未验证 提交 0ca2807c 编写于 作者: F furnace 提交者: GitHub

[NPU] Add sync_batch_norm and sync_batch_norm_grad NPU Kernel (#36320)

* add sync_batch_norm (support train, infer, and fp32, fp16, and NCHW, NHWC)

* [NPU] Delete debug codes

* [NPU] Remove FP16
上级 6072aecb
......@@ -121,6 +121,11 @@ else()
endif()
endif()
if (WITH_ASCEND_CL)
op_library(sync_batch_norm_op)
file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(sync_batch_norm);\n")
endif()
op_library(lstm_op DEPS ${OP_HEADER_DEPS} lstm_compute)
op_library(eye_op DEPS ${OP_HEADER_DEPS})
op_library(recurrent_op DEPS ${OP_HEADER_DEPS})
......
......@@ -192,6 +192,9 @@ class NPUBatchNormGradOpKernel : public framework::OpKernel<T> {
auto dx_tensor =
ctx.AllocateTmpTensor<T, NPUDeviceContext>(d_x->dims(), dev_ctx);
dx_tensor.ShareDataWith(*d_x);
if (data_layout == DataLayout::kNHWC) {
dx_tensor.set_layout(DataLayout::kNHWC);
}
if (use_global_stats) {
if (x->dims().size() == 3) {
// BNInferGrad only support x rank = 4,
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
void training_or_inference(
const framework::ExecutionContext &ctx, const aclrtStream &stream,
const platform::Place &place, const DataLayout &layout,
const bool &test_mode, const int &N, const int &C, const int &H,
const int &W, const float epsilon, const float &momentum,
const Tensor *common_mean, const Tensor *common_var, const Tensor *x,
const Tensor *scale, const Tensor *bias, const Tensor *mean,
const Tensor *variance, Tensor *mean_out, Tensor *variance_out,
Tensor *saved_mean, Tensor *saved_variance, Tensor *y) {
std::vector<int> axes;
if (layout == framework::DataLayout::kNCHW) {
axes = {0, 2, 3};
} else if (layout == framework::DataLayout::kNHWC) {
axes = {0, 1, 2};
}
std::vector<int> multiples;
if (layout == framework::DataLayout::kNCHW)
multiples = {N, 1, H, W};
else if (layout == framework::DataLayout::kNHWC)
multiples = {N, H, W, 1};
Tensor common_mean_tile_1;
{
common_mean_tile_1.Resize({C});
common_mean_tile_1.mutable_data<float>(place);
TensorCopySync(*common_mean, place, &common_mean_tile_1);
if (layout == framework::DataLayout::kNCHW)
common_mean_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
common_mean_tile_1.Resize({1, 1, 1, C});
}
Tensor common_mean_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
common_mean_tile.Resize(x->dims());
common_mean_tile.mutable_data<float>(place);
const auto &runner = NpuOpRunner("TileD", {common_mean_tile_1},
{common_mean_tile}, attr_input);
runner.Run(stream);
}
Tensor common_var_tile_1;
{
common_var_tile_1.Resize({C});
common_var_tile_1.mutable_data<float>(place);
TensorCopySync(*common_var, place, &common_var_tile_1);
if (layout == framework::DataLayout::kNCHW)
common_var_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
common_var_tile_1.Resize({1, 1, 1, C});
}
Tensor common_var_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
common_var_tile.Resize(x->dims());
common_var_tile.mutable_data<float>(place);
const auto &runner = NpuOpRunner("TileD", {common_var_tile_1},
{common_var_tile}, attr_input);
runner.Run(stream);
}
Tensor common_var_tile_add_epsilon;
{
framework::NPUAttributeMap attr_input = {{"value", epsilon}};
common_var_tile_add_epsilon.Resize(x->dims());
common_var_tile_add_epsilon.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Adds", {common_var_tile},
{common_var_tile_add_epsilon}, attr_input);
runner.Run(stream);
}
Tensor common_var_tile_add_epsilon_sqrt;
{
common_var_tile_add_epsilon_sqrt.Resize(x->dims());
common_var_tile_add_epsilon_sqrt.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Sqrt", {common_var_tile_add_epsilon},
{common_var_tile_add_epsilon_sqrt}, {});
runner.Run(stream);
}
Tensor x_sub_common_mean;
{
x_sub_common_mean.Resize(x->dims());
x_sub_common_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Sub", {*x, common_mean_tile}, {x_sub_common_mean}, {});
runner.Run(stream);
}
Tensor normalized;
{
normalized.Resize(x->dims());
normalized.mutable_data<float>(place);
const auto &runner = NpuOpRunner(
"Div", {x_sub_common_mean, common_var_tile_add_epsilon_sqrt},
{normalized}, {});
runner.Run(stream);
}
Tensor scale_tile_1;
{
scale_tile_1.Resize({C});
scale_tile_1.mutable_data<float>(place);
TensorCopySync(*scale, place, &scale_tile_1);
if (layout == framework::DataLayout::kNCHW)
scale_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
scale_tile_1.Resize({1, 1, 1, C});
}
Tensor scale_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
scale_tile.Resize(x->dims());
scale_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {scale_tile_1}, {scale_tile}, attr_input);
runner.Run(stream);
}
Tensor normalized_mul_scale;
{
normalized_mul_scale.Resize(x->dims());
normalized_mul_scale.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {normalized, scale_tile},
{normalized_mul_scale}, {});
runner.Run(stream);
}
Tensor bias_tile_1;
{
bias_tile_1.Resize({C});
bias_tile_1.mutable_data<float>(place);
TensorCopySync(*bias, place, &bias_tile_1);
if (layout == framework::DataLayout::kNCHW)
bias_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
bias_tile_1.Resize({1, 1, 1, C});
}
Tensor bias_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
bias_tile.Resize(x->dims());
