提交 0aff1363 编写于 作者: T typhoonzero

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into...

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into distributed_split_selectedrows
...@@ -49,12 +49,12 @@ def generate_copyright(template, lang='C'): ...@@ -49,12 +49,12 @@ def generate_copyright(template, lang='C'):
LANG_COMMENT_MARK = "//" LANG_COMMENT_MARK = "//"
lines = template.split(NEW_LINE_MARK) lines = template.split(NEW_LINE_MARK)
ans = LANG_COMMENT_MARK + COPYRIGHT_HEADER + NEW_LINE_MARK ans = LANG_COMMENT_MARK + " " + COPYRIGHT_HEADER + NEW_LINE_MARK
for lino, line in enumerate(lines): for lino, line in enumerate(lines):
if lino == 0 or lino == 1 or lino == len(lines) - 1: continue if lino == 0 or lino == 1 or lino == len(lines) - 1: continue
ans += LANG_COMMENT_MARK + line + NEW_LINE_MARK ans += LANG_COMMENT_MARK + " " + line + NEW_LINE_MARK
return ans return ans + "\n"
def lang_type(filename): def lang_type(filename):
......
# Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at paddle-dev@baidu.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version]
[homepage]: http://contributor-covenant.org
[version]: http://contributor-covenant.org/version/1/4/
# 参与者公约
## 我们的保证
为了促进一个开放透明且友好的环境,我们作为贡献者和维护者保证:无论年龄、种族、民族、性别认同和表达(方式)、体型、身体健全与否、经验水平、国籍、个人表现、宗教或性别取向,参与者在我们项目和社区中都免于骚扰。
## 我们的标准
有助于创造正面环境的行为包括但不限于:
* 使用友好和包容性语言
* 尊重不同的观点和经历
* 耐心地接受建设性批评
* 关注对社区最有利的事情
* 友善对待其他社区成员
身为参与者不能接受的行为包括但不限于:
* 使用与性有关的言语或是图像,以及不受欢迎的性骚扰
* 捣乱/煽动/造谣的行为或进行侮辱/贬损的评论,人身攻击及政治攻击
* 公开或私下的骚扰
* 未经许可地发布他人的个人资料,例如住址或是电子地址
* 其他可以被合理地认定为不恰当或者违反职业操守的行为
## 我们的责任
项目维护者有责任为「可接受的行为」标准做出诠释,以及对已发生的不被接受的行为采取恰当且公平的纠正措施。
项目维护者有权利及责任去删除、编辑、拒绝与本行为标准有所违背的评论(comments)、提交(commits)、代码、wiki 编辑、问题(issues)和其他贡献,以及项目维护者可暂时或永久性的禁止任何他们认为有不适当、威胁、冒犯、有害行为的贡献者。
## 使用范围
当一个人代表该项目或是其社区时,本行为标准适用于其项目平台和公共平台。
代表项目或是社区的情况,举例来说包括使用官方项目的电子邮件地址、通过官方的社区媒体账号发布或线上或线下事件中担任指定代表。
该项目的呈现方式可由其项目维护者进行进一步的定义及解释。
## 强制执行
可以通过paddle-dev@baidu.com,来联系项目团队来举报滥用、骚扰或其他不被接受的行为。
任何维护团队认为有必要且适合的所有投诉都将进行审查及调查,并做出相对应的回应。项目小组有对事件回报者有保密的义务。具体执行的方针近一步细节可能会单独公布。
没有切实地遵守或是执行本行为标准的项目维护人员,可能会因项目领导人或是其他成员的决定,暂时或是永久地取消其参与资格。
## 来源
本行为标准改编自[贡献者公约][主页],版本 1.4
可在此观看https://www.contributor-covenant.org/zh-cn/version/1/4/code-of-conduct.html
[主页]: https://www.contributor-covenant.org
# Advbox
Advbox is a Python toolbox to create adversarial examples that fool neural networks. It requires Python and paddle.
## How to use
1. train a model and save it's parameters. (like fluid_mnist.py)
2. load the parameters which is trained in step1, then reconstruct the model.(like mnist_tutorial_fgsm.py)
3. use advbox to generate the adversarial sample.
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A set of tools for generating adversarial example on paddle platform
"""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
The base model of the model.
"""
from abc import ABCMeta, abstractmethod
class Attack(object):
"""
Abstract base class for adversarial attacks. `Attack` represent an adversarial attack
which search an adversarial example. subclass should implement the _apply() method.
Args:
model(Model): an instance of the class advbox.base.Model.
"""
__metaclass__ = ABCMeta
def __init__(self, model):
self.model = model
def __call__(self, image_label):
"""
Generate the adversarial sample.
Args:
image_label(list): The image and label tuple list with one element.
"""
adv_img = self._apply(image_label)
return adv_img
@abstractmethod
def _apply(self, image_label):
"""
Search an adversarial example.
Args:
image_batch(list): The image and label tuple list with one element.
"""
raise NotImplementedError
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
This module provide the attack method for FGSM's implement.
"""
from __future__ import division
import numpy as np
from collections import Iterable
from .base import Attack
class GradientSignAttack(Attack):
"""
This attack was originally implemented by Goodfellow et al. (2015) with the
infinity norm (and is known as the "Fast Gradient Sign Method"). This is therefore called
the Fast Gradient Method.
Paper link: https://arxiv.org/abs/1412.6572
"""
def _apply(self, image_label, epsilons=1000):
assert len(image_label) == 1
pre_label = np.argmax(self.model.predict(image_label))
min_, max_ = self.model.bounds()
gradient = self.model.gradient(image_label)
gradient_sign = np.sign(gradient) * (max_ - min_)
if not isinstance(epsilons, Iterable):
epsilons = np.linspace(0, 1, num=epsilons + 1)
for epsilon in epsilons:
adv_img = image_label[0][0].reshape(
gradient_sign.shape) + epsilon * gradient_sign
adv_img = np.clip(adv_img, min_, max_)
adv_label = np.argmax(self.model.predict([(adv_img, 0)]))
if pre_label != adv_label:
return adv_img
FGSM = GradientSignAttack
class IteratorGradientSignAttack(Attack):
"""
This attack was originally implemented by Alexey Kurakin(Google Brain).
Paper link: https://arxiv.org/pdf/1607.02533.pdf
"""
def _apply(self, image_label, epsilons=100, steps=10):
"""
Apply the iterative gradient sign attack.
Args:
image_label(list): The image and label tuple list of one element.
epsilons(list|tuple|int): The epsilon (input variation parameter).
steps(int): The number of iterator steps.
Return:
numpy.ndarray: The adversarail sample generated by the algorithm.
"""
assert len(image_label) == 1
pre_label = np.argmax(self.model.predict(image_label))
gradient = self.model.gradient(image_label)
min_, max_ = self.model.bounds()
if not isinstance(epsilons, Iterable):
epsilons = np.linspace(0, 1, num=epsilons + 1)
for epsilon in epsilons:
adv_img = image_label[0][0].reshape(gradient.shape)
for _ in range(steps):
gradient = self.model.gradient([(adv_img, image_label[0][1])])
gradient_sign = np.sign(gradient) * (max_ - min_)
adv_img = adv_img + epsilon * gradient_sign
adv_img = np.clip(adv_img, min_, max_)
adv_label = np.argmax(self.model.predict([(adv_img, 0)]))
if pre_label != adv_label:
return adv_img
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Paddle model for target of attack
"""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
The base model of the model.
"""
from abc import ABCMeta
import abc
abstractmethod = abc.abstractmethod
class Model(object):
"""
Base class of model to provide attack.
Args:
bounds(tuple): The lower and upper bound for the image pixel.
channel_axis(int): The index of the axis that represents the color channel.
preprocess(tuple): Two element tuple used to preprocess the input. First
substract the first element, then divide the second element.
"""
__metaclass__ = ABCMeta
def __init__(self, bounds, channel_axis, preprocess=None):
assert len(bounds) == 2
assert channel_axis in [0, 1, 2, 3]
if preprocess is None:
preprocess = (0, 1)
self._bounds = bounds
self._channel_axis = channel_axis
self._preprocess = preprocess
def bounds(self):
"""
Return the upper and lower bounds of the model.
"""
return self._bounds
def channel_axis(self):
"""
Return the channel axis of the model.
"""
return self._channel_axis
def _process_input(self, input_):
res = input_
sub, div = self._preprocess
if sub != 0:
res = input_ - sub
assert div != 0
if div != 1:
res /= div
return res
@abstractmethod
def predict(self, image_batch):
"""
Calculate the prediction of the image batch.
Args:
image_batch(numpy.ndarray): image batch of shape (batch_size, height, width, channels).
Return:
numpy.ndarray: predictions of the images with shape (batch_size, num_of_classes).
"""
raise NotImplementedError
@abstractmethod
def num_classes(self):
"""
Determine the number of the classes
Return:
int: the number of the classes
"""
raise NotImplementedError
@abstractmethod
def gradient(self, image_batch):
"""
Calculate the gradient of the cross-entropy loss w.r.t the image.
Args:
image_batch(list): The image and label tuple list.
Return:
numpy.ndarray: gradient of the cross-entropy loss w.r.t the image with
the shape (height, width, channel).
"""
raise NotImplementedError
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
from paddle.v2.fluid.framework import program_guard
from .base import Model
class PaddleModel(Model):
"""
Create a PaddleModel instance.
When you need to generate a adversarial sample, you should construct an instance of PaddleModel.
Args:
program(paddle.v2.fluid.framework.Program): The program of the model which generate the adversarial sample.
input_name(string): The name of the input.
logits_name(string): The name of the logits.
predict_name(string): The name of the predict.
cost_name(string): The name of the loss in the program.
"""
def __init__(self,
program,
input_name,
logits_name,
predict_name,
cost_name,
bounds,
channel_axis=3,
preprocess=None):
super(PaddleModel, self).__init__(
bounds=bounds, channel_axis=channel_axis, preprocess=preprocess)
if preprocess is None:
preprocess = (0, 1)
self._program = program
self._place = fluid.CPUPlace()
self._exe = fluid.Executor(self._place)
self._input_name = input_name
self._logits_name = logits_name
self._predict_name = predict_name
self._cost_name = cost_name
# gradient
loss = self._program.block(0).var(self._cost_name)
param_grads = fluid.backward.append_backward(
loss, parameter_list=[self._input_name])
self._gradient = dict(param_grads)[self._input_name]
def predict(self, image_batch):
"""
Predict the label of the image_batch.
Args:
image_batch(list): The image and label tuple list.
Return:
numpy.ndarray: predictions of the images with shape (batch_size, num_of_classes).
"""
feeder = fluid.DataFeeder(
feed_list=[self._input_name, self._logits_name],
place=self._place,
program=self._program)
predict_var = self._program.block(0).var(self._predict_name)
predict = self._exe.run(self._program,
feed=feeder.feed(image_batch),
fetch_list=[predict_var])
return predict
def num_classes(self):
"""
Calculate the number of classes of the output label.
Return:
int: the number of classes
"""
predict_var = self._program.block(0).var(self._predict_name)
assert len(predict_var.shape) == 2
return predict_var.shape[1]
def gradient(self, image_batch):
"""
Calculate the gradient of the loss w.r.t the input.
Args:
image_batch(list): The image and label tuple list.
Return:
list: The list of the gradient of the image.
"""
feeder = fluid.DataFeeder(
feed_list=[self._input_name, self._logits_name],
place=self._place,
program=self._program)
grad, = self._exe.run(self._program,
feed=feeder.feed(image_batch),
fetch_list=[self._gradient])
return grad
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
FGSM demos on mnist using advbox tool.
"""
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import matplotlib.pyplot as plt
import numpy as np
from advbox.models.paddle import PaddleModel
from advbox.attacks.gradientsign import GradientSignAttack
def cnn_model(img):
"""
Mnist cnn model
Args:
img(Varaible): the input image to be recognized
Returns:
Variable: the label prediction
"""
#conv1 = fluid.nets.conv2d()
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return logits
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(
feed_list=[IMG_NAME, LABEL_NAME],
place=place,
program=fluid.default_main_program())
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME,
logits.name, avg_cost.name, (-1, 1))
att = GradientSignAttack(m)
for data in train_reader():
# fgsm attack
adv_img = att(data)
plt.imshow(n[0][0], cmap='Greys_r')
plt.show()
#np.save('adv_img', adv_img)
break
if __name__ == '__main__':
main()
...@@ -364,6 +364,12 @@ split ...@@ -364,6 +364,12 @@ split
.. autofunction:: paddle.v2.fluid.layers.split .. autofunction:: paddle.v2.fluid.layers.split
:noindex: :noindex:
matmul
------
.. autofunction:: paddle.v2.fluid.layers.matmul
:noindex:
logsigmoid logsigmoid
---------- ----------
.. autofunction:: paddle.v2.fluid.layers.logsigmoid .. autofunction:: paddle.v2.fluid.layers.logsigmoid
...@@ -493,3 +499,8 @@ swish ...@@ -493,3 +499,8 @@ swish
------ ------
.. autofunction:: paddle.v2.fluid.layers.swish .. autofunction:: paddle.v2.fluid.layers.swish
:noindex: :noindex:
l2_normalize
------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize
:noindex:
...@@ -25,3 +25,9 @@ glu ...@@ -25,3 +25,9 @@ glu
.. autofunction:: paddle.v2.fluid.nets.glu .. autofunction:: paddle.v2.fluid.nets.glu
:noindex: :noindex:
dot_product_attention
---------------------
.. autofunction:: paddle.v2.fluid.nets.dot_product_attention
:noindex:
...@@ -46,12 +46,12 @@ class ErrorClipByValue(BaseErrorClipAttr): ...@@ -46,12 +46,12 @@ class ErrorClipByValue(BaseErrorClipAttr):
self.min = min self.min = min
def append_clip_op(self, block, grad_name): def append_clip_op(self, block, grad_name):
block.append_op( clip_op_desc = block.desc.append_op()
type="clip", clip_op_desc.set_type("clip")
inputs={"X": grad_name}, clip_op_desc.set_input("X", [grad_name])
outputs={"Out": grad_name}, clip_op_desc.set_output("Out", [grad_name])
attrs={"min": self.min, clip_op_desc.set_attr("min", self.min)
"max": self.max}) clip_op_desc.set_attr("max", self.max)
``` ```
The `BaseErrorClipAttr` have one main member functions: `append_clip_op(self, block, grad_name)`. The `BaseErrorClipAttr` have one main member functions: `append_clip_op(self, block, grad_name)`.
...@@ -80,6 +80,11 @@ def error_clip_callback(block, context): ...@@ -80,6 +80,11 @@ def error_clip_callback(block, context):
op_desc.output_arg_names()): op_desc.output_arg_names()):
fwd_var = block.var_recursive(grad_to_var[grad_n]) fwd_var = block.var_recursive(grad_to_var[grad_n])
error_clip = getattr(fwd_var, "error_clip", None) error_clip = getattr(fwd_var, "error_clip", None)
if not (error_clip is None or isinstance(error_clip,
BaseErrorClipAttr)):
raise TypeError(
"Variable's error_clip should be an instance of BaseErrorClipAttr or None."
)
if error_clip is not None: if error_clip is not None:
error_clip.append_clip_op(block, grad_n) error_clip.append_clip_op(block, grad_n)
``` ```
......
## Background ## Background
Every operator has many kernels because there are multiple data types, places, data layout that Fluid supports. We use the `KernelType` to describe kernel types that operators can hold. Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold.
The `KernelType` is as follows. The `OpKernelType ` is as follows:
``` ```cpp
struct KernelType { struct OpKernelType {
Place place_; Place place_;
DataType data_type_; DataType data_type_;
LayoutType layout_; DataLayout data_layout_;
LibraryType library_type_;
}; };
``` ```
The `place_` is a descriptor of the device and the computational library, e.g., `MKLDNNPlace`, `CUDAPlace`. - The `place_` is a descriptor of the device, e.g., CPUPlace, CUDAPlace.
The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float`/`double`. - The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float` or `double`.
The `layout` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel. - The `data_layout_ ` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel.
- The `library_type_` describes the computational library, e.g., `MKLDNN`, `CUDNN`.
## Problem ## Problem
...@@ -25,42 +28,72 @@ We register a kernel for every operator and every kernel type ideally. However, ...@@ -25,42 +28,72 @@ We register a kernel for every operator and every kernel type ideally. However,
2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem. 2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.
3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`. 3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`.
Problems under these situations are similar. We can formalise this problem as follow. Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output `op1_to_op2`, and `op1_to_op2` is the input of OP2.
If OP1 and OP2 run on the same place(for example CPUPlace), then `op1_2_op2` can be used directly by OP2.
```
OP1(CPUPlace)
|
op1_2_op2
|
OP2(CPUPlace)
```
If OP1 and OP2 run one different place, then OP2 cannot `use op1_2_op2` directly.
Problems under these situations are similar. We can formalize this problem as follow.
We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$. We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.
## Solution ## Solution: data transform
It is clearly that transforming inputs of an operator toadapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods. It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.
We can infer a kernel type from the inputs of an operators. We let this kernel type as `actual kernel type`, which means this kernel type is the actually kernel type that operator should be performed. We can infer kernel type for each input of an operator. We let this kernel type as `actual kernel type for var`, which means this kernel type is the kernel type that can process this input variable.
We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`. We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`.
We transform the input data from `actual` to `expect` if the expect kernel type is not as same as actual kernel type. We transform the input data from `actual` to `expect` if the actual kernel type is not as same as expect kernel type.
The algorithm is described as follow The algorithm is described as following
```cpp ```cpp
using DataTransformationFN = std::function<void(const Tensor& in, Tensor* out)>; void OperatorWithKernel::Run(
using KernelTypePair = std::pair<KernelType, KernelType>; const Scope& scope,
const platform::Place& place) const {
map<KernelTypePair, DataTransformationFN> g_data_transformation_; ExecutionContext ctx(...);
auto expected_kernel_key = this->GetExpectedKernelType(ctx);
void OpWithKernel::Run() {
vec<Tensor> inputs = ... Scope& new_scope = scope.NewScope();
auto actual_kernel_type = GetActualKernelType(inputs);
for (auto& var_name : this->Inputs()) {
// The expected kernel type is related to actual kernel type. auto* tensor_in = GetTensor(var_name);
// For the most operators, the expected kernel type is as same as auto kernel_type_for_var = this->GetKernelTypeForVar(...);
// actual kernel type. if (kernel_type_for_var.place_ != expected_kernel_key.place_) {
// auto* trans_var = new_scope.Var(var_name);
// So we pass `actual_kernel_type` as a parameter of auto* out = DataTransform(expected_kernel_key,
// GetExpectedKernelType kernel_type_for_var,
auto expect_kernel_type = GetExpectedKernelType(actual_kernel_type); *tensor_in);
CopyVariableWithTensor(...);
auto trans = g_data_transformation_[{actual_kernel_type, expect_kernel_type}]; }
}
kernel.run(trans(inputs));
auto kernel = kernels.find(expected_kernel_key);
kernel->Compute(ExecutionContext(...));
} }
``` ```
then the actual process for the multi-device above will be:
```
OP1(CPUPlace)
|
op1_2_op2(on CPU)
|
[transform](from CPU to GPU)
|
op1_2_op2(on GPU)
|
OP2(CUDAPlace)
```
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
### 基本使用概念 ### 基本使用概念
- 在PaddlePaddle内部,神经网络中一个计算层的输入/输出被组织为一个 `Argument` 结构体,如果神经网络有多个输入或者多个输入,每一个输入/输入都会对应有自己的`Argument` - 在PaddlePaddle内部,神经网络中一个计算层的输入/输出被组织为一个 `Argument` 结构体,如果神经网络有多个输入或者多个输出,每一个输入/输出都会对应有自己的`Argument`
- `Argument` 并不真正“存储”数据,而是将输入/输出信息有机地组织在一起。 - `Argument` 并不真正“存储”数据,而是将输入/输出信息有机地组织在一起。
-`Argument`内部由`IVector`(对应着上文提到的一维整型数组)和`Matrix`(对应着上文提到的二维浮点型矩阵)来实际存储数据;由 `Sequence Start Positions` (下文详细解释) 来描述输入/输出的序列信息。 -`Argument`内部由`IVector`(对应着上文提到的一维整型数组)和`Matrix`(对应着上文提到的二维浮点型矩阵)来实际存储数据;由 `Sequence Start Positions` (下文详细解释) 来描述输入/输出的序列信息。
......
# Fluid Distributed Training
## Introduction
In this article, we'll explain how to config and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.
## Preparations
### Get your cluster ready
Prepare your computer nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate with each other.
### Have PaddlePaddle installed
PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.
PaddlePaddle build and installation guide can be found from [here](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html).
### Update training script
#### Non-cluster training script
Let's take [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)'s first chapter: "fit a line" as an example.
This demo's non-cluster version with fluid API is as follows:
``` python
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
```
We created a simple fully connected neural networks training program and handed it to the fluid executor to run for 100 passes.
Now let's try to convert it to a distributed version to run in a cluster.
#### Introducing parameter server
As you see from the non-cluster version of training script, there is only one role in it: the trainer, who does the computing as well as holding parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.
![parameter server architect](src/trainer.png)
Parameter Server in fluid does not only hold parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more tech detail, please refer to this [document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md).
Now we need to create program for both trainers and parameter servers, the question is how?
#### Slice the program
Fluid provides a tool called "Distribute Transpiler" to automatically convert the non-cluster program into cluster program.
The idea behind this tool is to find optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.
Optimize OPs and gradient parameters can be found from the return values of optimizer's minimize function.
To put them together:
``` python
... #define the program, cost, and create sgd optimizer
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
t = fluid.DistributeTranspiler() # create transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
exe.run(fluid.default_startup_program())
#current_endpoint here means current pserver IP:PORT you wish to run on
exe.run(t.get_pserver_program(current_endpoint))
# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
for data in train_reader():
exe.run(t.get_trainer_program())
```
### E2E demo
Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py). In parameter server node run this in the command line:
``` bash
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=PSERVER python notest_dist_fit_a_line.py
```
*please note we assume that your parameter server runs at 192.168.1.2:6174*
Wait until the prompt `Server listening on 192.168.1.2:6174`
Then in 2 of your trainer node run this:
``` bash
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=TRAINER python notest_dist_fit_a_line.py
```
*the reason you need to run this command twice in 2 nodes is: in the script we set the trainer count to be 2. You can change this setting on line 50*
Now you have 2 trainers and 1 parameter server up and running.
The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later.
Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future.
Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and
[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle.
# 中文词向量模型的使用 #
----------
本文档介绍如何在PaddlePaddle平台上,使用预训练的标准格式词向量模型。
在此感谢 @lipeng 提出的代码需求,并给出的相关模型格式的定义。
## 介绍 ###
### 中文字典 ###
我们的字典使用内部的分词工具对百度知道和百度百科的语料进行分词后产生。分词风格如下: "《红楼梦》"将被分为 "《","红楼梦","》",和 "《红楼梦》"。字典采用UTF8编码,输出有2列:词本身和词频。字典共包含 3206326个词和4个特殊标记:
- `<s>`: 分词序列的开始
- `<e>`: 分词序列的结束
- `PALCEHOLDER_JUST_IGNORE_THE_EMBEDDING`: 占位符,没有实际意义
- `<unk>`: 未知词
### 中文词向量的预训练模型 ###
遵循文章 [A Neural Probabilistic Language Model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)中介绍的方法,模型采用 n-gram 语言模型,结构如下图:6元上下文作为输入层->全连接层->softmax层 。对应于字典,我们预训练得到4种不同维度的词向量,分别为:32维、64维、128维和256维。
<center>![](./neural-n-gram-model.png)</center>
<center>Figure 1. neural-n-gram-model</center>
### 下载和数据抽取 ###
运行以下的命令下载和获取我们的字典和预训练模型:
cd $PADDLE_ROOT/demo/model_zoo/embedding
./pre_DictAndModel.sh
## 中文短语改写的例子 ##
以下示范如何使用预训练的中文字典和词向量进行短语改写。
### 数据的准备和预处理 ###
首先,运行以下的命令下载数据集。该数据集(utf8编码)包含20个训练样例,5个测试样例和2个生成式样例。
cd $PADDLE_ROOT/demo/seqToseq/data
./paraphrase_data.sh
第二步,将数据处理成规范格式,在训练数集上训练生成词向量字典(数据将保存在 `$PADDLE_SOURCE_ROOT/demo/seqToseq/data/pre-paraphrase`):
cd $PADDLE_ROOT/demo/seqToseq/
python preprocess.py -i data/paraphrase [--mergeDict]
- 其中,如果使用`--mergeDict`选项,源语言短语和目标语言短语的字典将被合并(源语言和目标语言共享相同的编码字典)。本实例中,源语言和目标语言都是相同的语言,因此可以使用该选项。
### 使用用户指定的词向量字典 ###
使用如下命令,从预训练模型中,根据用户指定的字典,抽取对应的词向量构成新的词表:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL--usrDict USRDICT -d DIM
- `--preModel PREMODEL`: 预训练词向量字典模型的路径
- `--preDict PREDICT`: 预训练模型使用的字典的路径
- `--usrModel USRMODEL`: 抽取出的新词表的保存路径
- `--usrDict USRDICT`: 用户指定新的字典的路径,用于构成新的词表
- `-d DIM`: 参数(词向量)的维度
此处,你也可以简单的运行以下的命令:
cd $PADDLE_ROOT/demo/seqToseq/data/
./paraphrase_model.sh
运行成功以后,你将会看到以下的模型结构:
paraphrase_model
|--- _source_language_embedding
|--- _target_language_embedding
### 在PaddlePaddle平台训练模型 ###
首先,配置模型文件,配置如下(可以参考保存在 `demo/seqToseq/paraphrase/train.conf`的配置):
from seqToseq_net import *
is_generating = False
################## Data Definition #####################
train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase",
job_mode = job_mode)
############## Algorithm Configuration ##################
settings(
learning_method = AdamOptimizer(),
batch_size = 50,
learning_rate = 5e-4)
################# Network configure #####################
gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32)
这个配置与`demo/seqToseq/translation/train.conf` 基本相同
然后,使用以下命令进行模型训练:
cd $PADDLE_SOURCE_ROOT/demo/seqToseq/paraphrase
./train.sh
其中,`train.sh``demo/seqToseq/translation/train.sh` 基本相同,只有2个配置不一样:
- `--init_model_path`: 初始化模型的路径配置为`data/paraphrase_modeldata/paraphrase_model`
- `--load_missing_parameter_strategy`:如果参数模型文件缺失,除词向量模型外的参数将使用正态分布随机初始化
如果用户想要了解详细的数据集的格式、模型的结构和训练过程,请查看 [Text generation Tutorial](../text_generation/index_cn.md).
## 可选功能 ##
### 观测词向量
PaddlePaddle 平台为想观测词向量的用户提供了将二进制词向量模型转换为文本模型的功能:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM
- `-i INPUT`: 输入的(二进制)词向量模型名称
- `-o OUTPUT`: 输出的文本模型名称
- `-d DIM`: (词向量)参数维度
运行完以上命令,用户可以在输出的文本模型中看到:
0,4,32156096
-0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ......
0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ......
......
- 其中,第一行是`PaddlePaddle` 输出文件的格式说明,包含3个属性::
- `PaddlePaddle`的版本号,本例中为0
- 浮点数占用的字节数,本例中为4
- 总计的参数个数,本例中为32,156,096
- 其余行是(词向量)参数行(假设词向量维度为32)
- 每行打印32个参数以','分隔
- 共有32,156,096/32 = 1,004,877行,也就是说,模型共包含1,004,877个被向量化的词
### 词向量模型的修正
`PaddlePaddle` 为想修正词向量模型的用户提供了将文本词向量模型转换为二进制模型的命令:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --t2b -i INPUT -o OUTPUT
- `-i INPUT`: 输入的文本词向量模型名称
- `-o OUTPUT`: 输出的二进制词向量模型名称
请注意,输入的文本格式如下:
-0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ......
0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ......
......
- 输入文本中没有头部(格式说明)行
- (输入文本)每行存储一个词,以逗号','分隔
# Chinese Word Embedding Model Tutorial #
----------
This tutorial is to guide you through the process of using a Pretrained Chinese Word Embedding Model in the PaddlePaddle standard format.
We thank @lipeng for the pull request that defined the model schemas and pretrained the models.
## Introduction ###
### Chinese Word Dictionary ###
Our Chinese-word dictionary is created on Baidu ZhiDao and Baidu Baike by using in-house word segmentor. For example, the participle of "《红楼梦》" is "《","红楼梦","》",and "《红楼梦》". Our dictionary (using UTF-8 format) has has two columns: word and its frequency. The total word count is 3206326, including 4 special token:
- `<s>`: the start of a sequence
- `<e>`: the end of a sequence
- `PALCEHOLDER_JUST_IGNORE_THE_EMBEDDING`: a placeholder, just ignore it and its embedding
- `<unk>`: a word not included in dictionary
### Pretrained Chinese Word Embedding Model ###
Inspired by paper [A Neural Probabilistic Language Model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf), our model architecture (**Embedding joint of six words->FullyConnect->SoftMax**) is as following graph. And for our dictionary, we pretrain four models with different word vector dimenstions, i.e 32, 64, 128, 256.
<center>![](./neural-n-gram-model.png)</center>
<center>Figure 1. neural-n-gram-model</center>
### Download and Extract ###
To download and extract our dictionary and pretrained model, run the following commands.
cd $PADDLE_ROOT/demo/model_zoo/embedding
./pre_DictAndModel.sh
## Chinese Paraphrasing Example ##
We provide a paraphrasing task to show the usage of pretrained Chinese Word Dictionary and Embedding Model.
### Data Preparation and Preprocess ###
First, run the following commands to download and extract the in-house dataset. The dataset (using UTF-8 format) has 20 training samples, 5 testing samples and 2 generating samples.
cd $PADDLE_ROOT/demo/seqToseq/data
./paraphrase_data.sh
Second, preprocess data and build dictionary on train data by running the following commands, and the preprocessed dataset is stored in `$PADDLE_SOURCE_ROOT/demo/seqToseq/data/pre-paraphrase`:
cd $PADDLE_ROOT/demo/seqToseq/
python preprocess.py -i data/paraphrase [--mergeDict]
- `--mergeDict`: if using this option, the source and target dictionary are merged, i.e, two dictionaries have the same context. Here, as source and target data are all chinese words, this option can be used.
### User Specified Embedding Model ###
The general command of extracting desired parameters from the pretrained embedding model based on user dictionary is:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL--usrDict USRDICT -d DIM
- `--preModel PREMODEL`: the name of pretrained embedding model
- `--preDict PREDICT`: the name of pretrained dictionary
- `--usrModel USRMODEL`: the name of extracted embedding model
- `--usrDict USRDICT`: the name of user specified dictionary
- `-d DIM`: dimension of parameter
Here, you can simply run the command:
cd $PADDLE_ROOT/demo/seqToseq/data/
./paraphrase_model.sh
And you will see following embedding model structure:
paraphrase_model
|--- _source_language_embedding
|--- _target_language_embedding
### Training Model in PaddlePaddle ###
First, create a model config file, see example `demo/seqToseq/paraphrase/train.conf`:
from seqToseq_net import *
is_generating = False
################## Data Definition #####################
train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase",
job_mode = job_mode)
############## Algorithm Configuration ##################
settings(
learning_method = AdamOptimizer(),
batch_size = 50,
learning_rate = 5e-4)
################# Network configure #####################
gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32)
This config is almost the same as `demo/seqToseq/translation/train.conf`.
Then, train the model by running the command:
cd $PADDLE_SOURCE_ROOT/demo/seqToseq/paraphrase
./train.sh
where `train.sh` is almost the same as `demo/seqToseq/translation/train.sh`, the only difference is following two command arguments:
- `--init_model_path`: path of the initialization model, here is `data/paraphrase_model`
- `--load_missing_parameter_strategy`: operations when model file is missing, here use a normal distibution to initialize the other parameters except for the embedding layer
For users who want to understand the dataset format, model architecture and training procedure in detail, please refer to [Text generation Tutorial](../text_generation/index_en.md).
## Optional Function ##
### Embedding Parameters Observation
For users who want to observe the embedding parameters, this function can convert a PaddlePaddle binary embedding model to a text model by running the command:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM
- `-i INPUT`: the name of input binary embedding model
- `-o OUTPUT`: the name of output text embedding model
- `-d DIM`: the dimension of parameter
You will see parameters like this in output text model:
0,4,32156096
-0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ......
0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ......
......
- 1st line is **PaddlePaddle format file head**, it has 3 attributes:
- version of PaddlePaddle, here is 0
- sizeof(float), here is 4
- total number of parameter, here is 32156096
- Other lines print the paramters (assume `<dim>` = 32)
- each line print 32 paramters splitted by ','
- there is 32156096/32 = 1004877 lines, meaning there is 1004877 embedding words
### Embedding Parameters Revision
For users who want to revise the embedding parameters, this function can convert a revised text embedding model to a PaddlePaddle binary model by running the command:
cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --t2b -i INPUT -o OUTPUT
- `-i INPUT`: the name of input text embedding model.
- `-o OUTPUT`: the name of output binary embedding model
Note that the format of input text model is as follows:
-0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ......
0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ......
......
- there is no file header in 1st line
- each line stores parameters for one word, the separator is commas ','
# Generative Adversarial Networks (GAN)
This demo implements GAN training described in the original [GAN paper](https://arxiv.org/abs/1406.2661) and deep convolutional generative adversarial networks [DCGAN paper](https://arxiv.org/abs/1511.06434).
The high-level structure of GAN is shown in Figure. 1 below. It is composed of two major parts: a generator and a discriminator, both of which are based on neural networks. The generator takes in some kind of noise with a known distribution and transforms it into an image. The discriminator takes in an image and determines whether it is artificially generated by the generator or a real image. So the generator and the discriminator are in a competitive game in which generator is trying to generate image to look as real as possible to fool the discriminator, while the discriminator is trying to distinguish between real and fake images.
