diff --git a/develop/doc/_images/bi_lstm1.jpg b/develop/doc/_images/bi_lstm1.jpg deleted file mode 100644 index adec1606d64d6e35ffe7e62abfa9a09309b05c84..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/bi_lstm1.jpg and /dev/null differ diff --git a/develop/doc/_images/cifar.png b/develop/doc/_images/cifar.png deleted file mode 100644 index f54a0c58837cb3385b32dc57d02cec92666ef0f1..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/cifar.png and /dev/null differ diff --git a/develop/doc/_images/curve.jpg b/develop/doc/_images/curve.jpg deleted file mode 100644 index baa35ae7f0a0b6c246f3a0d331735477ab8bcd70..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/curve.jpg and /dev/null differ diff --git a/develop/doc/_images/encoder-decoder-attention-model1.png b/develop/doc/_images/encoder-decoder-attention-model1.png deleted file mode 100644 index 79f911d4ba12ac0c0d1a936c9df639c302786914..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/encoder-decoder-attention-model1.png and /dev/null differ diff --git a/develop/doc/_images/feature.jpg b/develop/doc/_images/feature.jpg deleted file mode 100644 index 0e3310e4ace5613917e7779d3198ccbb3cdc5ada..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/feature.jpg and /dev/null differ diff --git a/develop/doc/_images/image_classification.png b/develop/doc/_images/image_classification.png deleted file mode 100644 index 14f255805081c1b4fab27eaf336fd389fa93ca19..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/image_classification.png and /dev/null differ diff --git a/develop/doc/_images/lenet.png b/develop/doc/_images/lenet.png deleted file mode 100644 index 1e6f2b32bad797f3fccb929c72a121fc935b0cbb..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/lenet.png and /dev/null differ diff --git a/develop/doc/_images/lstm.png b/develop/doc/_images/lstm.png deleted file mode 100644 index aaf1fc690da2ffb8418cde5ed81848ddb5263030..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/lstm.png and /dev/null differ diff --git a/develop/doc/_images/network_arch.png b/develop/doc/_images/network_arch.png deleted file mode 100644 index 4ae7864212f2a0a38102ee7ff600527ea99fec82..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/network_arch.png and /dev/null differ diff --git a/develop/doc/_images/plot.png b/develop/doc/_images/plot.png deleted file mode 100644 index a31f99791c670e18bb8c62b7604ec8cb0284ffb4..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/plot.png and /dev/null differ diff --git a/develop/doc/_images/rec_regression_network.png b/develop/doc/_images/rec_regression_network.png deleted file mode 100644 index 7d2b54d4fcf560cd5b667628f0012c3822efd9b2..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/rec_regression_network.png and /dev/null differ diff --git a/develop/doc/_images/stacked_lstm.jpg b/develop/doc/_images/stacked_lstm.jpg deleted file mode 100644 index 4239055050966e0095e188a8c81d860711bce29d..0000000000000000000000000000000000000000 Binary files a/develop/doc/_images/stacked_lstm.jpg and /dev/null differ diff --git a/develop/doc/_sources/howto/deep_model/rnn/rnn_config_en.rst.txt b/develop/doc/_sources/howto/deep_model/rnn/rnn_config_en.rst.txt index 2b581290a41005c04cb1d8b6febe57f17d2416d3..f92edd108ff5c10a31b5f181f0f6dcb7a3f119f3 100644 --- a/develop/doc/_sources/howto/deep_model/rnn/rnn_config_en.rst.txt +++ b/develop/doc/_sources/howto/deep_model/rnn/rnn_config_en.rst.txt @@ -19,7 +19,7 @@ Simple Gated Recurrent Neural Network Recurrent neural network process a sequence at each time step sequentially. An example of the architecture of LSTM is listed below. -.. image:: ../../../tutorials/sentiment_analysis/src/bi_lstm.jpg +.. image:: src/bi_lstm.jpg :align: center Generally speaking, a recurrent network perform the following operations from :math:`t=1` to :math:`t=T`, or reversely from :math:`t=T` to :math:`t=1`. @@ -78,7 +78,7 @@ Sequence to Sequence Model with Attention ----------------------------------------- We will use the sequence to sequence model with attention as an example to demonstrate how you can configure complex recurrent neural network models. An illustration of the sequence to sequence model with attention is shown in the following figure. -.. image:: ../../../tutorials/text_generation/encoder-decoder-attention-model.png +.. image:: src/encoder-decoder-attention-model.png :align: center In this model, the source sequence :math:`S = \{s_1, \dots, s_T\}` is encoded with a bidirectional gated recurrent neural networks. The hidden states of the bidirectional gated recurrent neural network :math:`H_S = \{H_1, \dots, H_T\}` is called *encoder vector* The decoder is a gated recurrent neural network. When decoding each token :math:`y_t`, the gated recurrent neural network generates a set of weights :math:`W_S^t = \{W_1^t, \dots, W_T^t\}`, which are used to compute a weighted sum of the encoder vector. The weighted sum of the encoder vector is utilized to condition the generation of the token :math:`y_t`. diff --git a/develop/doc/_sources/tutorials/image_classification/index_en.md.txt b/develop/doc/_sources/tutorials/image_classification/index_en.md.txt deleted file mode 100644 index 60c81a6a539944634773f38ec4c9a59709dd4afc..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/image_classification/index_en.md.txt +++ /dev/null @@ -1,221 +0,0 @@ -Image Classification Tutorial -============================== - -This tutorial will guide you through training a convolutional neural network to classify objects using the CIFAR-10 image classification dataset. -As shown in the following figure, the convolutional neural network can recognize the main object in images, and output the classification result. - -
![Image Classification](./image_classification.png)
- -## Data Preparation -First, download CIFAR-10 dataset. CIFAR-10 dataset can be downloaded from its official website. - - - -We have prepared a script to download and process CIFAR-10 dataset. The script will download CIFAR-10 dataset from the official dataset. -It will convert it to jpeg images and organize them into a directory with the required structure for the tutorial. Make sure that you have installed pillow and its dependents. -Consider the following commands: - -1. install pillow dependents - -```bash -sudo apt-get install libjpeg-dev -pip install pillow -``` - -2. download data and preparation - -```bash -cd demo/image_classification/data/ -sh download_cifar.sh -``` - -The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. - -Here are the classes in the dataset, as well as 10 random images from each: -
![Image Classification](./cifar.png)
- - -After downloading and converting, we should find a directory (cifar-out) containing the dataset in the following format: - -``` -train ----airplane ----automobile ----bird ----cat ----deer ----dog ----frog ----horse ----ship ----truck -test ----airplane ----automobile ----bird ----cat ----deer ----dog ----frog ----horse ----ship ----truck -``` - -It has two directories:`train` and `test`. These two directories contain training data and testing data of CIFAR-10, respectively. Each of these two folders contains 10 sub-folders, ranging from `airplane` to `truck`. Each sub-folder contains images with the corresponding label. After the images are organized into this structure, we are ready to train an image classification model. - -## Preprocess -After the data has been downloaded, it needs to be pre-processed into the Paddle format. We can run the following command for preprocessing. - -``` -cd demo/image_classification/ -sh preprocess.sh -``` - -`preprocess.sh` calls `./demo/image_classification/preprocess.py` to preprocess image data. -```sh -export PYTHONPATH=$PYTHONPATH:../../ -data_dir=./data/cifar-out -python preprocess.py -i $data_dir -s 32 -c 1 -``` - -`./demo/image_classification/preprocess.py` has the following arguments - -- `-i` or `--input` specifes the input data directory. -- `-s` or `--size` specifies the processed size of images. -- `-c` or `--color` specifes whether images are color images or gray images. - - -## Model Training -We need to create a model config file before training the model. An example of the config file (vgg_16_cifar.py) is listed below. **Note**, it is slightly different from the `vgg_16_cifar.py` which also applies to the prediction. - -```python -from paddle.trainer_config_helpers import * -data_dir='data/cifar-out/batches/' -meta_path=data_dir+'batches.meta' -args = {'meta':meta_path, 'mean_img_size': 32, - 'img_size': 32, 'num_classes': 10, - 'use_jpeg': 1, 