape
(
PointerAndColWrapperT
ins_datas
,
int
col_size
,
const
IndexT
output_rows
,
const
IndexT
output_cols
,
T
*
output
)
{
IndexT
curr_segment
=
0
;
IndexT
curr_offset
=
ins_datas
.
col_length
[
0
];
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
output_cols
,
IndexT
)
{
IndexT
curr_col_offset
=
ins_datas
.
col_length
[
curr_segment
+
1
];
while
(
curr_col_offset
<=
tid_x
)
{
while
(
curr_col_offset
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
curr_offset
=
curr_col_offset
;
++
curr_segment
;
++
curr_segment
;
curr_col_offset
=
in
put_cols
[
curr_segment
+
1
];
curr_col_offset
=
in
s_datas
.
col_length
[
curr_segment
+
1
];
}
}
int64_t
local_col
=
tid_x
-
curr_offset
;
IndexT
local_col
=
tid_x
-
curr_offset
;
int64_t
segment_width
=
curr_col_offset
-
curr_offset
;
IndexT
segment_width
=
curr_col_offset
-
curr_offset
;
const
T
*
input_ptr
=
in
put
s
[
curr_segment
];
const
T
*
input_ptr
=
in
s_data
s
[
curr_segment
];
int64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
IndexT
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
output_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
for
(;
tid_y
<
output_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output
[
tid_y
*
output_cols
+
tid_x
]
=
output
[
tid_y
*
output_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
segment_width
+
local_col
];
input_ptr
[
tid_y
*
segment_width
+
local_col
];
}
}
}
}
template
<
typename
T
>
template
<
typename
T
,
typename
IndexT
,
typename
PointerWrapperT
>
__
device__
void
ConcatKernelDetail
(
const
T
**
input
s_data
,
__
global__
void
ConcatTensorWithSameShape
(
PointerWrapperT
in
s_data
,
const
int64_t
fixed_in_col
,
const
IndexT
fixed_in_col
,
const
int64_t
out_rows
,
const
IndexT
out_rows
,
const
int64_t
out_cols
,
const
IndexT
out_cols
,
T
*
output_data
)
{
T
*
output_data
)
{
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
out_cols
,
int64_t
)
{
CUDA_KERNEL_LOOP_TYPE
(
tid_x
,
out_cols
,
IndexT
)
{
int64_t
split
=
tid_x
*
1.0
/
fixed_in_col
;
IndexT
split
=
tid_x
/
fixed_in_col
;
int64_t
in_offset
=
tid_x
-
split
*
fixed_in_col
;
IndexT
in_offset
=
tid_x
-
split
*
fixed_in_col
;
const
T
*
input_ptr
=
in
put
s_data
[
split
];
const
T
*
input_ptr
=
ins_data
[
split
];
int64_t
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
IndexT
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
out_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
for
(;
tid_y
<
out_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
output_data
[
tid_y
*
out_cols
+
tid_x
]
=
output_data
[
tid_y
*
out_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
fixed_in_col
+
in_offset
];
input_ptr
[
tid_y
*
fixed_in_col
+
in_offset
];
...
@@ -65,65 +171,6 @@ __device__ void ConcatKernelDetail(const T** inputs_data,
...
@@ -65,65 +171,6 @@ __device__ void ConcatKernelDetail(const T** inputs_data,
}
}
}
}
template
<
typename
T
>
__global__
void
ConcatKernel_
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
int64_t
fixed_in_col
,
const
int64_t
out_rows
,
const
int64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
2
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel_
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
int64_t
fixed_in_col
,
const
int64_t
out_rows
,
const
int64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
3
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
2
]
=
input_addr2
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel_
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
T
*
input_addr3
,
const
int64_t
fixed_in_col
,
const
int64_t
out_rows
,
const
int64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
4
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
2
]
=
input_addr2
;
inputs_data
[
3
]
=
input_addr3
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel_
(
const
T
**
inputs_data
,
const
int
in_num
,
const
int64_t
fixed_in_col
,
const
int64_t
out_rows
,
const
int64_t
out_cols
,
T
*
output_data
)
{
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel_
(
const
T
*
input_data
,
__global__
void
SplitKernel_
(
const
T
*
input_data
,
const
int64_t
in_row
,
const
int64_t
in_row
,
...