<center>![](./gan.png)</center>
<p align="center">
Figure 1. GAN-Model-Structure
<a href="https://ishmaelbelghazi.github.io/ALI/">figure credit</a>
</p>
The generator and discriminator take turn to be trained using SGD. The objective function of the generator is for its generated images being classified as real by the discriminator, and the objective function of the discriminator is to correctly classify real and fake images. When the GAN model is trained to converge to the equilibrium state, the generator will transform the given noise distribution to the distribution of real images, and the discriminator will not be able to distinguish between real and fake images at all.
## Implementation of GAN Model Structure
Since GAN model involves multiple neural networks, it requires to use paddle python API. So the code walk-through below can also partially serve as an introduction to the usage of Paddle Python API.
There are three networks defined in gan_conf.py, namely **generator_training**, **discriminator_training** and **generator**. The relationship to the model structure we defined above is that **discriminator_training** is the discriminator, **generator** is the generator, and the **generator_training** combined the generator and discriminator since training generator would require the discriminator to provide loss function. This relationship is described in the following code:
```python
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
```
In order to train the networks defined in gan_conf.py, one first needs to initialize a Paddle environment, parse the config, create GradientMachine from the config and create trainer from GradientMachine as done in the code chunk below:
```python
import py_paddle.swig_paddle as api
# init paddle environment
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=100', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./%s_params/" % data_source)
# Parse config
gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source)
generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
# Create GradientMachine
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
# Create trainer
dis_trainer = api.Trainer.create(dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(gen_conf, gen_training_machine)
```
In order to balance the strength between generator and discriminator, we schedule to train whichever one is performing worse by comparing their loss function value. The loss function value can be calculated by a forward pass through the GradientMachine.
```python
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
```
After training one network, one needs to sync the new parameters to the other networks. The code below demonstrates one example of such use case:
```python
# Train the gen_training
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
# Copy the parameters from gen_training to dis_training and generator
copy_shared_parameters(gen_training_machine,
dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
```
## A Toy Example
With the infrastructure explained above, we can now walk you through a toy example of generating two dimensional uniform distribution using 10 dimensional Gaussian noise.
The Gaussian noises are generated using the code below:
```python
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
```
The real samples (2-D uniform) are generated using the code below:
```python
# synthesize 2-D uniform data in gan_trainer.py:114
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
```
The generator and discriminator network are built using fully-connected layer and batch_norm layer, and are defined in gan_conf.py.
To train the GAN model, one can use the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
```bash
$python gan_trainer.py -d uniform --useGpu 1
```
The generated samples can be found in ./uniform_samples/ and one example is shown below as Figure 2. One can see that it roughly recovers the 2D uniform distribution.
<center>![](./uniform_sample.png)</center>
<p align="center">
Figure 2. Uniform Sample
</p>
## MNIST Example
### Data preparation
To download the MNIST data, one can use the following commands:
```bash
$cd data/
$./get_mnist_data.sh
```
### Model description
Following the DC-Gan paper (https://arxiv.org/abs/1511.06434), we use convolution/convolution-transpose layer in the discriminator/generator network to better deal with images. The details of the network structures are defined in gan_conf_image.py.
### Training the model
To train the GAN model on mnist data, one can use the following command:
```bash
$python gan_trainer.py -d mnist --useGpu 1
```
The generated sample images can be found at ./mnist_samples/ and one example is shown below as Figure 3.
<center>![](./mnist_sample.png)</center>
<p align="center">
Figure 3. MNIST Sample
</p>
# Model Zoo - ImageNet #
[ImageNet](http://www.image-net.org/) 是通用物体分类领域一个众所周知的数据库。本教程提供了一个用于ImageNet上的卷积分类网络模型。
## ResNet 介绍
论文 [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) 中提出的ResNet网络结构在2015年ImageNet大规模视觉识别竞赛(ILSVRC 2015)的分类任务中赢得了第一名。他们提出残差学习的框架来简化网络的训练,所构建网络结构的的深度比之前使用的网络有大幅度的提高。下图展示的是基于残差的连接方式。左图构造网络模块的方式被用于34层的网络中,而右图的瓶颈连接模块用于50层,101层和152层的网络结构中。
<center>![resnet_block](./resnet_block.jpg)</center>
<center>图 1. ResNet 网络模块</center>
本教程中我们给出了三个ResNet模型,这些模型都是由原作者提供的模型<https://github.com/KaimingHe/deep-residual-networks>转换过来的。我们使用PaddlePaddle在ILSVRC的验证集共50,000幅图像上测试了模型的分类错误率,其中输入图像的颜色通道顺序为**BGR**,保持宽高比缩放到短边为256,只截取中心方形的图像区域。分类错误率和模型大小由下表给出。
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col class="left" />
<col class="left" />
<col class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">ResNet</th>
<th scope="col" class="left">Top-1</th>
<th scope="col" class="left">Model Size</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">ResNet-50</td>
<td class="left">24.9%</td>
<td class="left">99M</td>
</tr>
<tr>
<td class="left">ResNet-101</td>
<td class="left">23.7%</td>
<td class="left">173M</td>
</tr>
<tr>
<td class="left">ResNet-152</td>
<td class="left">23.2%</td>
<td class="left">234M</td>
</tr>
</tbody>
</table></center>
<br>
## ResNet 模型
50层,101层和152层的网络配置文件可参照```demo/model_zoo/resnet/resnet.py```。你也可以通过在命令行参数中增加一个参数如```--config_args=layer_num=50```来指定网络层的数目。
### 网络可视化
你可以通过执行下面的命令来得到ResNet网络的结构可视化图。该脚本会生成一个dot文件,然后可以转换为图片。需要安装graphviz来转换dot文件为图片。
```
cd demo/model_zoo/resnet
./net_diagram.sh
```
### 模型下载
```
cd demo/model_zoo/resnet
./get_model.sh
```
你可以执行上述命令来下载所有的模型和均值文件,如果下载成功,这些文件将会被保存在```demo/model_zoo/resnet/model```路径下。
```
mean_meta_224 resnet_101 resnet_152 resnet_50
```
* resnet_50: 50层网络模型。
* resnet_101: 101层网络模型。
* resnet_152: 152层网络模型。
* mean\_meta\_224: 均值图像文件,图像大小为3 x 224 x 224,颜色通道顺序为**BGR**。你也可以使用这三个值: 103.939, 116.779, 123.68。
### 参数信息
* **卷积层权重**
由于每个卷积层后面连接的是batch normalization层,因此该层中没有偏置(bias)参数,并且只有一个权重。
形状: `(Co, ky, kx, Ci)`
* Co: 输出特征图的通道数目
* ky: 滤波器核在垂直方向上的尺寸
* kx: 滤波器核在水平方向上的尺寸
* Ci: 输入特征图的通道数目
二维矩阵: (Co * ky * kx, Ci), 行优先次序存储。
* **全连接层权重**
二维矩阵: (输入层尺寸, 本层尺寸), 行优先次序存储。
* **[Batch Normalization](<http://arxiv.org/abs/1502.03167>) 层权重**
本层有四个参数,实际上只有.w0和.wbias是需要学习的参数,另外两个分别是滑动均值和方差。在测试阶段它们将会被加载到模型中。下表展示了batch normalization层的参数。
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col class="left" />
<col class="left" />
<col class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">参数名</th>
<th scope="col" class="left">尺寸</th>
<th scope="col" class="left">含义</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">_res2_1_branch1_bn.w0</td>
<td class="left">256</td>
<td class="left">gamma, 缩放参数</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w1</td>
<td class="left">256</td>
<td class="left">特征图均值</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w2</td>
<td class="left">256</td>
<td class="left">特征图方差</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.wbias</td>
<td class="left">256</td>
<td class="left">beta, 偏置参数</td>
</tr>
</tbody>
</table></center>
<br>
### 参数读取
使用者可以使用下面的Python脚本来读取参数值:
```
import sys
import numpy as np
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
if __name__=='__main__':
weight = load(sys.argv[1])
```
或者直接使用下面的shell命令:
```
od -j 16 -f _res2_1_branch1_bn.w0
```
## 特征提取
我们提供了C++和Python接口来提取特征。下面的例子使用了`demo/model_zoo/resnet/example`中的数据,详细地展示了整个特征提取的过程。
### C++接口
首先,在配置文件中的`define_py_data_sources2`里指定图像数据列表,具体请参照示例`demo/model_zoo/resnet/resnet.py`
```
train_list = 'train.list' if not is_test else None
# mean.meta is mean file of ImageNet dataset.
# mean.meta size : 3 x 224 x 224.
# If you use three mean value, set like:
# "mean_value:103.939,116.779,123.68;"
args={
'mean_meta': "model/mean_meta_224/mean.meta",
'image_size': 224, 'crop_size': 224,
'color': True,'swap_channel:': [2, 1, 0]}
define_py_data_sources2(train_list,
'example/test.list',
module="example.image_list_provider",
obj="processData",
args=args)
```
第二步,在`resnet.py`文件中指定要提取特征的网络层的名字。例如,
```
Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
```
第三步,在`extract_fea_c++.sh`文件中指定模型路径和输出的目录,然后执行下面的命令。
```
cd demo/model_zoo/resnet
./extract_fea_c++.sh
```
如果执行成功,特征将会存到`fea_output/rank-00000`文件中,如下所示。同时你可以使用`load_feature.py`文件中的`load_feature_c`接口来加载该文件。
```
-0.115318 -0.108358 ... -0.087884;-1.27664 ... -1.11516 -2.59123;
-0.126383 -0.116248 ... -0.00534909;-1.42593 ... -1.04501 -1.40769;
```
* 每行存储的是一个样本的特征。其中,第一行存的是图像`example/dog.jpg`的特征,第二行存的是图像`example/cat.jpg`的特征。
* 不同层的特征由分号`;`隔开,并且它们的顺序与`Outputs()`中指定的层顺序一致。这里,左边是`res5_3_branch2c_conv`层的特征,右边是`res5_3_branch2c_bn`层特征。
### Python接口
示例`demo/model_zoo/resnet/classify.py`中展示了如何使用Python来提取特征。下面的例子同样使用了`./example/test.list`中的数据。执行的命令如下:
```
cd demo/model_zoo/resnet
./extract_fea_py.sh
```
extract_fea_py.sh:
```
python classify.py \
--job=extract \
--conf=resnet.py\
--use_gpu=1 \
--mean=model/mean_meta_224/mean.meta \
--model=model/resnet_50 \
--data=./example/test.list \
--output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \
--output_dir=features
```
* \--job=extract: 指定工作模式来提取特征。
* \--conf=resnet.py: 网络配置文件。
* \--use_gpu=1: 指定是否使用GPU。
* \--model=model/resnet_50: 模型路径。
* \--data=./example/test.list: 数据列表。
* \--output_layer="xxx,xxx": 指定提取特征的层。
* \--output_dir=features: 输出目录。
如果运行成功,你将会看到特征存储在`features/batch_0`文件中,该文件是由cPickle产生的。你可以使用`load_feature.py`中的`load_feature_py`接口来打开该文件,它将返回如下的字典:
```
{
'cat.jpg': {'res5_3_branch2c_conv': array([[-0.12638293, -0.116248 , -0.11883899, ..., -0.00895038, 0.01994277, -0.00534909]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.42593431, -1.28918779, -1.32414699, ..., -1.45933616, -1.04501402, -1.40769434]], dtype=float32)},
'dog.jpg': {'res5_3_branch2c_conv': array([[-0.11531784, -0.10835785, -0.08809858, ...,0.0055237, 0.01505112, -0.08788397]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.27663755, -1.18272924, -0.90937918, ..., -1.25178063, -1.11515927, -2.59122872]], dtype=float32)}
}
```
仔细观察,这些特征值与上述使用C++接口提取的结果是一致的。
## 预测
`classify.py`文件也可以用于对样本进行预测。我们提供了一个示例脚本`predict.sh`,它使用50层的ResNet模型来对`example/test.list`中的数据进行预测。
```
cd demo/model_zoo/resnet
./predict.sh
```
predict.sh调用了`classify.py`:
```
python classify.py \
--job=predict \
--conf=resnet.py\
--multi_crop \
--model=model/resnet_50 \
--use_gpu=1 \
--data=./example/test.list
```
* \--job=extract: 指定工作模型进行预测。
* \--conf=resnet.py: 网络配置文件。network configure.
* \--multi_crop: 使用10个裁剪图像块,预测概率取平均。
* \--use_gpu=1: 指定是否使用GPU。
* \--model=model/resnet_50: 模型路径。
* \--data=./example/test.list: 数据列表。
如果运行成功,你将会看到如下结果,其中156和285是这些图像的分类标签。
```
Label of example/dog.jpg is: 156
Label of example/cat.jpg is: 282
```
# Model Zoo - ImageNet #
[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provides convolutional neural network(CNN) models for ImageNet.
## ResNet Introduction
ResNets from paper [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) won the 1st place on the ILSVRC 2015 classification task. They present residual learning framework to ease the training of networks that are substantially deeper than those used previously. The residual connections are shown in following figure. The left building block is used in network of 34 layers and the right bottleneck building block is used in network of 50, 101, 152 layers .
<center>![resnet_block](./resnet_block.jpg)</center>
<center>Figure 1. ResNet Block</center>
We present three ResNet models, which are converted from the models provided by the authors <https://github.com/KaimingHe/deep-residual-networks>. The classfication errors tested in PaddlePaddle on 50,000 ILSVRC validation set with input images channel order of **BGR** by single scale with the shorter side of 256 and single crop as following table.
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col class="left" />
<col class="left" />
<col class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">ResNet</th>
<th scope="col" class="left">Top-1</th>
<th scope="col" class="left">Model Size</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">ResNet-50</td>
<td class="left">24.9%</td>
<td class="left">99M</td>
</tr>
<tr>
<td class="left">ResNet-101</td>
<td class="left">23.7%</td>
<td class="left">173M</td>
</tr>
<tr>
<td class="left">ResNet-152</td>
<td class="left">23.2%</td>
<td class="left">234M</td>
</tr>
</tbody>
</table></center>
<br>
## ResNet Model
See ```demo/model_zoo/resnet/resnet.py```. This config contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like ```--config_args=layer_num=50``` in command line arguments.
### Network Visualization
You can get a diagram of ResNet network by running the following commands. The script generates dot file and then converts dot file to PNG file, which needs to install graphviz to convert.
```
cd demo/model_zoo/resnet
./net_diagram.sh
```
### Model Download
```
cd demo/model_zoo/resnet
./get_model.sh
```
You can run above command to download all models and mean file and save them in ```demo/model_zoo/resnet/model``` if downloading successfully.
```
mean_meta_224 resnet_101 resnet_152 resnet_50
```
* resnet_50: model of 50 layers.
* resnet_101: model of 101 layers.
* resnet_152: model of 152 layers.
* mean\_meta\_224: mean file with 3 x 224 x 224 size in **BGR** order. You also can use three mean values: 103.939, 116.779, 123.68.
### Parameter Info
* **Convolution Layer Weight**
As batch normalization layer is connected after each convolution layer, there is no parameter of bias and only one weight in this layer.
shape: `(Co, ky, kx, Ci)`
* Co: channle number of output feature map.
* ky: filter size in vertical direction.
* kx: filter size in horizontal direction.
* Ci: channle number of input feature map.
2-Dim matrix: (Co * ky * kx, Ci), saved in row-major order.
* **Fully connected Layer Weight**
2-Dim matrix: (input layer size, this layer size), saved in row-major order.
* **[Batch Normalization](<http://arxiv.org/abs/1502.03167>) Layer Weight**
There are four parameters in this layer. In fact, only .w0 and .wbias are the learned parameters. The other two are therunning mean and variance respectively. They will be loaded in testing. Following table shows parameters of a batch normzalization layer.
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col class="left" />
<col class="left" />
<col class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">Parameter Name</th>
<th scope="col" class="left">Number</th>
<th scope="col" class="left">Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">_res2_1_branch1_bn.w0</td>
<td class="left">256</td>
<td class="left">gamma, scale parameter</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w1</td>
<td class="left">256</td>
<td class="left">mean value of feature map</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w2</td>
<td class="left">256</td>
<td class="left">variance of feature map</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.wbias</td>
<td class="left">256</td>
<td class="left">beta, shift parameter</td>
</tr>
</tbody>
</table></center>
<br>
### Parameter Observation
Users who want to observe the parameters can use Python to read:
```
import sys
import numpy as np
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
if __name__=='__main__':
weight = load(sys.argv[1])
```
or simply use following shell command:
```
od -j 16 -f _res2_1_branch1_bn.w0
```
## Feature Extraction
We provide both C++ and Python interfaces to extract features. The following examples use data in `demo/model_zoo/resnet/example` to show the extracting process in detail.
### C++ Interface
First, specify image data list in `define_py_data_sources2` in the config, see example `demo/model_zoo/resnet/resnet.py`.
```
train_list = 'train.list' if not is_test else None
# mean.meta is mean file of ImageNet dataset.
# mean.meta size : 3 x 224 x 224.
# If you use three mean value, set like:
# "mean_value:103.939,116.779,123.68;"
args={
'mean_meta': "model/mean_meta_224/mean.meta",
'image_size': 224, 'crop_size': 224,
'color': True,'swap_channel:': [2, 1, 0]}
define_py_data_sources2(train_list,
'example/test.list',
module="example.image_list_provider",
obj="processData",
args=args)
```
Second, specify layers to extract features in `Outputs()` of `resnet.py`. For example,
```
Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
```
Third, specify model path and output directory in `extract_fea_c++.sh`, and then run the following commands.
```
cd demo/model_zoo/resnet
./extract_fea_c++.sh
```
If successful, features are saved in `fea_output/rank-00000` as follows. And you can use `load_feature_c` interface in `load_feature.py ` to load such a file.
```
-0.115318 -0.108358 ... -0.087884;-1.27664 ... -1.11516 -2.59123;
-0.126383 -0.116248 ... -0.00534909;-1.42593 ... -1.04501 -1.40769;
```
* Each line stores features of a sample. Here, the first line stores features of `example/dog.jpg` and second line stores features of `example/cat.jpg`.
* Features of different layers are splitted by `;`, and their order is consistent with the layer order in `Outputs()`. Here, the left features are `res5_3_branch2c_conv` layer and right features are `res5_3_branch2c_bn` layer.
### Python Interface
`demo/model_zoo/resnet/classify.py` is an example to show how to use Python to extract features. Following example still uses data of `./example/test.list`. Command is as follows:
```
cd demo/model_zoo/resnet
./extract_fea_py.sh
```
extract_fea_py.sh:
```
python classify.py \
--job=extract \
--conf=resnet.py\
--use_gpu=1 \
--mean=model/mean_meta_224/mean.meta \
--model=model/resnet_50 \
--data=./example/test.list \
--output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \
--output_dir=features
```
* \--job=extract: specify job mode to extract feature.
* \--conf=resnet.py: network configure.
* \--use_gpu=1: speficy GPU mode.
* \--model=model/resnet_5: model path.
* \--data=./example/test.list: data list.
* \--output_layer="xxx,xxx": specify layers to extract features.
* \--output_dir=features: output diretcoty.
If run successfully, you will see features saved in `features/batch_0`, this file is produced with cPickle. You can use `load_feature_py` interface in `load_feature.py` to open the file, and it returns a dictionary as follows:
```
{
'cat.jpg': {'res5_3_branch2c_conv': array([[-0.12638293, -0.116248 , -0.11883899, ..., -0.00895038, 0.01994277, -0.00534909]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.42593431, -1.28918779, -1.32414699, ..., -1.45933616, -1.04501402, -1.40769434]], dtype=float32)},
'dog.jpg': {'res5_3_branch2c_conv': array([[-0.11531784, -0.10835785, -0.08809858, ...,0.0055237, 0.01505112, -0.08788397]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.27663755, -1.18272924, -0.90937918, ..., -1.25178063, -1.11515927, -2.59122872]], dtype=float32)}
}
```
Observed carefully, these feature values are consistent with the above results extracted by C++ interface.
## Prediction
`classify.py` also can be used to predict. We provide an example script `predict.sh` to predict data in `example/test.list` using a ResNet model with 50 layers.
```
cd demo/model_zoo/resnet
./predict.sh
```
predict.sh calls the `classify.py`:
```
python classify.py \
--job=predict \
--conf=resnet.py\
--multi_crop \
--model=model/resnet_50 \
--use_gpu=1 \
--data=./example/test.list
```
* \--job=extract: speficy job mode to predict.
* \--conf=resnet.py: network configure.
* \--multi_crop: use 10 crops and average predicting probability.
* \--use_gpu=1: speficy GPU mode.
* \--model=model/resnet_50: model path.
* \--data=./example/test.list: data list.
If run successfully, you will see following results, where 156 and 285 are labels of the images.
```
Label of example/dog.jpg is: 156
Label of example/cat.jpg is: 282
```
=============
快速入门教程
=============
我们将以 `文本分类问题 <https://en.wikipedia.org/wiki/Document_classification>`_ 为例,
介绍PaddlePaddle的基本使用方法。
安装
====
请参考 :ref:`install_steps` 安装PaddlePaddle。
使用概述
========
**文本分类问题**:对于给定的一条文本,我们从提前给定的类别集合中选择其所属类别。
比如, 在购物网站上,通过查看买家对某个产品的评价反馈, 评估该产品的质量。
- 这个显示器很棒! (好评)
- 用了两个月之后这个显示器屏幕碎了。(差评)
使用PaddlePaddle, 每一个任务流程都可以被划分为如下五个步骤。
.. image:: src/Pipeline_cn.jpg
:align: center
:scale: 80%
1. 数据格式准备
- 本例每行保存一条样本,类别Id和文本信息用 ``Tab`` 间隔,文本中的单词用空格分隔(如果不切词,则字与字之间用空格分隔),例如:``类别Id '\t' 这 个 显 示 器 很 棒 !``
2. 向系统传送数据
- PaddlePaddle可以执行用户的python脚本程序来读取各种格式的数据文件。
- 本例的所有字符都将转换为连续整数表示的Id传给模型。
3. 描述网络结构和优化算法
- 本例由易到难展示4种不同的文本分类网络配置:逻辑回归模型,词向量模型,卷积模型,时序模型。
- 常用优化算法包括Momentum, RMSProp,AdaDelta,AdaGrad,Adam,Adamax等,本例采用Adam优化方法,加了L2正则和梯度截断。
4. 训练模型
5. 应用模型
数据格式准备
------------
接下来我们将展示如何用PaddlePaddle训练一个文本分类模型,将 `Amazon电子产品评论数据 <http://jmcauley.ucsd.edu/data/amazon/>`_ 分为好评(正样本)和差评(负样本)两种类别。
`源代码 <https://github.com/PaddlePaddle/Paddle>`_ 的 ``demo/quick_start`` 目录里提供了该数据的下载脚本和预处理脚本,你只需要在命令行输入以下命令,就能够很方便的完成数据下载和相应的预处理工作。
.. code-block:: bash
cd demo/quick_start
./data/get_data.sh
./preprocess.sh
数据预处理完成之后,通过配置类似于 ``dataprovider_*.py`` 的数据读取脚本和类似于 ``trainer_config.*.py`` 的训练模型脚本,PaddlePaddle将以设置参数的方式来设置
相应的数据读取脚本和训练模型脚本。接下来,我们将对这两个步骤给出了详细的解释,你也可以先跳过本文的解释环节,直接进入训练模型章节, 使用 ``sh train.sh`` 开始训练模型,
查看`train.sh`内容,通过 **自底向上法** (bottom-up approach)来帮助你理解PaddlePaddle的内部运行机制。
向系统传送数据
==============
Python脚本读取数据
------------------
`DataProvider` 是PaddlePaddle负责提供数据的模块,主要职责在于将训练数据传入内存或者显存,让模型能够得到训练更新,其包括两个函数:
* initializer:PaddlePaddle会在调用读取数据的Python脚本之前,先调用initializer函数。在下面例子里,我们在initialzier函数里初始化词表,并且在随后的读取数据过程中填充词表。
* process:PaddlePaddle调用process函数来读取数据。每次读取一条数据后,process函数会用yield语句输出这条数据,从而能够被PaddlePaddle 捕获 (harvest)。
``dataprovider_bow.py`` 文件给出了完整例子:
.. literalinclude:: ../../../demo/quick_start/dataprovider_bow.py
:language: python
:lines: 21-70
:linenos:
:emphasize-lines: 8,33
详细内容请参见 :ref:`api_dataprovider` 。
配置中的数据加载定义
--------------------
在模型配置中通过 ``define_py_data_sources2`` 接口来加载数据:
.. literalinclude:: ../../../demo/quick_start/trainer_config.emb.py
:language: python
:lines: 19-35
:linenos:
:emphasize-lines: 12
以下是对上述数据加载的解释:
- data/train.list,data/test.list: 指定训练数据和测试数据
- module="dataprovider_bow": 处理数据的Python脚本文件
- obj="process": 指定生成数据的函数
- args={"dictionary": word_dict}: 额外的参数,这里指定词典
更详细数据格式和用例请参考 :ref:`api_pydataprovider2` 。
模型网络结构
============
本小节我们将介绍模型网络结构。
.. image:: src/PipelineNetwork_cn.jpg
:align: center
:scale: 80%
我们将以最基本的逻辑回归网络作为起点,并逐渐展示更加深入的功能。更详细的网络配置连接请参考 :ref:`api_trainer_config_helpers_layers` 。
所有配置都能在 `源代码 <https://github.com/PaddlePaddle/Paddle>`_ 的 ``demo/quick_start`` 目录下找到。
逻辑回归模型
------------
具体流程如下:
.. image:: src/NetLR_cn.jpg
:align: center
:scale: 80%
- 获取利用 `one-hot vector <https://en.wikipedia.org/wiki/One-hot>`_ 表示的每个单词,维度是词典大小
.. code-block:: python
word = data_layer(name="word", size=word_dim)
- 获取该条样本类别Id,维度是类别个数。
.. code-block:: python
label = data_layer(name="label", size=label_dim)
- 利用逻辑回归模型对该向量进行分类,同时会计算分类准确率
.. code-block:: python
# Define a fully connected layer with logistic activation (also called softmax activation).
output = fc_layer(input=word,
size=label_dim,
act_type=SoftmaxActivation())
# Define cross-entropy classification loss and error.
classification_cost(input=output, label=label)
- input: 除去data层,每个层都有一个或多个input,多个input以list方式输入
- size: 该层神经元个数
- act_type: 激活函数类型
**效果总结**:我们将在后面介绍训练和预测流程的脚本。在此为方便对比不同网络结构,我们总结了各个网络的复杂度和效果。
===================== =============================== =================
网络名称 参数数量 错误率
===================== =============================== =================
逻辑回归 252 KB 8.652 %
===================== =============================== =================
词向量模型
----------
embedding模型需要稍微改变提供数据的Python脚本,即 ``dataprovider_emb.py``,词向量模型、
卷积模型、时序模型均使用该脚本。其中文本输入类型定义为整数时序类型integer_value_sequence。
.. code-block:: python
def initializer(settings, dictionary, **kwargs):
settings.word_dict = dictionary
settings.input_types = [
# Define the type of the first input as sequence of integer.
# The value of the integers range from 0 to len(dictrionary)-1
integer_value_sequence(len(dictionary)),
# Define the second input for label id
integer_value(2)]
@provider(init_hook=initializer)
def process(settings, file_name):
...
# omitted, it is same as the data provider for LR model
该模型依然使用逻辑回归分类网络的框架, 只是将句子用连续向量表示替换为用稀疏向量表示, 即对第三步进行替换。句子表示的计算更新为两步:
.. image:: src/NetContinuous_cn.jpg
:align: center
:scale: 80%
- 利用单词Id查找该单词对应的连续向量(维度为word_dim), 输入N个单词,输出为N个word_dim维度向量
.. code-block:: python
emb = embedding_layer(input=word, size=word_dim)
- 将该句话包含的所有单词向量求平均, 得到句子的表示
.. code-block:: python
avg = pooling_layer(input=emb, pooling_type=AvgPooling())
其它部分和逻辑回归网络结构一致。
**效果总结:**
===================== =============================== ==================
网络名称 参数数量 错误率
===================== =============================== ==================
词向量模型 15 MB 8.484 %
===================== =============================== ==================
卷积模型
-----------
卷积网络是一种特殊的从词向量表示到句子表示的方法, 也就是将词向量模型进一步演化为三个新步骤。
.. image:: src/NetConv_cn.jpg
:align: center
:scale: 80%
文本卷积分可为三个步骤:
1. 首先,从每个单词左右两端分别获取k个相邻的单词, 拼接成一个新的向量;
2. 其次,对该向量进行非线性变换(例如Sigmoid变换), 使其转变为维度为hidden_dim的新向量;
3. 最后,对整个新向量集合的每一个维度取最大值来表示最后的句子。
这三个步骤可配置为:
.. code-block:: python
text_conv = sequence_conv_pool(input=emb,
context_start=k,
context_len=2 * k + 1)
**效果总结:**
===================== =============================== ========================
网络名称 参数数量 错误率
===================== =============================== ========================
卷积模型 16 MB 5.628 %
===================== =============================== ========================
时序模型
----------
.. image:: src/NetRNN_cn.jpg
:align: center
:scale: 80%
时序模型,也称为RNN模型, 包括简单的 `RNN模型 <https://en.wikipedia.org/wiki/Recurrent_neural_network>`_, `GRU模型 <https://en.wikipedia.org/wiki/Gated_recurrent_unit>`_ 和 `LSTM模型 <https://en.wikipedia.org/wiki/Long_short-term_memory>`_ 等等。
- GRU模型配置:
.. code-block:: python
gru = simple_gru(input=emb, size=gru_size)
- LSTM模型配置:
.. code-block:: python
lstm = simple_lstm(input=emb, size=lstm_size)
本次试验,我们采用单层LSTM模型,并使用了Dropout,**效果总结:**
===================== =============================== =========================
网络名称 参数数量 错误率
===================== =============================== =========================
时序模型 16 MB 4.812 %
===================== =============================== =========================
优化算法
=========
`优化算法 <http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/optimizers_index.html>`_ 包括
Momentum, RMSProp,AdaDelta,AdaGrad,ADAM,Adamax等,这里采用Adam优化方法,同时使用了L2正则(L2 Regularization)和梯度截断(Gradient Clipping)。
.. code-block:: python
settings(batch_size=128,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
训练模型
=========
在数据加载和网络配置完成之后, 我们就可以训练模型了。
.. image:: src/PipelineTrain_cn.jpg
:align: center
:scale: 80%
训练模型,我们只需要运行 ``train.sh`` 训练脚本:
.. code-block:: bash
./train.sh
``train.sh`` 中包含了训练模型的基本命令。训练时所需设置的主要参数如下:
.. code-block:: bash
paddle train \
--config=trainer_config.py \
--log_period=20 \
--save_dir=./output \
--num_passes=15 \
--use_gpu=false
这里只简单介绍了单机训练,如何进行分布式训练,请参考 :ref:`cluster_train` 。
预测
=====
当模型训练好了之后,我们就可以进行预测了。
.. image:: src/PipelineTest_cn.jpg
:align: center
:scale: 80%
之前配置文件中 ``test.list`` 指定的数据将会被测试,这里直接通过预测脚本 ``predict.sh`` 进行预测,
更详细的说明,请参考 :ref:`api_swig_py_paddle` 。
.. code-block:: bash
model="output/pass-00003"
paddle train \
--config=trainer_config.lstm.py \
--use_gpu=false \
--job=test \
--init_model_path=$model \
--config_args=is_predict=1 \
--predict_output_dir=. \
mv rank-00000 result.txt
这里以 ``output/pass-00003`` 为例进行预测,用户可以根据训练日志,选择测试结果最好的模型来预测。
预测结果以文本的形式保存在 ``result.txt`` 中,一行为一个样本,格式如下:
.. code-block:: bash
预测ID;ID为0的概率 ID为1的概率
预测ID;ID为0的概率 ID为1的概率
总体效果总结
==============
在 ``/demo/quick_start`` 目录下,能够找到这里使用的所有数据, 网络配置, 训练脚本等等。
对于Amazon-Elec测试集(25k), 如下表格,展示了上述网络模型的训练效果:
===================== =============================== ============= ==================================
网络名称 参数数量 错误率 配置文件
===================== =============================== ============= ==================================
逻辑回归模型 252 KB 8.652% trainer_config.lr.py
词向量模型 15 MB 8.484% trainer_config.emb.py
卷积模型 16 MB 5.628% trainer_config.cnn.py
时序模型 16 MB 4.812% trainer_config.lstm.py
===================== =============================== ============= ==================================
附录
=====
命令行参数
----------
* \--config:网络配置
* \--save_dir:模型存储路径
* \--log_period:每隔多少batch打印一次日志
* \--num_passes:训练轮次,一个pass表示过一遍所有训练样本
* \--config_args:命令指定的参数会传入网络配置中。
* \--init_model_path:指定初始化模型路径,可用在测试或训练时指定初始化模型。
默认一个pass保存一次模型,也可以通过saving_period_by_batches设置每隔多少batch保存一次模型。
可以通过show_parameter_stats_period设置打印参数信息等。
其他参数请参考 命令行参数文档(链接待补充)。
输出日志
---------
.. code-block:: bash
TrainerInternal.cpp:160] Batch=20 samples=2560 AvgCost=0.628761 CurrentCost=0.628761 Eval: classification_error_evaluator=0.304297 CurrentEval: classification_error_evaluator=0.304297
模型训练会看到类似上面这样的日志信息,详细的参数解释,请参考如下表格:
=========================================== ==============================================================
名称 解释
=========================================== ==============================================================
Batch=20 表示过了20个batch
samples=2560 表示过了2560个样本
AvgCost 每个pass的第0个batch到当前batch所有样本的平均cost
CurrentCost 当前log_period个batch所有样本的平均cost
Eval: classification_error_evaluator 每个pass的第0个batch到当前batch所有样本的平均分类错误率
CurrentEval: classification_error_evaluator 当前log_period个batch所有样本的平均分类错误率
=========================================== ==============================================================
# Quick Start
This tutorial will teach the basics of deep learning (DL), including how to implement many different models in PaddlePaddle. You will learn how to:
- Prepare data into the standardized format that PaddlePaddle accepts.
- Write data providers that read data into PaddlePaddle.
- Configure neural networks in PaddlePaddle layer by layer.
- Train models.
- Perform inference with trained models.