'color': "color"} -define_py_data_sources2(train_list=data_dir+"train.list", - test_list=data_dir+'test.list', - module='image_provider', - obj='processData', - args=args) -settings( - batch_size = 128, - learning_rate = 0.1 / 128.0, - learning_method = MomentumOptimizer(0.9), - regularization = L2Regularization(0.0005 * 128)) - -img = data_layer(name='image', size=3*32*32) -lbl = data_layer(name="label", size=10) -# small_vgg is predined in trainer_config_helpers.network -predict = small_vgg(input_image=img, num_channels=3) -outputs(classification_cost(input=predict, label=lbl)) -``` - -The first line imports python functions for defining networks. -```python -from paddle.trainer_config_helpers import * -``` - -Then define an `define_py_data_sources2` which use python data provider -interface. The arguments in `args` are used in `image_provider.py` which -yeilds image data and transform them to Paddle. - - `meta`: the mean value of training set. - - `mean_img_size`: the size of mean feature map. - - `img_size`: the height and width of input image. - - `num_classes`: the number of classes. - - `use_jpeg`: the data storage type when preprocessing. - - `color`: specify color image. - -`settings` specifies the training algorithm. In the following example, -it specifies learning rate as 0.1, but divided by batch size, and the weight decay -is 0.0005 and multiplied by batch size. -```python -settings( - batch_size = 128, - learning_rate = 0.1 / 128.0, - learning_method = MomentumOptimizer(0.9), - regularization = L2Regularization(0.0005 * 128) -) -``` - -The `small_vgg` specifies the network. We use a small version of VGG convolutional network as our network -for classification. A description of VGG network can be found here [http://www.robots.ox.ac.uk/~vgg/research/very_deep/](http://www.robots.ox.ac.uk/~vgg/research/very_deep/). -```python -# small_vgg is predined in trainer_config_helpers.network -predict = small_vgg(input_image=img, num_channels=3) -``` -After writing the config, we can train the model by running the script train.sh. - -```bash -config=vgg_16_cifar.py -output=./cifar_vgg_model -log=train.log - -paddle train \ ---config=$config \ ---dot_period=10 \ ---log_period=100 \ ---test_all_data_in_one_period=1 \ ---use_gpu=1 \ ---save_dir=$output \ -2>&1 | tee $log - -python -m paddle.utils.plotcurve -i $log > plot.png -``` - -- Here we use GPU mode to train. If you have no gpu environment, just set `use_gpu=0`. - -- `./demo/image_classification/vgg_16_cifar.py` is the network and data configuration file. The meaning of the other flags can be found in the documentation of the command line flags. - -- The script `plotcurve.py` requires the python module of `matplotlib`, so if it fails, maybe you need to install `matplotlib`. - - -After training finishes, the training and testing error curves will be saved to `plot.png` using `plotcurve.py` script. An example of the plot is shown below: - -
![Training and testing curves.](./plot.png)
- - -## Prediction -After we train the model, the model file as well as the model parameters are stored in path `./cifar_vgg_model/pass-%05d`. For example, the model of the 300-th pass is stored at `./cifar_vgg_model/pass-00299`. - -To make a prediction for an image, one can run `predict.sh` as follows. The script will output the label of the classfiication. - -``` -sh predict.sh -``` - -predict.sh: -``` -model=cifar_vgg_model/pass-00299/ -image=data/cifar-out/test/airplane/seaplane_s_000978.png -use_gpu=1 -python prediction.py $model $image $use_gpu -``` - -## Exercise -Train a image classification of birds using VGG model and CUB-200 dataset. The birds dataset can be downloaded here. It contains an image dataset with photos of 200 bird species (mostly North American). - - - - - - -## Delve into Details -### Convolutional Neural Network -A Convolutional Neural Network is a feedforward neural network that uses convolution layers. It is very suitable for building neural networks that process and understand images. A standard convolutional neural network is shown below: - -![Convolutional Neural Network](./lenet.png) - -Convolutional Neural Network contains the following layers: - -- Convolutional layer: It uses convolution operation to extract features from an image or a feature map. -- Pooling