Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0c4acc83
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0c4acc83
编写于
12月 16, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
imporve yolo loss implement. test=develop
上级
2fbfef2e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
267 addition
and
267 deletion
+267
-267
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+2
-15
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+240
-192
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+12
-22
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+0
-2
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+13
-36
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
0c4acc83
...
@@ -34,11 +34,12 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
...
@@ -34,11 +34,12 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
PADDLE_ENFORCE_EQ
(
dim_x
[
2
],
dim_x
[
3
],
"Input(X) dim[3] and dim[4] should be euqal."
);
"Input(X) dim[3] and dim[4] should be euqal."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor
s
.
size
()
/
2
*
(
5
+
class_num
),
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor
_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"+ class_num))."
);
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
...
@@ -105,20 +106,6 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -105,20 +106,6 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
406
);
.
SetDefault
(
406
);
AddAttr
<
float
>
(
"ignore_thresh"
,
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
"The ignore threshold to ignore confidence loss."
);
AddAttr
<
float
>
(
"loss_weight_xy"
,
"The weight of x, y location loss."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"loss_weight_wh"
,
"The weight of w, h location loss."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"loss_weight_conf_target"
,
"The weight of confidence score loss in locations with target object."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"loss_weight_conf_notarget"
,
"The weight of confidence score loss in locations without "
"target object."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"loss_weight_class"
,
"The weight of classification loss."
)
.
SetDefault
(
1.0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
This operator generate yolov3 loss by given predict result and ground
truth boxes.
truth boxes.
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
0c4acc83
...
@@ -164,48 +164,50 @@ static inline void CalcSCEGradWithWeight(const T* loss_grad, Tensor* grad,
...
@@ -164,48 +164,50 @@ static inline void CalcSCEGradWithWeight(const T* loss_grad, Tensor* grad,
}
}
}
}
template
<
typename
T
>
// template <typename T>
static
void
SplitPredResult
(
const
Tensor
&
input
,
Tensor
*
pred_conf
,
// static void SplitPredResult(const Tensor& input, Tensor* pred_conf,
Tensor
*
pred_class
,
Tensor
*
pred_x
,
Tensor
*
pred_y
,
// Tensor* pred_class, Tensor* pred_x, Tensor*
Tensor
*
pred_w
,
Tensor
*
pred_h
,
// pred_y,
const
int
anchor_num
,
const
int
class_num
)
{
// Tensor* pred_w, Tensor* pred_h,
const
int
n
=
input
.
dims
()[
0
];
// const int anchor_num, const int class_num) {
const
int
h
=
input
.
dims
()[
2
];
// const int n = input.dims()[0];
const
int
w
=
input
.
dims
()[
3
];
// const int h = input.dims()[2];
const
int
box_attr_num
=
5
+
class_num
;
// const int w = input.dims()[3];
// const int box_attr_num = 5 + class_num;
auto
input_t
=
EigenTensor
<
T
,
4
>::
From
(
input
);
//
auto
pred_conf_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_conf
);
// auto input_t = EigenTensor<T, 4>::From(input);
auto
pred_class_t
=
EigenTensor
<
T
,
5
>::
From
(
*
pred_class
);
// auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
auto
pred_x_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_x
);
// auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
auto
pred_y_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_y
);
// auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
auto
pred_w_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_w
);
// auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
auto
pred_h_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_h
);
// auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
// auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
//
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
// for (int i = 0; i < n; i++) {
for
(
int
j
=
0
;
j
<
h
;
j
++
)
{
// for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
for
(
int
k
=
0
;
k
<
w
;
k
++
)
{
// for (int j = 0; j < h; j++) {
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
);
// for (int k = 0; k < w; k++) {
pred_y_t
(
i
,
an_idx
,
j
,
k
)
=
// pred_x_t(i, an_idx, j, k) = input_t(i, box_attr_num * an_idx, j,
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
);
// k);
pred_w_t
(
i
,
an_idx
,
j
,
k
)
=
// pred_y_t(i, an_idx, j, k) =
input_t
(
i
,
box_attr_num
*
an_idx
+
2
,
j
,
k
);
// input_t(i, box_attr_num * an_idx + 1, j, k);
pred_h_t
(
i
,
an_idx
,
j
,
k
)
=
// pred_w_t(i, an_idx, j, k) =
input_t
(
i
,
box_attr_num
*
an_idx
+
3
,
j
,
k
);
// input_t(i, box_attr_num * an_idx + 2, j, k);
// pred_h_t(i, an_idx, j, k) =
pred_conf_t
(
i
,
an_idx
,
j
,
k
)
=
// input_t(i, box_attr_num * an_idx + 3, j, k);
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
);
//
// pred_conf_t(i, an_idx, j, k) =
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
// input_t(i, box_attr_num * an_idx + 4, j, k);
pred_class_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
//
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
);
// for (int c = 0; c < class_num; c++) {
}
// pred_class_t(i, an_idx, j, k, c) =
}
// input_t(i, box_attr_num * an_idx + 5 + c, j, k);
}
// }
}
// }
}
// }
}
// }
// }
// }
template
<
typename
T
>
template
<
typename
T
>
static
T
CalcBoxIoU
(
std
::
vector
<
T
>
box1
,
std
::
vector
<
T
>
box2
)
{
static
T
CalcBoxIoU
(
std
::
vector
<
T
>
box1
,
std
::
vector
<
T
>
box2
)
{
...
