Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0bd7f97b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
0bd7f97b
编写于
1月 02, 2018
作者:
武
武毅
提交者:
GitHub
1月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7045 from typhoonzero/adam_selectedrows
Adam selectedrows and scatter functors
上级
62166317
903d5609
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
593 addition
and
93 deletion
+593
-93
paddle/operators/adagrad_op.cc
paddle/operators/adagrad_op.cc
+7
-37
paddle/operators/adagrad_op.cu
paddle/operators/adagrad_op.cu
+10
-42
paddle/operators/adam_op.h
paddle/operators/adam_op.h
+110
-13
paddle/operators/math/selected_rows_functor.cc
paddle/operators/math/selected_rows_functor.cc
+115
-1
paddle/operators/math/selected_rows_functor.cu
paddle/operators/math/selected_rows_functor.cu
+153
-0
paddle/operators/math/selected_rows_functor.h
paddle/operators/math/selected_rows_functor.h
+77
-0
python/paddle/v2/fluid/tests/test_adam_op.py
python/paddle/v2/fluid/tests/test_adam_op.py
+121
-0
未找到文件。
paddle/operators/adagrad_op.cc
浏览文件 @
0bd7f97b
...
...
@@ -105,48 +105,18 @@ struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
)
{
// 1. g_m.rows = set(g.rows)
auto
grad_rows
=
grad
.
rows
();
std
::
set
<
int64_t
>
row_set
(
grad_rows
.
begin
(),
grad_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
grad_width
=
grad
.
value
().
dims
()[
1
];
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_merge
{
new
framework
::
SelectedRows
()};
grad_merge
->
set_rows
(
merge_rows
);
grad_merge
->
set_height
(
grad
.
height
());
grad_merge
->
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
grad_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
grad_merge
->
mutable_value
(),
0.0
);
auto
*
grad_merge_data
=
grad_merge
->
mutable_value
()
->
data
<
T
>
();
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad_rows
.
size
();
i
++
)
{
size_t
grad_merge_i
=
FindPos
(
merge_rows
,
grad_rows
[
i
]);
for
(
int64_t
j
=
0
;
j
<
grad_width
;
j
++
)
{
grad_merge_data
[
grad_merge_i
*
grad_width
+
j
]
+=
grad_data
[
i
*
grad_width
+
j
];
}
}
math
::
scatter
::
MergeAdd
<
platform
::
CPUDeviceContext
,
T
>
merge_func
;
auto
grad_merge
=
merge_func
(
context
,
grad
);
auto
&
merge_rows
=
grad_merge
.
rows
();
auto
*
grad_merge_data
=
grad_merge
.
mutable_value
()
->
template
data
<
T
>();
// 2. m += g_m * g_m
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_square
{
new
framework
::
SelectedRows
()};
grad_square
->
set_rows
(
grad_merge
->
rows
());
grad_square
->
set_height
(
grad_merge
->
height
());
grad_square
->
mutable_value
()
->
mutable_data
<
T
>
(
grad_merge
->
value
().
dims
(),
context
.
GetPlace
());
auto
gs
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
grad_square
->
mutable_value
()));
auto
gm
=
framework
::
EigenVector
<
T
>::
Flatten
(
grad_merge
->
value
());
gs
.
device
(
*
context
.
eigen_device
())
=
gm
*
gm
;
math
::
scatter
::
Mul
<
platform
::
CPUDeviceContext
,
T
>
sqare_func
;
auto
grad_square
=
sqare_func
(
context
,
grad_merge
,
grad_merge
);
math
::
SelectedRowsAddToTensor
<
platform
::
CPUDeviceContext
,
T
>
functor
;
functor
(
context
,
*
grad_square
,
moment
);
functor
(
context
,
grad_square
,
moment
);
// 3. update parameter
auto
*
lr
=
learning_rate
.
data
<
T
>
();
...
...
paddle/operators/adagrad_op.cu
浏览文件 @
0bd7f97b
...
...