bias_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {bias_tile_1}, {bias_tile}, attr_input);
runner.Run(stream);
}
// calculate y
{
y->mutable_data<T>(place);
const auto &runner =
NpuOpRunner("Add", {normalized_mul_scale, bias_tile}, {*y}, {});
runner.Run(stream);
}
if (!test_mode) {
Tensor ones;
{
ones.Resize({C});
ones.mutable_data<float>(place);
FillNpuTensorWithConstant<float>(&ones, 1);
}
// cacl mean_out
{
Tensor common_mean_mul_1_sub_momentum;
{
framework::NPUAttributeMap attr_input = {{"value", 1 - momentum}};
common_mean_mul_1_sub_momentum.Resize({C});
common_mean_mul_1_sub_momentum.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Muls", {*common_mean},
{common_mean_mul_1_sub_momentum}, attr_input);
runner.Run(stream);
}
Tensor mean_mul_momentum;
{
framework::NPUAttributeMap attr_input = {{"value", momentum}};
mean_mul_momentum.Resize({C});
mean_mul_momentum.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Muls", {*mean}, {mean_mul_momentum}, attr_input);
runner.Run(stream);
}
mean_out->mutable_data<float>(place);
const auto &runner = NpuOpRunner(
"Add", {common_mean_mul_1_sub_momentum, mean_mul_momentum},
{*mean_out}, {});
runner.Run(stream);
}
// cacl variance_out
{
Tensor momentum_mul_var;
{
framework::NPUAttributeMap attr_input = {{"value", momentum}};
momentum_mul_var.Resize({C});
momentum_mul_var.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Muls", {*variance}, {momentum_mul_var}, attr_input);
runner.Run(stream);
}
Tensor var_ref_mul_1_sub_momentum;
{
framework::NPUAttributeMap attr_input = {{"value", 1 - momentum}};
var_ref_mul_1_sub_momentum.Resize({C});
var_ref_mul_1_sub_momentum.mutable_data<float>(place);
const auto &runner = NpuOpRunner(
"Muls", {*common_var}, {var_ref_mul_1_sub_momentum}, attr_input);
runner.Run(stream);
}
variance_out->mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Add", {var_ref_mul_1_sub_momentum, momentum_mul_var},
{*variance_out}, {});
runner.Run(stream);
}
// cacl saved_variance
{
Tensor var_ref_add_epsilon;
{
framework::NPUAttributeMap attr_input = {{"value", epsilon}};
var_ref_add_epsilon.Resize({C});
var_ref_add_epsilon.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Adds", {*common_var},
{var_ref_add_epsilon}, attr_input);
runner.Run(stream);
}
Tensor var_ref_add_epsilon_sqrt;
{
var_ref_add_epsilon_sqrt.Resize({C});
var_ref_add_epsilon_sqrt.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Sqrt", {var_ref_add_epsilon},
{var_ref_add_epsilon_sqrt}, {});
runner.Run(stream);
}
saved_variance->mutable_data<float>(place);
const auto &runner = NpuOpRunner("Div", {ones, var_ref_add_epsilon_sqrt},
{*saved_variance}, {});
runner.Run(stream);
}
}
}
template <typename DeviceContext, typename T>
class SyncBatchNormNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const float epsilon = ctx.Attr<float>("epsilon");
float momentum = ctx.Attr<float>("momentum");
const bool is_test = ctx.Attr<bool>("is_test");
const std::string layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout layout = framework::StringToDataLayout(layout_str);
const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
PADDLE_ENFORCE_EQ(use_global_stats, false,
platform::errors::InvalidArgument(
"sync_batch_norm doesn't support "
"to set use_global_stats True. Please use batch_norm "
"in this case."));
const auto *x = ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");
const auto *mean = ctx.Input<Tensor>("Mean");
const auto *variance = ctx.Input<Tensor>("Variance");
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
const auto &x_dims = x->dims();
PADDLE_ENFORCE_EQ(x_dims.size(), 4,
platform::errors::InvalidArgument(
"The input tensor X's dimension must equal to 4. But "
"received X's shape = [%s], X's dimension = [%d].",
x_dims, x_dims.size()));
int N, C, H, W, D;
ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
int x_numel = x->numel();
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
std::vector<int> axes;
if (layout == framework::DataLayout::kNCHW) {
axes = {0, 2, 3};
} else if (layout == framework::DataLayout::kNHWC) {
axes = {0, 1, 2};
}
bool test_mode = is_test && (!trainable_stats);
if (test_mode) { // inference
// cacl saved_mean
saved_mean->mutable_data<float>(place);
TensorCopySync(*mean, place, saved_mean);
// cacl saved_variance
saved_variance->mutable_data<float>(place);
TensorCopySync(*variance, place, saved_variance);
// cacl y
training_or_inference<T>(ctx, stream, place, layout, test_mode, N, C, H,
W, epsilon, momentum, mean, variance, x, scale,
bias, mean, variance, NULL, NULL, NULL, NULL, y);
} else { // training
if (ctx.HasInput("MomentumTensor")) {
const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
Tensor mom_cpu;
TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
momentum = mom_cpu.data<float>()[0];
}
// cacl saved_mean and var_ref
Tensor var_ref;
var_ref.Resize({C});
var_ref.mutable_data<float>(place);
{
Tensor x_sum;
{
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
x_sum.Resize({C});
x_sum.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {*x}, {x_sum}, attr_input);
runner.Run(stream);
}
Tensor x_square;
{
x_square.Resize(x->dims());
x_square.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Square", {*x}, {x_square}, {});
runner.Run(stream);