@@ -235,7 +237,7 @@ template <typename T>
...
@@ -235,7 +237,7 @@ template <typename T>
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
input_size
,
const
int
grid_size
,
const
int
input_size
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
no
obj_mask
,
Tensor
*
tx
,
Tensor
*
conf_mask
,
Tensor
*
obj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tweight
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tweight
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
n
=
gt_box
.
dims
()[
0
];
...
@@ -243,8 +245,8 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
...
@@ -243,8 +245,8 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
const
int
anchor_num
=
anchors
.
size
()
/
2
;
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
conf_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
conf_mask
).
setConstant
(
1.
0
);
auto
noobj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0.0
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
...
@@ -280,11 +282,11 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
...
@@ -280,11 +282,11 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
best_an_index
=
an_idx
;
best_an_index
=
an_idx
;
}
}
if
(
iou
>
ignore_thresh
)
{
if
(
iou
>
ignore_thresh
)
{
noobj
_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
);
conf
_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
);
}
}
}
}
conf_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
);
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
);
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
);
noobj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
);
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
...
@@ -298,53 +300,194 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
...
@@ -298,53 +300,194 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
}
}
template
<
typename
T
>
template
<
typename
T
>
static
void
AddAllGradToInputGrad
(
static
T
SCE
(
T
x
,
T
label
)
{
Tensor
*
grad
,
const
Tensor
&
grad_x
,
const
Tensor
&
grad_y
,
return
(
x
>
0
?
x
:
0.0
)
-
x
*
label
+
std
::
log
(
1.0
+
std
::
exp
(
-
std
::
abs
(
x
)));
const
Tensor
&
grad_w
,
const
Tensor
&
grad_h
,
const
Tensor
&
grad_conf_target
,
}
const
Tensor
&
grad_conf_notarget
,
const
Tensor
&
grad_class
,
const
int
class_num
,
const
float
loss_weight_xy
,
const
float
loss_weight_wh
,
template
<
typename
T
>
const
float
loss_weight_conf_target
,
const
float
loss_weight_conf_notarget
,
static
T
L1Loss
(
T
x
,
T
y
)
{
const
float
loss_weight_class
)
{
return
std
::
abs
(
y
-
x
);
const
int
n
=
grad_x
.
dims
()[
0
];
}
const
int
an_num
=
grad_x
.
dims
()[
1
];
const
int
h
=
grad_x
.
dims
()[
2
];
template
<
typename
T
>
const
int
w
=
grad_x
.
dims
()[
3
];
static
T
SCEGrad
(
T
x
,
T
label
)
{
const
int
attr_num
=
class_num
+
5
;
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
))
-
label
;
auto
grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
grad
).
setConstant
(
0.0
);
}
auto
grad_x_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_x
);
auto
grad_y_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_y
);
template
<
typename
T
>
auto
grad_w_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_w
);
static
T
L1LossGrad
(
T
x
,
T
y
)
{
auto
grad_h_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_h
);
return
x
>
y
?