@@ -254,155 +301,146 @@ static inline void GetBlockDims(const phi::GPUContext& context,
...
@@ -254,155 +301,146 @@ static inline void GetBlockDims(const phi::GPUContext& context,
* All tensors' dimension should be the same and the values of
* All tensors' dimension should be the same and the values of
* each dimension must be the same, except the axis dimension.
* each dimension must be the same, except the axis dimension.
*/
*/
template
<
typename
T
,
typename
IndexT
>
template
<
typename
T
>
void
ConcatFunctorWithIndexType
(
const
phi
::
GPUContext
&
ctx
,
struct
ConcatFunctor
<
phi
::
GPUContext
,
T
>
{
const
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
void
operator
()(
const
phi
::
GPUContext
&
context
,
int
axis
,
const
std
::
vector
<
phi
::
DenseTensor
>&
input
,
phi
::
DenseTensor
*
output
)
{
int
axis
,
// TODO(zcd): Add input data validity checking
phi
::
DenseTensor
*
output
)
{
IndexT
in_num
=
ins
.
size
();
// TODO(zcd): Add input data validity checking
IndexT
in_row
=
1
;
int64_t
in_num
=
input
.
size
();
auto
dim_0
=
ins
[
0
].
dims
();
int64_t
in_row
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
auto
dim_0
=
input
[
0
].
dims
();
in_row
*=
dim_0
[
i
];
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
}
in_row
*=
dim_0
[
i
];
IndexT
in_col
=
ins
[
0
].
numel
()
/
in_row
;
}
IndexT
out_row
=
in_row
,
out_col
=
0
;
int64_t
in_col
=
input
[
0
].
numel
()
/
in_row
;
int64_t
out_row
=
in_row
,
out_col
=
0
;
IndexT
inputs_col_num
=
in_num
+
1
;
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
,
nullptr
);
int64_t
inputs_col_num
=
in_num
+
1
;
std
::
vector
<
IndexT
>
inputs_col_vec
(
inputs_col_num
,
0
);
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
);
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
std
::
vector
<
int64_t
>
inputs_col_vec
(
inputs_col_num
);
IndexT
*
inputs_col
=
inputs_col_vec
.
data
();
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
int64_t
*
inputs_col
=
inputs_col_vec
.
data
();
// There are some differences between hip runtime and NV runtime.
// In NV, when the pageable memory data less than 64K is transferred from
// hosttodevice, it will be automatically asynchronous.
// However, only pinned memory in hip can copy asynchronously
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-execution-host-device
// 3.2.6.1. Concurrent Execution between Host and Device
// Memory copies from host to device of a memory block of 64 KB or less
#ifdef PADDLE_WITH_HIP
#ifdef PADDLE_WITH_HIP
paddle
::
memory
::
AllocationPtr
data_alloc
,
col_alloc
;
// TODO(chentianyu03): try to find a method to remove the Alloc function
// TODO(chentianyu03): try to find a method to remove the Alloc function
paddle
::
memory
::
AllocationPtr
data_alloc
=
paddle
::
memory
::
Alloc
(
data_alloc
=
paddle
::
memory
::
Alloc
(
paddle
::
platform
::
CUDAPinnedPlace
(),
paddle
::
platform
::
CUDAPinnedPlace
(),
in_num
*
sizeof
(
T
*
));
in_num
*
sizeof
(
T
*
));
inputs_data
=
reinterpret_cast
<
const
T
**>
(
data_alloc
->
ptr
());
inputs_data
=
reinterpret_cast
<
const
T
**>
(
data_alloc
->
ptr
());
paddle
::
memory
::
AllocationPtr
col_alloc
=
paddle
::
memory
::
Alloc
(
// TODO(chentianyu03): try to find a method to remove the Alloc function
paddle
::
platform
::
CUDAPinnedPlace
(),
inputs_col_num
*
sizeof
(
IndexT
));
col_alloc
=
paddle
::
memory
::
Alloc
(
paddle
::
platform
::
CUDAPinnedPlace
(),
inputs_col
=
reinterpret_cast
<
IndexT
*>
(
col_alloc
->
ptr
());
inputs_col_num
*
sizeof
(
int
));
inputs_col
=
reinterpret_cast
<
int64_t
*>
(
col_alloc
->
ptr
());
#endif
#endif
inputs_col
[
0
]
=
0
;
bool
has_same_shape
=
true
;
bool
has_same_shape
=
true
;
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
IndexT
t_cols
=
ins
[
i
].