## Install
To get started, please install PaddlePaddle on your computer. Throughout this tutorial, you will learn by implementing different DL models for text classification.
To install PaddlePaddle, please follow the instructions here: <a href = "../../getstarted/build_and_install/index_en.html" >Build and Install</a>.
## Overview
For the first step, you will use PaddlePaddle to build a **text classification** system. For example, suppose you run an e-commence website, and you want to analyze the sentiment of user reviews to evaluate product quality.
For example, given the input
```
This monitor is fantastic.
```
Your classifier should output “positive”, since this text snippet shows that the user is satisfied with the product. Given this input:
```
The monitor breaks down two months after purchase.
```
the classifier should output “negative“.
To build your text classification system, your code will need to perform five steps:
<center> ![](./src/Pipeline_en.jpg) </center>
- Preprocess data into a standardized format.
- Provide data to the learning model.
- Specify the neural network structure.
- Train the model.
- Inference (make prediction on test examples).
1. Preprocess data into standardized format
- In the text classification example, you will start with a text file with one training example per line. Each line contains category id (in machine learning, often denoted the target y), followed by the input text (often denoted x); these two elements are separated by a Tab. For example: ```positive [tab] This monitor is fantastic```. You will preprocess this raw data into a format that Paddle can use.
2. Provide data to the learning model.
- You can write data providers in Python. For any required data preprocessing step, you can add the preprocessing code to the PyDataProvider Python file.
- In our text classification example, every word or character will be converted into an integer id, specified in a dictionary file. It perform a dictionary lookup in PyDataProvider to get the id.
3. Specify neural network structure. (From easy to hard, we provide 4 kinds of network configurations)
- A logistic regression model.
- A word embedding model.
- A convolutional neural network model.
- A sequential recurrent neural network model.
- You will also learn different learning algorithms.
4. Training model.
5. Inference.
## Preprocess data into standardized format
In this example, you are going to use [Amazon electronic product review dataset](http://jmcauley.ucsd.edu/data/amazon/) to build a bunch of deep neural network models for text classification. Each text in this dataset is a product review. This dataset has two categories: “positive” and “negative”. Positive means the reviewer likes the product, while negative means the reviewer does not like the product.
`demo/quick_start` in the [source code](https://github.com/PaddlePaddle/Paddle) provides script for downloading the preprocessed data as shown below. (If you want to process the raw data, you can use the script `demo/quick_start/data/proc_from_raw_data/get_data.sh`).
```bash
cd demo/quick_start
./data/get_data.sh
```
## Transfer Data to Model
### Write Data Provider with Python
The following `dataprovider_bow.py` gives a complete example of writing data provider with Python. It includes the following parts:
* initalizer: define the additional meta-data of the data provider and the types of the input data.
* process: Each `yield` returns a data sample. In this case, it return the text representation and category id. The order of features in the returned result needs to be consistent with the definition of the input types in `initalizer`.
```python
from paddle.trainer.PyDataProvider2 import *
# id of the word not in dictionary
UNK_IDX = 0
# initializer is called by the framework during initialization.
# It allows the user to describe the data types and setup the
# necessary data structure for later use.
# `settings` is an object. initializer need to properly fill settings.input_types.
# initializer can also store other data structures needed to be used at process().
# In this example, dictionary is stored in settings.
# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py
def initializer(settings, dictionary, **kwargs):
# Put the word dictionary into settings
settings.word_dict = dictionary
# setting.input_types specifies what the data types the data provider
# generates.
settings.input_types = [
# The first input is a sparse_binary_vector,
# which means each dimension of the vector is either 0 or 1. It is the
# bag-of-words (BOW) representation of the texts.
sparse_binary_vector(len(dictionary)),
# The second input is an integer. It represents the category id of the
# sample. 2 means there are two labels in the dataset.
# (1 for positive and 0 for negative)
integer_value(2)]
# Delaring a data provider. It has an initializer 'data_initialzer'.
# It will cache the generated data of the first pass in memory, so that
# during later pass, no on-the-fly data generation will be needed.
# `setting` is the same object used by initializer()
# `file_name` is the name of a file listed train_list or test_list file given
# to define_py_data_sources2(). See trainer_config.lr.py.
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
# Open the input data file.
with open(file_name, 'r') as f:
# Read each line.
for line in f:
# Each line contains the label and text of the comment, separated by \t.
label, comment = line.strip().split('\t')
# Split the words into a list.
words = comment.split()
# convert the words into a list of ids by looking them up in word_dict.
word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words]
# Return the features for the current comment. The first is a list
# of ids representing a 0-1 binary sparse vector of the text,
# the second is the integer id of the label.
yield word_vector, int(label)
```
### Define Python Data Provider in Configuration files.
You need to add a data provider definition `define_py_data_sources2` in our network configuration. This definition specifies:
- The path of the training and testing data (`data/train.list`, `data/test.list`).
- The location of the data provider file (`dataprovider_bow`).
- The function to call to get data. (`process`).
- Additional arguments or data. Here it passes the path of word dictionary.
```python
from paddle.trainer_config_helpers import *
file = "data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(train_list='data/train.list',
test_list='data/test.list',
module="dataprovider_bow",
obj="process",
args={"dictionary": word_dict})
```
You can refer to the following link for more detailed examples and data formats: <a href = "../../api/v1/data_provider/pydataprovider2_en.html">PyDataProvider2</a>.
## Network Architecture
We will describe four kinds of network architectures in this section.
<center> ![](./src/PipelineNetwork_en.jpg) </center>
First, you will build a logistic regression model. Later, you will also get chance to build other more powerful network architectures.
For more detailed documentation, you could refer to: <a href = "../../api/v1/trainer_config_helpers/layers.html">layer documentation</a>. All configuration files are in `demo/quick_start` directory.
### Logistic Regression
The architecture is illustrated in the following picture:
<center> ![](./src/NetLR_en.png) </center>
- You need define the data for text features. The size of the data layer is the number of words in the dictionary.
```python
word = data_layer(name="word", size=voc_dim)
```
- You also need to define the category id for each example. The size of the data layer is the number of labels.
```python
label = data_layer(name="label", size=label_dim)
```
- It uses logistic regression model to classify the vector, and it will output the classification error during training.
- Each layer has an *input* argument that specifies its input layer. Some layers can have multiple input layers. You can use a list of the input layers as input in that case.
- *size* for each layer means the number of neurons of the layer.
- *act_type* means activation function applied to the output of each neuron independently.
- Some layers can have additional special inputs. For example, `classification_cost` needs ground truth label as input to compute classification loss and error.
```python
# Define a fully connected layer with logistic activation (also called softmax activation).
output = fc_layer(input=word,
size=label_dim,
act_type=SoftmaxActivation())
# Define cross-entropy classification loss and error.
classification_cost(input=output, label=label)
```
Performance summary: You can refer to the training and testing scripts later. In order to compare different network architectures, the model complexity and test classification error are listed in the following table:
<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">Logistic regression</td>
<td class="left">252 KB</td>
<td class="left">8.652%</td>
</tr>
</tbody>
</table></center>
</html>
<br>
### Word Embedding Model
In order to use the word embedding model, you need to change the data provider a little bit to make the input words as a sequence of word IDs. The revised data provider `dataprovider_emb.py` is listed below. You only need to change initializer() for the type of the first input. It is changed from sparse_binary_vector to sequence of intergers. process() remains the same. This data provider can also be used for later sequence models.
```python
def initializer(settings, dictionary, **kwargs):
# Put the word dictionary into settings
settings.word_dict = dictionary
settings.input_types = [
# Define the type of the first input as a sequence of integers.
integer_value_sequence(len(dictionary)),
# Define the second input for label id
integer_value(2)]
@provider(init_hook=initializer)
def process(settings, file_name):
...
# omitted, it is same as the data provider for LR model
```
This model is very similar to the framework of logistic regression, but it uses word embedding vectors instead of a sparse vectors to represent words.
<center> ![](./src/NetContinuous_en.png) </center>
- It can look up the dense word embedding vector in the dictionary (its words embedding vector is `word_dim`). The input is a sequence of N words, the output is N word_dim dimensional vectors.
```python
emb = embedding_layer(input=word, dim=word_dim)
```
- It averages all the word embedding in a sentence to get its sentence representation.
```python
avg = pooling_layer(input=emb, pooling_type=AvgPooling())
```
The other parts of the model are the same as logistic regression network.
The performance is summarized in the following table:
<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">Word embedding model</td>
<td class="left">15 MB</td>
<td class="left">8.484%</td>
</tr>
</tbody>
</table>
</html></center>
<br>
### Convolutional Neural Network Model
Convolutional neural network converts a sequence of word embeddings into a sentence representation using temporal convolutions. You will transform the fully connected layer of the word embedding model to 3 new sub-steps.
<center> ![](./src/NetConv_en.png) </center>
Text convolution has 3 steps:
1. Get K nearest neighbor context of each word in a sentence, stack them into a 2D vector representation.
2. Apply temporal convolution to this representation to produce a new hidden_dim dimensional vector.
3. Apply max-pooling to the new vectors at all the time steps in a sentence to get a sentence representation.
```python
# context_len means convolution kernel size.
# context_start means the start of the convolution. It can be negative. In that case, zero padding is applied.
text_conv = sequence_conv_pool(input=emb,
context_start=k,
context_len=2 * k + 1)
```
The performance is summarized in the following table:
<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">Convolutional model</td>
<td class="left">16 MB</td>
<td class="left">5.628%</td>
</tr>
</tbody>
</table></center>
<br>
### Recurrent Model
<center> ![](./src/NetRNN_en.png) </center>
You can use Recurrent neural network as our time sequence model, including simple RNN model, GRU model, and LSTM model。
- GRU model can be specified via:
```python
gru = simple_gru(input=emb, size=gru_size)
```
- LSTM model can be specified via:
```python
lstm = simple_lstm(input=emb, size=lstm_size)
```
You can use single layer LSTM model with Dropout for our text classification problem. The performance is summarized in the following table:
<html>
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">Recurrent model</td>
<td class="left">16 MB</td>
<td class="left">4.812%</td>
</tr>
</tbody>
</table></center>
</html>
<br>
## Optimization Algorithm
<a href = "../../api/v1/trainer_config_helpers/optimizers.html">Optimization algorithms</a> include Momentum, RMSProp, AdaDelta, AdaGrad, Adam, and Adamax. You can use Adam optimization method here, with L2 regularization and gradient clipping, because Adam has been proved to work very well for training recurrent neural network.
```python
settings(batch_size=128,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
```
## Training Model
After completing data preparation and network architecture specification, you will run the training script.
<center> ![](./src/PipelineTrain_en.png) </center>
Training script: our training script is in `train.sh` file. The training arguments are listed below:
```bash
paddle train \
--config=trainer_config.py \
--log_period=20 \
--save_dir=./output \
--num_passes=15 \
--use_gpu=false
```
We do not provide examples on how to train on clusters here. If you want to train on clusters, please follow the <a href = "../../howto/usage/cluster/cluster_train_en.html">distributed training</a> documentation or other demos for more details.
## Inference
You can use the trained model to perform prediction on the dataset with no labels. You can also evaluate the model on dataset with labels to obtain its test accuracy.
<center> ![](./src/PipelineTest_en.png) </center>
The test script is listed below. PaddlePaddle can evaluate a model on the data with labels specified in `test.list`.
```bash
paddle train \
--config=trainer_config.lstm.py \
--use_gpu=false \
--job=test \
--init_model_path=./output/pass-0000x
```
We will give an example of performing prediction using Recurrent model on a dataset with no labels. You can refer to <a href = "../../api/v1/predict/swig_py_paddle_en.html">Python Prediction API</a> tutorial,or other <a href = "../../tutorials/index_en.html">demo</a> for the prediction process using Python. You can also use the following script for inference or evaluation.
inference script (predict.sh):
```bash
model="output/pass-00003"
paddle train \
--config=trainer_config.lstm.py \
--use_gpu=false \
--job=test \
--init_model_path=$model \
--config_args=is_predict=1 \
--predict_output_dir=. \
mv rank-00000 result.txt
```
User can choose the best model base on the training log instead of model `output/pass-00003`. There are several differences between training and inference network configurations.
- You do not need labels during inference.
- Outputs need to be specified to the classification probability layer (the output of softmax layer), or the id of maximum probability (`max_id` layer). An example to output the id and probability is given in the code snippet.
- batch_size = 1.
- You need to specify the location of `test_list` in the test data.
The results in `result.txt` is as follows, each line is one sample.
```
predicted_label_id;probability_of_label_0 probability_of_label_1 # the first sample
predicted_label_id;probability_of_label_0 probability_of_label_1 # the second sample
```
```python
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
obj = 'process' if not is_predict else 'process_pre'
batch_size = 128 if not is_predict else 1
if is_predict:
maxid = maxid_layer(output)
outputs([maxid,output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label) outputs(cls)
```
## Summary
The scripts of data downloading, network configurations, and training scrips are in `/demo/quick_start`. The following table summarizes the performance of our network architecture on Amazon-Elec dataset(25k):
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Network name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">Error rate</th>
<th scope="col" class="left">Configuration file name</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">Logistic regression model(BOW)</td>
<td class="left"> 252KB </td>
<td class="left">8.652%</td>
<td class="left">trainer_config.lr.py</td>
</tr>
<tr>
<td class="left">Word embedding</td>
<td class="left"> 15MB </td>
<td class="left"> 8.484%</td>
<td class="left">trainer_config.emb.py</td>
</tr>
<tr>
<td class="left">Convolution model</td>
<td class="left"> 16MB </td>
<td class="left"> 5.628%</td>
<td class="left">trainer_config.cnn.py</td>
</tr>
<tr>
<td class="left">Time sequence model</td>
<td class="left"> 16MB </td>
<td class="left"> 4.812%</td>
<td class="left">trainer_config.lstm.py</td>
</tr>
</tbody>
</table>
</center>
<br>
## Appendix
### Command Line Argument
* \--config:network architecture path.
* \--save_dir:model save directory.
* \--log_period:the logging period per batch.
* \--num_passes:number of training passes. One pass means the training would go over the whole training dataset once.
* \--config_args:Other configuration arguments.
* \--init_model_path:The path of the initial model parameter.
By default, the trainer will save model every pass. You can also specify `saving_period_by_batches` to set the frequency of batch saving. You can use `show_parameter_stats_period` to print the statistics of the parameters, which are very useful for tuning parameters. Other command line arguments can be found in <a href = "../../howto/usage/cmd_parameter/index_en.html">command line argument documentation</a>
### Log
```
TrainerInternal.cpp:160] Batch=20 samples=2560 AvgCost=0.628761 CurrentCost=0.628761 Eval: classification_error_evaluator=0.304297 CurrentEval: classification_error_evaluator=0.304297
```
During model training, you will see the log like the examples above:
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Name</th>
<th scope="col" class="left">Explanation</th>
</tr>
</thead>
<tr>
<td class="left">Batch=20</td>
<td class="left"> You have trained 20 batches. </td>
</tr>
<tr>
<td class="left">samples=2560</td>
<td class="left"> You have trained 2560 examples. </td>
</tr>
<tr>
<td class="left">AvgCost</td>
<td class="left"> The average cost from the first batch to the current batch. </td>
</tr>
<tr>
<td class="left">CurrentCost</td>
<td class="left"> the average cost of the last log_period batches </td>
</tr>
<tr>
<td class="left">Eval: classification_error_evaluator</td>
<td class="left"> The average classification error from the first batch to the current batch.</td>
</tr>
<tr>
<td class="left">CurrentEval: classification_error_evaluator</td>
<td class="left"> The average error rate of the last log_period batches </td>
</tr>
</tbody>
</table>
</center>
<br>
...@@ -135,6 +135,65 @@ bool operator==(const LoD &a, const LoD &b) { ...@@ -135,6 +135,65 @@ bool operator==(const LoD &a, const LoD &b) {
return true; return true;
} }
bool CheckLoD(const LoD &in, int tensor_height) {
if (in.empty()) return true;
for (const auto &level : in) {
// check: there should be more than 2 offsets existing in each level.
if (level.size() < 2) return false;
// check: the first offset(the begin offset) of each level should be 0.
if (level.front() != 0) return false;
// check: all the offsets in a level should be ascending(no same items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b) return true;
return false;
})) {
LOG(INFO) << "ascending error";
return false;
}
}
// check: the lowest level's last offset should equals `tensor_height` if
// tensor_height>0.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
return false;
// check: the higher level's last offset should equals the lower level's
// size-1.
// NOTE LoD store the levels from top to bottom, so the higher level goes
// first.
for (size_t level = 0; level < in.size() - 1; level++) {
if (in[level].back() != in[level + 1].size() - 1) return false;
}
return true;
}
bool CheckAbsLoD(const LoD &in, int tensor_height) {
if (in.empty()) return true;
for (const auto &level : in) {
// check: all the offsets in a level should be ascending(no same items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b) return true;
return false;
})) {
return false;
}
// check: there should be more than 2 offsets existing in each level.
if (level.size() < 2) return false;
// check: the first offset of each level should be 0, and the last should be
// the same(the height of underlying tensor).
if (level.front() != 0) return false;
if (tensor_height < 0) {
tensor_height = level.back();
} else if ((size_t)tensor_height != level.back()) {
return false;
}
}
return true;
}
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>; using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
size_t end_idx, size_t start_level) { size_t end_idx, size_t start_level) {
...@@ -232,23 +291,32 @@ std::vector<LoDTensor> LoDTensor::SplitLoDTensor( ...@@ -232,23 +291,32 @@ std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
const std::vector<platform::Place> places) const { const std::vector<platform::Place> places) const {
check_memory_size(); check_memory_size();
PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now"); PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
PADDLE_ENFORCE(dims()[0] % places.size() == 0, size_t result_size = std::min(static_cast<size_t>(dims()[0]), places.size());
"Batch size should be divided by places size"); size_t remainder = dims()[0] % places.size();
std::vector<LoDTensor> lods; std::vector<LoDTensor> results;
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { results.reserve(result_size);
int begin = place_idx * dims()[0] / places.size();
int end = (place_idx + 1) * dims()[0] / places.size(); int step_width = static_cast<int>(dims()[0] / result_size);
for (size_t i = 0; i < result_size; ++i) {
int begin = static_cast<int>(i * step_width);
int end = static_cast<int>((i + 1) * step_width);
if (i + 1 == places.size()) { // last
end += remainder;
}
auto src = Slice(begin, end); auto src = Slice(begin, end);
auto &dst_place = places[place_idx]; auto &dst_place = places[i];
LoDTensor dst; LoDTensor dst;
framework::Copy(src, dst_place, &dst); if (!(dst_place == place())) {
framework::Copy(src, dst_place, &dst);
lods.emplace_back(dst); } else { // It is no need to copy if src_place and dst_place are same.
dst.ShareDataWith(src);
}
results.emplace_back(dst);
} }
return lods; return results;
} }
// TODO(tonyyang-svail): make this function support LoD // TODO(tonyyang-svail): make this function support LoD
...@@ -259,12 +327,17 @@ void LoDTensor::MergeLoDTensor( ...@@ -259,12 +327,17 @@ void LoDTensor::MergeLoDTensor(
framework::DDim new_dim = lod_tensors[0]->dims(); framework::DDim new_dim = lod_tensors[0]->dims();
std::type_index new_type = lod_tensors[0]->type(); std::type_index new_type = lod_tensors[0]->type();
auto new_layout = lod_tensors[0]->layout(); auto new_layout = lod_tensors[0]->layout();
int64_t new_height = 0;
for (auto *lod : lod_tensors) { for (auto *lod : lod_tensors) {
PADDLE_ENFORCE(new_dim == lod->dims()); new_height += lod->dims()[0];
PADDLE_ENFORCE(new_type == lod->type()); for (int i = 1; i < new_dim.size(); ++i) {
PADDLE_ENFORCE(new_layout == lod->layout()); PADDLE_ENFORCE_EQ(new_dim[i], lod->dims()[i]);
}
PADDLE_ENFORCE_EQ(new_type, lod->type());
PADDLE_ENFORCE_EQ(new_layout, lod->layout());
} }
new_dim[0] *= lod_tensors.size(); new_dim[0] = new_height;
Resize(new_dim); Resize(new_dim);
set_layout(new_layout); set_layout(new_layout);
......
...@@ -71,6 +71,38 @@ LoD ToAbsOffset(const LoD& in); ...@@ -71,6 +71,38 @@ LoD ToAbsOffset(const LoD& in);
bool operator==(const LoD& a, const LoD& b); bool operator==(const LoD& a, const LoD& b);
/*
* Check whether this lod's format is valid.
*
* ATTENTION:
* - Empty lod is treated as valid.
*
* It will check two things:
*
* 1. all the offsets in a level should be ascending(no same items allows).
* 2. there should be more than 2 offsets existing in each level.
* 3. the higher level's last offset should equals the lower level's size-1.
* 4. the first offset(the begin offset) of each level should be 0.
* 5. the lowest level's last offset should equals `tensor_height` if
* tensor_height>0.
*/
bool CheckLoD(const LoD& in, int tensor_height = -1);
/*
* Check whether this absolute lod's format is valid.
*
* ATTENTION:
* - Empty lod is treated as valid.
*
* It will check two things:
* 1. all the offsets in a level should be ascending(no same items allows)
* 2. there should be more than 2 offsets existing in each level.
* 3. the first offset of each level should be 0, and the last should be the
* same(the height of underlying tensor) or `tensor_height` if
* tensor_height>0.
*/
bool CheckAbsLoD(const LoD& in, int tensor_height = -1);
/* /*
* LoDTensor (Level of details Tensor) * LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference. * see https://en.wikipedia.org/wiki/Level_of_details for reference.
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
//
// Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
// You may obtain a copy of the License at You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and See the License for the specific language governing permissions and
// limitations under the License. limitations under the License. */
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
...@@ -35,38 +23,6 @@ ...@@ -35,38 +23,6 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
const int kLodTensorSize = 20 * 128;
class LoDTensorTester : public ::testing::Test {
public:
virtual void SetUp() override {
// tensor's batch_size: 30
// 3 levels
// 0 10 20
// 0 5 10 15 20
// 0 2 5 7 10 12 15 20
LoD lod;
lod.push_back(std::vector<size_t>{0, 2, 3});
lod.push_back(std::vector<size_t>{0, 2, 5, 8});
lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
ASSERT_EQ(lod.size(), 3UL);
lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory
float* dst_ptr = lod_tensor_.mutable_data<float>(place);
for (int i = 0; i < kLodTensorSize; ++i) {
dst_ptr[i] = i;
}
lod_tensor_.set_lod(lod);
}
protected:
platform::CPUPlace place;
LoDTensor lod_tensor_;
};
TEST(LodExpand, test) { TEST(LodExpand, test) {
LoD lod{{0, 2}}; LoD lod{{0, 2}};
LoDTensor tensor; LoDTensor tensor;
...@@ -144,5 +100,53 @@ TEST(LoD, ToAbsOffset) { ...@@ -144,5 +100,53 @@ TEST(LoD, ToAbsOffset) {
EXPECT_EQ(abs_lod, expected); EXPECT_EQ(abs_lod, expected);
} }
TEST(LoD, CheckLoD) {
LoD relative_lod;
relative_lod.push_back(std::vector<size_t>({0, 2}));
relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
// check compatible
ASSERT_TRUE(CheckLoD(relative_lod));
relative_lod[1].back()++;
ASSERT_FALSE(CheckLoD(relative_lod));
relative_lod[1].back()--; // recover it
// check empty
LoD empty_lod;
ASSERT_TRUE(CheckLoD(empty_lod));
// check less than 2 offsets in a level
LoD some_lod0;
some_lod0.push_back(std::vector<size_t>({0}));
ASSERT_FALSE(CheckLoD(some_lod0));
// check with underlying tensor storage.
ASSERT_TRUE(CheckLoD(relative_lod, 5));
ASSERT_FALSE(CheckLoD(relative_lod, 9));
}
TEST(LoD, CheckAbsLoD) {
LoD relative_lod;
relative_lod.push_back(std::vector<size_t>({0, 2}));
relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
auto abs_lod = ToAbsOffset(relative_lod);
ASSERT_TRUE(CheckAbsLoD(abs_lod));
// check less than 2 offsets in a level.
// check the last item should be compatible with tensor height.
abs_lod.back().back()++;
ASSERT_FALSE(CheckAbsLoD(abs_lod));
abs_lod.back().back()--; // restore
// check less than 2 offsets in a lod.
LoD abs_lod0;
abs_lod0.push_back(std::vector<size_t>({0}));
ASSERT_FALSE(CheckAbsLoD(abs_lod0));
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -177,16 +177,16 @@ class OpKernelRegistrar : public Registrar { ...@@ -177,16 +177,16 @@ class OpKernelRegistrar : public Registrar {
/** /**
* Macro to register OperatorKernel. * Macro to register OperatorKernel.
*/ */
#define REGISTER_OP_KERNEL(op_type, DEVICE_TYPE, place_class, ...) \ #define REGISTER_OP_KERNEL(op_type, LIBRARY_TYPE, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##DEVICE_TYPE##__, \ __reg_op_kernel_##op_type##_##LIBRARY_TYPE##__, \
"REGISTER_OP_KERNEL must be called in global namespace"); \ "REGISTER_OP_KERNEL must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \ static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__(#op_type, \ __op_kernel_registrar_##op_type##_##LIBRARY_TYPE##__(#op_type, \
#DEVICE_TYPE); \ #LIBRARY_TYPE); \
int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() { \ int TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE() { \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__.Touch(); \ __op_kernel_registrar_##op_type##_##LIBRARY_TYPE##__.Touch(); \
return 0; \ return 0; \
} }
#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \ #define REGISTER_OP_CUDA_KERNEL(op_type, ...) \
...@@ -208,14 +208,14 @@ class OpKernelRegistrar : public Registrar { ...@@ -208,14 +208,14 @@ class OpKernelRegistrar : public Registrar {
static int use_op_itself_##op_type##_ __attribute__((unused)) = \ static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type() TouchOpRegistrar_##op_type()
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \ #define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \ __use_op_kernel_##op_type##_##LIBRARY_TYPE##__, \
"USE_OP_DEVICE_KERNEL must be in global namespace"); \ "USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE(); \ extern int TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE(); \
static int use_op_kernel_##op_type##_##DEVICE_TYPE##_ \ static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_ \
__attribute__((unused)) = \ __attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE()
// TODO(fengjiayi): The following macros // TODO(fengjiayi): The following macros
// seems ugly, do we have better method? // seems ugly, do we have better method?
......
...@@ -43,7 +43,7 @@ void MKLDNNConcatLayer::reshape( ...@@ -43,7 +43,7 @@ void MKLDNNConcatLayer::reshape(
channels_[0] = ic; channels_[0] = ic;
oc = ic; oc = ic;
for (size_t i = 1; i < inputLayers_.size(); i++) { for (size_t i = 1; i < inputLayers_.size(); i++) {
int batchsize, height, witdh; int batchsize = 0, height = 0, witdh = 0;
reshapeInput(batchsize, height, witdh, i); reshapeInput(batchsize, height, witdh, i);
CHECK_EQ(bs, batchsize); CHECK_EQ(bs, batchsize);
CHECK_EQ(ih, height); CHECK_EQ(ih, height);
...@@ -84,6 +84,7 @@ void MKLDNNConcatLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs, ...@@ -84,6 +84,7 @@ void MKLDNNConcatLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
bool has8c = false, has16c = false, hasnc = false; bool has8c = false, has16c = false, hasnc = false;
for (size_t i = 0; i < inputs.size(); i++) { for (size_t i = 0; i < inputs.size(); i++) {
resetInValue(inputs[i], nullptr, i, channels_[i]); resetInValue(inputs[i], nullptr, i, channels_[i]);
inputs[i]->downSpatial();
CHECK(inputs[i]); CHECK(inputs[i]);
auto dm = inputs[i]->getDims(); auto dm = inputs[i]->getDims();
// inputs format can be different, but ndims must equal // inputs format can be different, but ndims must equal
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software #Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, #distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
# limitations under the License. #limitations under the License.
import numpy import numpy
import struct import struct
import traceback import traceback
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software #Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, #distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
# limitations under the License. #limitations under the License.
from paddle.trainer.PyDataProvider2 import * from paddle.trainer.PyDataProvider2 import *
# Note that each config should has an independent provider # Note that each config should has an independent provider
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software #Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, #distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
# limitations under the License. #limitations under the License.
import os import os
import sys import sys
......
# edit-mode: -*- python -*- # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software #Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, #distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
# limitations under the License. #limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
######################## data source ################################ ######################## data source ################################
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
#!/usr/bin/env python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
# You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
######################## data source ################################ ######################## data source ################################
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
...@@ -11,20 +11,6 @@ ...@@ -11,20 +11,6 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. #you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software #Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, #distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
# limitations under the License. #limitations under the License.
import random import random
from paddle.trainer.PyDataProvider2 import * from paddle.trainer.PyDataProvider2 import *
......
...@@ -8,27 +8,6 @@ cc_library(paddle_fluid_api ...@@ -8,27 +8,6 @@ cc_library(paddle_fluid_api
# Merge all modules into a simgle static library # Merge all modules into a simgle static library
cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES}) cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES})
# ptools
# just for testing, we may need to change the storing format for inference_model
# and move the dependent of pickle.
# download from http://www.picklingtools.com/
# build in the C++ sub-directory, using command
# make -f Makefile.Linux libptools.so
set(PTOOLS_LIB)
set(PTOOLS_ROOT $ENV{PTOOLS_ROOT} CACHE PATH "Folder contains PicklingTools")
find_path(PTOOLS_INC_DIR chooseser.h PATHS ${PTOOLS_ROOT}/C++)
find_library(PTOOLS_SHARED_LIB NAMES ptools PATHS ${PTOOLS_ROOT}/C++)
if(PTOOLS_INC_DIR AND PTOOLS_SHARED_LIB)
add_definitions(-DPADDLE_USE_PTOOLS)
set(PTOOLS_LIB ptools)
message(STATUS "Found PicklingTools: ${PTOOLS_SHARED_LIB}")
add_library(${PTOOLS_LIB} SHARED IMPORTED GLOBAL)
set_property(TARGET ${PTOOLS_LIB} PROPERTY IMPORTED_LOCATION ${PTOOLS_SHARED_LIB})
include_directories(${PTOOLS_ROOT}/C++)
include_directories(${PTOOLS_ROOT}/C++/opencontainers_1_8_5/include)
add_definitions(-DOC_NEW_STYLE_INCLUDES) # used in ptools
endif()
add_executable(example example.cc) add_executable(example example.cc)
if(APPLE) if(APPLE)
set(OPTIONAL_LINK_FLAGS) set(OPTIONAL_LINK_FLAGS)
......
...@@ -18,33 +18,21 @@ limitations under the License. */ ...@@ -18,33 +18,21 @@ limitations under the License. */
#include "paddle/inference/inference.h" #include "paddle/inference/inference.h"
DEFINE_string(dirname, "", "Directory of the inference model."); DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_string(feed_var_names, "", "Names of feeding variables");
DEFINE_string(fetch_var_names, "", "Names of fetching variables");
int main(int argc, char** argv) { int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true); google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() || if (FLAGS_dirname.empty()) {
FLAGS_fetch_var_names.empty()) {
// Example: // Example:
// ./example --dirname=recognize_digits_mlp.inference.model // ./example --dirname=recognize_digits_mlp.inference.model
// --feed_var_names="x" std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
// --fetch_var_names="fc_2.tmp_2"
std::cout << "Usage: ./example --dirname=path/to/your/model "
"--feed_var_names=x --fetch_var_names=y"
<< std::endl;
exit(1); exit(1);
} }
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl; std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl;
std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl;
std::string dirname = FLAGS_dirname; std::string dirname = FLAGS_dirname;
std::vector<std::string> feed_var_names = {FLAGS_feed_var_names};
std::vector<std::string> fetch_var_names = {FLAGS_fetch_var_names};
paddle::InferenceEngine* engine = new paddle::InferenceEngine(); paddle::InferenceEngine* engine = new paddle::InferenceEngine();
engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names); engine->LoadInferenceModel(dirname);
paddle::framework::LoDTensor input; paddle::framework::LoDTensor input;
srand(time(0)); srand(time(0));
......
...@@ -25,19 +25,37 @@ limitations under the License. */ ...@@ -25,19 +25,37 @@ limitations under the License. */
namespace paddle { namespace paddle {
void InferenceEngine::LoadInferenceModel(const std::string& dirname) {
std::string model_filename = dirname + "/__model__.dat";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
std::string program_desc_str;
inputfs.seekg(0, std::ios::end);
program_desc_str.resize(inputfs.tellg());
inputfs.seekg(0, std::ios::beg);
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
inputfs.read(&program_desc_str[0], program_desc_str.size());
inputfs.close();
program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname);
framework::BlockDesc* global_block = program_->MutableBlock(0);
feed_var_names_.clear();
fetch_var_names_.clear();
for (auto* op : global_block->AllOps()) {
if (op->Type() == "feed") {
feed_var_names_.insert(feed_var_names_.begin(), op->Output("Out")[0]);
} else if (op->Type() == "fetch") {
fetch_var_names_.push_back(op->Input("X")[0]);
}
}
}
void InferenceEngine::LoadInferenceModel( void InferenceEngine::LoadInferenceModel(
const std::string& dirname, const std::string& dirname,
const std::vector<std::string>& feed_var_names, const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names) { const std::vector<std::string>& fetch_var_names) {
#ifdef PADDLE_USE_PTOOLS
std::string model_filename = dirname + "/__model__";
LOG(INFO) << "Using PicklingTools, loading model from " << model_filename;
Val v;
LoadValFromFile(model_filename.c_str(), v, SERIALIZE_P0);
std::string program_desc_str = v["program_desc_str"];
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
// PicklingTools cannot parse the vector of strings correctly.