}
Tensor x_square_sum;
{
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
x_square_sum.Resize({C});
x_square_sum.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {x_square}, {x_square_sum}, attr_input);
runner.Run(stream);
}
auto comm = paddle::platform::HCCLCommContext::Instance().Get(0, place);
float device_counts = 0.0;
if (comm) {
HcclDataType dtype = platform::ToHCCLDataType(mean_out->type());
Tensor device_count_tensor;
{
device_count_tensor.Resize({1});
device_count_tensor.mutable_data<float>(place);
FillNpuTensorWithConstant<float>(&device_count_tensor, 1);
}
// HcclAllReduce device_count_tensor
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(device_count_tensor.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, 1, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
std::vector<float> device_count_vec(1);
TensorToVector(device_count_tensor, ctx.device_context(),
&device_count_vec);
device_counts = device_count_vec[0];
// HcclAllReduce x_sum
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(x_sum.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, C, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
// HcclAllReduce x_square_sum
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(x_square_sum.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, C, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
}
// cacl saved_mean
{
framework::NPUAttributeMap attr_input = {
{"value", 1.0f * C / x_numel / device_counts}};
saved_mean->mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Muls", {x_sum}, {*saved_mean}, attr_input);
runner.Run(stream);
}
// cacl var_ref
{
Tensor saved_mean_square;
{
saved_mean_square.Resize({C});
saved_mean_square.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Square", {*saved_mean}, {saved_mean_square}, {});
runner.Run(stream);
}
Tensor var_ref_tmp;
var_ref_tmp.Resize({C});
var_ref_tmp.mutable_data<float>(place);
{
framework::NPUAttributeMap attr_input = {
{"value", 1.0f * C / x_numel / device_counts}};
const auto &runner =
NpuOpRunner("Muls", {x_square_sum}, {var_ref_tmp}, attr_input);
runner.Run(stream);
}
// cacl var_ref
{
const auto &runner = NpuOpRunner(
"Sub", {var_ref_tmp, saved_mean_square}, {var_ref}, {});
runner.Run(stream);
}
}
}
training_or_inference<T>(ctx, stream, place, layout, test_mode, N, C, H,
W, epsilon, momentum, saved_mean, &var_ref, x,
scale, bias, mean, variance, mean_out,
variance_out, saved_mean, saved_variance, y);
}
}
};
template <typename DeviceContext, typename T>
class SyncBatchNormNPUGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
float epsilon = ctx.Attr<float>("epsilon");
const std::string layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout layout = framework::StringToDataLayout(layout_str);
const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto *scale = ctx.Input<Tensor>("Scale");
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
const Tensor *x;
if (ctx.HasInput("Y")) {
PADDLE_ENFORCE_EQ(true, false,
platform::errors::InvalidArgument(
"sync_batch_norm_grad doesn't support input Y"));
} else {
x = ctx.Input<Tensor>("X");
}
int N, C, H, W, D;
ExtractNCWHD(x->dims(), layout, &N, &C, &H, &W, &D);
int x_numel = x->numel();
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
std::vector<int> axes;
if (layout == framework::DataLayout::kNCHW) {
axes = {0, 2, 3};
} else if (layout == framework::DataLayout::kNHWC) {
axes = {0, 1, 2};
}
std::vector<int> multiples;
if (layout == framework::DataLayout::kNCHW)
multiples = {N, 1, H, W};
else if (layout == framework::DataLayout::kNHWC)
multiples = {N, H, W, 1};
auto comm = paddle::platform::HCCLCommContext::Instance().Get(0, place);
HcclDataType dtype = platform::ToHCCLDataType(scale->type());
float device_counts = 0.0;
if (comm) {
Tensor device_count_tensor;
{
device_count_tensor.Resize({1});
device_count_tensor.mutable_data<float>(place);
FillNpuTensorWithConstant<float>(&device_count_tensor, 1);
}
// HcclAllReduce device_count_tensor
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(device_count_tensor.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, 1, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
std::vector<float> device_count_vec(1);
TensorToVector(device_count_tensor, ctx.device_context(),
&device_count_vec);
device_counts = device_count_vec[0];
PADDLE_ENFORCE_GE(device_counts, 2, platform::errors::PreconditionNotMet(
"device_counts should >= 2."));
}
// cacl var_ref
Tensor var_ref;
var_ref.Resize({C});
var_ref.mutable_data<float>(place);
{
// cacl var_ref
{
Tensor x_square;
{
x_square.Resize(x->dims());
x_square.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Square", {*x}, {x_square}, {});
runner.Run(stream);
}
Tensor x_square_sum;
{
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
x_square_sum.Resize({C});
x_square_sum.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {x_square}, {x_square_sum}, attr_input);
runner.Run(stream);
}
Tensor x_square_sum_mean;
{
framework::NPUAttributeMap attr_input = {
{"value", 1.0f * C / x_numel}};
x_square_sum_mean.Resize({C});
x_square_sum_mean.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Muls", {x_square_sum},
{x_square_sum_mean}, attr_input);
runner.Run(stream);
}
Tensor mean_square;