numel
()
/
in_row
;
int64_t
t_cols
=
input
[
i
].
numel
()
/
in_row
;
if
(
has_same_shape
)
{
if
(
has_same_shape
)
{
has_same_shape
&=
(
t_cols
==
in_col
);
if
(
t_cols
!=
in_col
)
has_same_shape
=
false
;
}
out_col
+=
t_cols
;
inputs_col
[
i
+
1
]
=
out_col
;
inputs_data
[
i
]
=
input
[
i
].
data
<
T
>
();
}
}
out_col
+=
t_cols
;
dim3
block_dims
;
inputs_col
[
i
+
1
]
=
out_col
;
dim3
grid_dims
;
}
GetBlockDims
(
context
,
out_row
,
out_col
,
&
block_dims
,
&
grid_dims
);
dim3
block_dims
;
dim3
grid_dims
;
paddle
::
memory
::
allocation
::
AllocationPtr
tmp_dev_ins_data
;
GetBlockDims
(
ctx
,
out_row
,
out_col
,
&
block_dims
,
&
grid_dims
);
const
T
**
dev_ins_data
=
nullptr
;
IndexT
limit_num
=
has_same_shape
?
in_num
:
inputs_col_num
;
if
(
!
has_same_shape
||
in_num
<
2
||
in_num
>
4
)
{
tmp_dev_ins_data
=
paddle
::
memory
::
Alloc
(
#define IMPL_CONCATE_CUDA_KERNEL_HELPER(func_impl, ...) \
context
.
GetPlace
(),
func_impl(4, ##__VA_ARGS__); \
in_num
*
sizeof
(
T
*
),
func_impl(8, ##__VA_ARGS__); \
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
context
.
stream
())));
func_impl(16, ##__VA_ARGS__); \
auto
*
restored
=
phi
::
backends
::
gpu
::
RestoreHostMemIfCapturingCUDAGraph
(
func_impl(32, ##__VA_ARGS__); \
inputs_data
,
in_num
);
func_impl(64, ##__VA_ARGS__); \
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
func_impl(128, ##__VA_ARGS__);
tmp_dev_ins_data
->
ptr
(),
paddle
::
platform
::
CPUPlace
(),
if
(
has_same_shape
)
{
restored
,
#define IMPL_CONCAT_CUDA_KERNEL_CASE(size_, ...) \
in_num
*
sizeof
(
T
*
),
case size_: { \
context
.
stream
());
PointerWrapper<T, size_> ptr_array(ctx, ins, inputs_data); \
dev_ins_data
=
reinterpret_cast
<
const
T
**>
(
tmp_dev_ins_data
->
ptr
());
__VA_ARGS__; \
} break;
switch
(
phi
::
backends
::
gpu
::
RoundToNextHighPowOfTwo
(
limit_num
,
4
))
{
IMPL_CONCATE_CUDA_KERNEL_HELPER
(
IMPL_CONCAT_CUDA_KERNEL_CASE
,
ConcatTensorWithSameShape
<
T
,
IndexT
,
decltype
(
ptr_array
)
>
<<<
grid_dims
,
block_dims
,
0
,
ctx
.
stream
()
>>>
(
ptr_array
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
()));
default:
{
paddle
::
memory
::
AllocationPtr
dev_ins_ptr
{
nullptr
};
PointerToPointer
<
T
>
ptr_array
(
ctx
,
ins
,
inputs_data
,
&
dev_ins_ptr
);
ConcatTensorWithSameShape
<
T
,
IndexT
,
decltype
(
ptr_array
)
>
<<<
grid_dims
,
block_dims
,
0
,
ctx
.