@@ -78,62 +78,30 @@ struct SparseAdagradFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
)
{
// 1. g_m.rows = set(g.rows)
auto
grad_rows
=
grad
.
rows
();
std
::
set
<
int64_t
>
row_set
(
grad_rows
.
begin
(),
grad_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
grad_width
=
grad
.
value
().
dims
()[
1
];
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_merge
{
new
framework
::
SelectedRows
()};
grad_merge
->
set_rows
(
merge_rows
);
grad_merge
->
set_height
(
grad
.
height
());
grad_merge
->
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
grad_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
grad_merge
->
mutable_value
(),
0.0
);
auto
*
grad_merge_data
=
grad_merge
->
mutable_value
()
->
data
<
T
>
();
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid1
(
1
,
grad_rows
.
size
());
MergeGradKernel
<
T
,
256
><<<
grid1
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
grad_data
,
grad
.
rows
().
data
(),
grad_merge_data
,
grad_merge
->
rows
().
data
(),
grad_merge
->
rows
().
size
(),
grad_width
);
math
::
scatter
::
MergeAdd
<
platform
::
CUDADeviceContext
,
T
>
merge_func
;
auto
grad_merge
=
merge_func
(
context
,
grad
);
auto
*
grad_merge_data
=
grad_merge
.
mutable_value
()
->
template
data
<
T
>();
auto
&
merge_rows
=
grad_merge
.
rows
();
// 2. m += g_m * g_m
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_square
{
new
framework
::
SelectedRows
()};
grad_square
->
set_rows
(
grad_merge
->
rows
());
grad_square
->
set_height
(
grad_merge
->
height
());
grad_square
->
mutable_value
()
->
mutable_data
<
T
>
(
grad_merge
->
value
().
dims
(),
context
.
GetPlace
());
auto
gs
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
grad_square
->
mutable_value
()));
auto
gm
=
framework
::
EigenVector
<
T
>::
Flatten
(
grad_merge
->
value
());
gs
.
device
(
*
context
.
eigen_device
())
=
gm
*
gm
;
math
::
scatter
::
Mul
<
platform
::
CUDADeviceContext
,
T
>
sqare_func
;
auto
grad_square
=
sqare_func
(
context
,
grad_merge
,
grad_merge
);
math
::
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
context
,
*
grad_square
,
moment
);
functor
(
context
,
grad_square
,
moment
);
// 3. update parameter
auto
*
lr
=
learning_rate
.
data
<
T
>
();
auto
*
param_data
=
param
->
data
<
T
>
();
auto
*
moment_data
=
moment
->
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid2
(
1
,
merge_rows
.
size
());
SparseAdagradFunctorKernel
<
T
,
256
><<<
grid2
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
grad_merge_data
,
grad_merge
->
rows
().
data
(),
.
stream
()
>>>
(
grad_merge_data
,
grad_merge
.
rows
().
data
(),
lr
,
param_data
,
moment_data
,
grad_width
,
epsilon
);
}
...
...
paddle/operators/adam_op.h
浏览文件 @
0bd7f97b
...
...
@@ -16,11 +16,14 @@ limitations under the License. */
#include <math.h> // for sqrt in CPU and CUDA
#include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/safe_ref.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
namespace
scatter
=
paddle
::
operators
::
math
::
scatter
;
template
<
typename
T
>
struct
AdamFunctor
{
T
beta1_
;
...
...
@@ -79,6 +82,69 @@ struct AdamFunctor {
}
};
template
<
typename
T
>
struct
SparseAdamFunctor
{
T
beta1_
;
T
beta2_
;
T
epsilon_
;
const
T
*
beta1_pow_
;
const
T
*
beta2_pow_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
T
*
moment2_out_
;
const
T
*
lr_
;
const
T
*
grad_
;
const
T
*
param_
;
T
*
param_out_
;
const
int64_t
*
rows_
;
int64_t
row_numel_
;
SparseAdamFunctor
(
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
const
T
*
beta2_pow
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
lr
,
const
T
*
grad
,
const
T
*
param
,
T
*
param_out
,
const
int64_t
*
rows
,
int64_t
row_numel
)
:
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta2_pow_
(
beta2_pow
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
moment2_out_
(
mom2_out
),
lr_
(
lr
),
grad_
(
grad
),
param_
(
param
),
param_out_
(
param_out
),
rows_
(
rows
),
row_numel_
(
row_numel
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
T
beta1_pow
=
*
beta1_pow_
;
T
beta2_pow
=
*
beta2_pow_
;
for
(
int64_t
j
=
0
;
j
<
row_numel_
;
++
j
)
{
T
g
=
grad_
[
i
*
row_numel_
+
j
];
T
mom1
=
moment1_
[
rows_
[
i
]
*
row_numel_
+
j
];
T
mom2
=
moment2_
[
rows_
[
i
]
*
row_numel_
+
j
];
T
lr
=
*
lr_
;
T
p
=
param_
[
rows_
[
i
]
*
row_numel_
+
j
];
lr
*=
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
);
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
mom2
=
beta2_
*
mom2
+
(
1
-
beta2_
)
*
g
*
g
;
p
-=
lr
*
(
mom1
/
(
sqrt
(
mom2
)
+
epsilon_
));
moment1_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
mom1
;
moment2_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
mom2
;
param_out_
[
rows_
[
i
]
*
row_numel_
+
j
]
=
p
;
}
// for col id
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -90,7 +156,8 @@ class AdamOpKernel : public framework::OpKernel<T> {
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
&
param
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Must set Param"
);
auto
&
grad
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Must set Grad"
);
// auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
&
mom1
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
),
"Must set Moment1"
);
auto
&
mom2
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
),
"Must set Moment2"
);
auto
&
lr
=
...
