Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0b911330
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b911330
编写于
7月 05, 2021
作者:
S
ShenLiang
提交者:
GitHub
7月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel] Add amp support for pipeline_parallel (#33951)
* add amp support for pp * add amp untest
上级
2ef6188b
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
145 addition
and
7 deletion
+145
-7
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
...ptimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
+3
-3
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+13
-4
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
...on/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
+126
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_pipeline_parallel.py
...ests/unittests/test_parallel_dygraph_pipeline_parallel.py
+3
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
浏览文件 @
0b911330
...
...
@@ -30,8 +30,8 @@ class HybridParallelGradScaler:
def
__init__
(
self
,
scaler
,
hcg
):
self
.
_scaler
=
scaler
self
.
_hcg
=
hcg
self
.
_
is_mp
=
(
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
TENSOR
_PARALLEL
)
self
.
_
use_dp_mode
=
(
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
DATA
_PARALLEL
)
def
scale
(
self
,
var
):
return
self
.
_scaler
.
scale
(
var
)
...
...
@@ -67,7 +67,7 @@ class HybridParallelGradScaler:
core
.
ops
.
check_finite_and_unscale
(
param_grads
,
self
.
_scale
,
param_grads
,
self
.
_found_inf
)
# allreduce_max found_inf in check_group
if
self
.
_is_mp
:
if
not
self
.
_use_dp_mode
:
self
.
_found_inf
=
paddle
.
cast
(
self
.
_found_inf
,
dtype
=
"int32"
)
# TODO(shenliang03) Since the minimize call in the optimizer is
# after the gradscaler, check_finite needs to synchronize global
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
0b911330
...
...
@@ -106,11 +106,12 @@ class PipelineParallel(MetaParallelBase):
group
=
self
.
pp_group
)
return
loss
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
):
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
self
.
scaler
=
scaler
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
...
...
@@ -143,8 +144,8 @@ class PipelineParallel(MetaParallelBase):
self
.
_layers
.
allreduce_shared_weight_gradients
()
# optimizer
self
.
_step
()
self
.
train_loss
=
self
.
_reduce_final_loss
()
self
.
_step
()
return
self
.
train_loss
def
_forward
(
self
,
cache_id
):
...
...
@@ -192,7 +193,12 @@ class PipelineParallel(MetaParallelBase):
def
_backward
(
self
,
cache_id
):
if
self
.
is_last_stage
:
if
self
.
scaler
:
paddle
.
autograd
.
backward
(
self
.
scaler
.
scale
(
self
.
caches
[
'outputs'
][
cache_id
]))
else
:
paddle
.
autograd
.
backward
(
self
.
caches
[
'outputs'
][
cache_id
])
self
.
_send_gradients
(
cache_id
)
return
self
.
_recv_gradients
(
cache_id
)
...
...
@@ -441,6 +447,9 @@ class PipelineParallel(MetaParallelBase):
p2p
.
recv
(
d
,
self
.
next_stage_id
)
def
_step
(
self
):
if
self
.
scaler
:
self
.
scaler
.
minimize
(
self
.
optimizer
,
self
.
train_loss
)
else
:
self
.
optimizer
.
step
()
self
.
optimizer
.
clear_grad
()
if
self
.
lr_scheduler
:
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
0 → 100644
浏览文件 @
0b911330
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
random
import
paddle
import
paddle.distributed
as
dist
import
paddle.distributed.fleet
as
fleet
from
hybrid_parallel_pp_layer
import
AlexNetPipeDesc
,
AlexNet
def
set_random_seed
(
seed
,
dp_id
,
rank_id
):
"""Set random seed for reproducability."""
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
+
dp_id
)
paddle
.
seed
(
seed
+
dp_id
)
batch_size
=
4
micro_batch_size
=
2
class
TestDistPPTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
1
self
.
data_parallel_size
=
1
self
.
pipeline_parallel_size
=
2
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
self
.
pipeline_parallel_size
,
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
batch_size
//
micro_batch_size
,
"micro_batch_size"
:
micro_batch_size
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
test_pp_model
(
self
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
dp_id
=
hcg
.
get_data_parallel_rank
()
pp_id
=
hcg
.
get_stage_id
()
rank_id
=
dist
.
get_rank
()
set_random_seed
(
1024
,
dp_id
,
rank_id
)
#construct model a
model_a
=
AlexNet
(
10
)
scheduler_a
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer_a
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler_a
,
parameters
=
model_a
.
parameters
())
scaler_a
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
2
**
5
)
param_len
=
len
(
model_a
.
parameters
())
parameters
=
[]
for
param
in
model_a
.
parameters
():
parameters
.
append
(
param
.
numpy
())
# construct model b
model_b
=
AlexNetPipeDesc
(
num_stages
=
self
.
pipeline_parallel_size
)
scheduler_b
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer_b
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler_b
,
parameters
=
model_b
.
parameters
())
model_b
=
fleet
.
distributed_model
(
model_b
)
optimizer_b
=
fleet
.
distributed_optimizer
(
optimizer_b
)
scaler_b
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
2
**
5
)
scaler_b
=
fleet
.
distributed_scaler
(
scaler_b
)
for
idx
,
param
in
enumerate
(
model_b
.
parameters
()):
param
.
set_value
(
parameters
[
idx
+
pp_id
*
(
param_len
//
2
)])
# construct reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
,
drop_last
=
True
)
for
step_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
x
[
0
]
for
x
in
data
]).
astype
(
'float32'
).
reshape
(
batch_size
,
1
,
28
,
28
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
img
.
stop_gradient
=
True
label
.
stop_gradient
=
True
if
step_id
>=
5
:
return
True
with
paddle
.
amp
.
auto_cast
():
loss_a
=
model_a
(
img
,
label
)
scaler_a
.
scale
(
loss_a
).
backward
()
scaler_a
.
minimize
(
optimizer_a
,
loss_a
)
optimizer_a
.
clear_grad
()
scheduler_a
.
step
()
with
paddle
.
amp
.
auto_cast
():
loss_b
=
model_b
.
train_batch
(
[
img
,
label
],
optimizer_b
,
scheduler_b
,
scaler
=
scaler_b
)
print
(
"loss: "
,
loss_a
.
numpy
(),
loss_b
.
numpy
())
np
.
testing
.
assert_allclose
(
loss_a
.
numpy
(),
loss_b
.
numpy
(),
rtol
=
5e-5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_pipeline_parallel.py
浏览文件 @
0b911330
...
...
@@ -30,6 +30,9 @@ class TestHybridPipeParallel(TestMultipleGpus):
def
test_hybrid_parallel_pp_tuple_inputs
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_shared_weight.py'
)
def
test_pipeline_parallel
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_amp.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录