Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0cd3d461
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0cd3d461
编写于
5月 23, 2018
作者:
D
daminglu
提交者:
GitHub
5月 23, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Recommend sys new api (#10894)
上级
d406c76a
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
273 addition
and
0 deletion
+273
-0
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/book/high-level-api/recommender_system/CMakeLists.txt
...sts/book/high-level-api/recommender_system/CMakeLists.txt
+7
-0
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
...-api/recommender_system/test_recommender_system_newapi.py
+265
-0
未找到文件。
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
浏览文件 @
0cd3d461
...
...
@@ -10,3 +10,4 @@ add_subdirectory(fit_a_line)
add_subdirectory
(
recognize_digits
)
add_subdirectory
(
image_classification
)
add_subdirectory
(
understand_sentiment
)
add_subdirectory
(
recommender_system
)
python/paddle/fluid/tests/book/high-level-api/recommender_system/CMakeLists.txt
0 → 100644
浏览文件 @
0cd3d461
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
0 → 100644
浏览文件 @
0cd3d461
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
sys
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.nets
as
nets
IS_SPARSE
=
True
USE_GPU
=
False
BATCH_SIZE
=
256
def
get_usr_combined_features
():
# FIXME(dzh) : old API integer_value(10) may have range check.
# currently we don't have user configurated check.
USR_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_user_id
()
+
1
uid
=
layers
.
data
(
name
=
'user_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
usr_emb
=
layers
.
embedding
(
input
=
uid
,
dtype
=
'float32'
,
size
=
[
USR_DICT_SIZE
,
32
],
param_attr
=
'user_table'
,
is_sparse
=
IS_SPARSE
)
usr_fc
=
layers
.
fc
(
input
=
usr_emb
,
size
=
32
)
USR_GENDER_DICT_SIZE
=
2
usr_gender_id
=
layers
.
data
(
name
=
'gender_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
usr_gender_emb
=
layers
.
embedding
(
input
=
usr_gender_id
,
size
=
[
USR_GENDER_DICT_SIZE
,
16
],
param_attr
=
'gender_table'
,
is_sparse
=
IS_SPARSE
)
usr_gender_fc
=
layers
.
fc
(
input
=
usr_gender_emb
,
size
=
16
)
USR_AGE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
age_table
)
usr_age_id
=
layers
.
data
(
name
=
'age_id'
,
shape
=
[
1
],
dtype
=
"int64"
)
usr_age_emb
=
layers
.
embedding
(
input
=
usr_age_id
,
size
=
[
USR_AGE_DICT_SIZE
,
16
],
is_sparse
=
IS_SPARSE
,
param_attr
=
'age_table'
)
usr_age_fc
=
layers
.
fc
(
input
=
usr_age_emb
,
size
=
16
)
USR_JOB_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_job_id
()
+
1
usr_job_id
=
layers
.
data
(
name
=
'job_id'
,
shape
=
[
1
],
dtype
=
"int64"
)
usr_job_emb
=
layers
.
embedding
(
input
=
usr_job_id
,
size
=
[
USR_JOB_DICT_SIZE
,
16
],
param_attr
=
'job_table'
,
is_sparse
=
IS_SPARSE
)
usr_job_fc
=
layers
.
fc
(
input
=
usr_job_emb
,
size
=
16
)
concat_embed
=
layers
.
concat
(
input
=
[
usr_fc
,
usr_gender_fc
,
usr_age_fc
,
usr_job_fc
],
axis
=
1
)
usr_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
)
return
usr_combined_features
def
get_mov_combined_features
():
MOV_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_movie_id
()
+
1
mov_id
=
layers
.
data
(
name
=
'movie_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
mov_emb
=
layers
.
embedding
(
input
=
mov_id
,
dtype
=
'float32'
,
size
=
[
MOV_DICT_SIZE
,
32
],
param_attr
=
'movie_table'
,
is_sparse
=
IS_SPARSE
)
mov_fc
=
layers
.
fc
(
input
=
mov_emb
,
size
=
32
)
CATEGORY_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())
category_id
=
layers
.
data
(
name
=
'category_id'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mov_categories_emb
=
layers
.
embedding
(
input
=
category_id
,
size
=
[
CATEGORY_DICT_SIZE
,
32
],
is_sparse
=
IS_SPARSE
)
mov_categories_hidden
=
layers
.