layer: It uses max-pooling to downsample feature maps. -- Fully Connected layer: It uses fully connected connections to transform features. - -Convolutional Neural Network achieves amazing performance for image classification because it exploits two important characteristics of images: *local correlation* and *spatial invariance*. By iteratively applying convolution and max-pooing operations, convolutional neural network can well represent these two characteristics of images. - - -For more details of how to define layers and their connections, please refer to the documentation of layers. diff --git a/develop/doc/_sources/tutorials/index_en.md.txt b/develop/doc/_sources/tutorials/index_en.md.txt deleted file mode 100644 index 77331a703b6f0fdf92921ebcc476325b7327e976..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/index_en.md.txt +++ /dev/null @@ -1,14 +0,0 @@ -# TUTORIALS -There are several examples and demos here. - -* [Quick Start](quick_start/index_en.md) -* [MovieLens Regression](rec/ml_regression_en.rst) -* [Image Classification](image_classification/index_en.md) -* [Sentiment Analysis](sentiment_analysis/index_en.md) -* [Semantic Role Labeling](semantic_role_labeling/index_en.md) -* [Text Generation](text_generation/index_en.md) -* [Image Auto-Generation](gan/index_en.md) - -## Model Zoo -* [ImageNet: ResNet](imagenet_model/resnet_model_en.md) -* [Embedding: Chinese Word](embedding_model/index_en.md) diff --git a/develop/doc/_sources/tutorials/rec/ml_dataset_en.md.txt b/develop/doc/_sources/tutorials/rec/ml_dataset_en.md.txt deleted file mode 100644 index 25dea5c4afbf1ce1c1ac6195cbd245b116459e2e..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/rec/ml_dataset_en.md.txt +++ /dev/null @@ -1,111 +0,0 @@ -```eval_rst -.. _demo_ml_dataset: -``` - -# MovieLens Dataset - -The [MovieLens Dataset](http://grouplens.org/datasets/movielens/) was collected by GroupLens Research. -The data set contains some user information, movie information, and many movie ratings from \[1-5\]. -The data sets have many version depending on the size of set. -We use [MovieLens 1M Dataset](http://files.grouplens.org/datasets/movielens/ml-1m.zip) as a demo dataset, which contains -1 million ratings from 6000 users on 4000 movies. Released 2/2003. - -## Dataset Features - -In [ml-1m Dataset](http://files.grouplens.org/datasets/movielens/ml-1m.zip), there are many features in these dataset. -The data files (which have ".dat" extension) in [ml-1m Dataset](http://files.grouplens.org/datasets/movielens/ml-1m.zip) -is basically CSV file that delimiter is "::". The description in README we quote here. - -### RATINGS FILE DESCRIPTION(ratings.dat) - - -All ratings are contained in the file "ratings.dat" and are in the -following format: - -UserID::MovieID::Rating::Timestamp - -- UserIDs range between 1 and 6040 -- MovieIDs range between 1 and 3952 -- Ratings are made on a 5-star scale (whole-star ratings only) -- Timestamp is represented in seconds since the epoch as returned by time(2) -- Each user has at least 20 ratings - -### USERS FILE DESCRIPTION(users.dat) - -User information is in the file "users.dat" and is in the following -format: - -UserID::Gender::Age::Occupation::Zip-code - -All demographic information is provided voluntarily by the users and is -not checked for accuracy. Only users who have provided some demographic -information are included in this data set. - -- Gender is denoted by a "M" for male and "F" for female -- Age is chosen from the following ranges: - - * 1: "Under 18" - * 18: "18-24" - * 25: "25-34" - * 35: "35-44" - * 45: "45-49" - * 50: "50-55" - * 56: "56+" - -- Occupation is chosen from the following choices: - - * 0: "other" or not specified - * 1: "academic/educator" - * 2: "artist" - * 3: "clerical/admin" - * 4: "college/grad student" - * 5: "customer service" - * 6: "doctor/health care" - * 7: "executive/managerial" - * 8: "farmer" - * 9: "homemaker" - * 10: "K-12 student" - * 11: "lawyer" - * 12: "programmer" - * 13: "retired" - * 14: "sales/marketing" - * 15: "scientist" - * 16: "self-employed" - * 17: "technician/engineer" - * 18: "tradesman/craftsman" - * 19: "unemployed" - * 20: "writer" - -### MOVIES FILE DESCRIPTION(movies.dat) - -Movie information is in the file "movies.dat" and is