stream
()
>>>
(
ptr_array
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
());
}
}
}
#undef IMPL_CONCAT_CUDA_KERNEL_CASE
if
(
has_same_shape
)
{
}
else
{
if
(
in_num
==
2
)
{
#define IMPL_COMPLEX_CONCAT_CUDA_KERNEL_CASE(size_, ...) \
ConcatKernel_
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
case size_: { \
inputs_data
[
0
],
PointerAndColWrapper<T, IndexT, size_> ptr_col_array( \
inputs_data
[
1
],
ctx, ins, inputs_col_num, inputs_data, inputs_col); \
in_col
,
__VA_ARGS__; \
out_row
,
} break;
out_col
,
output
->
data
<
T
>
());
switch
(
phi
::
backends
::
gpu
::
RoundToNextHighPowOfTwo
(
limit_num
,
4
))
{
}
else
if
(
in_num
==
3
)
{
IMPL_CONCATE_CUDA_KERNEL_HELPER
(
ConcatKernel_
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
IMPL_COMPLEX_CONCAT_CUDA_KERNEL_CASE
,
inputs_data
[
0
],
ConcatTensorWithDifferentShape
<
T
,
IndexT
,
decltype
(
ptr_col_array
)
>
inputs_data
[
1
],
<<<
grid_dims
,
block_dims
,
0
,
ctx
.
stream
()
>>>
(
ptr_col_array
,
inputs_data
[
2
],
inputs_col_num
,
in_col
,
out_row
,
out_row
,
out_col
,
out_col
,
output
->
data
<
T
>
()));
output
->
data
<
T
>
());
default:
{
}
else
if
(
in_num
==
4
)
{
paddle
::
memory
::
AllocationPtr
dev_ins_ptr
{
nullptr
};
ConcatKernel_
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
paddle
::
memory
::
AllocationPtr
dev_col_ptr
{
nullptr
};
inputs_data
[
0
],
PointerToPointerAndCol
<
T
,
IndexT
>
ptr_col_array
(
ctx
,
inputs_data
[
1
],
ins
,
inputs_data
[
2
],
inputs_col_num
,
inputs_data
[
3
],
inputs_data
,
in_col
,
inputs_col
,
out_row
,
&
dev_ins_ptr
,
out_col
,
&
dev_col_ptr
);
output
->
data
<
T
>
());
ConcatTensorWithDifferentShape
<
T
,
IndexT
,
decltype
(
ptr_col_array
)
>
}
else
{
<<<
grid_dims
,
block_dims
,
0
,
ctx
.
stream
()
>>>
(
ptr_col_array
,
ConcatKernel_
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
inputs_col_num
,
dev_ins_data
,
in_num
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
());
out_row
,
out_col
,
output
->
data
<
T
>
());
}
}
}
else
{
auto
tmp_dev_ins_col_data
=
paddle
::
memory
::
Alloc
(
context
.
GetPlace
(),
inputs_col_num
*
sizeof
(
int64_t
),
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
context
.
stream
())));
auto
*
restored
=
phi
::
backends
::
gpu
::
RestoreHostMemIfCapturingCUDAGraph
(
inputs_col
,
inputs_col_num
);
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
tmp_dev_ins_col_data
->
ptr
(),
paddle
::
platform
::
CPUPlace
(),
restored
,
inputs_col_num
*
sizeof
(
int64_t
),
context
.
stream
());
int64_t
*
dev_ins_col_data
=
static_cast
<
int64_t
*>
(
tmp_dev_ins_col_data
->
ptr
());
ConcatKernel_
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col_num
),
out_row
,
out_col
,
output
->
data
<
T
>
());
}
}
#undef IMPL_COMPLEX_CONCAT_CUDA_KERNEL_CASE
}
#undef IMPL_CONCATE_CUDA_KERNEL_HELPER
#ifdef PADDLE_WITH_HIP
#ifdef PADDLE_WITH_HIP
// Prevent the pinned memory value from being covered and release the memory
// Prevent pinned memory from being covered and release the memory after
// after the launch kernel of the stream is executed (reapply pinned memory
// kernel launch of the stream is executed (reapply pinned memory next time)
// next time)
auto
*
data_alloc_released
=
data_alloc
.
release
();
auto
*
data_alloc_released
=
data_alloc
.
release
();
auto
*
col_alloc_released
=
col_alloc
.
release
();
auto
*
col_alloc_released
=
col_alloc
.
release
();
ctx
.
