Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0d8b222b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0d8b222b
编写于
1月 19, 2020
作者:
W
wangchaochaohu
提交者:
GitHub
1月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize the depthwise op test=develop (#22265)
上级
325f0722
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
129 addition
and
79 deletion
+129
-79
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+129
-79
未找到文件。
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
0d8b222b
...
@@ -45,11 +45,16 @@ __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
...
@@ -45,11 +45,16 @@ __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
// A Cuda kernel to compute the depthwise convolution forward pass
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
// in NCHW format.
template
<
typename
T
,
bool
fuse_relu_before_conv
>
template
<
typename
T
,
bool
fuse_relu_before_conv
>
__device__
__inline__
void
KernelDepthwiseConv
(
ARG_DEFINE_KernelDepthwiseConv
)
{
__device__
__inline__
void
KernelDepthwiseConvNCHW
(
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
ARG_DEFINE_KernelDepthwiseConv
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
const
int
batch
=
blockIdx
.
y
;
if
(
idx
>=
(
output_channels
*
batch_size
*
output_height
*
output_width
))
const
int
c_out
=
blockIdx
.
x
;
return
;
const
int
w_out
=
idx
%
output_width
;
const
int
h_out
=
(
idx
/
output_width
)
%
output_height
;
const
int
c_out
=
(
idx
/
output_width
/
output_height
)
%
output_channels
;
const
int
batch
=
idx
/
output_width
/
output_height
/
output_channels
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
...
@@ -59,13 +64,8 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
...
@@ -59,13 +64,8 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
const
int
h_in_end
=
h_in_start
+
filter_height
*
dilate_height
;
const
int
h_in_end
=
h_in_start
+
filter_height
*
dilate_height
;
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate_width
;
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate_width
;
int
in_offset
;
int
in_offset
=
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
}
else
{
in_offset
=
batch
*
input_height
*
input_width
*
input_channels
;
}
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
...
@@ -73,39 +73,78 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
...
@@ -73,39 +73,78 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
int
weight_offset
=
0
;
int
weight_offset
=
0
;
#pragma unroll
for
(
int
h_in
=
h_in_start
;
h_in
<
h_in_end
;
h_in
+=
dilate_height
)
{
for
(
int
h_in
=
h_in_start
;
h_in
<
h_in_end
;
h_in
+=
dilate_height
)
{
#pragma unroll
for
(
int
w_in
=
w_in_start
;
w_in
<
w_in_end
;
w_in
+=
dilate_width
)
{
for
(
int
w_in
=
w_in_start
;
w_in
<
w_in_end
;
w_in
+=
dilate_width
)
{
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
w_in
<
w_end
)
{
w_in
<
w_end
)
{
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
int
offset
;
T
in_data
=
input_data
[
offset
];
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
}
else
{
offset
=
in_offset
+
(
h_in
*
input_width
+
w_in
)
*
input_channels
+
c_in
;
}
if
(
fuse_relu_before_conv
)
{
if
(
fuse_relu_before_conv
)
{
value
+=
weight
[
weight_offset
]
*
max
(
0.0
f
,
input_data
[
offset
]
);
value
+=
weight
[
weight_offset
]
*
max
(
0.0
f
,
in_data
);
}
else
{
}
else
{
value
+=
weight
[
weight_offset
]
*
input_data
[
offset
]
;
value
+=
weight
[
weight_offset
]
*
in_data
;
}
}
}
}
weight_offset
++
;
weight_offset
++
;
}
}
}
}
int
index
;
int
index
=
batch
*
output_channels
*
output_height
*
output_width
+
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
c_out
*
output_height
*
output_width
+
h_out
*
output_width
+
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
w_out
;
output_data
[
index
]
=
value
;
}
// A Cuda kernel to compute the depthwise convolution forward pass
// in NHWC format.
template
<
typename
T
,
bool
fuse_relu_before_conv
>
__device__
__inline__
void
KernelDepthwiseConvNHWC
(
ARG_DEFINE_KernelDepthwiseConv
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
>=
(
output_channels
*
batch_size
*
output_height
*
output_width
))
return
;
const
int
c_out
=
idx
%
output_channels
;
const
int
w_out
=
(
idx
/
output_channels
)
%
output_width
;
const
int
h_out
=
(
idx
/
output_channels
/
output_width
)
%
output_height
;
const
int
batch
=
idx
/
output_width
/
output_height
/
output_channels
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
T
value
=
0
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
h_in_start
+
filter_height
*
dilate_height
;
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate_width
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
int
weight_offset
=
0
;
#pragma unroll
for
(
int
h_in
=
h_in_start
;
h_in
<
h_in_end
;
h_in
+=
dilate_height
)
{
#pragma unroll
for
(
int
w_in
=
w_in_start
;
w_in
<
w_in_end
;
w_in
+=
dilate_width
)
{
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
w_in
<
w_end
)
{
int
offset
=
((
batch
*
input_height
+
h_in
)
*
input_width
+
w_in
)
*
output_channels
+
c_in
;
T
in_data
=
input_data
[
offset
];
if
(
fuse_relu_before_conv
)
{
value
+=
weight
[
weight_offset
]
*
max
(
0.0
f
,
in_data
);
}
else
{
}
else
{
index
=
((
batch
*
output_height
+
h_out
)
*
output_width
+
w_out
)
*
value
+=
weight
[
weight_offset
]
*
in_data
;
gridDim
.