1.0
:
-
1.0
;
auto
grad_conf_target_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_target
);
}
auto
grad_conf_notarget_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_notarget
);
auto
grad_class_t
=
EigenTensor
<
T
,
5
>::
From
(
grad_class
);
template
<
typename
T
>
static
void
CalcSCE
(
T
*
loss_data
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
,
const
int
num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
int
sub_idx
=
k
*
num
;
for
(
int
l
=
0
;
l
<
num
;
l
++
)
{
loss_data
[
i
]
+=
SCE
<
T
>
(
input
[
l
*
grid_num
+
k
],
target
[
sub_idx
+
l
])
*
weight
[
k
]
*
mask
[
k
];
}
}
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
*
num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcSCEGrad
(
T
*
input_grad
,
const
T
*
loss_grad
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
,
const
int
num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
sub_idx
=
k
*
num
;
grad_t
(
i
,
j
*
attr_num
,
k
,
l
)
=
grad_x_t
(
i
,
j
,
k
,
l
)
*
loss_weight_xy
;
for
(
int
l
=
0
;
l
<
num
;
l
++
)
{
grad_t
(
i
,
j
*
attr_num
+
1
,
k
,
l
)
=
input_grad
[
l
*
grid_num
+
k
]
=
grad_y_t
(
i
,
j
,
k
,
l
)
*
loss_weight_xy
;
SCEGrad
<
T
>
(
input
[
l
*
grid_num
+
k
],
target
[
sub_idx
+
l
])
*
grad_t
(
i
,
j
*
attr_num
+
2
,
k
,
l
)
=
weight
[
k
]
*
mask
[
k
]
*
loss_grad
[
i
];
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
3
,
k
,
l
)
=
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
=
grad_conf_target_t
(
i
,
j
,
k
,
l
)
*
loss_weight_conf_target
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
+=
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
loss_weight_conf_notarget
;
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
grad_t
(
i
,
j
*
attr_num
+
5
+
c
,
k
,
l
)
=
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
loss_weight_class
;
}
}
}
}
}
input_grad
+=
(
class_num
+
5
)
*
grid_num
;
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
*
num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcL1Loss
(
T
*
loss_data
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
loss_data
[
i
]
+=
L1Loss
<
T
>
(
input
[
k
],
target
[
k
])
*
weight
[
k
]
*
mask
[
k
];
}
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
template
<
typename
T
>
static
void
CalcL1LossGrad
(
T
*
input_grad
,
const
T
*
loss_grad
,
const
T
*
input
,
const
T
*
target
,
const
T
*
weight
,
const
T
*
mask
,
const
int
n
,
const
int
an_num
,
const
int
grid_num
,
const
int
class_num
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
grid_num
;
k
++
)
{
input_grad
[
k
]
=
L1LossGrad
<
T
>
(
input
[
k
],
target
[
k
])
*
weight
[
k
]
*
mask
[
k
]
*
loss_grad
[
i
];
}
input_grad
+=
(
class_num
+
5
)
*
grid_num
;
input
+=
(
class_num
+
5
)
*
grid_num
;
target
+=
grid_num
;
weight
+=
grid_num
;
mask
+=
grid_num
;
}
}
}
}
}
}
template
<
typename
T
>
static
void
CalcYolov3Loss
(
T
*
loss_data
,
const
Tensor
&
input
,
const
Tensor
&
tx
,
const
Tensor
&
ty
,
const
Tensor
&
tw
,
const
Tensor
&
th
,
const
Tensor
&
tweight
,
const
Tensor
&
tconf
,
const
Tensor
&
tclass
,
const
Tensor
&
conf_mask
,
const
Tensor
&
obj_mask
)
{
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
tx_data
=
tx
.
data
<
T
>
();
const
T
*
ty_data
=
ty
.
data
<
T
>
();
const
T
*
tw_data
=
tw
.
data
<
T
>
();
const
T
*
th_data
=
th
.
data
<
T
>
();
const
T
*
tweight_data
=
tweight
.
data
<
T
>
();
const
T
*
tconf_data
=
tconf
.
data
<
T
>
();
const
T
*
tclass_data
=
tclass
.
data
<
T
>
();
const
T
*
conf_mask_data
=
conf_mask
.
data
<
T
>
();
const
T
*
obj_mask_data
=
obj_mask
.
data
<
T
>
();
const
int
n
=
tclass
.