#else
std::string model_filename = dirname + "/__model__.dat"; std::string model_filename = dirname + "/__model__.dat";
LOG(INFO) << "loading model from " << model_filename; LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
...@@ -48,7 +66,7 @@ void InferenceEngine::LoadInferenceModel( ...@@ -48,7 +66,7 @@ void InferenceEngine::LoadInferenceModel(
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
inputfs.read(&program_desc_str[0], program_desc_str.size()); inputfs.read(&program_desc_str[0], program_desc_str.size());
inputfs.close(); inputfs.close();
#endif
program_ = new framework::ProgramDesc(program_desc_str); program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname); GenerateLoadProgram(dirname);
...@@ -62,7 +80,7 @@ void InferenceEngine::LoadInferenceModel( ...@@ -62,7 +80,7 @@ void InferenceEngine::LoadInferenceModel(
} }
bool InferenceEngine::IsParameter(const framework::VarDesc* var) { bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
if (var->Persistable()) { if (var->Persistable() && var->Name() != "feed" && var->Name() != "fetch") {
// There are many unreachable variables in the program // There are many unreachable variables in the program
for (size_t i = 0; i < program_->Size(); ++i) { for (size_t i = 0; i < program_->Size(); ++i) {
const framework::BlockDesc& block = program_->Block(i); const framework::BlockDesc& block = program_->Block(i);
......
...@@ -28,6 +28,7 @@ public: ...@@ -28,6 +28,7 @@ public:
delete load_program_; delete load_program_;
} }
void LoadInferenceModel(const std::string& dirname);
void LoadInferenceModel(const std::string& dirname, void LoadInferenceModel(const std::string& dirname,
const std::vector<std::string>& feed_var_names, const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names); const std::vector<std::string>& fetch_var_names);
......
...@@ -178,14 +178,13 @@ foreach(src ${GENERAL_OPS}) ...@@ -178,14 +178,13 @@ foreach(src ${GENERAL_OPS})
endforeach() endforeach()
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n") file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor)
cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op)
cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory)
if(WITH_GPU) if(WITH_GPU)
cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
......
...@@ -29,7 +29,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -29,7 +29,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
PruneEndidCandidates(pre_ids, &selected_items); PruneEndidCandidates(pre_ids, &selected_items);
// calculate the output tensor's height // calculate the output tensor's height
size_t num_instances = std::accumulate( size_t num_instances = std::accumulate(
std::begin(items), std::end(items), 0, std::begin(selected_items), std::end(selected_items), 0,
[](size_t a, std::vector<Item> &b) { return a + b.size(); }); [](size_t a, std::vector<Item> &b) { return a + b.size(); });
// the output tensor shape should be [num_instances, 1] // the output tensor shape should be [num_instances, 1]
auto dims = framework::make_ddim( auto dims = framework::make_ddim(
...@@ -48,12 +48,20 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -48,12 +48,20 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
size_t low_offset = 0; size_t low_offset = 0;
for (auto &items : selected_items) { for (auto &items : selected_items) {
low_level.push_back(low_offset); low_level.push_back(low_offset);
sort(items.begin(), items.end(), [](const Item &a, const Item &b) {
if (a.offset < b.offset) {
return true;
}
return a.id < b.id;
});
for (auto &item : items) { for (auto &item : items) {
ids_data[low_offset] = item.id; ids_data[low_offset] = item.id;
scores_data[low_offset] = item.score; scores_data[low_offset] = item.score;
low_offset++; low_offset++;
} }
} }
low_level.push_back(low_offset);
// fill lod // fill lod
auto abs_lod = framework::ToAbsOffset(ids_->lod()); auto abs_lod = framework::ToAbsOffset(ids_->lod());
auto &high_level = abs_lod[lod_level_]; auto &high_level = abs_lod[lod_level_];
...@@ -64,16 +72,21 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -64,16 +72,21 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
selected_scores->set_lod(lod); selected_scores->set_lod(lod);
} }
void BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
std::vector<std::vector<Item>> *items) { std::vector<std::vector<Item>> *items) {
auto *pre_ids_data = pre_ids.data<int64_t>(); auto *pre_ids_data = pre_ids.data<int64_t>();
int res = 0;
for (size_t offset = 0; offset < items->size(); offset++) { for (size_t offset = 0; offset < items->size(); offset++) {
auto prefix_id = pre_ids_data[offset]; auto prefix_id = pre_ids_data[offset];
if (prefix_id == end_id_) { if (prefix_id == end_id_) {
items->at(offset).clear(); items->at(offset).clear();
} else {
res++;
} }
} }
return res;
} }
std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap( std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
...@@ -121,11 +134,7 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) { ...@@ -121,11 +134,7 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
auto ids = *ids_; auto ids = *ids_;
auto scores = *scores_; auto scores = *scores_;
auto source_abs_two_level_lod = framework::SliceInLevel(
ids.lod(), lod_level_, sent_offset_, sent_offset_ + 1);
source_abs_two_level_lod = framework::ToAbsOffset(source_abs_two_level_lod);
auto abs_lod = framework::ToAbsOffset(ids.lod()); auto abs_lod = framework::ToAbsOffset(ids.lod());
PADDLE_ENFORCE_GE(source_abs_two_level_lod.size(), 2UL);
auto *ids_data = ids.data<int64_t>(); auto *ids_data = ids.data<int64_t>();
auto *scores_data = scores.data<float>(); auto *scores_data = scores.data<float>();
......
...@@ -73,7 +73,15 @@ namespace operators { ...@@ -73,7 +73,15 @@ namespace operators {
* second level: * second level:
* [0, 2, 4] * [0, 2, 4]
* *
* tensor's data * id tensor's data
* [[
* 4,
* 1,
* 3,
* 8,
* ]]
*
* score tensor's data
* [[ * [[
* 0.5, * 0.5,
* 0.3, * 0.3,
...@@ -137,16 +145,21 @@ class BeamSearch { ...@@ -137,16 +145,21 @@ class BeamSearch {
Item() {} Item() {}
Item(size_t offset, size_t id, float score) Item(size_t offset, size_t id, float score)
: offset(offset), id(id), score(score) {} : offset(offset), id(id), score(score) {}
// offset in the lod_level_+1 // offset in the higher lod level.
size_t offset; size_t offset;
// // prefix id in the lower lod level.
// size_t prefix;
// the candidate id // the candidate id
id_t id; id_t id;
// the corresponding score // the corresponding score
score_t score; score_t score;
}; };
void PruneEndidCandidates(const framework::LoDTensor& pre_ids, /*
std::vector<std::vector<Item>>* items); * Delete all the records that follows the end token.
*/
int PruneEndidCandidates(const framework::LoDTensor& pre_ids,
std::vector<std::vector<Item>>* items);
/* /*
* Transform the items into a map whose key is offset, value is the items. * Transform the items into a map whose key is offset, value is the items.
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/beam_search_op.h"
#include <gtest/gtest.h>
#include <vector>
namespace paddle {
namespace test {
using std::vector;
using framework::LoDTensor;
using framework::LoD;
using operators::BeamSearch;
using paddle::platform::CPUPlace;
using std::cout;
using std::endl;
void CreateInput(LoDTensor* ids, LoDTensor* scores) {
LoD lod;
vector<size_t> level0({0, 1, 4});
vector<size_t> level1({0, 1, 2, 3, 4});
lod.push_back(level0);
lod.push_back(level1);
ids->set_lod(lod);
scores->set_lod(lod);
auto dims = framework::make_ddim(vector<int64_t>({4, 3}));
ids->Resize(dims);
scores->Resize(dims);
CPUPlace place;
auto* ids_data = ids->mutable_data<int64_t>(place);
auto* scores_data = scores->mutable_data<float>(place);
vector<int64_t> _ids({4, 2, 5, 2, 1, 3, 3, 5, 2, 8, 2, 1});
vector<float> _scores(
{0.5, 0.3, 0.2, 0.6, 0.3, 0.1, 0.9, 0.5, 0.1, 0.7, 0.5, 0.1});
for (int i = 0; i < 12; i++) {
ids_data[i] = _ids[i];
scores_data[i] = _scores[i];
}
}
TEST(beam_search_op, run) {
CPUPlace place;
LoDTensor ids, scores;
CreateInput(&ids, &scores);
LoDTensor pre_ids;
pre_ids.Resize(framework::make_ddim(vector<int64_t>(4, 1)));
for (int i = 0; i < 4; i++) {
pre_ids.mutable_data<int64_t>(place)[i] = i + 1;
}
BeamSearch beamsearch(ids, scores, (int64_t)0, (int64_t)2, 0);
LoDTensor sids, sscores;
beamsearch(pre_ids, &sids, &sscores);
LOG(INFO) << "score: " << sscores << endl;
ASSERT_EQ(sids.lod(), sscores.lod());
vector<int> tids({2, 4, 3, 8});
vector<float> tscores({0.3, 0.5, 0.9, 0.7});
for (int i = 0; i < 4; i++) {
ASSERT_EQ(tids[i], sids.data<int64_t>()[i]);
ASSERT_EQ(tscores[i], sscores.data<float>()[i]);
}
}
} // namespace test
} // namespace paddle
...@@ -51,8 +51,8 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -51,8 +51,8 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
Clip Operator. Clip Operator.
The clip operator limits the value of given input within an interval. The interval is The clip operator limits the value of given input within an interval. The
specified with arguments 'min' and 'max': interval is specified with arguments 'min' and 'max':
$$ $$
Out = \min(\max(X, min), max) Out = \min(\max(X, min), max)
......
...@@ -70,6 +70,13 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -70,6 +70,13 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOp::GetExpectedKernelType( framework::OpKernelType ConvOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const { const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
...@@ -283,6 +290,14 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const { ...@@ -283,6 +290,14 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOpGrad::GetExpectedKernelType( framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const { const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
......
...@@ -61,6 +61,13 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -61,6 +61,13 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType( framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const { const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
...@@ -263,6 +270,13 @@ void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const { ...@@ -263,6 +270,13 @@ void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType( framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const { const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
......
...@@ -28,39 +28,7 @@ template <typename DeviceContext, typename T> ...@@ -28,39 +28,7 @@ template <typename DeviceContext, typename T>
class ElementwiseAddKernel : public framework::OpKernel<T> { class ElementwiseAddKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor; ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx);
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
TransformFunctor<AddFunctor<T>, T, DeviceContext> functor(
x, y, z, ctx.template device_context<DeviceContext>(), AddFunctor<T>());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
} }
}; };
......
...@@ -19,11 +19,16 @@ limitations under the License. */ ...@@ -19,11 +19,16 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename T>
struct DivFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ElementwiseDivKernel : public framework::OpKernel<T> { class ElementwiseDivKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenDivFunctor, DeviceContext, T>(ctx); ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx);
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_max_op.h"
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = max(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_max, ops::ElementwiseOp, ops::ElementwiseMaxOpMaker,
elementwise_max_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_max_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op_function.h"
namespace paddle {
namespace operators {
template <typename T>
struct MaxFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};
template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx);
}
};
template <typename T>
struct ElementwiseMaxGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
}
}
};
template <typename T>
struct ElementwiseMaxBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
ElementwiseMaxBroadCastGradFunctor<T>,
ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_min_op.h"
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMinOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMinOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = min(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_min, ops::ElementwiseOp, ops::ElementwiseMinOpMaker,
elementwise_min_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_min,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
elementwise_min_grad,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_min_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_min,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_min_grad,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op_function.h"
namespace paddle {
namespace operators {
template <typename T>
struct MinFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
};
template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx);
}
};
template <typename T>
struct ElementwiseMinGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e >= y_e).template cast<T>() * dz_e;
}
}
};
template <typename T>
struct ElementwiseMinBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMinBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename DeviceContext, typename T>
class ElementwiseMinGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<DeviceContext, T, ElementwiseMinGradFunctor<T>,
ElementwiseMinBroadCastGradFunctor<T>,
ElementwiseMinBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
...@@ -18,11 +18,16 @@ limitations under the License. */ ...@@ -18,11 +18,16 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename T>
struct MulFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ElementwiseMulKernel : public framework::OpKernel<T> { class ElementwiseMulKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenMulFunctor, DeviceContext, T>(ctx); ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx);
} }
}; };
......
...@@ -26,9 +26,9 @@ class ElementwiseOp : public framework::OperatorWithKernel { ...@@ -26,9 +26,9 @@ class ElementwiseOp : public framework::OperatorWithKernel {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of elementwise op should not be null"); "Input(X) of elementwise op should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), PADDLE_ENFORCE(ctx->HasInput("Y"),
"Input(Y) of elementwise op should not be null"); "Input(Y) of elementwise op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of elementwise op should not be null."); "Output(Out) of elementwise op should not be null.");
...@@ -45,12 +45,12 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -45,12 +45,12 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker) ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) The first input tensor of elementwise op"); AddInput("X", "(Tensor), The first input tensor of elementwise op.");
AddInput("Y", "(Tensor) The second input tensor of elementwise op"); AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
AddOutput("Out", "The output of elementwise op"); AddOutput("Out", "The output of elementwise op.");
AddAttr<int>("axis", AddAttr<int>("axis",
"(int, default -1) The starting dimension index " "(int, default -1). The start dimension index "
"for broadcasting Y onto X") "for broadcasting Y onto X.")
.SetDefault(-1) .SetDefault(-1)
.EqualGreaterThan(-1); .EqualGreaterThan(-1);
comment_ = R"DOC( comment_ = R"DOC(
...@@ -58,19 +58,18 @@ Limited Elementwise {name} Operator. ...@@ -58,19 +58,18 @@ Limited Elementwise {name} Operator.
The equation is: The equation is:
.. math:: $${equation}$$
{equation}
X is a tensor of any dimension and the dimensions of tensor Y must be smaller than $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
or equal to the dimensions of X. smaller than or equal to the dimensions of $X$.
There are two cases for this operator: There are two cases for this operator:
1. The shape of Y is same with X; 1. The shape of $Y$ is same with $X$;
2. The shape of Y is a subset of X. 2. The shape of $Y$ is a subset of $X$.
For case 2: For case 2:
Y will be broadcasted to match the shape of X and axis should be $Y$ will be broadcasted to match the shape of $X$ and axis should be
the starting dimension index for broadcasting Y onto X. set to index of the start dimension to broadcast $Y$ onto $X$.
For example For example
.. code-block:: python .. code-block:: python
...@@ -81,7 +80,8 @@ For example ...@@ -81,7 +80,8 @@ For example
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
Either of the inputs X and Y or none can carry the LoD (Level of Details) information. However, the output only shares the LoD information with input X. Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
)DOC"; )DOC";
AddComment(comment_); AddComment(comment_);
......
...@@ -340,6 +340,13 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { ...@@ -340,6 +340,13 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
return; return;
} }
if (y_dims.size() == 1 && y_dims[0] == 1) {
// y is a scalar
auto extended_dims = framework::vectorize(x_dims);
extended_dims.push_back(1);
x_dims = framework::make_ddim(extended_dims);
}
int axis = ctx.Attr<int>("axis"); int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
...@@ -356,5 +363,50 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { ...@@ -356,5 +363,50 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
return; return;
} }
} }
template <typename Functor, typename DeviceContext, typename T>
void ElementwiseComputeEx(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
TransformFunctor<Functor, T, DeviceContext> functor(
x, y, z, ctx.template device_context<DeviceContext>(), Functor());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
if (y_dims.size() == 1 && y_dims[0] == 1) {
// y is a scalar
auto extended_dims = framework::vectorize(x_dims);
extended_dims.push_back(1);
x_dims = framework::make_ddim(extended_dims);
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -18,11 +18,16 @@ limitations under the License. */ ...@@ -18,11 +18,16 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename T>
struct SubFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ElementwiseSubKernel : public framework::OpKernel<T> { class ElementwiseSubKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenSubFunctor, DeviceContext, T>(ctx); ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx);
} }
}; };
......
...@@ -58,21 +58,21 @@ class ExpandOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -58,21 +58,21 @@ class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker) ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", AddInput("X",
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]." "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
"X is the input tensor to be expanded."); "X is the input to be expanded.");
AddOutput("Out", AddOutput("Out",
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]." "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
"The rank of Output(Out) is same as Input(X) except that each " "The rank of Output(Out) have the same with Input(X). "
"dimension size of Output(Out) is equal to corresponding " "After expanding, size of each dimension of Output(Out) is equal "
"dimension size of Input(X) multiplying corresponding value of " "to size of the corresponding dimension of Input(X) multiplying "
"Attr(expand_times)."); "the corresponding value given by Attr(expand_times).");
AddAttr<std::vector<int>>("expand_times", AddAttr<std::vector<int>>("expand_times",
"Expand times number for each dimension."); "Expand times number for each dimension.");
AddComment(R"DOC( AddComment(R"DOC(
Expand operator tiles the input by given times number. You should set times Expand operator tiles the input by given times number. You should set times
number for each dimension by providing attribute 'expand_times'. The rank of X number for each dimension by providing attribute 'expand_times'. The rank of X
should be in [1, 6]. Please notice that size of 'expand_times' must be same with should be in [1, 6]. Please note that size of 'expand_times' must be the same
X's rank. Following is a using case: with X's rank. Following is a using case:
Input(X) is a 3-D tensor with shape [2, 3, 1]: Input(X) is a 3-D tensor with shape [2, 3, 1]:
......
...@@ -32,7 +32,8 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> { ...@@ -32,7 +32,8 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
auto seq_dims = seq.dims(); auto seq_dims = seq.dims();
PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), PADDLE_ENFORCE_EQ(seq_dims[0],
static_cast<int64_t>(abs_offset_lod[level].back()),
"The first dimension of LoDTensor seq should be " "The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."); "equal to the sum of all sequences's length.");
...@@ -41,32 +42,32 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> { ...@@ -41,32 +42,32 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape " "The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."); "[max_sequence_length, num_sequences, sequence_width].");
const size_t max_sequence_length = MaximumSequenceLength(lod, level); const int64_t max_sequence_length = MaximumSequenceLength(lod, level);
PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
"The first dimension of Tensor padding should be the " "The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."); "maximum length of all sequences in LoDTensor seq.");
const size_t num_sequences = abs_offset_lod[level].size() - 1; const int64_t num_sequences = abs_offset_lod[level].size() - 1;
PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
"The second dimension of Tensor padding should be the " "The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."); "number of sequences in LoDTensor seq.");
const size_t sequence_width = seq.numel() / seq_dims[0]; const int64_t sequence_width = seq.numel() / seq_dims[0];
PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
"The third dimension of Tensor padding should be the " "The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."); "width of sequence in LoDTensor seq.");
const T* seq_data = seq.data<T>(); const T* seq_data = seq.data<T>();
T* padding_data = padding.data<T>(); T* padding_data = padding.data<T>();
for (size_t i = 0; i < max_sequence_length; ++i) { for (int64_t i = 0; i < max_sequence_length; ++i) {
for (size_t j = 0; j < num_sequences; ++j) { for (int64_t j = 0; j < num_sequences; ++j) {
size_t start_pos = abs_offset_lod[level][j]; int64_t start_pos = abs_offset_lod[level][j];
size_t sequence_length = abs_offset_lod[level][j + 1] - start_pos; int64_t sequence_length = abs_offset_lod[level][j + 1] - start_pos;
if (i < sequence_length) { if (i < sequence_length) {
// i > 0 => sequence_length > 0 // i > 0 => sequence_length > 0
T scale = T scale =
norm_by_times ? (1.0f / static_cast<T>(sequence_length)) : 1.0f; norm_by_times ? (1.0f / static_cast<T>(sequence_length)) : 1.0f;
for (size_t k = 0; k < sequence_width; ++k) { for (int64_t k = 0; k < sequence_width; ++k) {
padding_data[(i * num_sequences + j) * sequence_width + k] = padding_data[(i * num_sequences + j) * sequence_width + k] =
seq_data[(start_pos + i) * sequence_width + k] * scale; seq_data[(start_pos + i) * sequence_width + k] * scale;
} }
...@@ -93,7 +94,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> { ...@@ -93,7 +94,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
auto seq_dims = seq.dims(); auto seq_dims = seq.dims();
PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), PADDLE_ENFORCE_EQ(seq_dims[0],
static_cast<int64_t>(abs_offset_lod[level].back()),
"The first dimension of LoDTensor seq should be " "The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."); "equal to the sum of all sequences's length.");
...@@ -102,31 +104,31 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> { ...@@ -102,31 +104,31 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape " "The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."); "[max_sequnece_length, num_sequences, sequence_width].");
const size_t max_sequence_length = MaximumSequenceLength(lod, level); const int64_t max_sequence_length = MaximumSequenceLength(lod, level);
PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
"The first dimension of Tensor padding should be " "The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."); "the maximum length of all sequences in LoDTensor seq.");
const size_t num_sequences = abs_offset_lod[level].size() - 1; const int64_t num_sequences = abs_offset_lod[level].size() - 1;
PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
"The second dimension of Tensor padding should be " "The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."); "the number of sequences in LoDTensor seq.");
const size_t sequence_width = seq.numel() / seq_dims[0]; const int64_t sequence_width = seq.numel() / seq_dims[0];
PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
"The third dimension of Tensor padding should be the " "The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."); "width of sequence in LoDTensor seq.");
const T* padding_data = padding.data<T>(); const T* padding_data = padding.data<T>();
T* seq_data = seq.data<T>(); T* seq_data = seq.data<T>();
for (size_t i = 0; i < num_sequences; ++i) { for (int64_t i = 0; i < num_sequences; ++i) {
size_t start_pos = abs_offset_lod[level][i]; int64_t start_pos = abs_offset_lod[level][i];
size_t sequence_length = abs_offset_lod[level][i + 1] - start_pos; int64_t sequence_length = abs_offset_lod[level][i + 1] - start_pos;
for (size_t j = 0; j < sequence_length; ++j) { for (int64_t j = 0; j < sequence_length; ++j) {
// sequence_width > j > 0 // sequence_width > j > 0
T scale = T scale =
norm_by_times ? (1.0f / static_cast<T>(sequence_length)) : 1.0f; norm_by_times ? (1.0f / static_cast<T>(sequence_length)) : 1.0f;
for (size_t k = 0; k < sequence_width; ++k) { for (int64_t k = 0; k < sequence_width; ++k) {
seq_data[(start_pos + j) * sequence_width + k] = seq_data[(start_pos + j) * sequence_width + k] =
padding_data[(j * num_sequences + i) * sequence_width + k] * padding_data[(j * num_sequences + i) * sequence_width + k] *
scale; scale;
......
...@@ -71,7 +71,8 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -71,7 +71,8 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
auto seq_dims = seq.dims(); auto seq_dims = seq.dims();
PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), PADDLE_ENFORCE_EQ(seq_dims[0],
static_cast<int64_t>(abs_offset_lod[level].back()),
"The first dimension of LoDTensor seq should be " "The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."); "equal to the sum of all sequences's length.");
...@@ -80,17 +81,17 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -80,17 +81,17 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
"The input padding should be a 3-D Tensor of shape " "The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."); "[max_sequence_length, num_sequences, sequence_width].");
size_t max_sequence_length = MaximumSequenceLength(lod, level); int64_t max_sequence_length = MaximumSequenceLength(lod, level);
PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
"The first dimension of Tensor padding should be the " "The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."); "maximum length of all sequences in LoDTensor seq.");
const size_t num_sequences = abs_offset_lod[level].size() - 1; const int64_t num_sequences = abs_offset_lod[level].size() - 1;
PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
"The second dimension of Tensor padding should be the " "The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."); "number of sequences in LoDTensor seq.");
const size_t sequence_width = seq.numel() / seq_dims[0]; const int64_t sequence_width = seq.numel() / seq_dims[0];
PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
"The third dimension of Tensor padding should be the " "The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."); "width of sequence in LoDTensor seq.");
...@@ -101,7 +102,7 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -101,7 +102,7 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
return; return;
} }
const size_t kBlockSize = 512; const int64_t kBlockSize = 512;
/* At least use 32 threads to copy sequence_width elements, /* At least use 32 threads to copy sequence_width elements,
* and at least 8 elements for each thread. * and at least 8 elements for each thread.
...@@ -143,7 +144,8 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -143,7 +144,8 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
auto seq_dims = seq.dims(); auto seq_dims = seq.dims();
PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), PADDLE_ENFORCE_EQ(seq_dims[0],
static_cast<int64_t>(abs_offset_lod[level].back()),
"The first dimension of LoDTensor seq should be " "The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."); "equal to the sum of all sequences's length.");
...@@ -152,17 +154,17 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -152,17 +154,17 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
"The input padding should be a 3-D Tensor of shape " "The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."); "[max_sequnece_length, num_sequences, sequence_width].");
size_t max_sequence_length = MaximumSequenceLength(lod, level); int64_t max_sequence_length = MaximumSequenceLength(lod, level);
PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
"The first dimension of Tensor padding should be " "The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."); "the maximum length of all sequences in LoDTensor seq.");
const size_t num_sequences = abs_offset_lod[level].size() - 1; const int64_t num_sequences = abs_offset_lod[level].size() - 1;
PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
"The second dimension of Tensor padding should be " "The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."); "the number of sequences in LoDTensor seq.");
const size_t sequence_width = seq.numel() / seq_dims[0]; const int64_t sequence_width = seq.numel() / seq_dims[0];
PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
"The third dimension of Tensor padding should be the " "The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."); "width of sequence in LoDTensor seq.");
...@@ -173,7 +175,7 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -173,7 +175,7 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
return; return;
} }
const size_t kBlockSize = 512; const int64_t kBlockSize = 512;
/* At least use 32 threads to copy sequence_width elements, /* At least use 32 threads to copy sequence_width elements,
* and at least 8 elements for each thread. * and at least 8 elements for each thread.
......
...@@ -30,16 +30,13 @@ static constexpr char kParallelScopes[] = "parallel_scopes"; ...@@ -30,16 +30,13 @@ static constexpr char kParallelScopes[] = "parallel_scopes";
static constexpr char kParallelBlock[] = "sub_block"; static constexpr char kParallelBlock[] = "sub_block";
// using ParallelScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
using OperatorBase = framework::OperatorBase;
void SplitTensorAndMoveTensorToScopes( static void SplitTensorAndMoveTensorToScopes(
const framework::Scope &scope, const framework::Scope &scope, std::vector<framework::Scope *> *sub_scopes,
const std::vector<framework::Scope *> &sub_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::vector<std::string> &names) { const std::vector<std::string> &names) {
PADDLE_ENFORCE_EQ(sub_scopes.size(), places.size()); size_t num_sub_scopes = 0;
for (auto &argu : names) { for (auto &argu : names) {
auto *var = scope.FindVar(argu); auto *var = scope.FindVar(argu);
const auto &tensor = var->Get<LoDTensor>(); const auto &tensor = var->Get<LoDTensor>();
...@@ -48,9 +45,21 @@ void SplitTensorAndMoveTensorToScopes( ...@@ -48,9 +45,21 @@ void SplitTensorAndMoveTensorToScopes(
for (auto &lod : lod_tensors) { for (auto &lod : lod_tensors) {
VLOG(3) << lod.dims(); VLOG(3) << lod.dims();
} }
if (num_sub_scopes == 0) {
num_sub_scopes = lod_tensors.size();
} else {
PADDLE_ENFORCE_EQ(num_sub_scopes, lod_tensors.size());
}
PADDLE_ENFORCE_NE(num_sub_scopes, 0);
if (sub_scopes->size() == 0) {
sub_scopes->reserve(num_sub_scopes);
for (size_t i = 0; i < num_sub_scopes; ++i) {
sub_scopes->emplace_back(&scope.NewScope());
}
}
for (size_t i = 0; i < sub_scopes.size(); ++i) { for (size_t i = 0; i < lod_tensors.size(); ++i) {
*sub_scopes[i]->Var(argu)->GetMutable<LoDTensor>() = lod_tensors[i]; *(*sub_scopes)[i]->Var(argu)->GetMutable<LoDTensor>() = lod_tensors[i];
} }
} }
} }
...@@ -70,7 +79,7 @@ class ParallelDoOp : public framework::OperatorBase { ...@@ -70,7 +79,7 @@ class ParallelDoOp : public framework::OperatorBase {
const framework::VariableNameMap &inputs, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::Place &place) const override { const platform::Place &place) const override {
...@@ -85,19 +94,17 @@ class ParallelDoOp : public framework::OperatorBase { ...@@ -85,19 +94,17 @@ class ParallelDoOp : public framework::OperatorBase {
auto &sub_scopes = *scope.FindVar(Output(kParallelScopes)) auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
->GetMutable<std::vector<framework::Scope *>>(); ->GetMutable<std::vector<framework::Scope *>>();
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
sub_scopes.push_back(&scope.NewScope());
}
// split input // split input
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, SplitTensorAndMoveTensorToScopes(scope, &sub_scopes, places,
Inputs(kInputs)); Inputs(kInputs));
// copy parameter // copy parameter
for (auto &param : Inputs(kParameters)) { for (auto &param : Inputs(kParameters)) {
PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(), PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
"Only support parameter type as LoDTensor"); "Only support parameter type as LoDTensor");
auto &src = scope.FindVar(param)->Get<LoDTensor>(); auto &src = scope.FindVar(param)->Get<LoDTensor>();
for (size_t i = 0; i < places.size(); ++i) { for (size_t i = 0; i < sub_scopes.size(); ++i) {
auto &place = places[i]; auto &place = places[i];
auto *sub_scope = sub_scopes[i]; auto *sub_scope = sub_scopes[i];
auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>(); auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
...@@ -108,9 +115,7 @@ class ParallelDoOp : public framework::OperatorBase { ...@@ -108,9 +115,7 @@ class ParallelDoOp : public framework::OperatorBase {
std::vector<std::future<void>> workers; std::vector<std::future<void>> workers;
workers.reserve(places.size()); workers.reserve(places.size());
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { for (size_t place_idx = 0; place_idx < sub_scopes.size(); ++place_idx) {
VLOG(3) << "Run " << place_idx;
auto &place = places[place_idx]; auto &place = places[place_idx];
auto *cur_scope = sub_scopes[place_idx]; auto *cur_scope = sub_scopes[place_idx];
...@@ -157,21 +162,16 @@ ParallelDo Operator. ...@@ -157,21 +162,16 @@ ParallelDo Operator.
} }
}; };
class ParallelDoGradOp : public OperatorBase { class ParallelDoGradOp : public framework::OperatorBase {
public: public:
ParallelDoGradOp(const std::string &type, ParallelDoGradOp(const std::string &type,
const framework::VariableNameMap &inputs, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::Place &place) const override { const platform::Place &place) const override {
// // get device context from pool
// platform::DeviceContextPool &pool =
// platform::DeviceContextPool::Instance();
// auto &dev_ctx = *pool.Get(place);
auto *block = Attr<framework::BlockDesc *>(kParallelBlock); auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
auto *program = block->Program(); auto *program = block->Program();
...@@ -181,26 +181,16 @@ class ParallelDoGradOp : public OperatorBase { ...@@ -181,26 +181,16 @@ class ParallelDoGradOp : public OperatorBase {
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>(); auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
// feed output@grad // feed output@grad
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, SplitTensorAndMoveTensorToScopes(
Inputs(framework::GradVarName(kOutputs))); scope, const_cast<std::vector<framework::Scope *> *>(&sub_scopes),
places, Inputs(framework::GradVarName(kOutputs)));
WaitOnPlaces(places); WaitOnPlaces(places);
// for debugging
for (auto &s : Inputs(framework::GradVarName(kOutputs))) {
VLOG(3) << s;
VLOG(3) << scope.FindVar(s)->Get<LoDTensor>();
for (auto *sub_scope : sub_scopes) {
VLOG(3) << sub_scope->FindVar(s)->Get<LoDTensor>();
}
}
// exe run // exe run
std::vector<std::future<void>> workers; std::vector<std::future<void>> workers;
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { for (size_t i = 0; i < sub_scopes.size(); ++i) {
VLOG(3) << "Run " << place_idx; auto &place = places[i];
auto *cur_scope = sub_scopes[i];
auto &place = places[place_idx];
auto *cur_scope = sub_scopes[place_idx];
// execute // execute
workers.emplace_back(framework::Async([program, cur_scope, place, block] { workers.emplace_back(framework::Async([program, cur_scope, place, block] {
...@@ -216,33 +206,38 @@ class ParallelDoGradOp : public OperatorBase { ...@@ -216,33 +206,38 @@ class ParallelDoGradOp : public OperatorBase {
// merge grad // merge grad
for (auto &s : Outputs(framework::GradVarName(kParameters))) { for (auto &s : Outputs(framework::GradVarName(kParameters))) {
VLOG(3) << "merge grad " << s; auto &result = sub_scopes[0]->FindVar(s)->Get<LoDTensor>();
std::string tmp_name;
auto &t = sub_scopes[0]->FindVar(s)->Get<LoDTensor>(); auto *tmp = sub_scopes[0]->Var(&tmp_name)->GetMutable<LoDTensor>();
VLOG(3) << t;
for (size_t i = 1; i < sub_scopes.size(); ++i) {
std::string s_buf = s + "@BUF"; auto &tensor_to_merge = sub_scopes[i]->FindVar(s)->Get<LoDTensor>();
auto *t_buf = sub_scopes[0]->Var(s_buf)->GetMutable<LoDTensor>(); if (!(places[i] == places[0])) {
framework::Copy(tensor_to_merge, places[0], tmp);
for (size_t place_idx = 1; place_idx < places.size(); ++place_idx) { } else {
auto &tt = sub_scopes[place_idx]->FindVar(s)->Get<LoDTensor>(); tmp->ShareDataWith(tensor_to_merge);
VLOG(3) << place_idx; }
VLOG(3) << tt;
framework::Copy(tt, places[0], t_buf);
auto sum_op = framework::OpRegistry::CreateOp( auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {s, s_buf}}}, {{"Out", {s}}}, "sum", {{"X", {s, tmp_name}}}, {{"Out", {s}}},
framework::AttributeMap{}); framework::AttributeMap{});
sum_op->Run(*sub_scopes[0], places[0]); sum_op->Run(*sub_scopes[0], places[0]);
WaitOnPlaces(places); WaitOnPlaces(places);
} }
VLOG(3) << t; VLOG(3) << result;
framework::Copy(t, place, scope.FindVar(s)->GetMutable<LoDTensor>()); framework::Copy(result, place, scope.FindVar(s)->GetMutable<LoDTensor>());
} }
} }
}; };
std::ostream &operator<<(std::ostream &sout,
const std::vector<std::string> &strs) {
std::copy(strs.begin(), strs.end(),
std::ostream_iterator<std::string>(sout, ","));
return sout;
}
class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker { class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
public: public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
...@@ -283,18 +278,30 @@ class ParallelDoGradOpShapeInference : public framework::InferShapeBase { ...@@ -283,18 +278,30 @@ class ParallelDoGradOpShapeInference : public framework::InferShapeBase {
void operator()(framework::InferShapeContext *ctx) const override { void operator()(framework::InferShapeContext *ctx) const override {
std::vector<std::string> input{kParameters, kInputs}; std::vector<std::string> input{kParameters, kInputs};
std::vector<std::string> output{kOutputs}; std::vector<std::string> output{kOutputs};
for (auto &s : input) {
PADDLE_ENFORCE(ctx->HasInputs(s)); PADDLE_ENFORCE(ctx->HasInputs(kParameters));
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)), PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
"Cannot find the gradient variable %s", PADDLE_ENFORCE(ctx->HasInput(kInputs));
framework::GradVarName(s));
}
for (auto &s : output) { for (auto &s : output) {
PADDLE_ENFORCE(ctx->HasInputs(s)); PADDLE_ENFORCE(ctx->HasInputs(s));
} }
for (auto &s : input) {
ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s)); ctx->SetOutputsDim(framework::GradVarName(kParameters),
ctx->GetInputsDim(kParameters));
auto i_dims = ctx->GetInputsDim(kInputs);
auto ig_names = ctx->Outputs(framework::GradVarName(kInputs));
for (size_t i = 0; i < ig_names.size(); ++i) {
auto &ig_name = ig_names[i];
if (ig_name == framework::kEmptyVarName) {
continue;
}
ctx->SetDims({ig_name}, {i_dims[i]});
} }
if (ctx->HasInputs(kParameters)) { if (ctx->HasInputs(kParameters)) {
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
ctx->SetOutputsDim(framework::GradVarName(kParameters), ctx->SetOutputsDim(framework::GradVarName(kParameters),
......