{
mean_square.Resize({C});
mean_square.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Square", {*saved_mean}, {mean_square}, {});
runner.Run(stream);
}
// cacl var_ref
{
const auto &runner = NpuOpRunner(
"Sub", {x_square_sum_mean, mean_square}, {var_ref}, {});
runner.Run(stream);
}
}
}
Tensor saved_mean_tile_1;
{
saved_mean_tile_1.Resize({C});
saved_mean_tile_1.mutable_data<float>(place);
TensorCopySync(*saved_mean, place, &saved_mean_tile_1);
if (layout == framework::DataLayout::kNCHW)
saved_mean_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
saved_mean_tile_1.Resize({1, 1, 1, C});
}
Tensor saved_mean_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
saved_mean_tile.Resize(x->dims());
saved_mean_tile.mutable_data<float>(place);
const auto &runner = NpuOpRunner("TileD", {saved_mean_tile_1},
{saved_mean_tile}, attr_input);
runner.Run(stream);
}
Tensor x_sub_saved_mean;
{
x_sub_saved_mean.Resize(x->dims());
x_sub_saved_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Sub", {*x, saved_mean_tile}, {x_sub_saved_mean}, {});
runner.Run(stream);
}
Tensor var_ref_tile_1;
{
var_ref_tile_1.Resize({C});
var_ref_tile_1.mutable_data<float>(place);
TensorCopySync(var_ref, place, &var_ref_tile_1);
if (layout == framework::DataLayout::kNCHW)
var_ref_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
var_ref_tile_1.Resize({1, 1, 1, C});
}
Tensor var_ref_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
var_ref_tile.Resize(x->dims());
var_ref_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {var_ref_tile_1}, {var_ref_tile}, attr_input);
runner.Run(stream);
}
Tensor var_ref_tile_add_epsilon;
{
framework::NPUAttributeMap attr_input = {{"value", epsilon}};
var_ref_tile_add_epsilon.Resize(x->dims());
var_ref_tile_add_epsilon.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Adds", {var_ref_tile},
{var_ref_tile_add_epsilon}, attr_input);
runner.Run(stream);
}
Tensor var_ref_tile_add_epsilon_sqrt;
{
var_ref_tile_add_epsilon_sqrt.Resize(x->dims());
var_ref_tile_add_epsilon_sqrt.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Sqrt", {var_ref_tile_add_epsilon},
{var_ref_tile_add_epsilon_sqrt}, {});
runner.Run(stream);
}
Tensor dy_mul_x_sub_mean_for_scale;
{
if (d_y->type() == framework::proto::VarType::FP16) {
dy_mul_x_sub_mean_for_scale.Resize(x->dims());
dy_mul_x_sub_mean_for_scale.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {*d_y, x_sub_saved_mean},
{dy_mul_x_sub_mean_for_scale}, {});
runner.Run(stream);
} else {
dy_mul_x_sub_mean_for_scale.Resize(x->dims());
dy_mul_x_sub_mean_for_scale.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {*d_y, x_sub_saved_mean},
{dy_mul_x_sub_mean_for_scale}, {});
runner.Run(stream);
}
}
Tensor dy_mul_x_sub_mean;
{
if (d_y->type() == framework::proto::VarType::FP16) {
dy_mul_x_sub_mean.Resize(x->dims());
dy_mul_x_sub_mean.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {*d_y, x_sub_saved_mean},
{dy_mul_x_sub_mean}, {});
runner.Run(stream);
} else {
dy_mul_x_sub_mean.Resize(x->dims());
dy_mul_x_sub_mean.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {*d_y, x_sub_saved_mean},
{dy_mul_x_sub_mean}, {});
runner.Run(stream);
}
}
// HcclAllReduce dy_mul_x_sub_mean
if (comm) {
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(dy_mul_x_sub_mean.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, C, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
{
framework::NPUAttributeMap attr_input = {
{"value", 1.0f / device_counts}};
const auto &runner = NpuOpRunner("Muls", {dy_mul_x_sub_mean},
{dy_mul_x_sub_mean}, attr_input);
runner.Run(stream);
}
}
// cacl d_x
if (d_x) {
Tensor dy_mean;
{
if (d_y->type() == framework::proto::VarType::FP16) {
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
dy_mean.Resize({C});
dy_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceMeanD", {*d_y}, {dy_mean}, attr_input);
runner.Run(stream);
} else {
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
dy_mean.Resize({C});
dy_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceMeanD", {*d_y}, {dy_mean}, attr_input);
runner.Run(stream);
}
}
// HcclAllReduce dy_mean
if (comm) {
{
void *sendbuff = reinterpret_cast<void *>(
const_cast<float *>(dy_mean.data<float>()));
void *recvbuff = sendbuff;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
sendbuff, recvbuff, C, dtype, HCCL_REDUCE_SUM, comm->comm(),
reinterpret_cast<void *>(stream)));
}
{
framework::NPUAttributeMap attr_input = {
{"value", 1.0f / device_counts}};
const auto &runner =
NpuOpRunner("Muls", {dy_mean}, {dy_mean}, attr_input);
runner.Run(stream);
}
}
Tensor dy_mean_tile_1;
{
dy_mean_tile_1.Resize({C});
dy_mean_tile_1.mutable_data<float>(place);
TensorCopySync(dy_mean, place, &dy_mean_tile_1);
if (layout == framework::DataLayout::kNCHW)
dy_mean_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
dy_mean_tile_1.Resize({1, 1, 1, C});
}
Tensor dy_mean_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
dy_mean_tile.Resize(x->dims());
dy_mean_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {dy_mean_tile_1}, {dy_mean_tile}, attr_input);
runner.Run(stream);
}
Tensor dy_sub_dy_mean;
{
if (d_y->type() == framework::proto::VarType::FP16) {
dy_sub_dy_mean.Resize(x->dims());