dims
()[
0
];
const
int
an_num
=
tclass
.
dims
()[
1
];
const
int
h
=
tclass
.
dims
()[
2
];
const
int
w
=
tclass
.
dims
()[
3
];
const
int
class_num
=
tclass
.
dims
()[
4
];
const
int
grid_num
=
h
*
w
;
CalcSCE
<
T
>
(
loss_data
,
input_data
,
tx_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
grid_num
,
ty_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
2
*
grid_num
,
tw_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
3
*
grid_num
,
th_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
4
*
grid_num
,
tconf_data
,
conf_mask_data
,
conf_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
5
*
grid_num
,
tclass_data
,
obj_mask_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
template
<
typename
T
>
static
void
CalcYolov3LossGrad
(
T
*
input_grad_data
,
const
Tensor
&
loss_grad
,
const
Tensor
&
input
,
const
Tensor
&
tx
,
const
Tensor
&
ty
,
const
Tensor
&
tw
,
const
Tensor
&
th
,
const
Tensor
&
tweight
,
const
Tensor
&
tconf
,
const
Tensor
&
tclass
,
const
Tensor
&
conf_mask
,
const
Tensor
&
obj_mask
)
{
const
T
*
loss_grad_data
=
loss_grad
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
tx_data
=
tx
.
data
<
T
>
();
const
T
*
ty_data
=
ty
.
data
<
T
>
();
const
T
*
tw_data
=
tw
.
data
<
T
>
();
const
T
*
th_data
=
th
.
data
<
T
>
();
const
T
*
tweight_data
=
tweight
.
data
<
T
>
();
const
T
*
tconf_data
=
tconf
.
data
<
T
>
();
const
T
*
tclass_data
=
tclass
.
data
<
T
>
();
const
T
*
conf_mask_data
=
conf_mask
.
data
<
T
>
();
const
T
*
obj_mask_data
=
obj_mask
.
data
<
T
>
();
const
int
n
=
tclass
.
dims
()[
0
];
const
int
an_num
=
tclass
.
dims
()[
1
];
const
int
h
=
tclass
.
dims
()[
2
];
const
int
w
=
tclass
.
dims
()[
3
];
const
int
class_num
=
tclass
.
dims
()[
4
];
const
int
grid_num
=
h
*
w
;
CalcSCEGrad
<
T
>
(
input_grad_data
,
loss_grad_data
,
input_data
,
tx_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
grid_num
,
loss_grad_data
,
input_data
+
grid_num
,
ty_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcL1LossGrad
<
T
>
(
input_grad_data
+
2
*
grid_num
,
loss_grad_data
,
input_data
+
2
*
grid_num
,
tw_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcL1LossGrad
<
T
>
(
input_grad_data
+
3
*
grid_num
,
loss_grad_data
,
input_data
+
3
*
grid_num
,
th_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
4
*
grid_num
,
loss_grad_data
,
input_data
+
4
*
grid_num
,
tconf_data
,
conf_mask_data
,
conf_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCEGrad
<
T
>
(
input_grad_data
+
5
*
grid_num
,
loss_grad_data
,
input_data
+
5
*
grid_num
,
tclass_data
,
obj_mask_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
template
<
typename
T
>
template
<
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -357,33 +500,16 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -357,33 +500,16 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
float
loss_weight_conf_notarget
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_notarget"
);
float
loss_weight_class
=
ctx
.
Attr
<
float
>
(
"loss_weight_class"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
Tensor
pred_x
,
pred_y
,
pred_w
,
pred_h
;
Tensor
conf_mask
,
obj_mask
;
Tensor
pred_conf
,
pred_class
;
pred_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_conf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
SplitPredResult
<
T
>
(
*
input
,
&
pred_conf
,
&
pred_class
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
conf_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
...