AddStreamCallback
([
data_alloc_released
,
col_alloc_released
]
{
context
.
AddStreamCallback
([
data_alloc_released
,
col_alloc_released
]
{
VLOG
(
4
)
<<
"Delete cuda pinned at "
<<
data_alloc_released
;
VLOG
(
4
)
<<
"Delete cuda pinned at "
<<
data_alloc_released
;
VLOG
(
4
)
<<
"Delete cuda pinned at "
<<
col_alloc_released
;
VLOG
(
4
)
<<
"Delete cuda pinned at "
<<
col_alloc_released
;
paddle
::
memory
::
allocation
::
Allocator
::
AllocationDeleter
(
paddle
::
memory
::
allocation
::
Allocator
::
AllocationDeleter
(
data_alloc_released
);
data_alloc_released
);
paddle
::
memory
::
allocation
::
Allocator
::
AllocationDeleter
(
paddle
::
memory
::
allocation
::
Allocator
::
AllocationDeleter
(
col_alloc_released
);
col_alloc_released
);
});
});
#endif
#endif
}
template
<
typename
T
>
struct
ConcatFunctor
<
phi
::
GPUContext
,
T
>
{
void
operator
()(
const
phi
::
GPUContext
&
context
,
const
std
::
vector
<
phi
::
DenseTensor
>&
input
,
int
axis
,
phi
::
DenseTensor
*
output
)
{
if
(
output
->
numel
()
<
std
::
numeric_limits
<
int32_t
>::
max
())
{
ConcatFunctorWithIndexType
<
T
,
int32_t
>
(
context
,
input
,
axis
,
output
);
}
else
{
ConcatFunctorWithIndexType
<
T
,
int64_t
>
(
context
,
input
,
axis
,
output
);
}
}
}
};
};
...
@@ -488,7 +526,7 @@ class SplitFunctor<phi::GPUContext, T> {
...
@@ -488,7 +526,7 @@ class SplitFunctor<phi::GPUContext, T> {
outputs_data
,
o_num
);
outputs_data
,
o_num
);
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
tmp_dev_outs_data
->
ptr
(),
tmp_dev_outs_data
->
ptr
(),
p
addle
::
platform
::
CPUPlace
(),
p
hi
::
CPUPlace
(),
restored
,
restored
,
o_num
*
sizeof
(
T
*
),
o_num
*
sizeof
(
T
*
),
context
.
stream
());
context
.
stream
());
...
@@ -539,7 +577,7 @@ class SplitFunctor<phi::GPUContext, T> {
...
@@ -539,7 +577,7 @@ class SplitFunctor<phi::GPUContext, T> {
outputs_cols
,
outputs_cols_num
);
outputs_cols
,
outputs_cols_num
);
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
paddle
::
memory
::
Copy
(
context
.
GetPlace
(),
tmp_dev_ins_col_data
->
ptr
(),
tmp_dev_ins_col_data
->
ptr
(),
p
addle
::
platform
::
CPUPlace
(),
p
hi
::
CPUPlace
(),
restored
,
restored
,
outputs_cols_num
*
sizeof
(
int64_t
),
outputs_cols_num
*
sizeof
(
int64_t
),
context
.
stream
());
context
.
stream
());
...
...
paddle/phi/kernels/gpu/stack_kernel.cu
浏览文件 @
0de94cd9
...
@@ -25,7 +25,9 @@ namespace phi {
...