x
+
c_out
;
}
}
output_data
[
index
]
=
value
;
}
weight_offset
++
;
}
}
}
}
int
index
=
batch
*
output_channels
*
output_height
*
output_width
+
h_out
*
output_width
*
output_channels
+
w_out
*
output_channels
+
c_out
;
output_data
[
index
]
=
value
;
}
}
template
<
typename
T
,
int
c_filter
,
bool
fuse_relu_before_conv
>
template
<
typename
T
,
int
c_filter
,
bool
fuse_relu_before_conv
>
...
@@ -183,35 +222,36 @@ __device__ __inline__ void KernelDepthwiseConvCFilter(
...
@@ -183,35 +222,36 @@ __device__ __inline__ void KernelDepthwiseConvCFilter(
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
,
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
,
bool
fuse_relu_before_conv
>
bool
fuse_relu_before_conv
>
__global__
void
KernelDepthwiseConvSp
(
ARG_DEFINE_KernelDepthwiseConv
)
{
__global__
void
KernelDepthwiseConvSp
(
ARG_DEFINE_KernelDepthwiseConv
)
{
if
(
c_filter_multiplier
==
0
)
{
int
final_filter_multiplier
=
filter_multiplier
;
if
(
c_filter
==
-
1
)
int
h_stride
=
stride_height
;
KernelDepthwiseConv
<
T
,
fuse_relu_before_conv
>
(
int
w_stride
=
stride_width
;
if
(
c_filter_multiplier
!=
0
)
{
final_filter_multiplier
=
c_filter_multiplier
;
h_stride
=
c_stride
;
w_stride
=
c_stride
;
}
if
(
c_filter
==
-
1
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
KernelDepthwiseConvNCHW
<
T
,
fuse_relu_before_conv
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
final_filter_multiplier
,
filter_height
,
filter_width
,
h_stride
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
w_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
dilate_width
,
output_data
,
data_layout
);
output_data
,
data_layout
);
else
KernelDepthwiseConvCFilter
<
T
,
c_filter
,
fuse_relu_before_conv
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
,
data_layout
);
}
else
{
}
else
{
if
(
c_filter
==
-
1
)
KernelDepthwiseConvNHWC
<
T
,
fuse_relu_before_conv
>
(
KernelDepthwiseConv
<
T
,
fuse_relu_before_conv
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c
_stride
,
final_filter_multiplier
,
filter_height
,
filter_width
,
h
_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
w_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
,
data_layout
);
output_data
,
data_layout
);
else
}
}
else
{
KernelDepthwiseConvCFilter
<
T
,
c_filter
,
fuse_relu_before_conv
>
(
KernelDepthwiseConvCFilter
<
T
,
c_filter
,
fuse_relu_before_conv
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c
_stride
,
final_filter_multiplier
,
filter_height
,
filter_width
,
h
_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
w_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
,
data_layout
);
output_data
,
data_layout
);
}
}
}
}
...
@@ -564,12 +604,22 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T,
...
@@ -564,12 +604,22 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T,
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
int
filter_multiplier
=
output_channels
/
input_channels
;
int
nums_output
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
block_size
=
512
;
#define check_case(c_filter_multiplier, c_stride, c_filter) \
#define check_case(c_filter_multiplier, c_stride, c_filter) \
if (c_filter_multiplier == 0 || \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride && \
stride_height == stride_width && stride_height == c_stride && \
(ksize_height == ksize_width && ksize_height == c_filter || \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
c_filter == -1)) { \
if (c_filter == -1) { \
threads.x = block_size; \
grid.x = (nums_output + block_size - 1) / block_size; \
threads.y = threads.z = grid.y = grid.z = 1; \
} \
KernelDepthwiseConvSp< \
KernelDepthwiseConvSp< \
T, c_filter_multiplier, c_stride, c_filter, \
T, c_filter_multiplier, c_stride, c_filter, \
fuse_relu_before_conv><<<grid, threads, 0, context.stream()>>>( \
fuse_relu_before_conv><<<grid, threads, 0, context.stream()>>>( \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录