...
@@ -108,9 +175,11 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto
&
mom2_out
=
Ref
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Must set Moment1Out"
);
AdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Must set Grad"
);
AdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
...
...
@@ -118,8 +187,36 @@ class AdamOpKernel : public framework::OpKernel<T> {
param
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()));
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
.
numel
());
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
.
numel
());
for_range
(
functor
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
Ref
(
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
),
"Must set Grad"
);
// merge duplicated rows if any.
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
grad_merge
=
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
);
auto
&
grad_tensor
=
grad_merge
.
value
();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
auto
*
rows
=
grad_merge
.
rows
().
data
();
auto
row_numel
=
grad_tensor
.
numel
()
/
grad_merge
.
rows
().
size
();
SparseAdamFunctor
<
T
>
functor
(
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
lr
.
template
data
<
T
>(),
grad_data
,
param
.
template
data
<
T
>(),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
rows
,
row_numel
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
grad_merge
.
rows
().
size
());
for_range
(
functor
);
}
else
{
PADDLE_THROW
(
"Variable type not supported by adam_op"
);
}
}
};
...
...
paddle/operators/math/selected_rows_functor.cc
浏览文件 @
0bd7f97b
...
...
@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/selected_rows_functor.h"
#include <set>
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -179,6 +181,118 @@ template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CPUDeviceContext
,
int64_t
>;
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace
scatter
{
size_t
FindPos
(
const
std
::
vector
<
int64_t
>&
rows
,
int64_t
value
)
{
return
std
::
find
(
rows
.
begin
(),
rows
.
end
(),
value
)
-
rows
.
begin
();
}
template
<
typename
T
>
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
T
>
{
framework
::
SelectedRows
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
)
{
framework
::
SelectedRows
out
;
auto
input_rows
=
input
.
rows
();
std
::
set
<
int64_t
>
row_set
(
input_rows
.
begin
(),
input_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
input_width
=
input
.
value
().
dims
()[
1
];
out
.
set_rows
(
merge_rows
);
out
.
set_height
(
input
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
out
.
mutable_value
(),
0.0
);
auto
*
out_data
=
out
.
mutable_value
()
->
data
<
T
>
();
auto
*
input_data
=
input
.
value
().
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
input_rows
.
size
();
i
++
)
{
size_t
out_i
=
FindPos
(
merge_rows
,
input_rows
[
i
]);
for
(
int64_t
j
=
0
;
j
<
input_width
;
j
++
)
{
out_data
[
out_i
*
input_width
+
j
]
+=
input_data
[
i
*
input_width
+
j
];
}
}
return
out
;
}
};
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
<
typename
T
>
struct
UpdateToTensor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
ScatterOps
&
op
,
const
framework
::
SelectedRows
&
input1
,
framework
::
Tensor
*
input2
)
{
auto
in1_height
=
input1
.
height
();
auto
in2_dims
=
input2
->
dims
();
PADDLE_ENFORCE_EQ
(
in1_height
,
in2_dims
[
0
]);
auto
&
in1_value
=
input1
.
value
();
auto
&
in1_rows
=
input1
.
rows
();
int64_t
in1_row_numel
=
in1_value
.
numel
()
/
in1_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in1_row_numel
,
input2
->
numel
()
/
in1_height
);
auto
*
in1_data
=
in1_value
.
