Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0ae67091
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0ae67091
编写于
6月 14, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update document
上级
76129f03
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
16 addition
and
12 deletion
+16
-12
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+9
-7
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-0
未找到文件。
python/paddle/fluid/layers/control_flow.py
浏览文件 @
0ae67091
...
@@ -76,13 +76,13 @@ def split_lod_tensor(input, mask, level=0):
...
@@ -76,13 +76,13 @@ def split_lod_tensor(input, mask, level=0):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
x = layers.data(name='x', shape=[1])
x =
fluid.
layers.data(name='x', shape=[1])
x.persistable = True
x.persistable = True
y = layers.data(name='y', shape=[1])
y =
fluid.
layers.data(name='y', shape=[1])
y.persistable = True
y.persistable = True
out_true, out_false = layers.split_lod_tensor(
out_true, out_false =
fluid.
layers.split_lod_tensor(
input=x, mask=y, level=level)
input=x, mask=y, level=level)
"""
"""
...
@@ -891,7 +891,7 @@ def array_write(x, i, array=None):
...
@@ -891,7 +891,7 @@ def array_write(x, i, array=None):
def
create_array
(
dtype
):
def
create_array
(
dtype
):
"""
"""
**Create LoDTensor
Array**
**Create LoDTensorArray**
This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
implement RNN with array_write, array_read and While.
implement RNN with array_write, array_read and While.
...
@@ -989,7 +989,8 @@ def array_read(array, i):
...
@@ -989,7 +989,8 @@ def array_read(array, i):
Returns:
Returns:
Variable: The tensor type variable that has the data written to it.
Variable: The tensor type variable that has the data written to it.
Examples:
Examples:
.. code-block::python
.. code-block:: python
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
arr = layers.array_read(tmp, i=i)
arr = layers.array_read(tmp, i=i)
...
@@ -1027,7 +1028,7 @@ def shrink_memory(x, i, table):
...
@@ -1027,7 +1028,7 @@ def shrink_memory(x, i, table):
def
array_length
(
array
):
def
array_length
(
array
):
"""
"""
**Get the
l
ength of Input LoDTensorArray**
**Get the
L
ength of Input LoDTensorArray**
This function performs the operation to find the length of the input
This function performs the operation to find the length of the input
LOD_TENSOR_ARRAY.
LOD_TENSOR_ARRAY.
...
@@ -1042,12 +1043,13 @@ def array_length(array):
...
@@ -1042,12 +1043,13 @@ def array_length(array):
Variable: The length of the input LoDTensorArray.
Variable: The length of the input LoDTensorArray.
Examples:
Examples:
.. code-block::python
.. code-block::
python
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
arr = fluid.layers.array_write(tmp, i=i)
arr = fluid.layers.array_write(tmp, i=i)
arr_len = fluid.layers.array_length(arr)
arr_len = fluid.layers.array_length(arr)
"""
"""
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
tmp
=
helper
.
create_tmp_variable
(
dtype
=
'int64'
)
tmp
=
helper
.
create_tmp_variable
(
dtype
=
'int64'
)
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
0ae67091
...
@@ -163,11 +163,11 @@ def polynomial_decay(learning_rate,
...
@@ -163,11 +163,11 @@ def polynomial_decay(learning_rate,
power
=
1.0
,
power
=
1.0
,
cycle
=
False
):
cycle
=
False
):
"""
"""
**
polynomial_d
ecay**
**
Polynomial D
ecay**
Applies polynomial decay to the initial learning rate.
Applies polynomial decay to the initial learning rate.
.. code-block::python
.. code-block::
python
if cycle:
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
decay_steps = decay_steps * ceil(global_step / decay_steps)
...
@@ -180,9 +180,9 @@ def polynomial_decay(learning_rate,
...
@@ -180,9 +180,9 @@ def polynomial_decay(learning_rate,
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
will be the initial learning rate during training
will be the initial learning rate during training
decay_steps(int32): A Python `int32` number.
decay_steps(int32): A Python `int32` number.
end_learning_rate(float): A Python `float` number.
end_learning_rate(float
, Default: 0.0001
): A Python `float` number.
power(float): A Python `float` number
power(float
, Default: 1.0
): A Python `float` number
cycle(bool, Default False): Boolean. If set true, decay the learning rate every decay_steps.
cycle(bool, Default
:
False): Boolean. If set true, decay the learning rate every decay_steps.
Returns:
Returns:
The decayed learning rate
The decayed learning rate
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0ae67091
...
@@ -1615,7 +1615,9 @@ def batch_norm(input,
...
@@ -1615,7 +1615,9 @@ def batch_norm(input,
Can be used as a normalizer function for conv2d and fully_connected operations.
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录