@@ -25,7 +25,9 @@ namespace phi {
template
<
typename
IndexT
>
template
<
typename
IndexT
>
struct
DivmodWarpper
{
struct
DivmodWarpper
{
public:
public:
void
SetDivden
(
IndexT
dividen
)
{
divmoder
=
phi
::
funcs
::
FastDivMod
(
dividen
);
}
void
SetDivisor
(
IndexT
divisor
)
{
divmoder
=
phi
::
funcs
::
FastDivMod
(
divisor
);
}
__device__
inline
phi
::
funcs
::
FastDivMod
::
DivModT
div_mod
(
IndexT
val
)
{
__device__
inline
phi
::
funcs
::
FastDivMod
::
DivModT
div_mod
(
IndexT
val
)
{
return
divmoder
.
Divmod
(
val
);
return
divmoder
.
Divmod
(
val
);
}
}
...
@@ -39,7 +41,7 @@ struct DivmodWarpper<int64_t> {
...
@@ -39,7 +41,7 @@ struct DivmodWarpper<int64_t> {
public:
public:
using
DivModT
=
phi
::
AlignedVector
<
int64_t
,
2
>
;
using
DivModT
=
phi
::
AlignedVector
<
int64_t
,
2
>
;
void
SetDiv
den
(
int64_t
dividen
)
{
dividen_
=
dividen
;
}
void
SetDiv
isor
(
int64_t
divisor
)
{
dividen_
=
divisor
;
}
__device__
inline
DivModT
div_mod
(
int64_t
val
)
{
__device__
inline
DivModT
div_mod
(
int64_t
val
)
{
DivModT
data
;
DivModT
data
;
data
[
0
]
=
val
/
dividen_
;
data
[
0
]
=
val
/
dividen_
;
...
@@ -51,15 +53,14 @@ struct DivmodWarpper<int64_t> {
...
@@ -51,15 +53,14 @@ struct DivmodWarpper<int64_t> {
int64_t
dividen_
;
int64_t
dividen_
;
};
};
constexpr
int
kWarpperSize
=
64
;
template
<
typename
T
,
typename
IndexT
,
int
Size
>
template
<
typename
T
,
typename
IndexT
>
struct
PointerArray
:
public
DivmodWarpper
<
IndexT
>
{
struct
PointerArray
:
public
DivmodWarpper
<
IndexT
>
{
public:
public:
const
T
*
data
[
kWarpper
Size
];
const
T
*
data
[
Size
];
PointerArray
(
const
std
::
vector
<
const
DenseTensor
*>&
x
,
PointerArray
(
const
std
::
vector
<
const
DenseTensor
*>&
x
,
int
num
,
int
num
,
int64_t
dividen
)
{
IndexT
divisor
)
{
this
->
SetDiv
den
(
dividen
);
this
->
SetDiv
isor
(
divisor
);
for
(
auto
i
=
0
;
i
<
num
;
++
i
)
{
for
(
auto
i
=
0
;
i
<
num
;
++
i
)
{
data
[
i
]
=
x
[
i
]
->
data
<
T
>
();
data
[
i
]
=
x
[
i
]
->
data
<
T
>
();
}
}
...
@@ -69,33 +70,33 @@ struct PointerArray : public DivmodWarpper<IndexT> {
...
@@ -69,33 +70,33 @@ struct PointerArray : public DivmodWarpper<IndexT> {
template
<
typename
Context
,
typename
T
,
typename
IndexT
>
template
<
typename
Context
,
typename
T
,
typename
IndexT
>
struct
PointerToPointer
:
public
DivmodWarpper
<
IndexT
>
{
struct
PointerToPointer
:
public
DivmodWarpper
<
IndexT
>
{
public:
public:
T
**
data
;
T
**
data
{
nullptr
}
;
PointerToPointer
(
const
Context
&
ctx
,
PointerToPointer
(
const
Context
&
ctx
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
int
num
,
IndexT
num
,
int64_t
dividen
)
{
IndexT
divisor
,
this
->
SetDivden
(
dividen
);
paddle
::
memory
::
AllocationPtr
*
dev_ins_ptr
)
{
auto
byte_len
=
num
*
sizeof
(
T
*
);
this
->
SetDivisor
(
divisor
);
std
::
vector
<
const
T
*>
x_datas
(
num
);
std
::
vector
<
const
T
*>
x_datas
(
num
);
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
x_datas
[
i
]
=
x
[
i
]
->
data
<
T
>
();
x_datas
[
i
]
=
x
[
i
]
->
data
<
T
>
();
}
}
auto
tmp_x_data
=
paddle
::
memory
::
Alloc
(
*
dev_ins_ptr
=
paddle
::
memory
::
Alloc
(
ctx
.