dy_sub_dy_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Sub", {*d_y, dy_mean_tile}, {dy_sub_dy_mean}, {});
runner.Run(stream);
} else {
dy_sub_dy_mean.Resize(x->dims());
dy_sub_dy_mean.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Sub", {*d_y, dy_mean_tile}, {dy_sub_dy_mean}, {});
runner.Run(stream);
}
}
Tensor dy_mul_x_sub_mean_mean;
{
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
dy_mul_x_sub_mean_mean.Resize({C});
dy_mul_x_sub_mean_mean.mutable_data<float>(place);
const auto &runner = NpuOpRunner("ReduceMeanD", {dy_mul_x_sub_mean},
{dy_mul_x_sub_mean_mean}, attr_input);
runner.Run(stream);
}
Tensor dy_mul_x_sub_mean_mean_tile_1;
{
dy_mul_x_sub_mean_mean_tile_1.Resize({C});
dy_mul_x_sub_mean_mean_tile_1.mutable_data<float>(place);
TensorCopySync(dy_mul_x_sub_mean_mean, place,
&dy_mul_x_sub_mean_mean_tile_1);
if (layout == framework::DataLayout::kNCHW)
dy_mul_x_sub_mean_mean_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
dy_mul_x_sub_mean_mean_tile_1.Resize({1, 1, 1, C});
}
Tensor dy_mul_x_sub_mean_mean_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
dy_mul_x_sub_mean_mean_tile.Resize(x->dims());
dy_mul_x_sub_mean_mean_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {dy_mul_x_sub_mean_mean_tile_1},
{dy_mul_x_sub_mean_mean_tile}, attr_input);
runner.Run(stream);
}
// (x - mean) * np.mean(dy * (x - mean), axis=axis)
// x_sub_saved_mean * dy_mul_x_sub_mean_mean_tile
Tensor tmp1;
{
tmp1.Resize(x->dims());
tmp1.mutable_data<float>(place);
const auto &runner = NpuOpRunner(
"Mul", {x_sub_saved_mean, dy_mul_x_sub_mean_mean_tile}, {tmp1}, {});
runner.Run(stream);
}
// (x - mean) * np.mean(dy * (x - mean), axis=axis) / (var + epsilon)
// tmp1 / (var + epsilon)
// tmp1 / var_ref_tile_add_epsilon
Tensor tmp2;
{
tmp2.Resize(x->dims());
tmp2.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Div", {tmp1, var_ref_tile_add_epsilon}, {tmp2}, {});
runner.Run(stream);
}
// dy - np.mean(dy, axis) - (x - mean) * np.mean(dy * (x - mean), axis) /
// (var + epsilon)
// dy_sub_dy_mean - tmp2
Tensor tmp3;
{
tmp3.Resize(x->dims());
tmp3.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("Sub", {dy_sub_dy_mean, tmp2}, {tmp3}, {});
runner.Run(stream);
}
Tensor scale_tile_1;
{
scale_tile_1.Resize({C});
scale_tile_1.mutable_data<float>(place);
TensorCopySync(*scale, place, &scale_tile_1);
if (layout == framework::DataLayout::kNCHW)
scale_tile_1.Resize({1, C, 1, 1});
else if (layout == framework::DataLayout::kNHWC)
scale_tile_1.Resize({1, 1, 1, C});
}
Tensor scale_tile;
{
framework::NPUAttributeMap attr_input = {{"multiples", multiples}};
scale_tile.Resize(x->dims());
scale_tile.mutable_data<float>(place);
const auto &runner =
NpuOpRunner("TileD", {scale_tile_1}, {scale_tile}, attr_input);
runner.Run(stream);
}
// scale * (dy - np.mean(dy, axis) - (x - mean) * np.mean(dy * (x - mean),
// axis) / (var + epsilon))
// scale * tmp3
Tensor dx_1;
{
dx_1.Resize(x->dims());
dx_1.mutable_data<float>(place);
const auto &runner = NpuOpRunner("Mul", {scale_tile, tmp3}, {dx_1}, {});
runner.Run(stream);
}
// dx_1 / var_ref_tile_add_epsilon_sqrt
{
d_x->Resize(x->dims());
d_x->mutable_data<T>(place);
const auto &runner = NpuOpRunner(
"Div", {dx_1, var_ref_tile_add_epsilon_sqrt}, {*d_x}, {});
runner.Run(stream);
}
}
// cacl d_scale
if (d_scale) {
Tensor d_scale_2;
{
d_scale_2.Resize(x->dims());
d_scale_2.mutable_data<float>(place);
const auto &runner = NpuOpRunner(
"Div", {dy_mul_x_sub_mean_for_scale, var_ref_tile_add_epsilon_sqrt},
{d_scale_2}, {});
runner.Run(stream);
}
{
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
d_scale->mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {d_scale_2}, {*d_scale}, attr_input);
runner.Run(stream);
}
}
// cacl d_bias
if (d_bias) {
if (d_y->type() == framework::proto::VarType::FP16) {
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
d_bias->mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {*d_y}, {*d_bias}, attr_input);
runner.Run(stream);
} else {
framework::NPUAttributeMap attr_input = {{"keep_dims", false},
{"axes", axes}};
d_bias->mutable_data<float>(place);
const auto &runner =
NpuOpRunner("ReduceSumD", {*d_y}, {*d_bias}, attr_input);
runner.Run(stream);
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
sync_batch_norm,
ops::SyncBatchNormNPUKernel<plat::NPUDeviceContext, float>);
REGISTER_OP_NPU_KERNEL(
sync_batch_norm_grad,
ops::SyncBatchNormNPUGradKernel<plat::NPUDeviceContext, float>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
sys.path.append("..")
import signal
import time
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_sync_batch_norm_base_npu import TestSyncBatchNormRunnerBase, runtime_main
from paddle.fluid.tests.unittests.op_test import OpTest, _set_use_system_allocator
from paddle.fluid.tests.unittests.test_sync_batch_norm_op import create_or_get_tensor
_set_use_system_allocator(False)
paddle.enable_static()
class TestSyncBatchNormOpTraining(TestSyncBatchNormRunnerBase):
def __init__(self):
self.global_ring_id = 0
self.dtype = np.float32
self.N = 8
self.C = 16
self.H = 32
self.W = 32
self.dshape = [self.N, self.C, self.H, self.W]
self.atol = 1e-3
def get_model(self,
main,
startup,
place,
layout,
seed,
sync_bn=False,
only_forward=False):
"""Build program."""