in the following -format: - -MovieID::Title::Genres - -- Titles are identical to titles provided by the IMDB (including -year of release) -- Genres are pipe-separated and are selected from the following genres: - - * Action - * Adventure - * Animation - * Children's - * Comedy - * Crime - * Documentary - * Drama - * Fantasy - * Film-Noir - * Horror - * Musical - * Mystery - * Romance - * Sci-Fi - * Thriller - * War - * Western - -- Some MovieIDs do not correspond to a movie due to accidental duplicate -entries and/or test entries -- Movies are mostly entered by hand, so errors and inconsistencies may exist diff --git a/develop/doc/_sources/tutorials/rec/ml_regression_en.rst.txt b/develop/doc/_sources/tutorials/rec/ml_regression_en.rst.txt deleted file mode 100644 index 993b9a516f134ff8b59e8755b721f76c8f32f0fd..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/rec/ml_regression_en.rst.txt +++ /dev/null @@ -1,348 +0,0 @@ -Regression MovieLens Ratting -============================ - -Here we demonstrate a **Cosine Similarity Regression** job in movie lens dataset. -This demo will show how paddle does (word) embedding job, -handles the similarity regression, -the character-level convolutional networks for text, and how does paddle handle -multiple types of inputs. -Note that the model structure is not fine-tuned and just a demo to show how paddle works. - - -YOU ARE WELCOME TO BUILD A BETTER DEMO -BY USING PADDLEPADDLE, AND LET US KNOW TO MAKE THIS DEMO BETTER. - -Data Preparation -```````````````` -Download and extract dataset -'''''''''''''''''''''''''''' -We use :ref:`demo_ml_dataset` here. -To download and unzip the dataset, simply run the following commands. - -.. code-block:: bash - - cd demo/recommendation/data - ./ml_data.sh - -And the directory structure of :code:`demo/recommendation/data/ml-1m` is: - -.. code-block:: text - - +--ml-1m - +--- movies.dat # movie features - +--- ratings.dat # ratings - +--- users.dat # user features - +--- README # dataset description - -Field config file -''''''''''''''''' -**Field config file** is used to specify the fields of the dataset and the file format, -i.e, specific **WHAT** type it is in each feature file. - -The field config file of ml-1m shows in :code:`demo/recommendation/data/config.json`. -It specifics the field types and file names: 1) there are four types of field for user file\: id, gender, age and occupation; -2) the filename is "users.dat", and the delimiter of file is "::". - -.. include:: ../../../demo/recommendation/data/config.json - :code: json - :literal: - -Preprocess Data -``````````````` -You need to install python 3rd party libraries. -IT IS HIGHLY RECOMMEND TO USE VIRTUALENV MAKE A CLEAN PYTHON ENVIRONMENT. - -.. code-block:: bash - - pip install -r requirements.txt - -The general command for preprocessing the dataset is: - -.. code-block:: bash - - cd demo/recommendation - ./preprocess.sh - -And the detail steps are introduced as follows. - -Extract Movie/User features to python object -''''''''''''''''''''''''''''''''''''''''''''' - -There are many features in movie or user in movielens 1m dataset. -Each line of rating file just provides a Movie/User id to refer each movie or user. -We process the movie/user feature file first, and pickle the feature (**Meta**) object as a file. - -Meta config file -................ - -**Meta config file** is used to specific **HOW** to parse each field in dataset. -It could be translated from field config file, or written by hand. -Its file format could be either json or yaml syntax file. Parser will automatically choose the file format by extension name. - -To convert Field config file to meta config file, just run: - -.. code-block:: bash - - cd demo/recommendation/data - python config_generator.py config.json > meta_config.json - -The meta config file shows below: - -.. include:: ../../../demo/recommendation/data/meta_config.json - :code: json - :literal: - -There are two kinds of features in meta\: movie and user. - -* in movie file, whose name is movies.dat - * we just split each line by "::" - * pos 0 is id. - * pos 1 feature: - * name is title. - * it uses regex to parse this feature. - * it is a char based word embedding feature. - * it is a sequence. - * pos 2 feature: - * name is