@@ -392,35 +518,13 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -392,35 +518,13 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
no
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
n
*
sizeof
(
T
));
memset
(
loss_data
,
0
,
n
*
sizeof
(
T
));
CalcSCEWithWeight
<
T
>
(
pred_x
,
tx
,
obj_weight
,
loss_weight_xy
,
loss_data
);
CalcYolov3Loss
<
T
>
(
loss_data
,
*
input
,
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
,
CalcSCEWithWeight
<
T
>
(
pred_y
,
ty
,
obj_weight
,
loss_weight_xy
,
loss_data
);
conf_mask
,
obj_mask
);
CalcL1LossWithWeight
<
T
>
(
pred_w
,
tw
,
obj_weight
,
loss_weight_wh
,
loss_data
);
CalcL1LossWithWeight
<
T
>
(
pred_h
,
th
,
obj_weight
,
loss_weight_wh
,
loss_data
);
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
obj_mask
,
loss_weight_conf_target
,
loss_data
);
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
,
loss_weight_conf_notarget
,
loss_data
);
CalcSCEWithWeight
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
,
loss_weight_class
,
loss_data
);
}
}
};
};
...
@@ -436,14 +540,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -436,14 +540,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
float
loss_weight_conf_notarget
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_notarget"
);
float
loss_weight_class
=
ctx
.
Attr
<
float
>
(
"loss_weight_class"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
c
=
input
->
dims
()[
1
];
...
@@ -451,21 +548,10 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -451,21 +548,10 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
an_num
=
anchors
.
size
()
/
2
;
Tensor
pred_x
,
pred_y
,
pred_w
,
pred_h
;
Tensor
conf_mask
,
obj_mask
;
Tensor
pred_conf
,
pred_class
;
pred_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_conf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
SplitPredResult
<
T
>
(
*
input
,
&
pred_conf
,
&
pred_class
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
Tensor
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tclass
;
conf_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
...
@@ -474,51 +560,13 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -474,51 +560,13 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
no
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
T
*
input_grad_data
=
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
CalcYolov3LossGrad
<
T
>
(
input_grad_data
,
*
loss_grad
,
*
input
,
tx
,
ty
,
tw
,
th
,
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
tweight
,
tconf
,
tclass
,
conf_mask
,
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
Tensor
grad_x
,
grad_y
,
grad_w
,
grad_h
;
Tensor
grad_conf_target
,
grad_conf_notarget
,
grad_class
;
grad_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_target
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_notarget
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
CalcSCEGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_x
,
pred_x
,
tx
,
obj_weight
);
CalcSCEGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_y
,
pred_y
,
ty
,
obj_weight
);
CalcL1LossGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_w
,
pred_w
,
tw
,
obj_weight
);
CalcL1LossGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_h
,
pred_h
,
th
,
obj_weight
);
CalcSCEGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
);
CalcSCEGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
);
CalcSCEGradWithWeight
<
T
>
(
loss_grad_data
,
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
);
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
AddAllGradToInputGrad
<
T
>
(
input_grad
,
grad_x
,
grad_y
,
grad_w
,
grad_h
,
grad_conf_target
,
grad_conf_notarget
,
grad_class
,
class_num
,
loss_weight_xy
,
loss_weight_wh
,
loss_weight_conf_target
,
loss_weight_conf_notarget
,
loss_weight_class
);
}
}
};
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
0c4acc83
...
@@ -416,11 +416,6 @@ def yolov3_loss(x,
...
@@ -416,11 +416,6 @@ def yolov3_loss(x,
class_num
,
class_num
,
ignore_thresh
,
ignore_thresh
,
input_size
,
input_size
,
loss_weight_xy
=
None
,
loss_weight_wh
=
None
,
loss_weight_conf_target
=
None
,
loss_weight_conf_notarget
=
None
,
loss_weight_class
=
None
,
name
=
None
):
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -438,11 +433,6 @@ def yolov3_loss(x,
...
@@ -438,11 +433,6 @@ def yolov3_loss(x,
class_num (int): ${class_num_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
ignore_thresh (float): ${ignore_thresh_comment}
input_size (int): ${input_size_comment}
input_size (int): ${input_size_comment}
loss_weight_xy (float|None): ${loss_weight_xy_comment}
loss_weight_wh (float|None): ${loss_weight_wh_comment}
loss_weight_conf_target (float|None): ${loss_weight_conf_target_comment}
loss_weight_conf_notarget (float|None): ${loss_weight_conf_notarget_comment}
loss_weight_class (float|None): ${loss_weight_class_comment}
name (string): the name of yolov3 loss
name (string): the name of yolov3 loss
Returns:
Returns:
...
@@ -495,18 +485,18 @@ def yolov3_loss(x,
...