use_cudnn = False
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
data = fluid.layers.data(
name='input',
shape=self.dshape,
dtype=self.dtype,
append_batch_size=False)
conv = fluid.layers.conv2d(
input=data,
num_filters=32,
filter_size=1,
param_attr=fluid.ParamAttr(name='conv2d_weight'),
bias_attr=False,
use_cudnn=use_cudnn)
bn = fluid.layers.batch_norm(
conv,
param_attr=fluid.ParamAttr(name='bn_scale'),
bias_attr=fluid.ParamAttr(name='bn_bias'),
moving_mean_name='bn_moving_mean',
moving_variance_name='bn_moving_variance',
data_layout=layout,
is_test=only_forward)
# if self.dtype == np.float16:
# bn = fluid.layers.cast(bn, 'float32')
sigmoid = fluid.layers.sigmoid(bn)
out = fluid.layers.reduce_sum(sigmoid)
# if not sync_bn:
# out = out / core.get_npu_device_count()
if not only_forward:
sgd_opt = fluid.optimizer.SGD(learning_rate=0.0)
sgd_opt.backward(out)
return [out, conv, bn]
if __name__ == "__main__":
# print('sync_batch_norm_op_npu.py __main__')
runtime_main(TestSyncBatchNormOpTraining, "identity", 0)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import six
import sys
sys.path.append("..")
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
from six import string_types
import paddle
from paddle.fluid.tests.unittests.op_test import OpTest, _set_use_system_allocator
from paddle.fluid.tests.unittests.test_sync_batch_norm_op import create_or_get_tensor
_set_use_system_allocator(False)
paddle.enable_static()
SEED = 10
class TestSyncBatchNormRunnerBase(object):
def get_model(self,
main,
startup,
place,
layout,
seed,
sync_bn=False,
only_forward=False):
raise NotImplementedError(
"get model should be implemented by child class.")
def wait_server_ready(self, endpoints):
assert not isinstance(endpoints, string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with closing(
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
sys.stderr.write("server not ready, wait 3 sec to retry...\n")
sys.stderr.write("not ready endpoints:" + str(
not_ready_endpoints) + "\n")
sys.stderr.flush()
time.sleep(3)
else:
break
#endpoints should be ["ip1:port1","ip2:port2"]
def initCommunicator(self, program, rank, nranks, wait_port,
current_endpoint, endpoints):
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
self.wait_server_ready(other_endpoints)
block = program.global_block()
hccl_id_var = block.create_var(
name=nameGen.generate('hccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_hccl_id',
inputs={},
outputs={'Out': hccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init_hccl',
inputs={'X': hccl_id_var},
outputs={},
attrs={
'rank': rank,
'ring_id': self.global_ring_id,
'device_id': int(os.getenv("FLAGS_selected_npus")),
'rank_ids': nranks
})
def run_trainer(self, args):
device_id = int(os.getenv("FLAGS_selected_npus", "0"))
place = fluid.NPUPlace(device_id)
places = [place]
# Test training
for place in places:
for layout in ["NCHW", "NHWC"]:
self._compare(args, place, layout, False)
# Test inference
for place in places:
for layout in ["NCHW", "NHWC"]:
self._compare(args, place, layout, True)
# Test FP16 - @TODO
# self.dtype = np.float16
# self.atol = 1e-2
# Test training
# for place in places:
# for layout in ["NCHW", "NHWC"]:
# self._compare(args, place, layout, False)
# Test inference
# for place in places:
# for layout in ["NCHW", "NHWC"]:
# self._compare(args, place, layout, True)
sys.stdout.buffer.write(
pickle.dumps(
'training, inference, fp32, fp16, NCHW, NHWC all passed'))
def _compare(self, args, place, layout, only_forward):
scope = core.Scope()
np.random.seed(SEED)
data = np.random.random(size=self.dshape).astype(self.dtype) * 4. - 2
sys.stderr.write("data: " + str(data) + "\n")
data = create_or_get_tensor(scope, "input",
OpTest.np_dtype_to_fluid_dtype(data), place)
bn_fetches = self._cal_single_card(args, data, place, layout,
only_forward)
fetch_names, sync_bn_fetches = self._cal_multiple_cards(
args, data, place, layout, only_forward)
sys.stderr.write("len(sync_bn_fetches): " + str(len(sync_bn_fetches)) +
"\n")
for i in six.moves.xrange(0, len(sync_bn_fetches)):
sys.stderr.write("i: " + str(i) + "\n")
sys.stderr.write("fetch_names[i]): " + fetch_names[i] + "\n")
bn_val = bn_fetches[i]
sync_bn_val = sync_bn_fetches[i]
if sync_bn_val.shape != bn_val.shape:
sync_bn_val = sync_bn_val[:bn_val.shape[0]]
# i = 0
if fetch_names[i] == 'reduce_sum_0.tmp_0':
# sys.stderr.write("skip reduce_sum_0.tmp_0 (Out of reduce_sum op)" + "\n")
sys.stderr.write("reduce_sum_0.tmp_0 (Out of reduce_sum op)" +
"\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 1
if fetch_names[i] == 'conv2d_0.tmp_0':
# sys.stderr.write("skip conv2d_0.tmp_0 (X)" + "\n")
sys.stderr.write("conv2d_0.tmp_0 (X)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 2
if fetch_names[i] == 'batch_norm_0.tmp_3':
# sys.stderr.write("skip batch_norm_0.tmp_3 (Y)" + "\n")
sys.stderr.write("batch_norm_0.tmp_3 (Y)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 2
if fetch_names[i] == 'batch_norm_0.tmp_2':
# sys.stderr.write("skip batch_norm_0.tmp_2 (ReserveSpace of batch_norm)" + "\n")
sys.stderr.write(