genres. - * type is one hot dense vector. - * dictionary is auto generated by parsing, each key is split by '|' -* in user file, whose name is users.dat - * we just split each line by "::" - * pos 0 is id. - * pos 1 feature: - * name is gender - * just simple char based embedding. - * pos 2 feature: - * name is age - * just whole word embedding. - * embedding id will be sort by word. - * pos 3 feature: - * name is occupation. - * just simple whole word embedding. - - -Meta file -''''''''' - -After having meta config file, we can generate **Meta file**, a python pickle object which stores movie/user information. -The following commands could be run to generate it. - -.. code-block:: bash - - python meta_generator.py ml-1m meta.bin --config=meta_config.json - -And the structure of the meta file :code:`meta.bin` is: - -.. code-block:: text - - +--+ movie - | +--+ __meta__ - | | +--+ raw_meta # each feature meta config. list - | | | + - | | | | # ID Field, we use id as key - | | | +--+ {'count': 3883, 'max': 3952, 'is_key': True, 'type': 'id', 'min': 1} - | | | | - | | | | # Titile field, the dictionary list of embedding. - | | | +--+ {'dict': [ ... ], 'type': 'embedding', 'name': 'title', 'seq': 'sequence'} - | | | | - | | | | # Genres field, the genres dictionary - | | | +--+ {'dict': [ ... ], 'type': 'one_hot_dense', 'name': 'genres'} - | | | - | | +--+ feature_map [1, 2] # a list for raw_meta index for feature field. - | | # it means there are 2 features for each key. - | | # * 0 offset of feature is raw_meta[1], Title. - | | # * 1 offset of feature is raw_meta[2], Genres. - | | - | +--+ 1 # movie 1 features - | | + - | | +---+ [[...], [...]] # title ids, genres dense vector - | | - | +--+ 2 - | | - | +--+ ... - | - +--- user - +--+ __meta__ - | + - | +--+ raw_meta - | | + - | | +--+ id field as user - | | | - | | +--+ {'dict': ['F', 'M'], 'type': 'embedding', 'name': 'gender', 'seq': 'no_sequence'} - | | | - | | +--+ {'dict': ['1', '18', '25', '35', '45', '50', '56'], 'type': 'embedding', 'name': 'age', 'seq': 'no_sequence'} - | | | - | | +--+ {'dict': [...], 'type': 'embedding', 'name': 'occupation', 'seq': 'no_sequence'} - | | - | +--+ feature_map [1, 2, 3] - | - +--+ 1 # user 1 features - | - +--+ 2 - +--+ ... - - -Split Training/Testing files -'''''''''''''''''''''''''''' - -We split :code:`ml-1m/ratings.dat` into a training and testing file. The way to split file is for each user, we split the -rating by two parts. So each user in testing file will have some rating information in training file. - -Use :code:`separate.py` to separate the training and testing file. - -.. code-block:: bash - - python split.py ml-1m/ratings.dat --delimiter="::" --test_ratio=0.1 - -Then two files will be generated\: :code:`ml-1m/ratings.dat.train` and :code:`ml-1m/rating.data.test`. -Move them to workspace :code:`data`, shuffle the train file, and prepare the file list for paddle train. - -.. code-block:: bash - - shuf ml-1m/ratings.dat.train > ratings.dat.train - cp ml-1m/ratings.dat.test . - echo "./data/ratings.dat.train" > train.list - echo "./data/ratings.dat.test" > test.list - - -Neural Network Configuration -```````````````````````````` - -Trainer Config File -''''''''''''''''''' - -The network structure shows below. - -.. image:: rec_regression_network.png - :align: center - :alt: rec_regression_network - -The demo's neural network config file :code:`trainer_config.py` show as below. - -.. literalinclude:: ../../../demo/recommendation/trainer_config.py - :language: python - :lines: 15- - -In this :code:`trainer_config.py`, we just map each feature type to -a feature vector, following shows how to map each feature to a vector shows below. - -* :code:`id`\: Just simple embedding, and then add to fully connected layer. -* :code:`embedding`\: - - if is_sequence, get the embedding and do a text convolutional operation, - get the average pooling result. - - if not sequence, get the embedding and add to fully connected layer. -* :code:`one_host_dense`\: - - just two fully connected layer. - -Then we combine each features of movie into one movie feature by a -:code:`fc_layer` with multiple inputs, and do the same thing to user features, -get one user feature. Then we calculate the cosine similarity of these two -features. - -In