...@@ -64,6 +64,13 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -64,6 +64,13 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
framework::OpKernelType PoolOp::GetExpectedKernelType( framework::OpKernelType PoolOp::GetExpectedKernelType(
const framework::ExecutionContext &ctx) const { const framework::ExecutionContext &ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
...@@ -88,6 +95,13 @@ void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const { ...@@ -88,6 +95,13 @@ void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
framework::OpKernelType PoolOpGrad::GetExpectedKernelType( framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
const framework::ExecutionContext &ctx) const { const framework::ExecutionContext &ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn"); bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_; framework::LibraryType library_;
if (use_cudnn) { if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
......
...@@ -129,7 +129,7 @@ If reduce_all is true, just reduce along all dimensions and output a scalar. ...@@ -129,7 +129,7 @@ If reduce_all is true, just reduce along all dimensions and output a scalar.
} }
void SetComment(std::string name, std::string op) { void SetComment(std::string name, std::string op) {
Replace(comment_, "{ReduceOP}", name); Replace(comment_, "{ReduceOp}", name);
Replace(comment_, "{reduce}", op); Replace(comment_, "{reduce}", op);
} }
}; };
......
...@@ -15,9 +15,15 @@ limitations under the License. */ ...@@ -15,9 +15,15 @@ limitations under the License. */
#pragma once #pragma once
#include <sstream> #include <sstream>
#include <string> #include <string>
#include <typeindex>
namespace paddle { namespace paddle {
namespace string { namespace string {
inline std::ostream& operator<<(std::ostream& s, const std::type_index& t) {
s << t.name();
return s;
}
template <typename T> template <typename T>
inline std::string to_string(T v) { inline std::string to_string(T v) {
std::ostringstream sout; std::ostringstream sout;
...@@ -25,6 +31,11 @@ inline std::string to_string(T v) { ...@@ -25,6 +31,11 @@ inline std::string to_string(T v) {
return sout.str(); return sout.str();
} }
template <>
inline std::string to_string(std::type_index t) {
return t.name();
}
// Faster std::string/const char* type // Faster std::string/const char* type
template <> template <>
inline std::string to_string(std::string v) { inline std::string to_string(std::string v) {
......
...@@ -16,13 +16,22 @@ from paddle.trainer.config_parser import * ...@@ -16,13 +16,22 @@ from paddle.trainer.config_parser import *
from default_decorators import * from default_decorators import *
__all__ = [ __all__ = [
"evaluator_base", "classification_error_evaluator", "auc_evaluator", "evaluator_base",
"pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator", "classification_error_evaluator",
"chunk_evaluator", "sum_evaluator", "column_sum_evaluator", "auc_evaluator",
"value_printer_evaluator", "gradient_printer_evaluator", "pnpair_evaluator",
"maxid_printer_evaluator", "maxframe_printer_evaluator", "precision_recall_evaluator",
"seqtext_printer_evaluator", "classification_error_printer_evaluator", "ctc_error_evaluator",
"detection_map_evaluator" "chunk_evaluator",
"sum_evaluator",
"column_sum_evaluator",
"value_printer_evaluator",
"gradient_printer_evaluator",
"maxid_printer_evaluator",
"maxframe_printer_evaluator",
"seqtext_printer_evaluator",
"classification_error_printer_evaluator",
"detection_map_evaluator",
] ]
......
...@@ -407,7 +407,7 @@ class DistributeTranspiler: ...@@ -407,7 +407,7 @@ class DistributeTranspiler:
outputs=opt_op.outputs, outputs=opt_op.outputs,
attrs=opt_op.attrs) attrs=opt_op.attrs)
def get_pserver_program(self, endpoint, optimize_ops): def get_pserver_program(self, endpoint):
""" """
get pserver side program by endpoint get pserver side program by endpoint
...@@ -435,9 +435,9 @@ class DistributeTranspiler: ...@@ -435,9 +435,9 @@ class DistributeTranspiler:
shape=v.shape) shape=v.shape)
# step6 # step6
optimize_sub_program = Program() optimize_sub_program = Program()
for idx, opt_op in enumerate(optimize_ops): for idx, opt_op in enumerate(self.optimize_ops):
is_op_on_pserver = self._is_op_on_pserver(endpoint, optimize_ops, is_op_on_pserver = self._is_op_on_pserver(endpoint,
idx) self.optimize_ops, idx)
if not is_op_on_pserver: if not is_op_on_pserver:
continue continue
if opt_op.inputs.has_key("Grad"): if opt_op.inputs.has_key("Grad"):
......
...@@ -116,8 +116,8 @@ def _debug_string_(proto, throw_on_error=True): ...@@ -116,8 +116,8 @@ def _debug_string_(proto, throw_on_error=True):
""" """
error_fields = list() error_fields = list()
if not proto.IsInitialized(error_fields) and throw_on_error: if not proto.IsInitialized(error_fields) and throw_on_error:
raise ValueError("{0} are not initialized\nThe message is {1}".format( raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
error_fields, proto)) format(error_fields, proto))
return proto.__str__() return proto.__str__()
...@@ -374,12 +374,13 @@ class Operator(object): ...@@ -374,12 +374,13 @@ class Operator(object):
>>> outputs={"Out": [var1]}) >>> outputs={"Out": [var1]})
Args: Args:
block(Block): The block has the current operator block(Block): The block has the current operator.
desc(core.OpDesc): The protobuf description desc(core.OpDesc): The protobuf description.
type(str): The type of operator. type(str): The type of operator.
inputs(dict): The input dictionary. Key is the input parameter name. inputs(dict): The input dictionary. Key is the input parameter name.
Value is a list of variables. Value is a list of variables.
outputs(dict): The output dictionary. Has same format with inputs outputs(dict): The output dictionary which has the same format with
inputs.
attrs(dict): The attributes dictionary. Key is attribute name. Value attrs(dict): The attributes dictionary. Key is attribute name. Value
is the attribute value. The attribute type should be as same as is the attribute value. The attribute type should be as same as
the type registered in C++ the type registered in C++
...@@ -436,10 +437,11 @@ class Operator(object): ...@@ -436,10 +437,11 @@ class Operator(object):
for m in proto.outputs: for m in proto.outputs:
need.add(m.name) need.add(m.name)
if not given == need: if not given == need:
raise ValueError( raise ValueError(("Incorrect setting for output(s) of "
"Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]" "operator \"%s\". Need: [%s] Given: [%s]") %
% (type, ", ".join(str(e) for e in need), ", ".join( (type, ", ".join(str(e)
str(e) for e in given))) for e in need), ", ".join(
str(e) for e in given)))
for out_proto in proto.outputs: for out_proto in proto.outputs:
out_args = outputs[out_proto.name] out_args = outputs[out_proto.name]
...@@ -818,9 +820,8 @@ class Program(object): ...@@ -818,9 +820,8 @@ class Program(object):
if isinstance(t, Variable): if isinstance(t, Variable):
t = t.op t = t.op
else: else:
raise ValueError( raise ValueError(("All targets of prune() can only be "
"All targets of prune() can only be Variable or Operator." "Variable or Operator."))
)
targets_idx.append([t.block.idx, t.idx]) targets_idx.append([t.block.idx, t.idx])
res = Program() res = Program()
......
...@@ -15,6 +15,7 @@ import os ...@@ -15,6 +15,7 @@ import os
import cPickle as pickle import cPickle as pickle
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
from . import core
__all__ = [ __all__ = [
'save_vars', 'save_vars',
...@@ -191,6 +192,33 @@ def get_inference_program(target_vars, main_program=None): ...@@ -191,6 +192,33 @@ def get_inference_program(target_vars, main_program=None):
return inference_program return inference_program
def prepend_feed_ops(inference_program, feeded_var_names):
global_block = inference_program.global_block()
feed_var = global_block.create_var(
name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True)
for i, name in enumerate(feeded_var_names):
out = global_block.var(name)
global_block.prepend_op(
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
def append_fetch_ops(inference_program, fetch_var_names):
global_block = inference_program.global_block()
fetch_var = global_block.create_var(
name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True)
for i, name in enumerate(fetch_var_names):
global_block.append_op(
type='fetch',
inputs={'X': [name]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
def save_inference_model(dirname, def save_inference_model(dirname,
feeded_var_names, feeded_var_names,
target_vars, target_vars,
...@@ -241,6 +269,9 @@ def save_inference_model(dirname, ...@@ -241,6 +269,9 @@ def save_inference_model(dirname,
"fetch_var_names": fetch_var_names "fetch_var_names": fetch_var_names
}, f, -1) }, f, -1)
prepend_feed_ops(inference_program, feeded_var_names)
append_fetch_ops(inference_program, fetch_var_names)
# Save only programDesc of inference_program in binary format # Save only programDesc of inference_program in binary format
# in another file: __model__.dat # in another file: __model__.dat
with open(model_file_name + ".dat", "wb") as fp: with open(model_file_name + ".dat", "wb") as fp:
......
...@@ -28,9 +28,9 @@ def data(name, ...@@ -28,9 +28,9 @@ def data(name,
**Data Layer** **Data Layer**
This function takes in the input and based on whether data has This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable using to be returned back as a minibatch, it creates the global variable by using
the helper functions. The global variables can be accessed by all the the helper functions. The global variables can be accessed by all the
following operations and layers in the graph. following operators in the graph.
All the input variables of this function are passed in as local variables All the input variables of this function are passed in as local variables
to the LayerHelper constructor. to the LayerHelper constructor.
......
...@@ -22,34 +22,13 @@ from ..param_attr import ParamAttr ...@@ -22,34 +22,13 @@ from ..param_attr import ParamAttr
from tensor import concat from tensor import concat
__all__ = [ __all__ = [
'fc', 'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf',
'embedding', 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
'dynamic_lstm', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'gru_unit', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'linear_chain_crf', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
'crf_decoding', 'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
'cos_sim', 'l2_normalize', 'matmul', 'warpctc'
'cross_entropy',
'square_error_cost',
'accuracy',
'chunk_eval',
'sequence_conv',
'conv2d',
'sequence_pool',
'pool2d',
'batch_norm',
'beam_search_decode',
'conv2d_transpose',
'sequence_expand',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'sequence_first_step',
'sequence_last_step',
'dropout',
'split',
] ]
...@@ -674,6 +653,7 @@ def conv2d(input, ...@@ -674,6 +653,7 @@ def conv2d(input,
groups=None, groups=None,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_cudnn=True,
act=None): act=None):
""" """
**Convlution2D Layer** **Convlution2D Layer**
...@@ -737,6 +717,8 @@ def conv2d(input, ...@@ -737,6 +717,8 @@ def conv2d(input,
connected to the second half of the input channels. Default: groups=1 connected to the second half of the input channels. Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act(str): Activation type. Default: None act(str): Activation type. Default: None
Returns: Returns:
...@@ -772,6 +754,8 @@ def conv2d(input, ...@@ -772,6 +754,8 @@ def conv2d(input,
stride = [stride, stride] stride = [stride, stride]
if isinstance(padding, int): if isinstance(padding, int):
padding = [padding, padding] padding = [padding, padding]
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
input_shape = input.shape input_shape = input.shape
filter_shape = [num_filters, num_filter_channels] + filter_size filter_shape = [num_filters, num_filter_channels] + filter_size
...@@ -795,9 +779,12 @@ def conv2d(input, ...@@ -795,9 +779,12 @@ def conv2d(input,
'Filter': filter_param, 'Filter': filter_param,
}, },
outputs={"Output": pre_bias}, outputs={"Output": pre_bias},
attrs={'strides': stride, attrs={
'paddings': padding, 'strides': stride,
'groups': groups}) 'paddings': padding,
'groups': groups,
'use_cudnn': use_cudnn
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
...@@ -945,7 +932,9 @@ def pool2d(input, ...@@ -945,7 +932,9 @@ def pool2d(input,
pool_type, pool_type,
pool_stride=None, pool_stride=None,
pool_padding=None, pool_padding=None,
global_pooling=False): global_pooling=False,
use_cudnn=True,
name=None):
""" """
This function adds the operator for pooling in 2 dimensions, using the This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters. pooling configurations mentioned in input parameters.
...@@ -964,6 +953,8 @@ def pool2d(input, ...@@ -964,6 +953,8 @@ def pool2d(input,
pool_stride = [pool_stride, pool_stride] pool_stride = [pool_stride, pool_stride]
if isinstance(pool_padding, int): if isinstance(pool_padding, int):
pool_padding = [pool_padding, pool_padding] pool_padding = [pool_padding, pool_padding]
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
helper = LayerHelper('pool2d', **locals()) helper = LayerHelper('pool2d', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -978,7 +969,8 @@ def pool2d(input, ...@@ -978,7 +969,8 @@ def pool2d(input,
"ksize": pool_size, "ksize": pool_size,
"global_pooling": global_pooling, "global_pooling": global_pooling,
"strides": pool_stride, "strides": pool_stride,
"paddings": pool_padding "paddings": pool_padding,
"use_cudnn": use_cudnn
}) })
return pool_out return pool_out
...@@ -991,7 +983,8 @@ def batch_norm(input, ...@@ -991,7 +983,8 @@ def batch_norm(input,
epsilon=1e-05, epsilon=1e-05,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
data_layout='NCHW'): data_layout='NCHW',
name=None):
""" """
This function helps create an operator to implement This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters. the BatchNorm layer using the configurations from the input parameters.
...@@ -1067,7 +1060,7 @@ def batch_norm(input, ...@@ -1067,7 +1060,7 @@ def batch_norm(input,
return helper.append_activation(batch_norm_out) return helper.append_activation(batch_norm_out)
def beam_search_decode(ids, scores): def beam_search_decode(ids, scores, name=None):
helper = LayerHelper('beam_search_decode', **locals()) helper = LayerHelper('beam_search_decode', **locals())
sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
...@@ -1091,7 +1084,9 @@ def conv2d_transpose(input, ...@@ -1091,7 +1084,9 @@ def conv2d_transpose(input,
padding=None, padding=None,
stride=None, stride=None,
dilation=None, dilation=None,
param_attr=None): param_attr=None,
use_cudnn=True,
name=None):
""" """
The transpose of conv2d layer. The transpose of conv2d layer.
...@@ -1118,8 +1113,10 @@ def conv2d_transpose(input, ...@@ -1118,8 +1113,10 @@ def conv2d_transpose(input,
contain two integers, (dilation_H, dilation_W). Otherwise, the contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. dilation_H = dilation_W = dilation.
param_attr: Parameter Attribute. param_attr: Parameter Attribute.
main_program(Program): the main program use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
startup_program(Program): the startup program library is installed. Default: True
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: Output image. Variable: Output image.
...@@ -1146,6 +1143,10 @@ def conv2d_transpose(input, ...@@ -1146,6 +1143,10 @@ def conv2d_transpose(input,
elif dilation is not None: elif dilation is not None:
op_attr['dilations'] = dilation op_attr['dilations'] = dilation
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
op_attr['use_cudnn'] = use_cudnn
if filter_size is None: if filter_size is None:
if output_size is None: if output_size is None:
raise ValueError("output_size must be set when filter_size is None") raise ValueError("output_size must be set when filter_size is None")
...@@ -1183,7 +1184,7 @@ def conv2d_transpose(input, ...@@ -1183,7 +1184,7 @@ def conv2d_transpose(input,
return out return out
def sequence_expand(x, y): def sequence_expand(x, y, name=None):
"""Sequence Expand Layer. This layer will expand the input variable **x** """Sequence Expand Layer. This layer will expand the input variable **x**
according to LoD information of **y**. And the following examples will according to LoD information of **y**. And the following examples will
explain how sequence_expand works: explain how sequence_expand works:
...@@ -1227,6 +1228,8 @@ def sequence_expand(x, y): ...@@ -1227,6 +1228,8 @@ def sequence_expand(x, y):
Args: Args:
x (Variable): The input variable which is a Tensor or LoDTensor. x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a LoDTensor. y (Variable): The input variable which is a LoDTensor.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: The expanded variable which is a LoDTensor. Variable: The expanded variable which is a LoDTensor.
...@@ -1253,7 +1256,8 @@ def lstm_unit(x_t, ...@@ -1253,7 +1256,8 @@ def lstm_unit(x_t,
cell_t_prev, cell_t_prev,
forget_bias=0.0, forget_bias=0.0,
param_attr=None, param_attr=None,
bias_attr=None): bias_attr=None,
name=None):
"""Lstm unit layer. The equation of a lstm step is: """Lstm unit layer. The equation of a lstm step is:
.. math:: .. math::
...@@ -1300,6 +1304,8 @@ def lstm_unit(x_t, ...@@ -1300,6 +1304,8 @@ def lstm_unit(x_t,
initializer, name etc. initializer, name etc.
bias_attr (ParamAttr): The attributes of bias weights, if not False, bias_attr (ParamAttr): The attributes of bias weights, if not False,
bias weights will be created and be set to default value. bias weights will be created and be set to default value.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
tuple: The hidden value and cell value of lstm unit. tuple: The hidden value and cell value of lstm unit.
...@@ -1365,7 +1371,7 @@ def lstm_unit(x_t, ...@@ -1365,7 +1371,7 @@ def lstm_unit(x_t,
return h, c return h, c
def reduce_sum(input, dim=None, keep_dim=False): def reduce_sum(input, dim=None, keep_dim=False, name=None):
""" """
Computes the sum of tensor elements over the given dimension. Computes the sum of tensor elements over the given dimension.
...@@ -1379,6 +1385,8 @@ def reduce_sum(input, dim=None, keep_dim=False): ...@@ -1379,6 +1385,8 @@ def reduce_sum(input, dim=None, keep_dim=False):
keep_dim (bool): Whether to reserve the reduced dimension in the keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true. than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: The reduced Tensor variable. Variable: The reduced Tensor variable.
...@@ -1409,7 +1417,7 @@ def reduce_sum(input, dim=None, keep_dim=False): ...@@ -1409,7 +1417,7 @@ def reduce_sum(input, dim=None, keep_dim=False):
return out return out
def reduce_mean(input, dim=None, keep_dim=False): def reduce_mean(input, dim=None, keep_dim=False, name=None):
""" """
Computes the mean of tensor elements over the given dimension. Computes the mean of tensor elements over the given dimension.
...@@ -1423,6 +1431,8 @@ def reduce_mean(input, dim=None, keep_dim=False): ...@@ -1423,6 +1431,8 @@ def reduce_mean(input, dim=None, keep_dim=False):
keep_dim (bool): Whether to reserve the reduced dimension in the keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true. than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: The reduced Tensor variable. Variable: The reduced Tensor variable.
...@@ -1453,7 +1463,7 @@ def reduce_mean(input, dim=None, keep_dim=False): ...@@ -1453,7 +1463,7 @@ def reduce_mean(input, dim=None, keep_dim=False):
return out return out
def reduce_max(input, dim=None, keep_dim=False): def reduce_max(input, dim=None, keep_dim=False, name=None):
""" """
Computes the maximum of tensor elements over the given dimension. Computes the maximum of tensor elements over the given dimension.
...@@ -1467,6 +1477,8 @@ def reduce_max(input, dim=None, keep_dim=False): ...@@ -1467,6 +1477,8 @@ def reduce_max(input, dim=None, keep_dim=False):
keep_dim (bool): Whether to reserve the reduced dimension in the keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true. than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: The reduced Tensor variable. Variable: The reduced Tensor variable.
...@@ -1497,7 +1509,7 @@ def reduce_max(input, dim=None, keep_dim=False): ...@@ -1497,7 +1509,7 @@ def reduce_max(input, dim=None, keep_dim=False):
return out return out
def reduce_min(input, dim=None, keep_dim=False): def reduce_min(input, dim=None, keep_dim=False, name=None):
""" """
Computes the minimum of tensor elements over the given dimension. Computes the minimum of tensor elements over the given dimension.
...@@ -1511,6 +1523,8 @@ def reduce_min(input, dim=None, keep_dim=False): ...@@ -1511,6 +1523,8 @@ def reduce_min(input, dim=None, keep_dim=False):
keep_dim (bool): Whether to reserve the reduced dimension in the keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true. than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: The reduced Tensor variable. Variable: The reduced Tensor variable.
...@@ -1541,20 +1555,22 @@ def reduce_min(input, dim=None, keep_dim=False): ...@@ -1541,20 +1555,22 @@ def reduce_min(input, dim=None, keep_dim=False):
return out return out
def split(input, num_or_sections, dim=-1): def split(input, num_or_sections, dim=-1, name=None):
""" """
Splits the tensor into multiple sub-tensors. Split the input tensor into multiple sub-tensors.
Args: Args:
input (Variable): The input variable which is a Tensor or LoDTensor. input (Variable): The input variable which is a Tensor or LoDTensor.
num_or_sections (int|list): If :attr:`num_or_sections` is an integer, num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections` that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors' sub-tensors and the integers indicate the sizes of sub-tensors'
:attr:`dim` dimension orderly. :attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`. dimension to split along is :math:`rank(input) + dim`.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
List: The list of segmented tensor variables. List: The list of segmented tensor variables.
...@@ -1597,3 +1613,208 @@ def split(input, num_or_sections, dim=-1): ...@@ -1597,3 +1613,208 @@ def split(input, num_or_sections, dim=-1):
'axis': dim 'axis': dim
}) })
return outs return outs
def l2_normalize(x, axis, epsilon=1e-12, name=None):
"""
**L2 normalize Layer**
The l2 normalize layer normalizes `x` along dimension `axis` using an L2
norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes
output = x / sqrt(max(sum(x**2), epsilon))
For `x` with more dimensions, this layer independently normalizes each 1-D
slice along dimension `axis`.
Args:
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): Dimension along which to normalize the input.
epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
be used as the divisor if the l2 norm of `x` is less than
sqrt(epsilon).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output tensor variable.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
fc = fluid.layers.l2_normalize(x=data, axis=1)
"""
if len(x.shape) == 1: axis = 0
helper = LayerHelper("l2_normalize", **locals())
square = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})
reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="reduce_sum",
inputs={"X": square},
outputs={"Out": reduced_sum},
attrs={
"dim": 1 if axis is None else axis,
"keep_dim": True,
"reduce_all": False
})
# TODO(caoying) A lower bound value epsilon for the norm is needed to
# imporve the numeric stability of reciprocal. This requires a maximum_op.
rsquare = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})
# TODO(caoying) the current elementwise_mul operator does not support a
# general broadcast rule which broadcasts input(Y) to have the same
# dimension with Input(X) starting from a specified dimension. So this
# exanpsion is requred. Once a general broadcast rule is spported, this
# expanding canbe removed.
rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
expand_times = [1] * len(x.shape)
expand_times[axis] = int(x.shape[axis])
helper.append_op(
type="expand",
inputs={"X": rsquare},
outputs={"Out": rsquare_expanded},
attrs={"expand_times": expand_times})
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="elementwise_mul",
inputs={"X": x,
"Y": rsquare_expanded},
outputs={"Out": out})
return out
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
"""
Applies matrix multipication to two tensors. Currently only rank 1 to rank
3 input tensors are supported.
The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
- If a transpose flag is specified, the last two dimensions of the tensor
are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
:math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
:math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
:math:`[1, D]` in transposed form.
- After transpose, the two tensors are 2-D or 3-D and matrix multipication
performs in the following way.
- If both are 2-D, they are multiplied like conventional matrices.
- If either is 3-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multipication.
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a Tensor or LoDTensor.
transpose_x (bool): Whether to transpose :math:`x` before multiplication.
transpose_y (bool): Whether to transpose :math:`y` before multiplication.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The product Tensor variable.
Examples:
.. code-block:: python
# Examples to clarify shapes of the inputs and output
# x: [B, M, K], y: [B, K, N]
fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [B, M, K], y: [K, N]
fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [B, M, K], y: [K]
fluid.layers.matmul(x, y) # out: [B, M]
# x: [M, K], y: [K, N]
fluid.layers.matmul(x, y) # out: [M, N]
# x: [K], y: [K]
fluid.layers.matmul(x, y) # out: [1]
# x: [M], y: [N]
fluid.layers.matmul(x, y, True, True) # out: [M, N]
"""
helper = LayerHelper('matmul', **locals())
assert max(
len(x.shape), len(y.shape)
) <= 3, 'Currently only rank 1 to rank 3 input tensors are supported.'
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='matmul',
inputs={'X': x,
'Y': y},
outputs={'Out': out},
attrs={'transpose_X': transpose_x,
'transpose_Y': transpose_y})
return out
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
"""
An operator integrating the open source Warp-CTC library
(https://github.com/baidu-research/warp-ctc)
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with CTC, since a native softmax activation is
interated to the Warp-CTC library, to to normlize values for each row of the
input tensor.
Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0), the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to normalize
the gradients by the number of time-step,which is also the
sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
which is a 2-D Tensor of the shape [batch_size, 1].
Examples:
.. code-block:: python
y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
cost = layers.warpctc(input=y_predict, label=y)
"""
helper = LayerHelper('warpctc', **kwargs)
loss_out = helper.create_tmp_variable(dtype=input.dtype)
grad_out = helper.create_tmp_variable(dtype=input.dtype)
helper.append_op(
type='warpctc',
inputs={'Logits': [input],
'Label': [label]},
outputs={'WarpCTCGrad': [grad_out],
'Loss': [loss_out]},
attrs={'blank': blank,
'norm_by_times': norm_by_times})
return loss_out
...@@ -55,6 +55,8 @@ __all__ = [ ...@@ -55,6 +55,8 @@ __all__ = [
'elementwise_div', 'elementwise_div',
'elementwise_sub', 'elementwise_sub',
'elementwise_mul', 'elementwise_mul',
'elementwise_max',
'elementwise_min',
'clip', 'clip',
'sequence_softmax', 'sequence_softmax',
] + __activations__ ] + __activations__
......
...@@ -17,6 +17,7 @@ __all__ = [ ...@@ -17,6 +17,7 @@ __all__ = [
"simple_img_conv_pool", "simple_img_conv_pool",
"sequence_conv_pool", "sequence_conv_pool",
"glu", "glu",
"dot_product_attention",
] ]
...@@ -27,19 +28,22 @@ def simple_img_conv_pool(input, ...@@ -27,19 +28,22 @@ def simple_img_conv_pool(input,
pool_stride, pool_stride,
act, act,
param_attr=None, param_attr=None,
pool_type='max'): pool_type='max',
use_cudnn=True):
conv_out = layers.conv2d( conv_out = layers.conv2d(
input=input, input=input,
num_filters=num_filters, num_filters=num_filters,
filter_size=filter_size, filter_size=filter_size,
param_attr=param_attr, param_attr=param_attr,
act=act) act=act,
use_cudnn=use_cudnn)
pool_out = layers.pool2d( pool_out = layers.pool2d(
input=conv_out, input=conv_out,
pool_size=pool_size, pool_size=pool_size,
pool_type=pool_type, pool_type=pool_type,
pool_stride=pool_stride) pool_stride=pool_stride,
use_cudnn=use_cudnn)
return pool_out return pool_out
...@@ -53,7 +57,8 @@ def img_conv_group(input, ...@@ -53,7 +57,8 @@ def img_conv_group(input,
conv_with_batchnorm=False, conv_with_batchnorm=False,
conv_batchnorm_drop_rate=None, conv_batchnorm_drop_rate=None,
pool_stride=1, pool_stride=1,
pool_type=None): pool_type=None,
use_cudnn=True):
""" """
Image Convolution Group, Used for vgg net. Image Convolution Group, Used for vgg net.
""" """
...@@ -84,7 +89,8 @@ def img_conv_group(input, ...@@ -84,7 +89,8 @@ def img_conv_group(input,
filter_size=conv_filter_size[i], filter_size=conv_filter_size[i],
padding=conv_padding[i], padding=conv_padding[i],
param_attr=param_attr[i], param_attr=param_attr[i],
act=local_conv_act) act=local_conv_act,
use_cudnn=use_cudnn)
if conv_with_batchnorm[i]: if conv_with_batchnorm[i]:
tmp = layers.batch_norm(input=tmp, act=conv_act) tmp = layers.batch_norm(input=tmp, act=conv_act)
...@@ -96,7 +102,8 @@ def img_conv_group(input, ...@@ -96,7 +102,8 @@ def img_conv_group(input,
input=tmp, input=tmp,
pool_size=pool_size, pool_size=pool_size,
pool_type=pool_type, pool_type=pool_type,
pool_stride=pool_stride) pool_stride=pool_stride,
use_cudnn=use_cudnn)
return pool_out return pool_out
...@@ -150,3 +157,55 @@ def glu(input, dim=-1): ...@@ -150,3 +157,55 @@ def glu(input, dim=-1):
act_b = layers.sigmoid(x=b) act_b = layers.sigmoid(x=b)
out = layers.elementwise_mul(x=a, y=act_b) out = layers.elementwise_mul(x=a, y=act_b)
return out return out
def dot_product_attention(querys, keys, values):
"""
The dot-product attention.
Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility
function (dot-product here) of the query with the corresponding key.
The dot-product attention can be implemented through (batch) matrix
multipication as follows:
.. math::
Attention(Q, K, V)= softmax(QK^\mathrm{T})V
Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Note that batch data containing sequences with different lengths is not
supported by this because of the (batch) matrix multipication.
Args:
query (Variable): The input variable which is a Tensor or LoDTensor.
key (Variable): The input variable which is a Tensor or LoDTensor.
value (Variable): The input variable which is a Tensor or LoDTensor.
Returns:
tuple: The Tensor variables representing the output and attention scores.
Examples:
.. code-block:: python
# Suppose q, k, v are tensor variables with the following shape:
# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
out.shape # [3, 5, 10]
attn_scores.shape # [3, 5, 6]
"""
assert keys.shape[-2] == values.shape[
-2], 'The shapes of keys and values mismatch.'
assert querys.shape[-1] == keys.shape[
-1], 'The shapes of querys and keys mismatch.'
product = layers.matmul(x=querys, y=keys, transpose_y=True)
attn_scores = layers.reshape(
x=layers.reshape(
x=product, shape=[-1, product.shape[-1]], act='softmax'),
shape=product.shape)
out = layers.matmul(attn_scores, values)
return out, attn_scores
...@@ -53,7 +53,7 @@ if training_role == "PSERVER": ...@@ -53,7 +53,7 @@ if training_role == "PSERVER":
if not current_endpoint: if not current_endpoint:
print("need env SERVER_ENDPOINT") print("need env SERVER_ENDPOINT")
exit(1) exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) pserver_prog = t.get_pserver_program(current_endpoint)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
exe.run(pserver_prog) exe.run(pserver_prog)
else: else:
......
...@@ -197,7 +197,7 @@ def main(): ...@@ -197,7 +197,7 @@ def main():
if not current_endpoint: if not current_endpoint:
print("need env SERVER_ENDPOINT") print("need env SERVER_ENDPOINT")
exit(1) exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) pserver_prog = t.get_pserver_program(current_endpoint)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
exe.run(pserver_prog) exe.run(pserver_prog)
elif training_role == "TRAINER": elif training_role == "TRAINER":
......
...@@ -87,7 +87,7 @@ if training_role == "PSERVER": ...@@ -87,7 +87,7 @@ if training_role == "PSERVER":
if not current_endpoint: if not current_endpoint:
print("need env SERVER_ENDPOINT") print("need env SERVER_ENDPOINT")
exit(1) exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) pserver_prog = t.get_pserver_program(current_endpoint)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
exe.run(pserver_prog) exe.run(pserver_prog)
elif training_role == "TRAINER": elif training_role == "TRAINER":
......
...@@ -65,7 +65,7 @@ if training_role == "PSERVER": ...@@ -65,7 +65,7 @@ if training_role == "PSERVER":
if not current_endpoint: if not current_endpoint:
print("need env SERVER_ENDPOINT") print("need env SERVER_ENDPOINT")
exit(1) exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup) exe.run(pserver_startup)
exe.run(pserver_prog) exe.run(pserver_prog)
......