GetPlace
(),
ctx
.
GetPlace
(),
byte_len
,
num
*
sizeof
(
T
*
)
,
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
ctx
.
stream
())));
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
ctx
.
stream
())));
paddle
::
memory
::
Copy
(
ctx
.
GetPlace
(),
paddle
::
memory
::
Copy
(
ctx
.
GetPlace
(),
tmp_x_data
->
ptr
(),
(
*
dev_ins_ptr
)
->
ptr
(),
phi
::
CPUPlace
(),
phi
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
x_datas
.
data
()),
reinterpret_cast
<
void
*>
(
x_datas
.
data
()),
x_datas
.
size
()
*
sizeof
(
T
*
),
num
*
sizeof
(
T
*
),
ctx
.
stream
());
ctx
.
stream
());
data
=
reinterpret_cast
<
T
**>
(
tmp_x_data
->
ptr
());
data
=
reinterpret_cast
<
T
**>
(
(
*
dev_ins_ptr
)
->
ptr
());
}
}
};
};
template
<
typename
T
,
typename
IndexT
,
typename
W
ar
pT
>
template
<
typename
T
,
typename
IndexT
,
typename
W
ra
pT
>
__global__
void
StackCUDAKernel
(
W
ar
pT
input_warpper
,
__global__
void
StackCUDAKernel
(
W
ra
pT
input_warpper
,
IndexT
split_size
,
IndexT
split_size
,
IndexT
rows
,
IndexT
rows
,
IndexT
cols
,
IndexT
cols
,
...
@@ -117,14 +118,56 @@ __global__ void StackCUDAKernel(WarpT input_warpper,
...
@@ -117,14 +118,56 @@ __global__ void StackCUDAKernel(WarpT input_warpper,
}
}
}
}
template
<
typename
T
,
typename
IndexT
,
typename
Context
>
void
LaunchStackCUDAKernelWithIndexType
(
const
Context
&
ctx
,
const
IndexT
x_col
,
const
IndexT
x_row
,
const
IndexT
out_col
,
const
phi
::
backends
::
gpu
::
GpuLaunchConfig
&
cfg
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
T
*
dst_data
)
{
int
num
=
static_cast
<
int
>
(
x
.
size
());
#define IMPL_STACK_CUDA_KERNEL_CASE(size_, ...) \
case size_: { \
PointerArray<T, IndexT, size_> ptr_array(x, num, x_col); \
__VA_ARGS__; \
} break;
#define IMPL_STACK_CUDA_KERNEL_HELPER(...) \
IMPL_STACK_CUDA_KERNEL_CASE(2, ##__VA_ARGS__); \
IMPL_STACK_CUDA_KERNEL_CASE(8, ##__VA_ARGS__); \
IMPL_STACK_CUDA_KERNEL_CASE(16, ##__VA_ARGS__); \
IMPL_STACK_CUDA_KERNEL_CASE(32, ##__VA_ARGS__); \
IMPL_STACK_CUDA_KERNEL_CASE(64, ##__VA_ARGS__); \
IMPL_STACK_CUDA_KERNEL_CASE(128, ##__VA_ARGS__);
switch
(
phi
::
backends
::
gpu
::
RoundToNextHighPowOfTwo
(
num
,
4
))
{
IMPL_STACK_CUDA_KERNEL_HELPER
(
StackCUDAKernel
<
T
,
IndexT
,
decltype
(
ptr_array
)
>
<<<
cfg
.
block_per_grid
,
cfg
.
thread_per_block
,
0
,
ctx
.
stream
()
>>>
(
ptr_array
,
x_col
,
x_row
,
out_col
,
dst_data
));
default:
{
paddle
::
memory
::
AllocationPtr
dev_ins_ptr
{
nullptr
};
PointerToPointer
<
Context
,
T
,
IndexT
>
ptr_array
(
ctx
,
x
,
num
,
x_col
,
&
dev_ins_ptr
);
StackCUDAKernel
<
T
,
IndexT
,
decltype
(
ptr_array
)
>
<<<
cfg
.