@@ -495,18 +485,18 @@ def yolov3_loss(x,
"input_size"
:
input_size
,
"input_size"
:
input_size
,
}
}
if
loss_weight_xy
is
not
None
and
isinstance
(
loss_weight_xy
,
float
):
#
if loss_weight_xy is not None and isinstance(loss_weight_xy, float):
self
.
attrs
[
'loss_weight_xy'
]
=
loss_weight_xy
#
self.attrs['loss_weight_xy'] = loss_weight_xy
if
loss_weight_wh
is
not
None
and
isinstance
(
loss_weight_wh
,
float
):
#
if loss_weight_wh is not None and isinstance(loss_weight_wh, float):
self
.
attrs
[
'loss_weight_wh'
]
=
loss_weight_wh
#
self.attrs['loss_weight_wh'] = loss_weight_wh
if
loss_weight_conf_target
is
not
None
and
isinstance
(
#
if loss_weight_conf_target is not None and isinstance(
loss_weight_conf_target
,
float
):
#
loss_weight_conf_target, float):
self
.
attrs
[
'loss_weight_conf_target'
]
=
loss_weight_conf_target
#
self.attrs['loss_weight_conf_target'] = loss_weight_conf_target
if
loss_weight_conf_notarget
is
not
None
and
isinstance
(
#
if loss_weight_conf_notarget is not None and isinstance(
loss_weight_conf_notarget
,
float
):
#
loss_weight_conf_notarget, float):
self
.
attrs
[
'loss_weight_conf_notarget'
]
=
loss_weight_conf_notarget
#
self.attrs['loss_weight_conf_notarget'] = loss_weight_conf_notarget
if
loss_weight_class
is
not
None
and
isinstance
(
loss_weight_class
,
float
):
#
if loss_weight_class is not None and isinstance(loss_weight_class, float):
self
.
attrs
[
'loss_weight_class'
]
=
loss_weight_class
#
self.attrs['loss_weight_class'] = loss_weight_class
helper
.
append_op
(
helper
.
append_op
(
type
=
'yolov3_loss'
,
type
=
'yolov3_loss'
,
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
0c4acc83
...
@@ -470,8 +470,6 @@ class OpTest(unittest.TestCase):
...
@@ -470,8 +470,6 @@ class OpTest(unittest.TestCase):
]
]
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
no_grad_set
)
output_names
,
no_grad_set
)
# print(numeric_grads[0][0, 4, :, :])
# print(analytic_grads[0][0, 4, :, :])
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
max_relative_error
,
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
0c4acc83
...
@@ -80,8 +80,8 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
...
@@ -80,8 +80,8 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
class_num
=
attrs
[
"class_num"
]
class_num
=
attrs
[
"class_num"
]
input_size
=
attrs
[
"input_size"
]
input_size
=
attrs
[
"input_size"
]
an_num
=
len
(
anchors
)
//
2
an_num
=
len
(
anchors
)
//
2
conf_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
noobj_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tx
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tx
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
...
@@ -114,10 +114,10 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
...
@@ -114,10 +114,10 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
max_iou
=
iou
max_iou
=
iou
best_an_index
=
k
best_an_index
=
k
if
iou
>
ignore_thresh
:
if
iou
>
ignore_thresh
:
noobj
_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
0
conf
_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
0
conf_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
obj_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
obj_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
noobj_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
0
tx
[
i
,
best_an_index
,
gj
,
gi
]
=
gx
-
gi
tx
[
i
,
best_an_index
,
gj
,
gi
]
=
gx
-
gi
ty
[
i
,
best_an_index
,
gj
,
gi
]
=
gy
-
gj
ty
[
i
,
best_an_index
,
gj
,
gi
]
=
gy
-
gj
tw
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gw
/
anchors
[
2
*
tw
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gw
/
anchors
[
2
*
...
@@ -129,7 +129,7 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
...
@@ -129,7 +129,7 @@ def build_target(gtboxes, gtlabel, attrs, grid_size):
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
return
(
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
obj_mask
,
no
obj_mask
)
return
(
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
...
@@ -144,11 +144,9 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
...