...@@ -11,89 +11,77 @@ ...@@ -11,89 +11,77 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
""" from __future__ import print_function
CNN on mnist data using fluid api of paddlepaddle import numpy as np
"""
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import os
BATCH_SIZE = 128
PASS_NUM = 100
def mnist_cnn_model(img): images = fluid.layers.data(name='x', shape=[784], dtype='float32')
"""
Mnist cnn model
Args: # TODO(aroraabhinav) Add regularization and error clipping after
img(Varaible): the input image to be recognized # Issue 7432(https://github.com/PaddlePaddle/Paddle/issues/7432) is resolved.
hidden1 = fluid.layers.fc(input=images, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
Returns: label = fluid.layers.data(name='y', shape=[1], dtype='int64')
Variable: the label prediction
"""
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool( cost = fluid.layers.cross_entropy(input=predict, label=label)
input=conv_pool_1, avg_cost = fluid.layers.mean(x=cost)
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax') optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
return logits optimize_ops, params_grads = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
def main(): train_reader = paddle.batch(
""" paddle.reader.shuffle(
Train the cnn model on mnist datasets paddle.dataset.mnist.train(), buf_size=8192),
""" batch_size=BATCH_SIZE)
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.01)
optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=logits, label=label) place = fluid.CPUPlace()
exe = fluid.Executor(place)
BATCH_SIZE = 50 t = fluid.DistributeTranspiler()
PASS_NUM = 3 # all parameter server endpoints list for spliting parameters
ACC_THRESHOLD = 0.98 pserver_endpoints = os.getenv("PSERVERS")
LOSS_THRESHOLD = 10.0 # server endpoint for current node
train_reader = paddle.batch( current_endpoint = os.getenv("SERVER_ENDPOINT")
paddle.reader.shuffle( # run as trainer or parameter server
paddle.dataset.mnist.train(), buf_size=500), training_role = os.getenv("TRAINING_ROLE",
batch_size=BATCH_SIZE) "TRAINER") # get the training role: trainer/pserver
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
place = fluid.CPUPlace() if training_role == "PSERVER":
exe = fluid.Executor(place) if not current_endpoint:
feeder = fluid.DataFeeder(feed_list=[img, label], place=place) print("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
accuracy.reset(exe) accuracy.reset(exe)
batch_id = 0
for data in train_reader(): for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(), loss, acc = exe.run(trainer_prog,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics) fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe) pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc=" if batch_id % 100 == 0:
+ str(pass_acc)) print("batch_id %d, loss: %f, acc: %f" %
if loss < LOSS_THRESHOLD and pass_acc > ACC_THRESHOLD: (batch_id, loss, pass_acc))
break batch_id += 1
pass_acc = accuracy.eval(exe) pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
fluid.io.save_params( else:
exe, dirname='./mnist', main_program=fluid.default_main_program()) print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
print('train mnist done')
if __name__ == '__main__':
main()
...@@ -98,7 +98,7 @@ def main(): ...@@ -98,7 +98,7 @@ def main():
if not current_endpoint: if not current_endpoint:
print("need env SERVER_ENDPOINT") print("need env SERVER_ENDPOINT")
exit(1) exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) pserver_prog = t.get_pserver_program(current_endpoint)
exe.run(pserver_prog) exe.run(pserver_prog)
elif training_role == "TRAINER": elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program() trainer_prog = t.get_trainer_program()
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
...@@ -40,6 +40,16 @@ class TestElementwiseOp(OpTest): ...@@ -40,6 +40,16 @@ class TestElementwiseOp(OpTest):
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseAddOp_scalar(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']}
class TestElementwiseAddOp_Vector(TestElementwiseOp): class TestElementwiseAddOp_Vector(TestElementwiseOp):
def setUp(self): def setUp(self):
self.op_type = "elementwise_add" self.op_type = "elementwise_add"
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
...@@ -45,6 +45,16 @@ class ElementwiseDivOp(OpTest): ...@@ -45,6 +45,16 @@ class ElementwiseDivOp(OpTest):
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y')) ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32),
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}
class TestElementwiseDivOp_Vector(ElementwiseDivOp): class TestElementwiseDivOp_Vector(ElementwiseDivOp):
def setUp(self): def setUp(self):
self.op_type = "elementwise_div" self.op_type = "elementwise_div"
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_max"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseMaxOp_scalar(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.random_integers(-5, 5, [2, 3, 4]).astype("float32")
y = np.array([0.5]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.random((32, )).astype("float32")
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
y = x[:, 0, 0] + sgn * \
np.random.uniform(1, 2, (2, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
y = x[0, :, 0] + sgn * \
np.random.uniform(1, 2, (3, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
y = x[0, 0, :] + sgn * \
np.random.uniform(1, 2, (4, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
y = x[0, :, :, 0] + sgn * \
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_min"
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseMinOp_scalar(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.random_integers(-5, 5, [2, 3, 4]).astype("float32")
y = np.array([0.5]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.random((32, )).astype("float32")
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
y = x[:, 0, 0] + sgn * \
np.random.uniform(1, 2, (2, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
y = x[0, :, 0] + sgn * \
np.random.uniform(1, 2, (3, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
y = x[0, 0, :] + sgn * \
np.random.uniform(1, 2, (4, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
y = x[0, :, :, 0] + sgn * \
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
...@@ -38,6 +38,16 @@ class ElementwiseMulOp(OpTest): ...@@ -38,6 +38,16 @@ class ElementwiseMulOp(OpTest):
self.check_grad(['X'], 'Out', no_grad_set=set('Y')) self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
class TestElementwiseMulOp_Vector(ElementwiseMulOp): class TestElementwiseMulOp_Vector(ElementwiseMulOp):
def setUp(self): def setUp(self):
self.op_type = "elementwise_mul" self.op_type = "elementwise_mul"
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
...@@ -40,6 +40,16 @@ class TestElementwiseOp(OpTest): ...@@ -40,6 +40,16 @@ class TestElementwiseOp(OpTest):
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseSubOp_scalar(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
class TestElementwiseSubOp_Vector(TestElementwiseOp): class TestElementwiseSubOp_Vector(TestElementwiseOp):
def setUp(self): def setUp(self):
self.op_type = "elementwise_sub" self.op_type = "elementwise_sub"
......
...@@ -96,18 +96,18 @@ class Generator(object): ...@@ -96,18 +96,18 @@ class Generator(object):
self.outputs = {'Out': Out} self.outputs = {'Out': Out}
def test_check_output(self): def test_check_output(self):
self.check_output(atol=1e-2) self.check_output(atol=1e-3)
def test_check_grad_normal(self): def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
def test_check_grad_ignore_x(self): def test_check_grad_ignore_x(self):
self.check_grad( self.check_grad(
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
def test_check_grad_ignore_y(self): def test_check_grad_ignore_y(self):
self.check_grad( self.check_grad(
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
# Generate test cases for all possibilities # Generate test cases for all possibilities
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import numpy as np
class TestNormalization(unittest.TestCase):
data_desc = {"name": "input", "shape": (2, 3, 7)}
def gen_random_input(self):
"""Generate random input data.
"""
self.data = np.random.random(
size=self.data_desc["shape"]).astype("float32")
def set_program(self, axis, epsilon):
"""Build the test program.
"""
data = fluid.layers.data(
name=self.data_desc["name"],
shape=self.data_desc["shape"],
dtype="float32",
append_batch_size=False)
data.stop_gradient = False
l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon)
out = fluid.layers.reduce_sum(l2_norm, dim=None)
fluid.backward.append_backward(loss=out)
self.fetch_list = [l2_norm]
def run_program(self):
"""Run the test program.
"""
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.CUDAPlace(0))
for place in places:
self.set_inputs(place)
exe = fluid.Executor(place)
output = exe.run(fluid.default_main_program(),
feed=self.inputs,
fetch_list=self.fetch_list,
return_numpy=True)
self.op_output = output
def set_inputs(self, place):
"""Set the randomly generated data to the test program.
"""
self.inputs = {}
tensor = fluid.Tensor()
tensor.set(self.data, place)
self.inputs[self.data_desc["name"]] = tensor
def l2_normalize(self, data, axis, epsilon):
""" Compute the groundtruth.
"""
output = data * np.reciprocal(
np.sum(np.square(data), axis=axis, keepdims=True))
return output
def test_l2_normalize(self):
""" Test the python wrapper for l2_normalize.
"""
axis = 1
#TODO(caoying) epsilon is not supported due to lack of a maximum_op.
epsilon = 1e-6
self.gen_random_input()
self.set_program(axis, epsilon)
self.run_program()
expect_output = self.l2_normalize(self.data, axis, epsilon)
# check output
self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))
if __name__ == '__main__':
unittest.main()
...@@ -151,24 +151,28 @@ class BaseParallelForTest(unittest.TestCase): ...@@ -151,24 +151,28 @@ class BaseParallelForTest(unittest.TestCase):
class ParallelOpTest(BaseParallelForTest): class ParallelOpTest(BaseParallelForTest):
def test_simple_fc(self): @staticmethod
def __network__(): def __network__():
x = fluid.layers.data(shape=[784], dtype='float32', name='img') x = fluid.layers.data(shape=[784], dtype='float32', name='img')
# FIXME: This is a bug of parallel.do x = yield x
x.stop_gradient = False hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
x = yield x loss = fluid.layers.mean(x=hidden)
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') yield loss
loss = fluid.layers.mean(x=hidden)
yield loss
def test_simple_fc(self):
self.run_test( self.run_test(
callback=__network__, callback=ParallelOpTest.__network__,
feed={ feed={
'img': 'img': numpy.random.random(size=(51, 784)).astype('float32')
numpy.random.random(size=(128 * 3, 784)).astype('float32')
}, },
fetch='fc1.w@GRAD') fetch='fc1.w@GRAD')
def test_fc_with_tiny_data(self):
self.run_test(
callback=ParallelOpTest.__network__,
feed={'img': numpy.random.random(size=(1, 784)).astype('float32')},
fetch='fc1.w@GRAD')
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
The examples in v1_api_demo are using v1_api currently, and will be upgraded to v2_api later.
Thus, v1_api_demo is a temporary directory. We decide not to maintain it and will delete it in future.
Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and
[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle.
output/
uniform_params/
cifar_params/
mnist_params/
*.png
.pydevproject
.project
*.log
*.pyc
data/mnist_data/
data/cifar-10-batches-py/
# Generative Adversarial Networks (GAN)
This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434).
The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data).
In order to run the model, first download the corresponding data by running the shell script in ./data.
Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
$python gan_trainer.py -d cifar --use_gpu 1
The generated images will be stored in ./cifar_samples/
The corresponding models will be stored in ./cifar_params/
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz
#!/usr/bin/env sh
# This script downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/mnist_data"
mkdir "$DIR/mnist_data"
cd "$DIR/mnist_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
assert mode in set([
"generator", "discriminator", "generator_training", "discriminator_training"
])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the ref https://arxiv.org/abs/1406.2661
# Here we used two hidden layers and batch_norm
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 10
# the dim of the hidden layer
hidden_dim = 10
# the dim of the generated sample
sample_dim = 2
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5))
def discriminator(sample):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training)
bias_attr = ParamAttr(
is_static=is_generator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(
input=sample,
name="dis_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(
input=hidden,
name="dis_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="dis_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(
is_static=is_generator_training, initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(
input=hidden_bn,
name="dis_prob",
size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training)
bias_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(
input=noise,
name="gen_layer_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(
input=hidden,
name="gen_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="gen_layer_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(
is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(
input=hidden_bn,
name="gen_layer1",
size=sample_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
dataSource = get_config_arg("data", str, "mnist")
assert mode in set([
"generator", "discriminator", "generator_training", "discriminator_training"
])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the dcgan paper
# (https://arxiv.org/abs/1511.06434)
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 100
# the number of filters in the layer in generator/discriminator that is
# closet to the image
gf_dim = 64
df_dim = 64
if dataSource == "mnist":
sample_dim = 28 # image dim
c_dim = 1 # image color
else:
sample_dim = 32
c_dim = 3
s2, s4 = int(sample_dim / 2), int(sample_dim / 4),
s8, s16 = int(sample_dim / 8), int(sample_dim / 16)
settings(
batch_size=128,
learning_rate=2e-4,
learning_method=AdamOptimizer(beta1=0.5))
def conv_bn(input,
channels,
imgSize,
num_filters,
output_x,
stride,
name,
param_attr,
bias_attr,
param_attr_bn,
bn,
trans=False,
act=ReluActivation()):
"""
conv_bn is a utility function that constructs a convolution/deconv layer
with an optional batch_norm layer
:param bn: whether to use batch_norm_layer
:type bn: bool
:param trans: whether to use conv (False) or deconv (True)
:type trans: bool
"""
# calculate the filter_size and padding size based on the given
# imgSize and ouput size
tmp = imgSize - (output_x - 1) * stride
if tmp <= 1 or tmp > 5:
raise ValueError("conv input-output dimension does not fit")
elif tmp <= 3:
filter_size = tmp + 2
padding = 1
else:
filter_size = tmp
padding = 0
print(imgSize, output_x, stride, filter_size, padding)
if trans:
nameApx = "_convt"
else:
nameApx = "_conv"
if bn:
conv = img_conv_layer(
input,
filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx,
num_channels=channels,
act=LinearActivation(),
groups=1,
stride=stride,
padding=padding,
bias_attr=bias_attr,
param_attr=param_attr,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=trans)
conv_bn = batch_norm_layer(
conv,
act=act,
name=name + nameApx + "_bn",
bias_attr=bias_attr,
param_attr=param_attr_bn,
use_global_stats=False)
return conv_bn
else:
conv = img_conv_layer(
input,
filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx,
num_channels=channels,
act=act,
groups=1,
stride=stride,
padding=padding,
bias_attr=bias_attr,
param_attr=param_attr,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=trans)
return conv
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.02)
bias_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.0)
param_attr_bn = ParamAttr(
is_static=is_discriminator_training, initial_mean=1.0, initial_std=0.02)
h1 = fc_layer(
input=noise,
name="gen_layer_h1",
size=s8 * s8 * gf_dim * 4,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
h1_bn = batch_norm_layer(
h1,
act=ReluActivation(),
name="gen_layer_h1_bn",
bias_attr=bias_attr,
param_attr=param_attr_bn,
use_global_stats=False)
h2_bn = conv_bn(
h1_bn,
channels=gf_dim * 4,
output_x=s8,
num_filters=gf_dim * 2,
imgSize=s4,
stride=2,
name="gen_layer_h2",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True,
trans=True)
h3_bn = conv_bn(
h2_bn,
channels=gf_dim * 2,
output_x=s4,
num_filters=gf_dim,
imgSize=s2,
stride=2,
name="gen_layer_h3",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True,
trans=True)
return conv_bn(
h3_bn,
channels=gf_dim,
output_x=s2,
num_filters=c_dim,
imgSize=sample_dim,
stride=2,
name="gen_layer_h4",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=False,
trans=True,
act=TanhActivation())
def discriminator(sample):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(
is_static=is_generator_training, initial_mean=0.0, initial_std=0.02)
bias_attr = ParamAttr(
is_static=is_generator_training, initial_mean=0.0, initial_std=0.0)
param_attr_bn = ParamAttr(
is_static=is_generator_training, initial_mean=1.0, initial_std=0.02)
h0 = conv_bn(
sample,
channels=c_dim,
imgSize=sample_dim,
num_filters=df_dim,
output_x=s2,
stride=2,
name="dis_h0",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=False)
h1_bn = conv_bn(
h0,
channels=df_dim,
imgSize=s2,
num_filters=df_dim * 2,
output_x=s4,
stride=2,
name="dis_h1",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True)
h2_bn = conv_bn(
h1_bn,
channels=df_dim * 2,
imgSize=s4,
num_filters=df_dim * 4,
output_x=s8,
stride=2,
name="dis_h2",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True)
return fc_layer(
input=h2_bn,
name="dis_prob",
size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim * sample_dim * c_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy
import cPickle
import sys, os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import matplotlib.pyplot as plt
def plot2DScatter(data, outputfile):
'''
Plot the data as a 2D scatter plot and save to outputfile
data needs to be two dimensinoal
'''
x = data[:, 0]
y = data[:, 1]
logger.info("The mean vector is %s" % numpy.mean(data, 0))
logger.info("The std vector is %s" % numpy.std(data, 0))
heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
plt.clf()
plt.scatter(x, y)
plt.savefig(outputfile, bbox_inches='tight')
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
:param src: the source of the parameters
:type src: GradientMachine
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def print_parameters(src):
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
print "***************"
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray(
)
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
f.read(16)
# Define number of samples for train/test
if "train" in imageFile:
n = 60000
else:
n = 10000
data = numpy.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28))
data = data / 255.0 * 2.0 - 1.0
f.close()
return data.astype('float32')
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5 * batch_size, 32 * 32 * 3), dtype="float32")
for i in range(1, 6):
file = cifar_path + "/data_batch_" + str(i)
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
data[(i - 1) * batch_size:(i * batch_size), :] = dict["data"]
data = data / 255.0 * 2.0 - 1.0
return data
# synthesize 2-D uniform data
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
def merge(images, size):
if images.shape[1] == 28 * 28:
h, w, c = 28, 28, 1
else:
h, w, c = 32, 32, 3
img = numpy.zeros((h * size[0], w * size[1], c))
for idx in xrange(size[0] * size[1]):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = \
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def save_images(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
else:
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(
data_np.shape[0], batch_size, replace=False), :]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch_pos(batch_size, data_np):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
labels = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform")
parser.add_argument(
"--use_gpu", default="1", help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
args = parser.parse_args()
data_source = args.data_source
use_gpu = args.use_gpu
assert data_source in ["mnist", "cifar", "uniform"]
assert use_gpu in ["0", "1"]
if not os.path.exists("./%s_samples/" % data_source):
os.makedirs("./%s_samples/" % data_source)
if not os.path.exists("./%s_params/" % data_source):
os.makedirs("./%s_params/" % data_source)
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=100', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./%s_params/" % data_source)
if data_source == "uniform":
conf = "gan_conf.py"
num_iter = 10000
else:
conf = "gan_conf_image.py"
num_iter = 1000
gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
dis_conf = parse_config(conf,
"mode=discriminator_training,data=" + data_source)
generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
if data_source == "mnist":
data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
elif data_source == "cifar":
data_np = load_cifar_data("./data/cifar-10-batches-py/")
else:
data_np = load_uniform_data()
# this creates a gradient machine for discriminator
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
# this create a gradient machine for generator
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
# generator_machine is used to generate data only, which is used for
# training discriminator
logger.info(str(generator_conf.model_config))
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
# Sync parameters between networks (GradientMachine) at the beginning
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
# constrain that either discriminator or generator can not be trained
# consecutively more than MAX_strike times
curr_train = "dis"
curr_strike = 0
MAX_strike = 5
for train_pass in xrange(100):
dis_trainer.startTrainPass()
gen_trainer.startTrainPass()
for i in xrange(num_iter):
# Do forward pass in discriminator to get the dis_loss
noise = get_noise(batch_size, noise_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, data_np)
dis_loss_pos = get_training_loss(dis_training_machine,
data_batch_dis_pos)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise)
dis_loss_neg = get_training_loss(dis_training_machine,
data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
# Do forward pass in generator to get the gen_loss
data_batch_gen = prepare_generator_data_batch(batch_size, noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos,
dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
# Decide which network to train based on the training history
# And the relative size of the loss
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
if curr_train == "dis":
curr_strike += 1
else:
curr_train = "dis"
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
copy_shared_parameters(dis_training_machine,
gen_training_machine)
else:
if curr_train == "gen":
curr_strike += 1
else:
curr_train = "gen"
curr_strike = 1
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
# TODO: add API for paddle to allow true parameter sharing between different GradientMachines
# so that we do not need to copy shared parameters.
copy_shared_parameters(gen_training_machine,
dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
gen_trainer.finishTrainPass()
# At the end of each pass, save the generated samples/images
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
if data_source == "uniform":
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" %
(data_source, train_pass))
else:
save_images(fake_samples, "./%s_samples/train_pass%s.png" %
(data_source, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
if __name__ == '__main__':
main()
data/raw_data
data/*.list
mnist_vgg_model
plot.png
train.log
*pyc
.ipynb_checkpoints
params.pkl
params.tar
params.tar.gz
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
A very basic example for how to use current Raw SWIG API to train mnist network.
Current implementation uses Raw SWIG, which means the API call is directly \
passed to C++ side of Paddle.
The user api could be simpler and carefully designed.
"""
import random
import numpy as np
import paddle.v2 as paddle_v2
import py_paddle.swig_paddle as api
from paddle.trainer_config_helpers import *
from py_paddle import DataProviderConverter
from mnist_util import read_from_mnist
def init_parameter(network):
assert isinstance(network, api.GradientMachine)
for each_param in network.getParameters():
assert isinstance(each_param, api.Parameter)
array_size = len(each_param)
array = np.random.uniform(-1.0, 1.0, array_size).astype('float32')
each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array)
def generator_to_batch(generator, batch_size):
ret_val = list()
for each_item in generator:
ret_val.append(each_item)
if len(ret_val) == batch_size:
yield ret_val
ret_val = list()
if len(ret_val) != 0:
yield ret_val
class BatchPool(object):
def __init__(self, generator, batch_size):
self.data = list(generator)
self.batch_size = batch_size
def __call__(self):
random.shuffle(self.data)
for offset in xrange(0, len(self.data), self.batch_size):
limit = min(offset + self.batch_size, len(self.data))
yield self.data[offset:limit]
def input_order_converter(generator):
for each_item in generator:
yield each_item['pixel'], each_item['label']
def main():
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
optimizer = paddle_v2.optimizer.Adam(
learning_rate=1e-4,
batch_size=1000,
model_average=ModelAverage(average_window=0.5),
regularization=L2Regularization(rate=0.5))
# Create Local Updater. Local means not run in cluster.
# For a cluster training, here we can change to createRemoteUpdater
# in future.
updater = optimizer.create_local_updater()
assert isinstance(updater, api.ParameterUpdater)
# define network
images = paddle_v2.layer.data(
name='pixel', type=paddle_v2.data_type.dense_vector(784))
label = paddle_v2.layer.data(
name='label', type=paddle_v2.data_type.integer_value(10))
hidden1 = paddle_v2.layer.fc(input=images, size=200)
hidden2 = paddle_v2.layer.fc(input=hidden1, size=200)
inference = paddle_v2.layer.fc(input=hidden2,
size=10,
act=paddle_v2.activation.Softmax())
cost = paddle_v2.layer.classification_cost(input=inference, label=label)
# Create Simple Gradient Machine.
model_config = paddle_v2.layer.parse_network(cost)
m = api.GradientMachine.createFromConfigProto(model_config,
api.CREATE_MODE_NORMAL,
optimizer.enable_types())
# This type check is not useful. Only enable type hint in IDE.
# Such as PyCharm
assert isinstance(m, api.GradientMachine)
# Initialize Parameter by numpy.
init_parameter(network=m)
# Initialize ParameterUpdater.
updater.init(m)
# DataProvider Converter is a utility convert Python Object to Paddle C++
# Input. The input format is as same as Paddle's DataProvider.
converter = DataProviderConverter(input_types=[images.type, label.type])
train_file = './data/raw_data/train'
test_file = './data/raw_data/t10k'
# start gradient machine.
# the gradient machine must be started before invoke forward/backward.
# not just for training, but also for inference.
m.start()
# evaluator can print error rate, etc. It is a C++ class.
batch_evaluator = m.makeEvaluator()
test_evaluator = m.makeEvaluator()
# Get Train Data.
# TrainData will stored in a data pool. Currently implementation is not care
# about memory, speed. Just a very naive implementation.
train_data_generator = input_order_converter(read_from_mnist(train_file))
train_data = BatchPool(train_data_generator, 512)
# outArgs is Neural Network forward result. Here is not useful, just passed
# to gradient_machine.forward
outArgs = api.Arguments.createArguments(0)
for pass_id in xrange(2): # we train 2 passes.
updater.startPass()
for batch_id, data_batch in enumerate(train_data()):
# data_batch is input images.
# here, for online learning, we could get data_batch from network.
# Start update one batch.
pass_type = updater.startBatch(len(data_batch))
# Start BatchEvaluator.
# batch_evaluator can be used between start/finish.
batch_evaluator.start()
# forwardBackward is a shortcut for forward and backward.
# It is sometimes faster than invoke forward/backward separately,
# because in GradientMachine, it may be async.
m.forwardBackward(converter(data_batch), outArgs, pass_type)
for each_param in m.getParameters():
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec = outArgs.getSlotValue(0)
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
# Make evaluator works.
m.eval(batch_evaluator)
# Print logs.
print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \
cost, batch_evaluator
batch_evaluator.finish()
# Finish batch.
# * will clear gradient.
# * ensure all values should be updated.
updater.finishBatch(cost)
# testing stage. use test data set to test current network.
updater.apply()
test_evaluator.start()
test_data_generator = input_order_converter(read_from_mnist(test_file))
for data_batch in generator_to_batch(test_data_generator, 512):
# in testing stage, only forward is needed.
m.forward(converter(data_batch), outArgs, api.PASS_TEST)
m.eval(test_evaluator)
# print error rate for test data set
print 'Pass', pass_id, ' test evaluator: ', test_evaluator
test_evaluator.finish()
updater.restore()
updater.catchUpWith()
params = m.getParameters()
for each_param in params:
assert isinstance(each_param, api.Parameter)
value = each_param.getBuf(api.PARAMETER_VALUE)
value = value.copyToNumpyArray()
# Here, we could save parameter to every where you want
print each_param.getName(), value
updater.finishPass()
m.finish()
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
o = open("./" + "train.list", "w")
o.write("./data/raw_data/train" + "\n")
o.close()
o = open("./" + "test.list", "w")
o.write("./data/raw_data/t10k" + "\n")
o.close()
#!/usr/bin/env sh
# This scripts downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/raw_data"
mkdir "$DIR/raw_data"
cd "$DIR/raw_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
cd $DIR
rm -f *.list
python generate_list.py
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
is_predict = get_config_arg("is_predict", bool, False)
####################Data Configuration ##################
if not is_predict:
data_dir = './data/'
define_py_data_sources2(
train_list=data_dir + 'train.list',
test_list=data_dir + 'test.list',
module='mnist_provider',
obj='process')
######################Algorithm Configuration #############
settings(batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer())
#######################Network Configuration #############
data_size = 1 * 28 * 28
label_size = 10
img = data_layer(name='pixel', size=data_size)
# light cnn
# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1
# Easier to train for mnist dataset and quite efficient
# Final performance is close to deeper ones on tasks such as digital and character classification
def light_cnn(input_image, num_channels, num_classes):
def __light__(ipt,
num_filter=128,
times=1,
conv_filter_size=3,
dropouts=0,
num_channels_=None):
return img_conv_group(
input=ipt,
num_channels=num_channels_,
pool_size=2,
pool_stride=2,
conv_padding=0,
conv_num_filter=[num_filter] * times,
conv_filter_size=conv_filter_size,
conv_act=ReluActivation(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=MaxPooling())
tmp = __light__(input_image, num_filter=128, num_channels_=num_channels)
tmp = __light__(tmp, num_filter=128)
tmp = __light__(tmp, num_filter=128)
tmp = __light__(tmp, num_filter=128, conv_filter_size=1)
tmp = fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
return tmp
predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size)
if not is_predict:
lbl = data_layer(name="label", size=label_size)
inputs(img, lbl)
outputs(classification_cost(input=predict, label=lbl))
else:
outputs(predict)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from paddle.trainer.PyDataProvider2 import *
from mnist_util import read_from_mnist
# Define a py data provider
@provider(
input_types={'pixel': dense_vector(28 * 28),
'label': integer_value(10)},
cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, filename): # settings is not used currently.
for each in read_from_mnist(filename):
yield each
import numpy
__all__ = ['read_from_mnist']
def read_from_mnist(filename):
imgf = filename + "-images-idx3-ubyte"
labelf = filename + "-labels-idx1-ubyte"
f = open(imgf, "rb")
l = open(labelf, "rb")
f.read(16)
l.read(8)
# Define number of samples for train/test
if "train" in filename:
n = 60000
else:
n = 10000
images = numpy.fromfile(
f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
for i in xrange(n):
yield {"pixel": images[i, :], 'label': labels[i]}
f.close()
l.close()
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
config=vgg_16_mnist.py
output=./mnist_vgg_model
log=train.log
paddle train \
--config=$config \
--dot_period=10 \
--log_period=100 \
--test_all_data_in_one_period=1 \
--use_gpu=0 \
--trainer_count=1 \
--num_passes=100 \
--save_dir=$output \
2>&1 | tee $log
paddle usage -l $log -e $? -n "mnist_train" >/dev/null 2>&1
python -m paddle.utils.plotcurve -i $log > plot.png
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
is_predict = get_config_arg("is_predict", bool, False)
####################Data Configuration ##################
if not is_predict:
data_dir = './data/'
define_py_data_sources2(
train_list=data_dir + 'train.list',
test_list=data_dir + 'test.list',
module='mnist_provider',
obj='process')
######################Algorithm Configuration #############
settings(
batch_size=128,
learning_rate=0.1 / 128.0,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * 128))
#######################Network Configuration #############
data_size = 1 * 28 * 28
label_size = 10
img = data_layer(name='pixel', size=data_size)
# small_vgg is predined in trainer_config_helpers.network
predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)
if not is_predict:
lbl = data_layer(name="label", size=label_size)
inputs(img, lbl)
outputs(classification_cost(input=predict, label=lbl))
else:
outputs(predict)
#!/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python extract_para.py --preModel PREMODEL --preDict PREDICT \
--usrModel USRMODEL --usrDict USRDICT -d DIM
Options:
-h, --help show this help message and exit
--preModel PREMODEL the name of pretrained embedding model
--preDict PREDICT the name of pretrained dictionary
--usrModel usrModel the name of output usr embedding model
--usrDict usrDict the name of user specified dictionary
-d DIM dimension of parameter
"""
from optparse import OptionParser
import struct
def get_row_index(preDict, usrDict):
"""
Get the row positions for all words in user dictionary from pre-trained dictionary.
return: a list of row positions
Example: preDict='a\nb\nc\n', usrDict='a\nc\n', then return [0,2]
"""
pos = []
index = dict()
with open(preDict, "r") as f:
for line_index, line in enumerate(f):
word = line.strip().split()[0]
index[word] = line_index
with open(usrDict, "r") as f:
for line in f:
word = line.strip().split()[0]
pos.append(index[word])
return pos
def extract_parameters_by_usrDict(preModel, preDict, usrModel, usrDict,
paraDim):
"""
Extract desired parameters from a pretrained embedding model based on user dictionary
"""
if paraDim not in [32, 64, 128, 256]:
raise RuntimeError("We only support 32, 64, 128, 256 dimensions now")
fi = open(preModel, "rb")
fo = open(usrModel, "wb")
# write filehead
rowIndex = get_row_index(preDict, usrDict)
newHead = struct.pack("iil", 0, 4, len(rowIndex) * paraDim)
fo.write(newHead)
bytes = 4 * paraDim
for i in range(0, len(rowIndex)):
# find the absolute position of input file
fi.seek(rowIndex[i] * bytes + 16, 0)
fo.write(fi.read(bytes))
print "extract parameters finish, total", len(rowIndex), "lines"
fi.close()
def main():
"""
Main entry for running paraconvert.py
"""
usage = "usage: \n" \
"python %prog --preModel PREMODEL --preDict PREDICT" \
" --usrModel USRMODEL --usrDict USRDICT -d DIM"
parser = OptionParser(usage)
parser.add_option(
"--preModel",
action="store",
dest="preModel",
help="the name of pretrained embedding model")
parser.add_option(
"--preDict",
action="store",
dest="preDict",
help="the name of pretrained dictionary")
parser.add_option(
"--usrModel",
action="store",
dest="usrModel",
help="the name of output usr embedding model")
parser.add_option(
"--usrDict",
action="store",
dest="usrDict",
help="the name of user specified dictionary")
parser.add_option(
"-d", action="store", dest="dim", help="dimension of parameter")
(options, args) = parser.parse_args()
extract_parameters_by_usrDict(options.preModel, options.preDict,
options.usrModel, options.usrDict,
int(options.dim))
if __name__ == '__main__':
main()
#!/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM
python paraconvert.py --t2b -i INPUT -o OUTPUT
Options:
-h, --help show this help message and exit
--b2t convert parameter file of embedding model from binary to text
--t2b convert parameter file of embedding model from text to binary
-i INPUT input parameter file name
-o OUTPUT output parameter file name
-d DIM dimension of parameter
"""
from optparse import OptionParser
import struct
def binary2text(input, output, paraDim):
"""
Convert a binary parameter file of embedding model to be a text file.
input: the name of input binary parameter file, the format is:
1) the first 16 bytes is filehead:
version(4 bytes): version of paddle, default = 0
floatSize(4 bytes): sizeof(float) = 4
paraCount(8 bytes): total number of parameter
2) the next (paraCount * 4) bytes is parameters, each has 4 bytes
output: the name of output text parameter file, for example:
0,4,32156096
-0.7845433,1.1937413,-0.1704215,...
0.0000909,0.0009465,-0.0008813,...
...
the format is:
1) the first line is filehead:
version=0, floatSize=4, paraCount=32156096
2) other lines print the paramters
a) each line prints paraDim paramters splitted by ','
b) there is paraCount/paraDim lines (embedding words)
paraDim: dimension of parameters
"""
fi = open(input, "rb")
fo = open(output, "w")
"""
"""
version, floatSize, paraCount = struct.unpack("iil", fi.read(16))
newHead = ','.join([str(version), str(floatSize), str(paraCount)])
print >> fo, newHead
bytes = 4 * int(paraDim)
format = "%df" % int(paraDim)
context = fi.read(bytes)
line = 0
while context:
numbers = struct.unpack(format, context)
lst = []
for i in numbers:
lst.append('%8.7f' % i)
print >> fo, ','.join(lst)
context = fi.read(bytes)
line += 1
fi.close()
fo.close()
print "binary2text finish, total", line, "lines"
def get_para_count(input):
"""
Compute the total number of embedding parameters in input text file.
input: the name of input text file
"""
numRows = 1
paraDim = 0
with open(input) as f:
line = f.readline()
paraDim = len(line.split(","))
for line in f:
numRows += 1
return numRows * paraDim
def text2binary(input, output, paddle_head=True):
"""
Convert a text parameter file of embedding model to be a binary file.
input: the name of input text parameter file, for example:
-0.7845433,1.1937413,-0.1704215,...
0.0000909,0.0009465,-0.0008813,...