sequence_pool
(
input
=
mov_categories_emb
,
pool_type
=
"sum"
)
MOV_TITLE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
get_movie_title_dict
())
mov_title_id
=
layers
.
data
(
name
=
'movie_title'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mov_title_emb
=
layers
.
embedding
(
input
=
mov_title_id
,
size
=
[
MOV_TITLE_DICT_SIZE
,
32
],
is_sparse
=
IS_SPARSE
)
mov_title_conv
=
nets
.
sequence_conv_pool
(
input
=
mov_title_emb
,
num_filters
=
32
,
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"sum"
)
concat_embed
=
layers
.
concat
(
input
=
[
mov_fc
,
mov_categories_hidden
,
mov_title_conv
],
axis
=
1
)
# FIXME(dzh) : need tanh operator
mov_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
)
return
mov_combined_features
def
inference_program
():
usr_combined_features
=
get_usr_combined_features
()
mov_combined_features
=
get_mov_combined_features
()
inference
=
layers
.
cos_sim
(
X
=
usr_combined_features
,
Y
=
mov_combined_features
)
scale_infer
=
layers
.
scale
(
x
=
inference
,
scale
=
5.0
)
return
scale_infer
def
train_program
():
scale_infer
=
inference_program
()
label
=
layers
.
data
(
name
=
'score'
,
shape
=
[
1
],
dtype
=
'float32'
)
square_cost
=
layers
.
square_error_cost
(
input
=
scale_infer
,
label
=
label
)
avg_cost
=
layers
.
mean
(
square_cost
)
return
[
avg_cost
,
scale_infer
]
def
train
(
use_cuda
,
train_program
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.2
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
feed_order
=
[
'user_id'
,
'gender_id'
,
'age_id'
,
'job_id'
,
'movie_id'
,
'category_id'
,
'movie_title'
,
'score'
]
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
movielens
.
test
(),
batch_size
=
BATCH_SIZE
)
avg_cost_set
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
feed_order
)
# get avg cost
avg_cost
=
np
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
if
float
(
avg_cost
)
<
4
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_path
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
movielens
.
train
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
trainer
.
train
(
num_epochs
=
1
,
event_handler
=
event_handler
,
reader
=
train_reader
,
feed_order
=
[
'user_id'
,
'gender_id'
,
'age_id'
,
'job_id'
,
'movie_id'
,
'category_id'
,
'movie_title'
,
'score'
])
def
infer
(
use_cuda
,
inference_program
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_path
,
place
=
place
)
def
create_lod_tensor
(
data
,
lod
=
None
):
tensor
=
fluid
.
LoDTensor
()
if
lod
is
None
:
# Tensor, the shape is [batch_size, 1]
index
=
0
lod_0
=
[
index
]
for
l
in
range
(
len
(
data
)):
index
+=
1
lod_0
.
append
(
index
)
lod
=
[
lod_0
]
tensor
.
set_lod
(
lod
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
tensor
.
set
(
flattened_data
,
place
)
return
tensor
# Generate a random input for inference
user_id
=
create_lod_tensor
([[
1
]])
gender_id
=
create_lod_tensor
([[
1
]])
age_id
=
create_lod_tensor
([[
0
]])
job_id
=
create_lod_tensor
([[
10
]])
movie_id
=
create_lod_tensor
([[
783
]])
category_id
=
create_lod_tensor
([[
10
],
[
8
],
[
9
]],
[[
0
,
3
]])
movie_title
=
create_lod_tensor
([[
1069
],
[
4140
],
[
2923
],
[
710
],
[
988
]],
[[
0
,
5
]])
results
=
inferencer
.
infer
(
{
'user_id'
:
user_id
,
'gender_id'
:
gender_id
,
'age_id'
:
age_id
,
'job_id'
:
job_id
,
'movie_id'
:
movie_id
,
'category_id'
:
category_id
,
'movie_title'
:
movie_title
},
return_numpy
=
False
)
print
(
"infer results: "
,
np
.
array
(
results
[
0
]))
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"recommender_system.inference.model"
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_path
=
save_path
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_path
=
save_path
)
if
__name__
==
'__main__'
:
main
(
USE_GPU
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录