@@ -144,11 +144,9 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
obj_mask
,
no
obj_mask
=
build_target
(
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
=
build_target
(
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
# print("obj_mask: ", obj_mask[0, 0, :, :])
# print("noobj_mask: ", noobj_mask[0, 0, :, :])
obj_weight
=
obj_mask
*
tweight
obj_weight
=
obj_mask
*
tweight
obj_mask_expand
=
np
.
tile
(
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
...
@@ -156,30 +154,19 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
...
@@ -156,30 +154,19 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
loss_y
=
sce
(
pred_y
,
ty
,
obj_weight
)
loss_y
=
sce
(
pred_y
,
ty
,
obj_weight
)
loss_w
=
l1loss
(
pred_w
,
tw
,
obj_weight
)
loss_w
=
l1loss
(
pred_w
,
tw
,
obj_weight
)
loss_h
=
l1loss
(
pred_h
,
th
,
obj_weight
)
loss_h
=
l1loss
(
pred_h
,
th
,
obj_weight
)
loss_conf_target
=
sce
(
pred_conf
,
tconf
,
obj_mask
)
loss_obj
=
sce
(
pred_conf
,
tconf
,
conf_mask
)
loss_conf_notarget
=
sce
(
pred_conf
,
tconf
,
noobj_mask
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
)
# print("loss_xy: ", loss_x + loss_y)
# print("python loss_xy: ", loss_x + loss_y)
# print("loss_wh: ", loss_w + loss_h)
# print("python loss_wh: ", loss_w + loss_h)
# print("loss_conf_target: ", loss_conf_target)
# print("python loss_obj: ", loss_obj)
# print("loss_conf_notarget: ", loss_conf_notarget)
# print("python loss_class: ", loss_class)
# print("loss_class: ", loss_class)
return
attrs
[
'loss_weight_xy'
]
*
(
loss_x
+
loss_y
)
\
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
+
attrs
[
'loss_weight_wh'
]
*
(
loss_w
+
loss_h
)
\
+
attrs
[
'loss_weight_conf_target'
]
*
loss_conf_target
\
+
attrs
[
'loss_weight_conf_notarget'
]
*
loss_conf_notarget
\
+
attrs
[
'loss_weight_class'
]
*
loss_class
class
TestYolov3LossOp
(
OpTest
):
class
TestYolov3LossOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
loss_weight_xy
=
1.0
self
.
loss_weight_wh
=
1.0
self
.
loss_weight_conf_target
=
1.0
self
.
loss_weight_conf_notarget
=
1.0
self
.
loss_weight_class
=
1.0
self
.
initTestCase
()
self
.
initTestCase
()
self
.
op_type
=
'yolov3_loss'
self
.
op_type
=
'yolov3_loss'
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
...
@@ -192,11 +179,6 @@ class TestYolov3LossOp(OpTest):
...
@@ -192,11 +179,6 @@ class TestYolov3LossOp(OpTest):
"class_num"
:
self
.
class_num
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"input_size"
:
self
.
input_size
,
"input_size"
:
self
.
input_size
,
"loss_weight_xy"
:
self
.
loss_weight_xy
,
"loss_weight_wh"
:
self
.
loss_weight_wh
,
"loss_weight_conf_target"
:
self
.
loss_weight_conf_target
,
"loss_weight_conf_notarget"
:
self
.
loss_weight_conf_notarget
,
"loss_weight_class"
:
self
.
loss_weight_class
,
}
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
...
@@ -215,17 +197,12 @@ class TestYolov3LossOp(OpTest):
...
@@ -215,17 +197,12 @@ class TestYolov3LossOp(OpTest):
max_relative_error
=
0.31
)
max_relative_error
=
0.31
)
def
initTestCase
(
self
):
def
initTestCase
(
self
):
self
.
anchors
=
[
12
,
12
]
self
.
anchors
=
[
12
,
12
,
11
,
13
]
self
.
class_num
=
5
self
.
class_num
=
5
self
.
ignore_thresh
=
0.
3
self
.
ignore_thresh
=
0.
5
self
.
input_size
=
416
self
.
input_size
=
416
self
.
x_shape
=
(
3
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
x_shape
=
(
3
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
loss_weight_xy
=
1.2
self
.
loss_weight_wh
=
0.8
self
.
loss_weight_conf_target
=
2.0
self
.
loss_weight_conf_notarget
=
1.0
self
.
loss_weight_class
=
1.5
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录