data
<
T
>
();
auto
*
input2_data
=
input2
->
data
<
T
>
();
// FIXME(typhoonzero): use macro fix the below messy code.
switch
(
op
)
{
case
ScatterOps
::
ASSIGN
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
=
in1_data
[
i
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
ADD
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
+=
in1_data
[
i
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
SUB
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
-=
in1_data
[
i
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
SUBBY
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
=
in1_data
[
i
*
in1_row_numel
+
j
]
-
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
MUL
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
*=
in1_data
[
i
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
DIV
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
/=
in1_data
[
i
*
in1_row_numel
+
j
];
break
;
case
ScatterOps
::
DIVBY
:
INLINE_FOR2
(
in1_rows
.
size
(),
in1_row_numel
)
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
]
=
in1_data
[
i
*
in1_row_numel
+
j
]
/
input2_data
[
in1_rows
[
i
]
*
in1_row_numel
+
j
];
break
;
}
}
};
}
// namespace scatter
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/selected_rows_functor.cu
浏览文件 @
0bd7f97b
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <set>
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/platform/cuda_helper.h"
...
...
@@ -222,6 +224,157 @@ template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
int64_t
>;
namespace
scatter
{
template
<
typename
T
,
int
block_size
>
__global__
void
MergeAddKernel
(
const
T
*
input
,
const
int64_t
*
input_rows
,
T
*
out
,
const
int64_t
*
out_rows
,
size_t
out_rows_size
,
int64_t
row_numel
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
__shared__
size_t
out_idx
;
if
(
tid
==
0
)
{
for
(
size_t
i
=
0
;
i
<
out_rows_size
;
i
++
)
{
if
(
input_rows
[
ty
]
==
out_rows
[
i
])
{
out_idx
=
i
;
}
}
}
__syncthreads
();
input
+=
ty
*
row_numel
;
out
+=
out_idx
*
row_numel
;
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
paddle
::
platform
::
CudaAtomicAdd
(
out
+
index
,
input
[
index
]);
}
}
template
<
typename
T
>
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
T
>
{
framework
::
SelectedRows
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
)
{
framework
::
SelectedRows
out
;
auto
input_rows
=
input
.
rows
();
std
::
set
<
int64_t
>
row_set
(
input_rows
.
begin
(),
input_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
input_width
=
input
.
value
().
dims
()[
1
];
out
.
set_rows
(
merge_rows
);
out
.
set_height
(
input
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
out
.
mutable_value
(),
0.0
);
auto
*
out_data
=
out
.
mutable_value
()
->
data
<
T
>
();
auto
*
input_data
=
input
.
value
().
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid1
(
1
,
input_rows
.
size
());
MergeAddKernel
<
T
,
256
><<<
grid1
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input_data
,
input
.
rows
().
data
(),
out_data
,
out
.
rows
().
data
(),
out
.
rows
().
size
(),
input_width
);
return
out
;
}
};
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
<
typename
T
,
int
block_size
>
__global__
void
UpdateToTensorKernel
(
const
T
*
selected_rows
,
const
int64_t
*
rows
,
const
ScatterOps
&
op
,
T
*
tensor_out
,
int64_t
row_numel
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
selected_rows
+=
ty
*
row_numel
;
tensor_out
+=
rows
[
ty
]
*
row_numel
;
// FIXME(typhoonzero): use macro fix the below messy code.
switch
(
op
)
{
case
ScatterOps
::
ASSIGN
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
=
selected_rows
[
index
];
}
break
;
case
ScatterOps
::
ADD
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
+=
selected_rows
[
index
];
}
break
;
case
ScatterOps
::
SUB
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
-=
selected_rows
[
index
];
}
break
;
case
ScatterOps
::
SUBBY
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
=
selected_rows
[
index
]
-
tensor_out
[
index
];
}
break
;
case
ScatterOps
::
MUL
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
*=
selected_rows
[
index
];
}
break
;
case
ScatterOps
::
DIV
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
/=
selected_rows
[
index
];
}
break
;
case
ScatterOps
::
DIVBY
:
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
tensor_out
[
index
]
=
selected_rows
[
index
]
/
tensor_out
[
index
];
}
break
;
}
}
template
<
typename
T
>
struct
UpdateToTensor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
ScatterOps
&
op
,
const
framework
::
SelectedRows
&
input1
,
framework
::
Tensor
*
input2
)
{
// NOTE: Use SelectedRowsAddToTensor for better performance
// no additional MergeAdd called.