"batch_norm_0.tmp_2 (ReserveSpace of batch_norm)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 3
if fetch_names[i] == 'bn_moving_mean':
sys.stderr.write("skip bn_moving_mean (MeanOut)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
continue
# i = 4
if fetch_names[i] == 'bn_moving_variance':
sys.stderr.write("skip bn_moving_variance (VarianceOut)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
continue
# i = 7
if fetch_names[i] == 'batch_norm_0.tmp_0':
# sys.stderr.write("skip batch_norm_0.tmp_0 (SavedMean)" + "\n")
sys.stderr.write("batch_norm_0.tmp_0 (SavedMean)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 8
if fetch_names[i] == 'batch_norm_0.tmp_1':
sys.stderr.write("skip batch_norm_0.tmp_1 (SavedVariance)" +
"\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
continue
# i = 9
if fetch_names[i] == 'bn_scale@GRAD':
# sys.stderr.write("skip bn_scale@GRAD (Scale@GRAD)" + "\n")
sys.stderr.write("bn_scale@GRAD (Scale@GRAD)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 10
if fetch_names[i] == 'bn_bias@GRAD':
# sys.stderr.write("skip bn_bias@GRAD (Bias@GRAD)" + "\n")
sys.stderr.write("bn_bias@GRAD (Bias@GRAD)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 11
if fetch_names[i] == 'batch_norm_0.tmp_3@GRAD':
# sys.stderr.write("skip batch_norm_0.tmp_3@GRAD (Y@GRAD)" + "\n")
sys.stderr.write("batch_norm_0.tmp_3@GRAD (Y@GRAD)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
# i = 12
if fetch_names[i] == 'conv2d_0.tmp_0@GRAD':
# sys.stderr.write("skip conv2d_0.tmp_0@GRAD (X@GRAD)" + "\n")
sys.stderr.write("conv2d_0.tmp_0@GRAD (X@GRAD)" + "\n")
sys.stderr.write("bn_val: " + str(bn_val) + "\n")
sys.stderr.write("sync_bn_val: " + str(sync_bn_val) + "\n")
# continue
atol = self.atol
if fetch_names[i] == 'conv2d_0.tmp_0@GRAD':
atol = 1e-2
assert np.allclose(
bn_val, sync_bn_val, atol=atol), "Output (" + fetch_names[
i] + ") has diff. \n" + "\nBN " + str(
bn_val) + "\n" + "Sync BN " + str(sync_bn_val)
def _cal_single_card(self, args, data, place, layout, only_forward):
# Single-NPU, N = 32 per NPU
train_prog = fluid.Program()
startup_prog = fluid.Program()
train_prog.global_seed(SEED)
startup_prog.global_seed(SEED)
paddle.seed(SEED)
outs = self.get_model(train_prog, startup_prog, place, layout, SEED,
False, only_forward)
exe = fluid.Executor(place)
exe.run(startup_prog)
fetch_names = [v.name for v in outs] + [
'bn_moving_mean', 'bn_moving_variance', 'bn_scale', 'bn_bias'
]
if not only_forward:
others = [
'batch_norm_0.tmp_0', 'batch_norm_0.tmp_1', 'bn_scale@GRAD',
'bn_bias@GRAD', 'batch_norm_0.tmp_3@GRAD', 'conv2d_0.tmp_0@GRAD'
]
fetch_names += others
bn_fetches = exe.run(program=train_prog,
feed={'input': data},
fetch_list=fetch_names)
return bn_fetches
def _cal_multiple_cards(self, args, data, place, layout, only_forward):
# Multi-NPUs, self.N per NPU
# return
assert core.get_npu_device_count() > 1
train_prog = fluid.Program()
startup_prog = fluid.Program()
train_prog.global_seed(SEED)
startup_prog.global_seed(SEED)
paddle.seed(SEED)
sys.stderr.write("train_prog: " + train_prog.to_string(True) + "\n")
sys.stderr.write("startup_prog: " + startup_prog.to_string(True) + "\n")
endpoints = args["endpoints"].split(",")
rank = args["trainerid"]
current_endpoint = args["currentendpoint"]
nranks = 2
self.initCommunicator(startup_prog, rank, nranks, True,
current_endpoint, endpoints)
sys.stderr.write("after init, startup_prog: " + startup_prog.to_string(
True) + "\n")
train_prog.global_seed(SEED)
train_prog._sync_with_cpp()
startup_prog.global_seed(SEED)
startup_prog._sync_with_cpp()
paddle.seed(SEED)
self.rank = rank
outs = self.get_model(train_prog, startup_prog, place, layout, SEED,
True, only_forward)
sys.stderr.write("after get_model, train_prog: " + train_prog.to_string(
True) + "\n")
sys.stderr.write("after get_model, startup_prog: " +
startup_prog.to_string(True) + "\n")
ops = train_prog.blocks[0].ops
for i, op in enumerate(ops):
if op.type == 'batch_norm':
sys.stderr.write("i: " + str(i) + "\n")
sys.stderr.write("op type: " + op.type + "\n")
op.desc.set_type('sync_batch_norm')
if op.type == 'batch_norm_grad':
sys.stderr.write("i: " + str(i) + "\n")
sys.stderr.write("op type: " + op.type + "\n")
op.desc.set_type('sync_batch_norm_grad')
sys.stderr.write("after update sync_batch_norm, train_prog: " +
train_prog.to_string(True) + "\n")
exe = fluid.Executor(place)
exe.run(startup_prog)
fetch_names = [v.name for v in outs] + [
'bn_moving_mean', 'bn_moving_variance', 'bn_scale', 'bn_bias'
]
if not only_forward:
others = [
'batch_norm_0.tmp_0', 'batch_norm_0.tmp_1', 'bn_scale@GRAD',
'bn_bias@GRAD', 'batch_norm_0.tmp_3@GRAD', 'conv2d_0.tmp_0@GRAD'
]
fetch_names += others
sync_bn_fetches = exe.run(program=train_prog,
feed={'input': data},
fetch_list=fetch_names)
return fetch_names, sync_bn_fetches
def runtime_main(test_class, col_type, sub_type):
args = {}
model = test_class()
args["deviceid"] = os.getenv("FLAGS_selected_npus")
args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
args["col_type"] = col_type
model.run_trainer(args)