...
the format is:
1) it doesn't have filehead
2) each line stores the same dimension of parameters,
the separator is commas ','
output: the name of output binary parameter file, the format is:
1) the first 16 bytes is filehead:
version(4 bytes), floatSize(4 bytes), paraCount(8 bytes)
2) the next (paraCount * 4) bytes is parameters, each has 4 bytes
"""
fi = open(input, "r")
fo = open(output, "wb")
newHead = struct.pack("iil", 0, 4, get_para_count(input))
fo.write(newHead)
count = 0
for line in fi:
line = line.strip().split(",")
for i in range(0, len(line)):
binary_data = struct.pack("f", float(line[i]))
fo.write(binary_data)
count += 1
fi.close()
fo.close()
print "text2binary finish, total", count, "lines"
def main():
"""
Main entry for running paraconvert.py
"""
usage = "usage: \n" \
"python %prog --b2t -i INPUT -o OUTPUT -d DIM \n" \
"python %prog --t2b -i INPUT -o OUTPUT"
parser = OptionParser(usage)
parser.add_option(
"--b2t",
action="store_true",
help="convert parameter file of embedding model from binary to text")
parser.add_option(
"--t2b",
action="store_true",
help="convert parameter file of embedding model from text to binary")
parser.add_option(
"-i", action="store", dest="input", help="input parameter file name")
parser.add_option(
"-o", action="store", dest="output", help="output parameter file name")
parser.add_option(
"-d", action="store", dest="dim", help="dimension of parameter")
(options, args) = parser.parse_args()
if options.b2t:
binary2text(options.input, options.output, options.dim)
if options.t2b:
text2binary(options.input, options.output)
if __name__ == '__main__':
main()
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
set -x
BASE_URL='http://paddlepaddle.cdn.bcebos.com/model_zoo/embedding'
DOWNLOAD_ITEMS=(baidu.dict model_32.emb model_64.emb model_128.emb model_256.emb)
ITEM_MD5=(fa03a12321eaab6c30a8fcc9442eaea3
f88c8325ee6da6187f1080e8fe66c1cd
927cf70f27f860aff1a5703ebf7f1584
a52e43655cd25d279777ed509a1ae27b
b92c67fe9ff70fea53596080e351ac80)
for ((i=0; i<${#ITEM_MD5[@]}; i++))
do
FILENAME=${DOWNLOAD_ITEMS[${i}]}
REAL_MD5=`wget ${BASE_URL}/${FILENAME} -O - | tee ${FILENAME} | md5sum | cut -d ' ' -f 1`
EXPECTED_MD5=${ITEM_MD5[${i}]}
[ "${EXPECTED_MD5}" = "${REAL_MD5}" ]
done
fea_output/
features/
model.list
ResNet_50.dot
ResNet_50.png
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import cPickle
import logging
from PIL import Image
import numpy as np
from optparse import OptionParser
import paddle.utils.image_util as image_util
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import dense_vector
from paddle.trainer.config_parser import parse_config
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s')
logging.getLogger().setLevel(logging.INFO)
class ImageClassifier():
def __init__(self,
train_conf,
model_dir=None,
resize_dim=256,
crop_dim=224,
use_gpu=True,
mean_file=None,
output_layer=None,
oversample=False,
is_color=True):
"""
train_conf: network configure.
model_dir: string, directory of model.
resize_dim: int, resized image size.
crop_dim: int, crop size.
mean_file: string, image mean file.
oversample: bool, oversample means multiple crops, namely five
patches (the four corner patches and the center
patch) as well as their horizontal reflections,
ten crops in all.
"""
self.train_conf = train_conf
self.model_dir = model_dir
if model_dir is None:
self.model_dir = os.path.dirname(train_conf)
self.resize_dim = resize_dim
self.crop_dims = [crop_dim, crop_dim]
self.oversample = oversample
self.is_color = is_color
self.output_layer = output_layer
if self.output_layer:
assert isinstance(self.output_layer, basestring)
self.output_layer = self.output_layer.split(",")
self.transformer = image_util.ImageTransformer(is_color=is_color)
self.transformer.set_transpose((2, 0, 1))
self.transformer.set_channel_swap((2, 1, 0))
self.mean_file = mean_file
if self.mean_file is not None:
mean = np.load(self.mean_file)['data_mean']
mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1])
self.transformer.set_mean(mean) # mean pixel
else:
# if you use three mean value, set like:
# this three mean value is calculated from ImageNet.
self.transformer.set_mean(np.array([103.939, 116.779, 123.68]))
conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (int(use_gpu))
conf = parse_config(train_conf, conf_args)
swig_paddle.initPaddle("--use_gpu=%d" % (int(use_gpu)))
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
assert isinstance(self.network, swig_paddle.GradientMachine)
self.network.loadParameters(self.model_dir)
data_size = 3 * self.crop_dims[0] * self.crop_dims[1]
slots = [dense_vector(data_size)]
self.converter = DataProviderConverter(slots)
def get_data(self, img_path):
"""
1. load image from img_path.
2. resize or oversampling.
3. transformer data: transpose, channel swap, sub mean.
return K x H x W ndarray.
img_path: image path.
"""
image = image_util.load_image(img_path, self.is_color)
# Another way to extract oversampled features is that
# cropping and averaging from large feature map which is
# calculated by large size of image.
# This way reduces the computation.
if self.oversample:
# image_util.resize_image: short side is self.resize_dim
image = image_util.resize_image(image, self.resize_dim)
image = np.array(image)
input = np.zeros(
(1, image.shape[0], image.shape[1], 3), dtype=np.float32)
input[0] = image.astype(np.float32)
input = image_util.oversample(input, self.crop_dims)
else:
image = image.resize(self.crop_dims, Image.ANTIALIAS)
input = np.zeros(
(1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32)
input[0] = np.array(image).astype(np.float32)
data_in = []
for img in input:
img = self.transformer.transformer(img).flatten()
data_in.append([img.tolist()])
# paddle input: [[[]],[[]],...], [[]] is one sample.
return data_in
def forward(self, input_data):
"""
return output arguments which are the Outputs() in network configure.
input_data: py_paddle input data.
call forward.
"""
in_arg = self.converter(input_data)
return self.network.forwardTest(in_arg)
def forward(self, data, output_layer):
"""
return output arguments which are the Outputs() in network configure.
input_data: py_paddle input data.
call forward.
"""
input = self.converter(data)
self.network.forwardTest(input)
output = self.network.getLayerOutputs(output_layer)
res = {}
if isinstance(output_layer, basestring):
output_layer = [output_layer]
for name in output_layer:
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
res[name] = output[name]['value'].mean(0)
return res
def predict(self, data_file):
"""
call forward and predicting.
data_file: input image list.
"""
image_files = open(data_file, 'rb').readlines()
results = {}
if self.output_layer is None:
self.output_layer = ["output"]
for line in image_files:
image = line.split()[0]
data = self.get_data(image)
prob = self.forward(data, self.output_layer)
lab = np.argsort(-prob[self.output_layer[0]])
results[image] = lab[0]
logging.info("Label of %s is: %d", image, lab[0])
return results
def extract(self, data_file, output_dir, batch_size=10000):
"""
extract and save features of output layers, which are
specify in Outputs() in network configure.
data_file: file name of input data.
output_dir: saved directory of extracted features.
batch_size: sample number of one batch file.
"""
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sample_num = 0
batch_num = 0
image_feature = {}
image_files = open(data_file, 'rb').readlines()
for idx, line in enumerate(image_files):
image = line.split()[0]
data = self.get_data(image)
feature = self.forward(data, self.output_layer)
# save extracted features
file_name = image.split("/")[-1]
image_feature[file_name] = feature
sample_num += 1
if sample_num == batch_size:
batch_name = os.path.join(output_dir, 'batch_%d' % (batch_num))
self.save_file(image_feature, batch_name)
logging.info('Finish batch %d', batch_num)
batch_num += 1
sample_num = 0
image_feature = {}
if idx % 1000 == 0:
logging.info('%d/%d, %s', idx, len(image_files), file_name)
if sample_num > 0:
batch_name = os.path.join(output_dir, 'batch_%d' % (batch_num))
self.save_file(image_feature, batch_name)
logging.info('Finish batch %d', batch_num)
logging.info('Done: make image feature batch')
def save_file(self, data, file):
of = open(file, 'wb')
cPickle.dump(data, of, protocol=cPickle.HIGHEST_PROTOCOL)
def option_parser():
"""
Main entry for predciting
"""
usage = "%prog -c config -i data_list -w model_dir [options]"
parser = OptionParser(usage="usage: %s" % usage)
parser.add_option(
"-j",
"--job",
action="store",
dest="job_type",
help="job type: predict, extract\
predict: predicting,\
extract: extract features")
parser.add_option(
"-c",
"--conf",
action="store",
dest="train_conf",
help="network config")
parser.add_option(
"-i", "--data", action="store", dest="data_file", help="image list")
parser.add_option(
"-w",
"--model",
action="store",
dest="model_path",
default=None,
help="model path")
parser.add_option(
"-g",
"--use_gpu",
action="store",
dest="use_gpu",
default=True,
help="Whether to use gpu mode.")
parser.add_option(
"-o",
"--output_dir",
action="store",
dest="output_dir",
default="output",
help="output path")
parser.add_option(
"-m",
"--mean",
action="store",
dest="mean",
default=None,
help="mean file.")
parser.add_option(
"-p",
"--multi_crop",
action="store_true",
dest="multi_crop",
default=False,
help="Wether to use multiple crops on image.")
parser.add_option("-l", "--output_layer", action="store",
dest="output_layer", default=None,
help="--job=extract, specify layers to extract "\
"features, --job=predict, specify layer of "
"classification probability, output in resnet.py.")
return parser.parse_args()
def main():
"""
1. parse input arguments.
2. predicting or extract features according job type.
"""
options, args = option_parser()
obj = ImageClassifier(
options.train_conf,
options.model_path,
use_gpu=options.use_gpu,
mean_file=options.mean,
output_layer=options.output_layer,
oversample=options.multi_crop)
if options.job_type == "predict":
obj.predict(options.data_file)
elif options.job_type == "extract":
obj.extract(options.data_file, options.output_dir)
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.utils.image_util import *
from paddle.trainer.PyDataProvider2 import *
def hook(settings, image_size, crop_size, color, file_list, is_train, **kwargs):
"""
Description: Init with a list of data file
file_list is the name list of input files.
kwargs["load_data_args"] is the value of 'load_data_args'
which can be set in config.
Each args is separated by a column.
image_size: the crop image size.
mean_meta: the path of the meta file to store the mean image.
mean_value: can be mean value, not a file.
can not set mean_meta and mean_value at the same time.
color: 'color' means a color image. Otherwise, it means a gray image.
is_train: whether the data provider is used for training.
Data argumentation might be different for training and testing.
"""
settings.img_size = image_size
settings.crop_size = crop_size
settings.mean_img_size = settings.crop_size
settings.color = color # default is color
settings.is_train = is_train
settings.is_swap_channel = kwargs.get('swap_channel', None)
if settings.is_swap_channel is not None:
settings.swap_channel = settings.is_swap_channel
settings.is_swap_channel = True
if settings.color:
settings.img_input_size = settings.crop_size * settings.crop_size * 3
else:
settings.img_input_size = settings.crop_size * settings.crop_size
settings.file_list = file_list
settings.mean_meta = kwargs.get('mean_meta', None)
settings.mean_value = kwargs.get('mean_value', None)
# can not specify both mean_meta and mean_value.
assert not (settings.mean_meta and settings.mean_value)
if not settings.mean_meta:
settings.mean_value = kwargs.get('mean_value')
sz = settings.crop_size * settings.crop_size
settings.img_mean = np.zeros(sz * 3, dtype=np.single)
for idx, value in enumerate(settings.mean_value):
settings.img_mean[idx * sz:(idx + 1) * sz] = value
settings.img_mean = settings.img_mean.reshape(3, settings.crop_size,
settings.crop_size)
else:
settings.img_mean = load_meta(settings.mean_meta,
settings.mean_img_size,
settings.crop_size, settings.color)
settings.input_types = [
dense_vector(settings.img_input_size), # image feature
integer_value(1)
] # labels
settings.logger.info('Image short side: %s', settings.img_size)
settings.logger.info('Crop size: %s', settings.crop_size)
settings.logger.info('Meta path: %s', settings.mean_meta)
if settings.is_swap_channel:
settings.logger.info('swap channel: %s', settings.swap_channel)
settings.logger.info('DataProvider Initialization finished')
@provider(init_hook=hook, should_shuffle=False)
def processData(settings, file_list):
"""
The main function for loading data.
Load the batch, iterate all the images and labels in this batch.
file_name: the batch file name.
"""
img_path, lab = file_list.strip().split(' ')
img = Image.open(img_path)
img.load()
img = img.resize((settings.img_size, settings.img_size), Image.ANTIALIAS)
img = np.array(img).astype(np.float32)
if len(img.shape) == 3:
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 1, 0)
# swap channel
if settings.is_swap_channel:
img = img[settings.swap_channel, :, :]
img_feat = preprocess_img(img, settings.img_mean, settings.crop_size,
settings.is_train, settings.color)
yield img_feat.tolist(), int(lab.strip())
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
#set names of layer which you want to extract feature
#in Outputs() of resnet.py
#like: Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
layer_num=50
configure=./resnet.py
model_path=./model/resnet_$layer_num
fea_dir=fea_output
#Output is text file.
#Each line is one sample's features.
#If you set N layer names in Outputs()
#each line contains N features sperated by ";".
# create model list file.
model_list=./model.list
touch $model_list | echo $model_path > $model_list
paddle train \
--local=true \
--job=test \
--config=$configure \
--model_list=$model_list \
--use_gpu=1 \
--predict_output_dir=$fea_dir \
--config_args=is_test=1,layer_num=$layer_num
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
#Note if you use CPU mode, you need to set use_gpu=0 in classify.py. like this:
#conf_args = "is_test=0,use_gpu=1,is_predict=1"
#conf = parse_config(train_conf, conf_args)
#swig_paddle.initPaddle("--use_gpu=0")
python classify.py \
--job=extract \
--conf=resnet.py \
--use_gpu=1 \
--mean=model/mean_meta_224/mean.meta \
--model=model/resnet_50 \
--data=./example/test.list \
--output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \
--output_dir=features
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
mkdir model
cd model
echo "Downloading ResNet models..."
for file in resnet_50.tar.gz resnet_101.tar.gz resnet_152.tar.gz mean_meta_224.tar.gz
do
wget http://paddlepaddle.bj.bcebos.com/model_zoo/imagenet/$file
tar -xvf $file
rm $file
done
echo "Done."
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import cPickle
import logging
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s')
logging.getLogger().setLevel(logging.INFO)
def load_feature_c(file):
"""
Load feature extracted by C++ interface.
Return a list.
file: feature file.
"""
features = []
f = open(file, 'r')
for line in f:
sample = []
for slot in line.strip().split(";"):
fea = [float(val) for val in slot.strip().split()]
if fea:
sample.append(fea)
features.append(sample)
f.close()
return features
def load_feature_py(feature_dir):
"""
Load feature extracted by python interface.
Return a dictionary.
feature_dir: directory of feature file.
"""
file_list = os.listdir(feature_dir)
file_list = [os.path.join(feature_dir, f) for f in file_list]
features = {}
for file_name in file_list:
with open(file_name, 'rb') as f:
feature = cPickle.load(f)
features.update(feature)
logging.info('Load feature file %s', file_name)
return features
if __name__ == '__main__':
print load_feature_py(sys.argv[1])
#print load_feature_c(sys.argv[1])
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
:'
Visual deep residual network
1. Using make_model_diagram.py to generate dot file.
2. Using graphviz to convert dot file.
Usage:
./net_diagram.sh
'
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
img_type=png
img_fileprefix=ResNet_50
conf_filename=resnet.py
dot_filename=ResNet_50.dot
config_str="layer_num=50,data_provider=0"
python -m paddle.utils.make_model_diagram $conf_filename $dot_filename $config_str
# If you have installed graphviz, running like this:
# dot -Tpng -o ResNet.png ResNet.dot
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
python classify.py \
--job=predict \
--conf=resnet.py\
--model=model/resnet_50 \
--multi_crop \
--use_gpu=1 \
--data=./example/test.list
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
"""
paper: https://arxiv.org/abs/1512.03385
"""
is_test = get_config_arg("is_test", bool, False)
is_predict = get_config_arg("is_predict", bool, False)
data_provider = get_config_arg("data_provider", bool, True)
layer_num = get_config_arg("layer_num", int, 50)
if not is_predict and data_provider:
train_list = 'train.list' if not is_test else None
# mean.meta is mean file of ImageNet dataset.
# mean.meta size : 3 x 224 x 224.
# If you use three mean value, set like:
# "mean_value:103.939,116.779,123.68;"
args = {
'mean_meta': "model/mean_meta_224/mean.meta",
'image_size': 224,
'crop_size': 224,
'color': True,
'swap_channel:': [2, 1, 0]
}
define_py_data_sources2(
train_list,
'example/test.list',
module="example.image_list_provider",
obj="processData",
args=args)
batch_size = 1
learning_rate = 0.1 / batch_size
momentum = 0.9
weight_decay = 0.0001 * batch_size
default_momentum(momentum)
default_decay_rate(weight_decay)
Settings(
algorithm='sgd',
batch_size=batch_size,
learning_rate=learning_rate,
# set the appropriate parameters according your schedule
learning_method='momentum',
learning_rate_decay_a=0.5,
learning_rate_decay_b=1200000 * 10,
learning_rate_schedule="discexp", )
def conv_bn_layer(name,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
active_type=ReluActivation()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp = img_conv_layer(
name=name + "_conv",
input=input,
filter_size=filter_size,
num_channels=channels,
num_filters=num_filters,
stride=stride,
padding=padding,
act=LinearActivation(),
bias_attr=False)
return batch_norm_layer(
name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test)
def bottleneck_block(name, input, num_filters1, num_filters2):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=1,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[input, last_name], act=ReluActivation())
def mid_projection(name, input, num_filters1, num_filters2, stride=2):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1 = conv_bn_layer(
name=name + '_branch1',
input=input,
filter_size=1,
num_filters=num_filters2,
stride=stride,
padding=0,
active_type=LinearActivation())
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=stride,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[branch1, last_name], act=ReluActivation())
def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
img = data_layer(name='input', size=224 * 224 * 3)
tmp = conv_bn_layer(
"conv1",
img,
filter_size=7,
channels=3,
num_filters=64,
stride=2,
padding=3)
tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)
# conv2_x: 56x56
tmp = mid_projection(
name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
for i in xrange(2, res2_num + 1, 1):
tmp = bottleneck_block(
name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)
# conv3_x: 28x28
tmp = mid_projection(
name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
for i in xrange(2, res3_num + 1, 1):
tmp = bottleneck_block(
name="res3_" + str(i),
input=tmp,
num_filters1=128,
num_filters2=512)
# conv4_x: 14x14
tmp = mid_projection(
name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
for i in xrange(2, res4_num + 1, 1):
tmp = bottleneck_block(
name="res4_" + str(i),
input=tmp,
num_filters1=256,
num_filters2=1024)
# conv5_x: 7x7
tmp = mid_projection(
name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
for i in xrange(2, res5_num + 1, 1):
tmp = bottleneck_block(
name="res5_" + str(i),
input=tmp,
num_filters1=512,
num_filters2=2048)
tmp = img_pool_layer(
name='avgpool',
input=tmp,
pool_size=7,
stride=1,
pool_type=AvgPooling())
output = fc_layer(
name='output', input=tmp, size=1000, act=SoftmaxActivation())
if not is_predict:
classification_cost(
input=output, label=data_layer(
name='label', size=1))
def res_net_50():
deep_res_net(3, 4, 6, 3)
def res_net_101():
deep_res_net(3, 4, 23, 3)
def res_net_152():
deep_res_net(3, 8, 36, 3)
if not is_predict:
Inputs("input", "label")
else:
Inputs("input")
# Outputs("cost-softmax" if not is_predict else "output")
Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
if layer_num == 50:
res_net_50()
elif layer_num == 101:
res_net_101()
elif layer_num == 152:
res_net_152()
else:
print("Wrong layer number.")
*.pyc
data/dict.txt
data/dict_all.txt
data/labels.list
data/mosesdecoder-master/
data/reviews_Electronics_5.json.gz
data/test.list
data/test.txt
data/train.list
data/train.txt
data/pred.list
data/pred.txt
dataprovider_copy_1.py
train.log
output
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import sparse_binary_vector
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
python api_predict.py -h
"""
class QuickStartPrediction():
def __init__(self, train_conf, dict_file, model_dir=None, label_file=None):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
model_dir: directory of model.
"""
self.train_conf = train_conf
self.dict_file = dict_file
self.word_dict = {}
self.dict_dim = self.load_dict()
self.model_dir = model_dir
if model_dir is None:
self.model_dir = os.path.dirname(train_conf)
self.label = None
if label_file is not None:
self.load_label(label_file)
conf = parse_config(train_conf, "is_predict=1")
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(self.model_dir)
input_types = [sparse_binary_vector(self.dict_dim)]
self.converter = DataProviderConverter(input_types)
def load_dict(self):
"""
Load dictionary from self.dict_file.
"""
for line_count, line in enumerate(open(self.dict_file, 'r')):
self.word_dict[line.strip().split('\t')[0]] = line_count
return len(self.word_dict)
def load_label(self, label_file):
"""
Load label.
"""
self.label = {}
for v in open(label_file, 'r'):
self.label[int(v.split('\t')[1])] = v.split('\t')[0]
def get_index(self, data):
"""
transform word into integer index according to the dictionary.
"""
words = data.strip().split()
word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
return word_slot
def batch_predict(self, data_batch):
input = self.converter(data_batch)
output = self.network.forwardTest(input)
prob = output[0]["id"].tolist()
print("predicting labels is:")
print prob
def option_parser():
usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
"-n",
"--tconf",
action="store",
dest="train_conf",
help="network config")
parser.add_option(
"-d",
"--dict",
action="store",
dest="dict_file",
help="dictionary file")
parser.add_option(
"-b",
"--label",
action="store",
dest="label",
default=None,
help="dictionary file")
parser.add_option(
"-c",
"--batch_size",
type="int",
action="store",
dest="batch_size",
default=1,
help="the batch size for prediction")
parser.add_option(
"-w",
"--model",
action="store",
dest="model_path",
default=None,
help="model path")
return parser.parse_args()
def main():
options, args = option_parser()
train_conf = options.train_conf
batch_size = options.batch_size
dict_file = options.dict_file
model_path = options.model_path
label = options.label
swig_paddle.initPaddle("--use_gpu=0")
predict = QuickStartPrediction(train_conf, dict_file, model_path, label)
batch = []
labels = []
for line in sys.stdin:
[label, text] = line.split("\t")
labels.append(int(label))
batch.append([predict.get_index(text)])
print("labels is:")
print labels
predict.batch_predict(batch)
if __name__ == '__main__':
main()
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
#Note the default model is pass-00002, you shold make sure the model path
#exists or change the mode path.
#only test on trainer_config.lr.py
model=output/model/pass-00001/
config=trainer_config.lr.py
label=data/labels.list
dict=data/dict.txt
batch_size=20
head -n$batch_size data/test.txt | python api_predict.py \
--tconf=$config\
--model=$model \
--label=$label \
--dict=$dict \
--batch_size=$batch_size
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import random
from paddle.trainer.config_parser import parse_config
from py_paddle import swig_paddle as api
from py_paddle import DataProviderConverter
from paddle.trainer.PyDataProvider2 \
import integer_value, integer_value_sequence, sparse_binary_vector
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_data", type=str, required=False, help="train data file")
parser.add_argument("--test_data", type=str, help="test data file")
parser.add_argument(
"--config", type=str, required=True, help="config file name")
parser.add_argument("--dict_file", required=True, help="dictionary file")
parser.add_argument(
"--seq", default=1, type=int, help="whether use sequence training")
parser.add_argument(
"--use_gpu", default=0, type=int, help="whether use GPU for training")
parser.add_argument(
"--trainer_count",
default=1,
type=int,
help="Number of threads for training")
parser.add_argument(
"--num_passes", default=5, type=int, help="Number of training passes")
return parser.parse_args()
UNK_IDX = 0
def load_data(file_name, word_dict):
with open(file_name, 'r') as f:
for line in f:
label, comment = line.strip().split('\t')
words = comment.split()
word_slot = [word_dict.get(w, UNK_IDX) for w in words]
yield word_slot, int(label)
def load_dict(dict_file):
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
return word_dict
def main():
options = parse_arguments()
api.initPaddle("--use_gpu=%s" % options.use_gpu,
"--trainer_count=%s" % options.trainer_count)
word_dict = load_dict(options.dict_file)
train_dataset = list(load_data(options.train_data, word_dict))
if options.test_data:
test_dataset = list(load_data(options.test_data, word_dict))
else:
test_dataset = None
trainer_config = parse_config(options.config,
"dict_file=%s" % options.dict_file)
# No need to have data provider for trainer
trainer_config.ClearField('data_config')
trainer_config.ClearField('test_data_config')
# create a GradientMachine from the model configuratin
model = api.GradientMachine.createFromConfigProto(
trainer_config.model_config)
# create a trainer for the gradient machine
trainer = api.Trainer.create(trainer_config, model)
# create a data converter which converts data to PaddlePaddle
# internal format
input_types = [
integer_value_sequence(len(word_dict)) if options.seq else
sparse_binary_vector(len(word_dict)), integer_value(2)
]
converter = DataProviderConverter(input_types)
batch_size = trainer_config.opt_config.batch_size
trainer.startTrain()
for train_pass in xrange(options.num_passes):
trainer.startTrainPass()
random.shuffle(train_dataset)
for pos in xrange(0, len(train_dataset), batch_size):
batch = itertools.islice(train_dataset, pos, pos + batch_size)
size = min(batch_size, len(train_dataset) - pos)
trainer.trainOneDataBatch(size, converter(batch))
trainer.finishTrainPass()
if test_dataset:
trainer.startTestPeriod()
for pos in xrange(0, len(test_dataset), batch_size):
batch = itertools.islice(test_dataset, pos, pos + batch_size)
size = min(batch_size, len(test_dataset) - pos)
trainer.testOneDataBatch(size, converter(batch))
trainer.finishTestPeriod()
trainer.finishTrain()
if __name__ == '__main__':
main()
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
# Note: if using trainer_config.emb.py, trainer_config.cnn.py
# or trainer_config.lstm.py, you need to change --seq to --seq=1
# because they are sequence models.
python api_train.py \
--config=trainer_config.lr.py \
--trainer_count=2 \
--num_passes=15 \
--use_gpu=0 \
--seq=0 \
--train_data=data/train.txt \
--test_data=data/test.txt \
--dict_file=data/dict.txt \
2>&1 | tee 'train.log'
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
# Should run pserver.sh before run this script.
bin_dir=$(cd `dirname $0`; pwd)
home_dir=$(cd "${bin_dir}/.."; pwd)
source "$bin_dir/env.sh"
model_dir="$bin_dir/output"
log_file="$bin_dir/train.log"
pushd "$home_dir"
cfg=trainer_config.lr.py
paddle train \
--start_pserver=false \
--config=$cfg \
--save_dir=${model_dir} \
--trainer_count=4 \
--local=0 \
--log_period=100 \
--num_passes=15 \
--use_gpu=false \
--show_parameter_stats_period=100 \
--test_all_data_in_one_period=1 \
--num_gradient_servers=1 \
--nics=`get_nics` \
--port=7164 \
--ports_num=1 \
--pservers="127.0.0.1" \
--comment="paddle_trainer" \
2>&1 | tee "$log_file"
popd
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
function get_nics() {
machine=`uname -s`
local nics=""
if [ "$machine" == "Linux" ]; then
nics="lo"
elif [ "$machine" == "Darwin" ]; then
nics="lo0"
else
nics="unsupport"
fi
echo $nics
}
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
bin_dir=$(cd `dirname $0`; pwd)
source "$bin_dir/env.sh"
paddle pserver \
--nics=`get_nics` \
--port=7164 \
--ports_num=1 \
--ports_num_for_sparse=1 \
--num_gradient_servers=1 \
--comment="paddle_pserver" \
2>&1 | tee 'pserver.log'
This dataset consists of electronics product reviews associated with
binary labels (positive/negative) for sentiment classification.
The preprocessed data can be downloaded by script `get_data.sh`.
The data was derived from reviews_Electronics_5.json.gz at
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Electronics_5.json.gz
If you want to process the raw data, you can use the script `proc_from_raw_data/get_data.sh`.
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
# Download the preprocessed data
wget http://paddlepaddle.bj.bcebos.com/demo/quick_start_preprocessed_data/preprocessed_data.tar.gz
# Extract package
tar zxvf preprocessed_data.tar.gz
# Remove compressed package
rm preprocessed_data.tar.gz
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 1. size of pos : neg = 1:1.
# 2. size of testing set = min(25k, len(all_data) * 0.1), others is traning set.
# 3. distinct train set and test set.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
# Download data
echo "Downloading Amazon Electronics reviews data..."
# http://jmcauley.ucsd.edu/data/amazon/
wget http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Electronics_5.json.gz
echo "Downloading mosesdecoder..."
# https://github.com/moses-smt/mosesdecoder
wget https://github.com/moses-smt/mosesdecoder/archive/master.zip
unzip master.zip
rm master.zip
##################
# Preprocess data
echo "Preprocess data..."
export LC_ALL=C
UNAME_STR=`uname`
if [ ${UNAME_STR} == 'Linux' ]; then
SHUF_PROG='shuf'
else
SHUF_PROG='gshuf'
fi
mkdir -p tmp
python preprocess.py -i reviews_Electronics_5.json.gz
# uniq and shuffle
cd tmp
echo 'Uniq and shuffle...'
cat pos_*|sort|uniq|${SHUF_PROG}> pos.shuffed
cat neg_*|sort|uniq|${SHUF_PROG}> neg.shuffed
min_len=`sed -n '$=' neg.shuffed`
test_num=$((min_len/10))
if [ $test_num -gt 12500 ];then
test_num=12500
fi
train_num=$((min_len-test_num))
head -n$train_num pos.shuffed >train.pos
head -n$train_num neg.shuffed >train.neg
tail -n$test_num pos.shuffed >test.pos
tail -n$test_num neg.shuffed >test.neg
cat train.pos train.neg | ${SHUF_PROG} >../train.txt
cat test.pos test.neg | ${SHUF_PROG} >../test.txt
cd -
echo 'train.txt' > train.list
echo 'test.txt' > test.list
# use 30k dict
rm -rf tmp
mv dict.txt dict_all.txt
cat dict_all.txt | head -n 30001 > dict.txt
echo 'Done.'
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# -*- coding: UTF-8 -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
1. Tokenize the words and punctuation
2. pos sample : rating score 5; neg sample: rating score 1-2.
Usage:
python preprocess.py -i data_file [random seed]
"""
import sys
import os
import operator
import gzip
from subprocess import Popen, PIPE
from optparse import OptionParser
import json
from multiprocessing import Queue
from multiprocessing import Pool
import multiprocessing
batch_size = 5000
word_count = {}
num_tokenize = max(1,
multiprocessing.cpu_count() - 2) # parse + tokenize + save
max_queue_size = 8
parse_queue = Queue(maxsize=max_queue_size + num_tokenize)
tokenize_queue = Queue(maxsize=max_queue_size + num_tokenize)
def create_dict(data):
"""
Create dictionary based on data, and saved in data_dir/dict.txt.
The first line is unk \t -1.
data: list, input data by batch.
"""
for seq in data:
try:
for w in seq.lower().split():
if w not in word_count:
word_count[w] = 1
else:
word_count[w] += 1
except:
sys.stderr.write(seq + "\tERROR\n")
def parse(path):
"""
Open .gz file.
"""
sys.stderr.write(path)
g = gzip.open(path, 'r')
for l in g:
yield json.loads(l)
g.close()
def tokenize(sentences):
"""
Use tokenizer.perl to tokenize input sentences.
tokenizer.perl is tool of Moses.
sentences : a list of input sentences.
return: a list of processed text.
"""
dir = './mosesdecoder-master/scripts/tokenizer/tokenizer.perl'
if not os.path.exists(dir):
sys.exit(
"The ./mosesdecoder-master/scripts/tokenizer/tokenizer.perl does not exists."