MergeAdd
<
platform
::
CUDADeviceContext
,
T
>
merge_func
;
auto
merged_in1
=
merge_func
(
context
,
input1
);
auto
in1_height
=
merged_in1
.
height
();
auto
in2_dims
=
input2
->
dims
();
PADDLE_ENFORCE_EQ
(
in1_height
,
in2_dims
[
0
]);
auto
&
in1_value
=
merged_in1
.
value
();
auto
&
in1_rows
=
merged_in1
.
rows
();
int64_t
in1_row_numel
=
in1_value
.
numel
()
/
in1_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in1_row_numel
,
input2
->
numel
()
/
in1_height
);
auto
*
in1_data
=
in1_value
.
template
data
<
T
>();
auto
*
in2_data
=
input2
->
data
<
T
>
();
dim3
threads
(
platform
::
PADDLE_CUDA_NUM_THREADS
,
1
);
dim3
grid
(
1
,
in1_rows
.
size
());
UpdateToTensorKernel
<
T
,
platform
::
PADDLE_CUDA_NUM_THREADS
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
in1_data
,
in1_rows
.
data
(),
op
,
in2_data
,
in1_row_numel
);
}
};
}
// namespace scatter
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/selected_rows_functor.h
浏览文件 @
0bd7f97b
...
...
@@ -12,9 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
#define INLINE_FOR2(sizei, sizej) \
for (int64_t i = 0; i < sizei; i++) \
for (int64_t j = 0; j < sizej; j++)
namespace
paddle
{
namespace
operators
{
namespace
math
{
...
...
@@ -52,6 +57,78 @@ struct SelectedRowsAddToTensor {
framework
::
Tensor
*
input2
);
};
namespace
scatter
{
// functors for manuplating SelectedRows data
template
<
typename
DeviceContext
,
typename
T
>
struct
MergeAdd
{
// unary functor, merge by adding duplicated rows in
// the input SelectedRows object.
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
Add
{
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input1
,
const
framework
::
SelectedRows
&
input2
)
{
framework
::
SelectedRows
out
;
out
.
set_rows
(
input1
.
rows
());
out
.
set_height
(
input1
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
input1
.
value
().
dims
(),
context
.
GetPlace
());
auto
e_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
out
.
mutable_value
()));
auto
e_in1
=
framework
::
EigenVector
<
T
>::
Flatten
(
input1
.
value
());
auto
e_in2
=
framework
::
EigenVector
<
T
>::
Flatten
(
input2
.
value
());
e_out
.
device
(
*
context
.
eigen_device
())
=
e_in1
+
e_in2
;
return
out
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
struct
Mul
{
// multiply two SelectedRows
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input1
,
const
framework
::
SelectedRows
&
input2
)
{
framework
::
SelectedRows
out
;
out
.
set_rows
(
input1
.
rows
());
out
.
set_height
(
input1
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
input1
.
value
().
dims
(),
context
.
GetPlace
());
auto
e_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
out
.
mutable_value
()));
auto
e_in1
=
framework
::
EigenVector
<
T
>::
Flatten
(
input1
.
value
());
auto
e_in2
=
framework
::
EigenVector
<
T
>::
Flatten
(
input2
.
value
());
e_out
.
device
(
*
context
.
eigen_device
())
=
e_in1
*
e_in2
;
return
out
;
}
// multiply scalar to SelectedRows
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input1
,
const
T
input2
)
{
framework
::
SelectedRows
out
;
out
.
set_rows
(
input1
.
rows
());
out
.
set_height
(
input1
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
input1
.
value
().
dims
(),
context
.
GetPlace
());
auto
e_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
out
.
mutable_value
()));
auto
e_in1
=
framework
::
EigenVector
<
T
>::
Flatten
(
input1
.
value
());
e_out
.
device
(
*
context
.
eigen_device
())
=
input2
*
e_in1
;
return
out
;
}
};
enum
class
ScatterOps
{
ASSIGN
,
ADD
,
SUB
,
SUBBY
,
MUL
,
DIV
,
DIVBY
};
// out = seleted_rows_in / tensor
template
<
typename
DeviceContext
,
typename
T
>
struct
UpdateToTensor
{
void
operator
()(
const
DeviceContext
&
context
,
const
ScatterOps
&
op
,
const
framework
::
SelectedRows
&
input1
,
framework
::
Tensor
*
input2
);
};
}
// namespace scatter
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_adam_op.py
浏览文件 @
0bd7f97b
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.v2.fluid
import
core
from
paddle.v2.fluid.op
import
Operator
class
TestAdamOp1
(
OpTest
):
...