import paddle.compat as cpt
import socket
from contextlib import closing
class TestDistBase(unittest.TestCase):
def setUp(self):
self._port_set = set()
self._trainers = 2
self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
self._find_free_port(), self._find_free_port())
self._python_interp = sys.executable
def _find_free_port(self):
def __free_port():
with closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as s:
s.bind(('', 0))
return s.getsockname()[1]
while True:
port = __free_port()
if port not in self._port_set:
self._port_set.add(port)
return port
def _run_cluster(self, model_file, envs):
worker_endpoints = self._ps_endpoints.split(",")
w0_ep, w1_ep = worker_endpoints
# print("w0_ep:", w0_ep, " w1_ep:", w1_ep)
env0 = {
"FLAGS_selected_npus": "0",
"PADDLE_TRAINER_ID": "0",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w0_ep,
}
env1 = {
"FLAGS_selected_npus": "1",
"PADDLE_TRAINER_ID": "1",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w1_ep,
}
#update environment
env0.update(envs)
env1.update(envs)
tr_cmd = "%s %s"
tr0_cmd = tr_cmd % (self._python_interp, model_file)
tr1_cmd = tr_cmd % (self._python_interp, model_file)
tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb")
# print(tr0_cmd)
# print(tr1_cmd)
tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr0_pipe,
env=env0)
tr1_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr1_pipe,
env=env1)
tr0_out, tr0_err = tr0_proc.communicate()
tr1_out, tr1_err = tr1_proc.communicate()
sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
# close trainer file
tr0_pipe.close()
tr1_pipe.close()
return pickle.loads(tr0_out), pickle.loads(
tr1_out), tr0_proc.pid, tr1_proc.pid
def check_with_place(self, model_file, col_type, need_envs={}):
tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file, need_envs)
self.assertEqual(
tr0_out, 'training, inference, fp32, fp16, NCHW, NHWC all passed')
self.assertEqual(
tr1_out, 'training, inference, fp32, fp16, NCHW, NHWC all passed')
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import os
import sys
sys.path.append("..")
from paddle.fluid.tests.unittests.op_test import OpTest, _set_use_system_allocator
from test_sync_batch_norm_base_npu import TestDistBase
_set_use_system_allocator(False)
paddle.enable_static()
class TestSyncBatchNormOp(TestDistBase):
def _setup_config(self):
pass
def test_identity(self, col_type="identity"):
dist_env = os.environ
self.check_with_place(
"sync_batch_norm_op_npu.py", col_type, need_envs=dist_env)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import os
import sys
sys.path.append("..")
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.nn as nn
from paddle.fluid import Program, program_guard
from paddle.fluid.tests.unittests.op_test import OpTest, _set_use_system_allocator
# _set_use_system_allocator(False)
paddle.enable_static()
class TestDygraphSyncBatchNormAPIError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
my_sync_batch_norm = paddle.nn.SyncBatchNorm(10)
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.NPUPlace(0))
self.assertRaises(TypeError, my_sync_batch_norm, x1)
# the input dtype of SyncBatchNorm must be float16 or float32
# float16 only can be set on GPU place and NPU place
x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="int32")
self.assertRaises(TypeError, my_sync_batch_norm, x2)
class TestConvertSyncBatchNorm(unittest.TestCase):
def test_convert(self):
with program_guard(Program(), Program()):
compare_model = paddle.nn.Sequential(
paddle.nn.Conv2D(3, 5, 3),
paddle.nn.BatchNorm2D(5), paddle.nn.BatchNorm2D(5))
model = paddle.nn.Sequential(
paddle.nn.Conv2D(3, 5, 3),
paddle.nn.BatchNorm2D(5),
paddle.nn.BatchNorm2D(
5,
weight_attr=fluid.ParamAttr(name='bn.scale'),
bias_attr=fluid.ParamAttr(name='bn.bias')))
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
for idx, sublayer in enumerate(compare_model.sublayers()):
if isinstance(sublayer, paddle.nn.BatchNorm2D):
self.assertEqual(
isinstance(model[idx], paddle.nn.SyncBatchNorm), True)
class TestConvertSyncBatchNormCast1(unittest.TestCase):
def test_convert(self):
class Net(nn.Layer):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2D(3, 5, 3)
self.bn = []
bn = self.add_sublayer('bn', nn.BatchNorm2D(5))
self.bn.append(bn)
def forward(self, x):
x = self.conv1(x)
for bn in self.bn:
x = bn(x)
return x
model = nn.Sequential()
model.add_sublayer('net1', Net())
model.add_sublayer('net2', Net())
compare_model = nn.Sequential()
compare_model.add_sublayer('net1', Net())
compare_model.add_sublayer('net2', Net())
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
self.assertEqual(len(compare_model.sublayers()), len(model.sublayers()))
class TestDygraphSyncBatchNormDataFormatError(unittest.TestCase):
def test_errors(self):
with fluid.dygraph.guard(fluid.NPUPlace(0)):
my_sync_batch_norm = paddle.nn.SyncBatchNorm(10, data_format='CN')
data = np.random.random([3, 3, 3]).astype('float32')
x = paddle.to_tensor(data)
self.assertRaises(ValueError, my_sync_batch_norm, x)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册