these networks, we use several APIs in :ref:`api_trainer_config` . There are - -* Data Layer, :ref:`api_trainer_config_helpers_layers_data_layer` -* Fully Connected Layer, :ref:`api_trainer_config_helpers_layers_fc_layer` -* Embedding Layer, :ref:`api_trainer_config_helpers_layers_embedding_layer` -* Context Projection Layer, :ref:`api_trainer_config_helpers_layers_context_projection` -* Pooling Layer, :ref:`api_trainer_config_helpers_layers_pooling_layer` -* Cosine Similarity Layer, :ref:`api_trainer_config_helpers_layers_cos_sim` -* Text Convolution Pooling Layer, :ref:`api_trainer_config_helpers_network_text_conv_pool` -* Declare Python Data Sources :ref:`api_trainer_config_helpers_data_sources`. - -Data Provider -''''''''''''' - -.. literalinclude:: ../../../demo/recommendation/dataprovider.py - :language: python - :lines: 15- - -The data provider just read the meta.bin and rating file, yield each sample for training. -In this :code:`dataprovider.py`, we should set\: - -* obj.slots\: The feature types and dimension. -* use_seq\: Whether this :code:`dataprovider.py` in sequence mode or not. -* process\: Return each sample of data to :code:`paddle`. - -The data provider details document see :ref:`api_pydataprovider2`. - -Train -````` - -After prepare data, config network, writting data provider, now we can run paddle training. - -The :code:`run.sh` is shown as follow: - -.. literalinclude:: ../../../demo/recommendation/run.sh - :language: bash - :lines: 16- - -It just start a paddle training process, write the log to :code:`log.txt`, -then print it on screen. - -Each command line argument in :code:`run.sh`, please refer to the :ref:`cmd_line_index` page. The short description of these arguments is shown as follow. - -* config\: Tell paddle which file is neural network configuration. -* save_dir\: Tell paddle save model into :code:`./output`. -* use_gpu\: Use gpu or not. Default is false. -* trainer_count\: The compute thread in one machine. -* test_all_data_in_one_period\: Test All Data during one test period. Otherwise, - will test a :code:`batch_size` data in one test period. -* log_period\: Print log after train :code:`log_period` batches. -* dot_period\: Print a :code:`.` after train :code:`dot_period` batches. -* num_passes\: Train at most :code:`num_passes`. - -If training process starts successfully, the output likes follow: - -.. code-block:: text - - I0601 08:07:22.832059 10549 TrainerInternal.cpp:157] Batch=100 samples=160000 AvgCost=4.13494 CurrentCost=4.13494 Eval: CurrentEval: - - I0601 08:07:50.672627 10549 TrainerInternal.cpp:157] Batch=200 samples=320000 AvgCost=3.80957 CurrentCost=3.48421 Eval: CurrentEval: - - I0601 08:08:18.877369 10549 TrainerInternal.cpp:157] Batch=300 samples=480000 AvgCost=3.68145 CurrentCost=3.42519 Eval: CurrentEval: - - I0601 08:08:46.863963 10549 TrainerInternal.cpp:157] Batch=400 samples=640000 AvgCost=3.6007 CurrentCost=3.35847 Eval: CurrentEval: - - I0601 08:09:15.413025 10549 TrainerInternal.cpp:157] Batch=500 samples=800000 AvgCost=3.54811 CurrentCost=3.33773 Eval: CurrentEval: - I0601 08:09:36.058670 10549 TrainerInternal.cpp:181] Pass=0 Batch=565 samples=902826 AvgCost=3.52368 Eval: - I0601 08:09:46.215489 10549 Tester.cpp:101] Test samples=97383 cost=3.32155 Eval: - I0601 08:09:46.215966 10549 GradientMachine.cpp:132] Saving parameters to ./output/model/pass-00000 - I0601 08:09:46.233397 10549 ParamUtil.cpp:99] save dir ./output/model/pass-00000 - I0601 08:09:46.233438 10549 Util.cpp:209] copy trainer_config.py to ./output/model/pass-00000 - I0601 08:09:46.233541 10549 ParamUtil.cpp:147] fileName trainer_config.py - -The model is saved in :code:`output/` directory. You can use :code:`Ctrl-C` to stop training whenever you want. - -Evaluate and Predict -```````````````````` - -After training several passes, you can evaluate them and get the best pass. Just run - -.. code-block:: bash - - ./evaluate.sh - -You will see messages like this: - -.. code-block:: text - - Best pass is 00009, error is 3.06949, which means predict get error as 0.875998002281 - evaluating from pass output/pass-00009 - -Then, you can predict what any user will rate a movie. Just run - -.. code-block:: bash - - python prediction.py 'output/pass-00009/' - -Predictor will read user input, and predict scores. It has a command-line user interface as follows: - -.. code-block:: text - - Input movie_id: 9 - Input user_id: 4 - Prediction Score is 2.56 - Input movie_id: 8 - Input user_id: 2 - Prediction Score is 3.13 diff --git a/develop/doc/_sources/tutorials/semantic_role_labeling/index_en.md.txt b/develop/doc/_sources/tutorials/semantic_role_labeling/index_en.md.txt deleted file mode 100644 index 92d7c634832119c718711a57c16f69492d405f28..