block_per_grid
,
cfg
.
thread_per_block
,
0
,
ctx
.
stream
()
>>>
(
ptr_array
,
x_col
,
x_row
,
out_col
,
dst_data
);
}
}
#undef IMPL_STACK_CUDA_KERNEL_HELPER
#undef IMPL_STACK_CUDA_KERNEL_CASE
}
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
void
StackKernel
(
const
Context
&
dev_ctx
,
void
StackKernel
(
const
Context
&
dev_ctx
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
int
axis
,
int
axis
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
int
n
=
static_cast
<
int
>
(
x
.
size
());
int
n
um
=
static_cast
<
int
>
(
x
.
size
());
T
*
y
_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
T
*
dst
_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
// Split x dim from axis to matrix
// Split x dim from axis to matrix
int64_t
x_row
=
1
,
x_col
=
1
;
int64_t
x_row
=
1
,
x_col
=
1
;
...
@@ -132,40 +175,17 @@ void StackKernel(const Context& dev_ctx,
...
@@ -132,40 +175,17 @@ void StackKernel(const Context& dev_ctx,
x_row
*=
x
[
0
]
->
dims
()[
i
];
x_row
*=
x
[
0
]
->
dims
()[
i
];
}
}
x_col
=
x
[
0
]
->
numel
()
/
x_row
;
x_col
=
x
[
0
]
->
numel
()
/
x_row
;
int64_t
out_col
=
x_col
*
n
;
int64_t
out_col
=
x_col
*
n
um
;
auto
config
=
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig2D
(
dev_ctx
,
out_col
,
x_row
);
phi
::
backends
::
gpu
::
GetGpuLaunchConfig2D
(
dev_ctx
,
out_col
,
x_row
);
#define IMPL_STACK_CUDA_KERNEL(index_t, input_warpper) \
if
(
out
->
numel
()
<
std
::
numeric_limits
<
int32_t
>::
max
())
{
StackCUDAKernel<T, index_t, decltype(input_warpper)> \
LaunchStackCUDAKernelWithIndexType
<
T
,
int32_t
,
Context
>
(
<<<config.block_per_grid, \
dev_ctx
,
x_col
,
x_row
,
out_col
,
config
,
x
,
dst_data
);
config.thread_per_block, \
0, \
dev_ctx.stream()>>>(input_warpper, \
static_cast<index_t>(x_col), \
static_cast<index_t>(x_row), \
static_cast<index_t>(out_col), \
y_data);
bool
use_int32
=
out
->
numel
()
<
std
::
numeric_limits
<
int32_t
>::
max
();
if
(
n
<=
kWarpperSize
)
{
if
(
use_int32
)
{
PointerArray
<
T
,
int32_t
>
ptr_array
(
x
,
n
,
x_col
);
IMPL_STACK_CUDA_KERNEL
(
int32_t
,
ptr_array
);
}
else
{
PointerArray
<
T
,
int64_t
>
ptr_array
(
x
,
n
,
x_col
);
IMPL_STACK_CUDA_KERNEL
(
int64_t
,
ptr_array
);
}
}
else
{
}
else
{
if
(
use_int32
)
{
LaunchStackCUDAKernelWithIndexType
<
T
,
int64_t
,
Context
>
(
PointerToPointer
<
Context
,
T
,
int32_t
>
ptr_array
(
dev_ctx
,
x
,
n
,
x_col
);
dev_ctx
,
x_col
,
x_row
,
out_col
,
config
,
x
,
dst_data
);
IMPL_STACK_CUDA_KERNEL
(
int32_t
,
ptr_array
);
}
else
{
PointerToPointer
<
Context
,
T
,
int64_t
>
ptr_array
(
dev_ctx
,
x
,
n
,
x_col
);
IMPL_STACK_CUDA_KERNEL
(
int64_t
,
ptr_array
);
}
}
}
#undef IMPL_STACK_CUDA_KERNEL
}
}
}
// namespace phi
}
// namespace phi
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录