)
tokenizer_cmd = [dir, '-l', 'en', '-q', '-']
assert isinstance(sentences, list)
text = "\n".join(sentences)
tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE)
tok_text, _ = tokenizer.communicate(text)
toks = tok_text.split('\n')[:-1]
return toks
def save_data(instance, data_dir, pre_fix, batch_num):
"""
save data by batch
"""
label = ['1' if pre_fix == 'pos' else '0' for i in range(len(instance))]
lines = ['%s\t%s' % (label[i], instance[i]) for i in range(len(label))]
file_name = os.path.join(data_dir, "%s_%s.txt" % (pre_fix, batch_num))
file(file_name, 'w').write('\n'.join(lines) + '\n')
def tokenize_batch(id):
"""
tokenize data by batch
"""
while True:
num_batch, instance, pre_fix = parse_queue.get()
if num_batch == -1: ### parse_queue finished
tokenize_queue.put((-1, None, None))
sys.stderr.write("Thread %s finish\n" % (id))
break
tokenize_instance = tokenize(instance)
tokenize_queue.put((num_batch, tokenize_instance, pre_fix))
sys.stderr.write('.')
def save_batch(data_dir, num_tokenize, data_dir_dict):
"""
save data by batch
build dict.txt
"""
token_count = 0
while True:
num_batch, instance, pre_fix = tokenize_queue.get()
if num_batch == -1:
token_count += 1
if token_count == num_tokenize: #### tokenize finished.
break
else:
continue
save_data(instance, data_dir, pre_fix, num_batch)
create_dict(instance) ## update dict
sys.stderr.write("save file finish\n")
f = open(data_dir_dict, 'w')
f.write('%s\t%s\n' % ('unk', '-1'))
for k, v in sorted(word_count.items(), key=operator.itemgetter(1), \
reverse=True):
f.write('%s\t%s\n' % (k, v))
f.close()
sys.stderr.write("build dict finish\n")
def parse_batch(data, num_tokenize):
"""
parse data by batch
parse -> tokenize -> save
"""
raw_txt = parse(data)
neg, pos = [], []
count = 0
sys.stderr.write("extract raw data\n")
for l in raw_txt:
rating = l["overall"]
text = l["reviewText"].lower() # # convert words to lower case
if rating == 5.0 and text:
pos.append(text)
if rating < 3.0 and text:
neg.append(text)
if len(pos) == batch_size or len(neg) == batch_size:
if len(pos) == batch_size:
batch = pos
pre_fix = 'pos'
else:
batch = neg
pre_fix = 'neg'
parse_queue.put((count, batch, pre_fix))
count += 1
if pre_fix == 'pos':
pos = []
else:
neg = []
if len(pos) > 0:
parse_queue.put((count, pos, 'pos'))
count += 1
if len(neg) > 0:
parse_queue.put((count, neg, 'neg'))
count += 1
for i in range(num_tokenize):
parse_queue.put((-1, None, None)) #### for tokenize's input finished
sys.stderr.write("parsing finish\n")
def option_parser():
parser = OptionParser(usage="usage: python preprcoess.py "\
"-i data_path [options]")
parser.add_option(
"-i", "--data", action="store", dest="input", help="Input data path.")
parser.add_option(
"-s",
"--seed",
action="store",
dest="seed",
default=1024,
help="Set random seed.")
return parser.parse_args()
def main():
reload(sys)
sys.setdefaultencoding('utf-8')
options, args = option_parser()
data = options.input
seed = options.seed
data_dir_dict = os.path.join(os.path.dirname(data), 'dict.txt')
data_dir = os.path.join(os.path.dirname(data), 'tmp')
pool = Pool(processes=num_tokenize + 2)
pool.apply_async(parse_batch, args=(data, num_tokenize))
for i in range(num_tokenize):
pool.apply_async(tokenize_batch, args=(str(i), ))
pool.apply_async(save_batch, args=(data_dir, num_tokenize, data_dir_dict))
pool.close()
pool.join()
file(os.path.join(os.path.dirname(data), 'labels.list'),
'w').write('neg\t0\npos\t1\n')
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
# id of the word not in dictionary
UNK_IDX = 0
# initializer is called by the framework during initialization.
# It allows the user to describe the data types and setup the
# necessary data structure for later use.
# `settings` is an object. initializer need to properly fill settings.input_types.
# initializer can also store other data structures needed to be used at process().
# In this example, dictionary is stored in settings.
# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py
def initializer(settings, dictionary, **kwargs):
# Put the word dictionary into settings
settings.word_dict = dictionary
# setting.input_types specifies what the data types the data provider
# generates.
settings.input_types = {
# The first input is a sparse_binary_vector,
# which means each dimension of the vector is either 0 or 1. It is the
# bag-of-words (BOW) representation of the texts.
'word': sparse_binary_vector(len(dictionary)),
# The second input is an integer. It represents the category id of the
# sample. 2 means there are two labels in the dataset.
# (1 for positive and 0 for negative)
'label': integer_value(2)
}
# Delaring a data provider. It has an initializer 'data_initialzer'.
# It will cache the generated data of the first pass in memory, so that
# during later pass, no on-the-fly data generation will be needed.
# `setting` is the same object used by initializer()
# `file_name` is the name of a file listed train_list or test_list file given
# to define_py_data_sources2(). See trainer_config.lr.py.
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
# Open the input data file.
with open(file_name, 'r') as f:
# Read each line.
for line in f:
# Each line contains the label and text of the comment, separated by \t.
label, comment = line.strip().split('\t')
# Split the words into a list.
words = comment.split()
# convert the words into a list of ids by looking them up in word_dict.
word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words]
# Return the features for the current comment. The first is a list
# of ids representing a 0-1 binary sparse vector of the text,
# the second is the integer id of the label.
yield {'word': word_vector, 'label': int(label)}
def predict_initializer(settings, dictionary, **kwargs):
settings.word_dict = dictionary
settings.input_types = {'word': sparse_binary_vector(len(dictionary))}
# Declaring a data provider for prediction. The difference with process
# is that label is not generated.
@provider(init_hook=predict_initializer, should_shuffle=False)
def process_predict(settings, file_name):
with open(file_name, 'r') as f:
for line in f:
comment = line.strip().split()
word_vector = [settings.word_dict.get(w, UNK_IDX) for w in comment]
yield {'word': word_vector}
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
UNK_IDX = 0
def initializer(settings, dictionary, **kwargs):
settings.word_dict = dictionary
settings.input_types = {
# Define the type of the first input as sequence of integer.
# The value of the integers range from 0 to len(dictrionary)-1
'word': integer_value_sequence(len(dictionary)),
# Define the second input for label id
'label': integer_value(2)
}
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as f:
for line in f:
label, comment = line.strip().split('\t')
words = comment.split()
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
yield {'word': word_slot, 'label': int(label)}
def predict_initializer(settings, dictionary, **kwargs):
settings.word_dict = dictionary
settings.input_types = {'word': integer_value_sequence(len(dictionary))}
@provider(init_hook=predict_initializer, should_shuffle=False)
def process_predict(settings, file_name):
with open(file_name, 'r') as f:
for line in f:
comment = line.strip().split()
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in comment]
yield {'word': word_slot}
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
cfg=trainer_config.lr.py
#cfg=trainer_config.emb.py
#cfg=trainer_config.cnn.py
#cfg=trainer_config.lstm.py
model="output/pass-00003"
paddle train \
--config=$cfg \
--use_gpu=false \
--job=test \
--init_model_path=$model \
--config_args=is_predict=1 \
--predict_output_dir=. \
2>&1 | tee 'predict.log'
paddle usage -l 'predict.log' -e $? -n "quick_start_predict_${cfg}" >/dev/null 2>&1
mv rank-00000 result.txt
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
cfg=trainer_config.lr.py
#cfg=trainer_config.emb.py
#cfg=trainer_config.cnn.py
#cfg=trainer_config.lstm.py
#cfg=trainer_config.bidi-lstm.py
#cfg=trainer_config.db-lstm.py
#cfg=trainer_config.resnet-lstm.py
paddle train \
--config=$cfg \
--save_dir=./output \
--trainer_count=4 \
--log_period=100 \
--num_passes=15 \
--use_gpu=false \
--show_parameter_stats_period=100 \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
paddle usage -l "train.log" -e $? -n "quick_start_${cfg}" >/dev/null 2>&1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
bi_lstm = bidirectional_lstm(input=emb, size=128)
dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5)
output = fc_layer(
input=dropout, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
data = data_layer(name="word", size=len(word_dict))
embedding = embedding_layer(input=data, size=128)
conv = sequence_conv_pool(input=embedding, context_len=3, hidden_size=512)
output = fc_layer(input=conv, size=2, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
hidden_0 = mixed_layer(size=128, input=[full_matrix_projection(input=emb)])
lstm_0 = lstmemory(input=hidden_0, layer_attr=ExtraAttr(drop_rate=0.1))
input_layers = [hidden_0, lstm_0]
for i in range(1, 8):
fc = fc_layer(input=input_layers, size=128)
lstm = lstmemory(
input=fc,
layer_attr=ExtraAttr(drop_rate=0.1),
reverse=(i % 2) == 1, )
input_layers = [fc, lstm]
lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
output = fc_layer(
input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size, learning_rate=2e-3, learning_method=AdamOptimizer())
data = data_layer(name="word", size=len(word_dict))
embedding = embedding_layer(input=data, size=128)
avg = pooling_layer(input=embedding, pooling_type=AvgPooling())
output = fc_layer(input=avg, size=2, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = get_config_arg('dict_file', str, "./data/dict.txt")
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_bow",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
# Define the data for text features. The size of the data layer is the number
# of words in the dictionary.
data = data_layer(name="word", size=len(word_dict))
# Define a fully connected layer with logistic activation.
# (also called softmax activation).
output = fc_layer(input=data, size=2, act=SoftmaxActivation())
if not is_predict:
# For training, we need label and cost
# define the category id for each example.
# The size of the data layer is the number of labels.
label = data_layer(name="label", size=2)
# Define cross-entropy classification loss and error.
cls = classification_cost(input=output, label=label)
outputs(cls)
else:
# For prediction, no label is needed. We need to output
# We need to output classification result, and class probabilities.
maxid = maxid_layer(output)
outputs([maxid, output])
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
lstm = simple_lstm(
input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.25))
lstm_max = pooling_layer(input=lstm, pooling_type=MaxPooling())
output = fc_layer(input=lstm_max, size=2, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This configuration is a demonstration of how to implement the stacked LSTM
with residual connections, i.e. an LSTM layer takes the sum of the hidden states
and inputs of the previous LSTM layer instead of only the hidden states.
This architecture is from:
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean. 2016.
Google's Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. In arXiv https://arxiv.org/pdf/1609.08144v2.pdf
Different from the architecture described in the paper, we use a stack single
direction LSTM layers as the first layer instead of bi-directional LSTM. Also,
since this is a demo code, to reduce computation time, we stacked 4 layers
instead of 8 layers.
"""
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
lstm = simple_lstm(input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
previous_input, previous_hidden_state = emb, lstm
for i in range(3):
# The input to the current layer is the sum of the hidden state
# and input of the previous layer.
current_input = addto_layer(input=[previous_input, previous_hidden_state])
hidden_state = simple_lstm(
input=current_input, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
previous_input, previous_hidden_state = current_input, hidden_state
lstm = previous_hidden_state
lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
output = fc_layer(
input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)
outputs([maxid, output])
else:
label = data_layer(name="label", size=2)
cls = classification_cost(input=output, label=label)
outputs(cls)
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
wget http://www.cnts.ua.ac.be/conll2000/chunking/train.txt.gz
wget http://www.cnts.ua.ac.be/conll2000/chunking/test.txt.gz
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
import gzip
import logging
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
OOV_POLICY_IGNORE = 0
OOV_POLICY_USE = 1
OOV_POLICY_ERROR = 2
num_original_columns = 3
# Feature combination patterns.
# [[-1,0], [0,0]] means previous token at column 0 and current token at
# column 0 are combined as one feature.
patterns = [
[[-2, 0]],
[[-1, 0]],
[[0, 0]],
[[1, 0]],
[[2, 0]],
[[-1, 0], [0, 0]],
[[0, 0], [1, 0]],
[[-2, 1]],
[[-1, 1]],
[[0, 1]],
[[1, 1]],
[[2, 1]],
[[-2, 1], [-1, 1]],
[[-1, 1], [0, 1]],
[[0, 1], [1, 1]],
[[1, 1], [2, 1]],
[[-2, 1], [-1, 1], [0, 1]],
[[-1, 1], [0, 1], [1, 1]],
[[0, 1], [1, 1], [2, 1]],
]
dict_label = {
'B-ADJP': 0,
'I-ADJP': 1,
'B-ADVP': 2,
'I-ADVP': 3,
'B-CONJP': 4,
'I-CONJP': 5,
'B-INTJ': 6,
'I-INTJ': 7,
'B-LST': 8,
'I-LST': 9,
'B-NP': 10,
'I-NP': 11,
'B-PP': 12,
'I-PP': 13,
'B-PRT': 14,
'I-PRT': 15,
'B-SBAR': 16,
'I-SBAR': 17,
'B-UCP': 18,
'I-UCP': 19,
'B-VP': 20,
'I-VP': 21,
'O': 22
}
def make_features(sequence):
length = len(sequence)
num_features = len(sequence[0])
def get_features(pos):
if pos < 0:
return ['#B%s' % -pos] * num_features
if pos >= length:
return ['#E%s' % (pos - length + 1)] * num_features
return sequence[pos]
for i in xrange(length):
for pattern in patterns:
fname = '/'.join([get_features(i + pos)[f] for pos, f in pattern])
sequence[i].append(fname)
'''
Source file format:
Each line is for one timestep. The features are separated by space.
An empty line indicates end of a sequence.
cutoff: a list of numbers. If count of a feature is smaller than this,
it will be ignored.
if oov_policy[i] is OOV_POLICY_USE, id 0 is reserved for OOV features of
i-th column.
return a list of dict for each column
'''
def create_dictionaries(filename, cutoff, oov_policy):
def add_to_dict(sequence, dicts):
num_features = len(dicts)
for features in sequence:
l = len(features)
assert l == num_features, "Wrong number of features " + line
for i in xrange(l):
if features[i] in dicts[i]:
dicts[i][features[i]] += 1
else:
dicts[i][features[i]] = 1
num_features = len(cutoff)
dicts = []
for i in xrange(num_features):
dicts.append(dict())
f = gzip.open(filename, 'rb')
sequence = []
for line in f:
line = line.strip()
if not line:
make_features(sequence)
add_to_dict(sequence, dicts)
sequence = []
continue
features = line.split(' ')
sequence.append(features)
for i in xrange(num_features):
dct = dicts[i]
n = 1 if oov_policy[i] == OOV_POLICY_USE else 0
todo = []
for k, v in dct.iteritems():
if v < cutoff[i]:
todo.append(k)
else:
dct[k] = n
n += 1
if oov_policy[i] == OOV_POLICY_USE:
# placeholder so that len(dct) will be the number of features
# including OOV
dct['#OOV#'] = 0
logger.info('column %d dict size=%d, ignored %d' % (i, n, len(todo)))
for k in todo:
del dct[k]
f.close()
return dicts
def initializer(settings, **xargs):
cutoff = [3, 1, 0]
cutoff += [3] * len(patterns)
oov_policy = [OOV_POLICY_IGNORE, OOV_POLICY_ERROR, OOV_POLICY_ERROR]
oov_policy += [OOV_POLICY_IGNORE] * len(patterns)
dicts = create_dictionaries('data/train.txt.gz', cutoff, oov_policy)
dicts[2] = dict_label
settings.dicts = dicts
settings.oov_policy = oov_policy
input_types = []
num_features = len(dicts)
for i in xrange(num_original_columns):
input_types.append(integer_sequence(len(dicts[i])))
logger.info("slot %s size=%s" % (i, len(dicts[i])))
if patterns:
dim = 0
for i in xrange(num_original_columns, num_features):
dim += len(dicts[i])
input_types.append(sparse_binary_vector_sequence(dim))
logger.info("feature size=%s" % dim)
settings.input_types = input_types
'''
if oov_policy[i] == OOV_POLICY_USE, features in i-th column which are not
existed in dicts[i] will be assigned to id 0.
if oov_policy[i] == OOV_POLICY_ERROR, all features in i-th column MUST exist
in dicts[i].
'''
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, filename):
input_file = filename
dicts = settings.dicts
oov_policy = settings.oov_policy
def gen_sample(sequence):
num_features = len(dicts)
sample = [list() for i in xrange(num_original_columns)]
if patterns:
sample.append([])
for features in sequence:
assert len(features) == num_features, \
"Wrong number of features: " + line
for i in xrange(num_original_columns):
id = dicts[i].get(features[i], -1)
if id != -1:
sample[i].append(id)
elif oov_policy[i] == OOV_POLICY_IGNORE:
sample[i].append(0xffffffff)
elif oov_policy[i] == OOV_POLICY_ERROR:
logger.fatal("Unknown token: %s" % features[i])
else:
sample[i].append(0)
if patterns:
dim = 0
vec = []
for i in xrange(num_original_columns, num_features):
id = dicts[i].get(features[i], -1)
if id != -1:
vec.append(dim + id)
elif oov_policy[i] == OOV_POLICY_IGNORE:
pass
elif oov_policy[i] == OOV_POLICY_ERROR:
logger.fatal("Unknown token: %s" % features[i])
else:
vec.ids.append(dim + 0)
dim += len(dicts[i])
sample[-1].append(vec)
return sample
num_features = len(dicts)
f = gzip.open(input_file, 'rb')
num_sequences = 0
sequence = []
for line in f:
line = line.strip()
if not line:
make_features(sequence)
yield gen_sample(sequence)
sequence = []
num_sequences += 1
continue
features = line.split(' ')
sequence.append(features)
f.close()
logger.info("num_sequences=%s" % num_sequences)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
import math
define_py_data_sources2(
train_list="data/train.list",
test_list="data/test.list",
module="dataprovider",
obj="process")
batch_size = 1
settings(
learning_method=MomentumOptimizer(),
batch_size=batch_size,
regularization=L2Regularization(batch_size * 1e-4),
model_average=ModelAverage(0.5),
learning_rate=1e-1,
learning_rate_decay_a=1e-5,
learning_rate_decay_b=0.25, )
num_label_types = 23
def get_simd_size(size):
return int(math.ceil(float(size) / 8)) * 8
# Currently, in order to use sparse_update=True,
# the size has to be aligned.
num_label_types = get_simd_size(num_label_types)
features = data_layer(name="features", size=76328)
word = data_layer(name="word", size=6778)
pos = data_layer(name="pos", size=44)
chunk = data_layer(name="chunk", size=num_label_types)
crf_input = fc_layer(
input=features,
size=num_label_types,
act=LinearActivation(),
bias_attr=False,
param_attr=ParamAttr(
initial_std=0, sparse_update=True))
crf = crf_layer(
input=crf_input,
label=chunk,
param_attr=ParamAttr(
name="crfw", initial_std=0), )
crf_decoding = crf_decoding_layer(
size=num_label_types,
input=crf_input,
label=chunk,
param_attr=ParamAttr(name="crfw"), )
sum_evaluator(
name="error",
input=crf_decoding, )
chunk_evaluator(
name="chunk_f1",
input=crf_decoding,
label=chunk,
chunk_scheme="IOB",
num_chunk_types=11, )
inputs(word, pos, chunk, features)
outputs(crf)
# Sequence Tagging
This demo is a sequence model for assigning tags to each token in a sentence. The task is described at <a href = "http://www.cnts.ua.ac.be/conll2000/chunking">CONLL2000 Text Chunking</a> task.
## Download data
```bash
cd demo/sequence_tagging
./data/get_data.sh
```
## Train model
```bash
cd demo/sequence_tagging
./train.sh
```
## Model description
We provide two models. One is a linear CRF model (linear_crf.py) with is equivalent to the one at <a href="http://leon.bottou.org/projects/sgd#stochastic_gradient_crfs">leon.bottou.org/projects/sgd</a>. The second one is a stacked bidirectional RNN and CRF model (rnn_crf.py).
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<thead>
<th scope="col" class="left">Model name</th>
<th scope="col" class="left">Number of parameters</th>
<th scope="col" class="left">F1 score</th>
</thead>
<tbody>
<tr>
<td class="left">linear_crf</td>
<td class="left"> 1.8M </td>
<td class="left"> 0.937</td>
</tr>
<tr>
<td class="left">rnn_crf</td>
<td class="left"> 960K </td>
<td class="left">0.941</td>
</tr>
</tbody>
</table>
</center>
<br>
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
import math
define_py_data_sources2(
train_list="data/train.list",
test_list="data/test.list",
module="dataprovider",
obj="process")
batch_size = 16
settings(
learning_method=MomentumOptimizer(),
batch_size=batch_size,
regularization=L2Regularization(batch_size * 1e-5),
model_average=ModelAverage(0.5),
learning_rate=2e-3,
learning_rate_decay_a=5e-7,
learning_rate_decay_b=0.5, )
word_dim = 128
hidden_dim = 128
with_rnn = True
initial_std = 1 / math.sqrt(hidden_dim)
param_attr = ParamAttr(initial_std=initial_std)
cpu_layer_attr = ExtraLayerAttribute(device=-1)
default_device(0)
num_label_types = 23
features = data_layer(name="features", size=76328)
word = data_layer(name="word", size=6778)
pos = data_layer(name="pos", size=44)
chunk = data_layer(
name="chunk", size=num_label_types, layer_attr=cpu_layer_attr)
emb = embedding_layer(
input=word, size=word_dim, param_attr=ParamAttr(initial_std=0))
hidden1 = mixed_layer(
size=hidden_dim,
act=STanhActivation(),
bias_attr=True,
input=[
full_matrix_projection(emb), table_projection(
pos, param_attr=param_attr)
])
if with_rnn:
rnn1 = recurrent_layer(
act=ReluActivation(),
bias_attr=True,
input=hidden1,
param_attr=ParamAttr(initial_std=0), )
hidden2 = mixed_layer(
size=hidden_dim,
act=STanhActivation(),
bias_attr=True,
input=[full_matrix_projection(hidden1)] +
([full_matrix_projection(
rnn1, param_attr=ParamAttr(initial_std=0))] if with_rnn else []), )
if with_rnn:
rnn2 = recurrent_layer(
reverse=True,
act=ReluActivation(),
bias_attr=True,
input=hidden2,
param_attr=ParamAttr(initial_std=0), )
crf_input = mixed_layer(
size=num_label_types,
bias_attr=False,
input=[full_matrix_projection(hidden2), ] +
([full_matrix_projection(
rnn2, param_attr=ParamAttr(initial_std=0))] if with_rnn else []), )
crf = crf_layer(
input=crf_input,
label=chunk,
param_attr=ParamAttr(
name="crfw", initial_std=0),
layer_attr=cpu_layer_attr, )
crf_decoding = crf_decoding_layer(
size=num_label_types,
input=crf_input,
label=chunk,
param_attr=ParamAttr(name="crfw"),
layer_attr=cpu_layer_attr, )
sum_evaluator(
name="error",
input=crf_decoding, )
chunk_evaluator(
name="chunk_f1",
input=crf_decoding,
label=chunk,
chunk_scheme="IOB",
num_chunk_types=11, )
inputs(word, pos, chunk, features)
outputs(crf)
#!/bin/bash
paddle train \
--config rnn_crf.py \
--parallel_nn=1 \
--use_gpu=1 \
--dot_period=10 \
--log_period=1000 \
--test_period=0 \
--num_passes=10 \
2>&1 | tee 'train.log'
paddle usage -l 'train.log' -e $? -n "sequence_tagging_train" >/dev/null 2>&1
#!/bin/bash
paddle train \
--config linear_crf.py \
--use_gpu=0 \
--dot_period=100 \
--log_period=10000 \
--test_period=0 \
--num_passes=10
2>&1 | tee 'train_linear.log'
paddle usage -l 'train_linear.log' -e $? -n "sequence_tagging_train_linear" >/dev/null 2>&1
run by:
cd ./data
sh get_data.sh
cd ..
sh train.sh
sh predict.sh
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
set -x
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd $DIR
#download the dataset
echo "Downloading traffic data..."
wget http://paddlepaddle.cdn.bcebos.com/demo/traffic/traffic_data.tar.gz
#extract package
echo "Unzipping..."
tar -zxvf traffic_data.tar.gz
echo "data/speeds.csv" > train.list
echo "data/speeds.csv" > test.list
echo "data/speeds.csv" > pred.list
echo "Done."
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
import sys
import numpy as np
TERM_NUM = 24
FORECASTING_NUM = 24
LABEL_VALUE_NUM = 4
def initHook(settings, file_list, **kwargs):
"""
Init hook is invoked before process data. It will set obj.slots and store data meta.
:param settings: global object. It will passed to process routine.
:type obj: object
:param file_list: the meta file object, which passed from trainer_config.py,but unused in this function.
:param kwargs: unused other arguments.
"""
del kwargs #unused
settings.pool_size = sys.maxint
#Use a time seires of the past as feature.
#Dense_vector's expression form is [float,float,...,float]
settings.input_types = [dense_vector(TERM_NUM)]
#There are next FORECASTING_NUM fragments you need predict.
#Every predicted condition at time point has four states.
for i in range(FORECASTING_NUM):
settings.input_types.append(integer_value(LABEL_VALUE_NUM))
@provider(
init_hook=initHook, cache=CacheType.CACHE_PASS_IN_MEM, should_shuffle=True)
def process(settings, file_name):
with open(file_name) as f:
#abandon fields name
f.next()
for row_num, line in enumerate(f):
speeds = map(int, line.rstrip('\r\n').split(",")[1:])
# Get the max index.
end_time = len(speeds)
# Scanning and generating samples
for i in range(TERM_NUM, end_time - FORECASTING_NUM):
# For dense slot
pre_spd = map(float, speeds[i - TERM_NUM:i])
# Integer value need predicting, values start from 0, so every one minus 1.
fol_spd = [j - 1 for j in speeds[i:i + FORECASTING_NUM]]
# Predicting label is missing, abandon the sample.
if -1 in fol_spd:
continue
yield [pre_spd] + fol_spd
def predict_initHook(settings, file_list, **kwargs):
settings.pool_size = sys.maxint
settings.input_types = [dense_vector(TERM_NUM)]
@provider(init_hook=predict_initHook, should_shuffle=False)
def process_predict(settings, file_name):
with open(file_name) as f:
#abandon fields name
f.next()
for row_num, line in enumerate(f):
speeds = map(int, line.rstrip('\r\n').split(","))
end_time = len(speeds)
pre_spd = map(float, speeds[end_time - TERM_NUM:end_time])
yield pre_spd
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
res = []
with open('./rank-00000') as f:
for line in f:
pred = map(int, line.strip('\r\n;').split(";"))
#raw prediction range from 0 to 3
res.append([i + 1 for i in pred])
file_name = open('./data/pred.list').read().strip('\r\n')
FORECASTING_NUM = 24
header = [
'id',
'201604200805',
'201604200810',
'201604200815',
'201604200820',
'201604200825',
'201604200830',
'201604200835',
'201604200840',
'201604200845',
'201604200850',
'201604200855',
'201604200900',
'201604200905',
'201604200910',
'201604200915',
'201604200920',
'201604200925',
'201604200930',
'201604200935',
'201604200940',
'201604200945',
'201604200950',
'201604200955',
'201604201000',
]
###################
## To CSV format ##
###################
with open(file_name) as f:
f.next()
print ','.join(header)
for row_num, line in enumerate(f):
fields = line.rstrip('\r\n').split(',')
linkid = fields[0]
print linkid + ',' + ','.join(map(str, res[row_num]))
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
cfg=trainer_config.py
# pass choice
model="output/pass-00000"
paddle train \
--config=$cfg \
--use_gpu=false \
--job=test \
--init_model_path=$model \
--config_args=is_predict=1 \
--predict_output_dir=.
python gen_result.py > result.csv
rm -rf rank-00000
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
cfg=trainer_config.py
paddle train \
--config=$cfg \
--save_dir=./output \
--trainer_count=4 \
--log_period=1000 \
--dot_period=10 \
--num_passes=10 \
--use_gpu=false \
--show_parameter_stats_period=3000 \
2>&1 | tee 'train.log'
# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
################################### DATA Configuration #############################################
is_predict = get_config_arg('is_predict', bool, False)
trn = './data/train.list' if not is_predict else None
tst = './data/test.list' if not is_predict else './data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
train_list=trn, test_list=tst, module="dataprovider", obj=process)
################################### Parameter Configuaration #######################################
TERM_NUM = 24
FORECASTING_NUM = 24
emb_size = 16
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=1e-3,
learning_method=RMSPropOptimizer())
################################### Algorithm Configuration ########################################
output_label = []
link_encode = data_layer(name='link_encode', size=TERM_NUM)
for i in xrange(FORECASTING_NUM):
# Each task share same weight.
link_param = ParamAttr(
name='_link_vec.w', initial_max=1.0, initial_min=-1.0)
link_vec = fc_layer(input=link_encode, size=emb_size, param_attr=link_param)
score = fc_layer(input=link_vec, size=4, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(score)
output_label.append(maxid)
else:
# Multi-task training.
label = data_layer(name='label_%dmin' % ((i + 1) * 5), size=4)
cls = classification_cost(
input=score, name="cost_%dmin" % ((i + 1) * 5), label=label)
output_label.append(cls)
outputs(output_label)
#Variational Autoencoder (VAE)
This demo implements VAE training described in the original paper (https://arxiv.org/abs/1312.6114).
In order to run the model, first download the MNIST dataset by running the shell script in ./data.
Then you can run the command below. The flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
$python vae_train.py [--use_gpu 1]
The generated images will be stored in ./samples/
The corresponding models will be stored in ./params/
#!/usr/bin/env sh
# This script downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/mnist_data"
mkdir "$DIR/mnist_data"
cd "$DIR/mnist_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class MNISTloader():
def __init__(self,
data_path="./data/mnist_data/",
batch_size=60,
process='train'):
self.batch_size = batch_size
self.data_path = data_path
self._pointer = 0
self.image_batches = np.array([])
self.process = process
def _extract_images(self, filename, n):
f = open(filename, 'rb')
f.read(16)
data = np.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28))
#Mapping data into [-1, 1]
data = data / 255. * 2. - 1
data_batches = np.split(data, 60000 / self.batch_size, 0)
f.close()
return data_batches
@property
def pointer(self):
return self._pointer
def load_data(self):
TRAIN_IMAGES = '%s/train-images-idx3-ubyte' % self.data_path
TEST_IMAGES = '%s/t10k-images-idx3-ubyte' % self.data_path
if self.process == 'train':
self.image_batches = self._extract_images(TRAIN_IMAGES, 60000)
else:
self.image_batches = self._extract_images(TEST_IMAGES, 10000)
def next_batch(self):
batch = self.image_batches[self._pointer]
self._pointer = (self._pointer + 1) % (60000 / self.batch_size)
return np.array(batch)
def reset_pointer(self):
self._pointer = 0
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
import numpy as np
is_generating = get_config_arg("is_generating", bool, False)
settings(batch_size=32, learning_rate=1e-3, learning_method=AdamOptimizer())
X_dim = 28 * 28
h_dim = 128
z_dim = 100
def reparameterization(mu, logvar):
eps = ParamAttr(initial_mean=0., initial_std=1)
with mixed_layer() as sigma:
sigma += dotmul_projection(layer_math.exp(logvar) * 0.5, param_attr=eps)
return mu + sigma
def q_func(X):
"""
xavier initialization
"""
param_attr = ParamAttr(
name='share.w', initial_mean=0., initial_std=1. / np.sqrt(X_dim / 2.))
mu_param = ParamAttr(
name='mu.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.))
logvar_param = ParamAttr(
name='logvar.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.))
bias_attr = ParamAttr(name='share.bias', initial_mean=0., initial_std=0.)
mu_bias = ParamAttr(name='mu.bias', initial_mean=0., initial_std=0.)
logvar_bias = ParamAttr(name='logvar.bias', initial_mean=0., initial_std=0.)
share_layer = fc_layer(
X,
size=h_dim,
param_attr=param_attr,
bias_attr=bias_attr,
act=ReluActivation())
return (fc_layer(
share_layer,
size=z_dim,
param_attr=mu_param,
bias_attr=mu_bias,
act=LinearActivation()), fc_layer(
share_layer,
size=z_dim,
param_attr=logvar_param,
bias_attr=logvar_bias,
act=LinearActivation()))
def generator(z):
hidden_param = ParamAttr(
name='hidden.w', initial_mean=0., initial_std=1. / np.sqrt(z_dim / 2.))
hidden_bias = ParamAttr(name='hidden.bias', initial_mean=0., initial_std=0.)
prob_param = ParamAttr(
name='prob.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.))
prob_bias = ParamAttr(name='prob.bias', initial_mean=0., initial_std=0.)
hidden_layer = fc_layer(
z,
size=h_dim,
act=ReluActivation(),
param_attr=hidden_param,
bias_attr=hidden_bias)
prob = fc_layer(
hidden_layer,
size=X_dim,
act=SigmoidActivation(),
param_attr=prob_param,
bias_attr=prob_bias)
return prob
def reconstruct_error(prob, X):
cost = multi_binary_label_cross_entropy(input=prob, label=X)
return cost
def KL_loss(mu, logvar):
with mixed_layer() as mu_square:
mu_square += dotmul_operator(mu, mu, scale=1.)
cost = 0.5 * sum_cost(layer_math.exp(logvar) + mu_square - 1. - logvar)
return cost
if not is_generating:
x_batch = data_layer(name='x_batch', size=X_dim)
mu, logvar = q_func(x_batch)
z_samples = reparameterization(mu, logvar)
prob = generator(z_samples)
outputs(reconstruct_error(prob, x_batch) + KL_loss(mu, logvar))
else:
z_samples = data_layer(name='noise', size=z_dim)
outputs(generator(z_samples))
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy as np
import cPickle
import sys, os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import dataloader
import matplotlib.pyplot as plt
def plot_samples(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
plt.subplot(gs[i])
plt.axis('off')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
:param src: the source of the parameters
:type src: GradientMachine
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--use_gpu", default="1", help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
args = parser.parse_args()
use_gpu = args.use_gpu
assert use_gpu in ["0", "1"]
if not os.path.exists("./samples/"):
os.makedirs("./samples/")
if not os.path.exists("./params/"):
os.makedirs("./params/")
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=1000', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./params/")
conf = "vae_conf.py"
trainer_conf = parse_config(conf, "is_generating=False")
gener_conf = parse_config(conf, "is_generating=True")
batch_size = trainer_conf.opt_config.batch_size
noise_dim = get_layer_size(gener_conf.model_config, "noise")
mnist = dataloader.MNISTloader(batch_size=batch_size)
mnist.load_data()
training_machine = api.GradientMachine.createFromConfigProto(
trainer_conf.model_config)
generator_machine = api.GradientMachine.createFromConfigProto(
gener_conf.model_config)
trainer = api.Trainer.create(trainer_conf, training_machine)
trainer.startTrain()
for train_pass in xrange(100):
trainer.startTrainPass()
mnist.reset_pointer()
i = 0
it = 0
while mnist.pointer != 0 or i == 0:
X = mnist.next_batch().astype('float32')
inputs = api.Arguments.createArguments(1)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X))
trainer.trainOneDataBatch(batch_size, inputs)
if it % 1000 == 0:
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat())
print "\niter: {}".format(str(it).zfill(3))
print "VAE loss: {}".format(str(loss).zfill(3))
#Sync parameters between networks (GradientMachine) at the beginning
copy_shared_parameters(training_machine, generator_machine)
z_samples = np.random.randn(batch_size,
noise_dim).astype('float32')
samples = get_fake_samples(generator_machine, batch_size,
z_samples)
#Generating the first 16 images for a picture.
figure = plot_samples(samples[:16])
plt.savefig(
"./samples/{}_{}.png".format(
str(train_pass).zfill(3), str(i).zfill(3)),
bbox_inches='tight')
plt.close(figure)
i += 1
it += 1
trainer.finishTrainPass()
trainer.finishTrain()
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册