...
@@ -176,5 +178,124 @@ def adam_step(inputs, attributes):
return
param_out
,
moment1_out
,
moment2_out
def
adam_step_sparse
(
inputs
,
attributes
,
height
,
rows
,
row_numel
,
np_grad
):
'''
Simulate one step of the adam optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param
=
inputs
[
'Param'
]
# grad = inputs['Grad']
moment1
=
inputs
[
'Moment1'
]
moment2
=
inputs
[
'Moment2'
]
lr
=
inputs
[
'LearningRate'
]
beta1_pow
=
inputs
[
'Beta1Pow'
]
beta2_pow
=
inputs
[
'Beta2Pow'
]
beta1
=
attributes
[
'beta1'
]
beta2
=
attributes
[
'beta2'
]
epsilon
=
attributes
[
'epsilon'
]
moment1_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
moment2_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
param_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
for
idx
,
row_id
in
enumerate
(
rows
):
moment1_out
[
row_id
]
=
beta1
*
moment1
[
row_id
]
+
(
1
-
beta1
)
*
np_grad
[
idx
]
moment2_out
[
row_id
]
=
beta2
*
moment2
[
row_id
]
+
(
1
-
beta2
)
*
np
.
square
(
np_grad
[
idx
])
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
)
param_out
[
row_id
]
=
param
[
row_id
]
-
lr_t
*
(
moment1_out
[
row_id
]
/
(
np
.
sqrt
(
moment2_out
[
row_id
])
+
epsilon
))
return
param_out
,
moment1_out
,
moment2_out
class
TestSparseAdamOp
(
unittest
.
TestCase
):
def
setup
(
self
,
scope
,
place
):
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
height
=
10
rows
=
[
0
,
4
,
7
]
self
.
rows
=
rows
row_numel
=
12
self
.
row_numel
=
row_numel
self
.
dense_inputs
=
{
"Param"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment1"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment2"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1
**
10
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2
**
10
]).
astype
(
"float32"
),
"LearningRate"
:
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
height
)
grad_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
np_array
[
0
,
0
]
=
2.0
np_array
[
2
,
8
]
=
4.0
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
np_array
,
place
)
self
.
sparse_inputs
=
[
"Grad"
]
param_out
,
mom1
,
mom2
=
adam_step_sparse
(
self
.
dense_inputs
,
self
.
attrs
,
height
,
rows
,
row_numel
,
np_array
)
self
.
outputs
=
{
"ParamOut"
:
param_out
,
"Moment1Out"
:
mom1
,
"Moment2Out"
:
mom2
}
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
self
.
setup
(
scope
,
place
)
op_args
=
dict
()
for
key
,
np_array
in
self
.
dense_inputs
.
iteritems
():
var
=
scope
.
var
(
key
).
get_tensor
()
var
.
set
(
np_array
,
place
)
op_args
[
key
]
=
key
for
s
in
self
.
sparse_inputs
:
op_args
[
s
]
=
s
for
s
in
self
.
outputs
:
var
=
scope
.
var
(
s
).
get_tensor
()
var
.
set
(
self
.
outputs
[
s
],
place
)
op_args
[
s
]
=
s
for
k
in
self
.
attrs
:
op_args
[
k
]
=
self
.
attrs
[
k
]
# create and run sgd operator
adam_op
=
Operator
(
"adam"
,
**
op_args
)
adam_op
.
run
(
scope
,
place
)
for
key
,
np_array
in
self
.
outputs
.
iteritems
():
out_var
=
scope
.
var
(
key
).
get_tensor
()
actual
=
np
.
array
(
out_var
)
actual
=
actual
.
reshape
([
actual
.
size
])
np_array
=
np_array
.
reshape
([
np_array
.
size
])
for
idx
,
row_id
in
enumerate
(
self
.
rows
):
j
=
0
while
j
<
self
.
row_numel
:
pos
=
row_id
*
self
.
row_numel
+
j
self
.
assertLess
((
actual
[
pos
]
-
np_array
[
pos
])
/
actual
[
pos
],
0.00001
)
j
+=
1
def
test_sparse_sgd
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录