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/semantic_role_labeling/index_en.md.txt +++ /dev/null @@ -1,204 +0,0 @@ -```eval_rst -.. _semantic_role_labeling: -``` - -# Semantic Role labeling Tutorial # - -Semantic role labeling (SRL) is a form of shallow semantic parsing whose goal is to discover the predicate-argument structure of each predicate in a given input sentence. SRL is useful as an intermediate step in a wide range of natural language processing tasks, such as information extraction. automatic document categorization and question answering. An instance is as following [1]: - - [ A0 He ] [ AM-MOD would ][ AM-NEG n’t ] [ V accept] [ A1 anything of value ] from [A2 those he was writing about ]. - -- V: verb -- A0: acceptor -- A1: thing accepted -- A2: accepted-from -- A3: Attribute -- AM-MOD: modal -- AM-NEG: negation - -Given the verb "accept", the chunks in sentence would play certain semantic roles. Here, the label scheme is from Penn Proposition Bank. - -To this date, most of the successful SRL systems are built on top of some form of parsing results where pre-defined feature templates over the syntactic structure are used. This tutorial will present an end-to-end system using deep bidirectional long short-term memory (DB-LSTM)[2] for solving the SRL task, which largely outperforms the previous state-of-the-art systems. The system regards SRL task as the sequence labelling problem. - -## Data Description -The relevant paper[2] takes the data set in CoNLL-2005&2012 Shared Task for training and testing. Accordingto data license, the demo adopts the test data set of CoNLL-2005, which can be reached on website. - -To download and process the original data, user just need to execute the following command: - -```bash -cd data -./get_data.sh -``` -Several new files appear in the `data `directory as follows. -```bash -conll05st-release:the test data set of CoNll-2005 shared task -test.wsj.words:the Wall Street Journal data sentences -test.wsj.props: the propositional arguments -feature: the extracted features from data set -``` - -## Training -### DB-LSTM -Please refer to the Sentiment Analysis demo to learn more about the long short-term memory unit. - -Unlike Bidirectional-LSTM that used in Sentiment Analysis demo, the DB-LSTM adopts another way to stack LSTM layer. First a standard LSTM processes the sequence in forward direction. The input and output of this LSTM layer are taken by the next LSTM layer as input, processed in reversed direction. These two standard LSTM layers compose a pair of LSTM. Then we stack LSTM layers pair after pair to obtain the deep LSTM model. - -The following figure shows a temporal expanded 2-layer DB-LSTM network. -
-![pic](./src/network_arch.png) -
- -### Features -Two input features play an essential role in this pipeline: predicate (pred) and argument (argu). Two other features: predicate context (ctx-p) and region mark (mr) are also adopted. Because a single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the predicate context, the ambiguity can be largely eliminated. Similarly, we use region mark mr = 1 to denote the argument position if it locates in the predicate context region, or mr = 0 if does not. These four simple features are all we need for our SRL system. Features of one sample with context size set to 1 is showed as following[2]: -
-![pic](./src/feature.jpg) -
- -In this sample, the coresponding labelled sentence is: - -[ A1 A record date ] has [ AM-NEG n't ] been [ V set ] . - -In the demo, we adopt the feature template as above, consists of : `argument`, `predicate`, `ctx-p (p=-1,0,1)`, `mark` and use `B/I/O` scheme to label each argument. These features and labels are stored in `feature` file, and separated by `\t`. - -### Data Provider - -`dataprovider.py` is the python file to wrap data. `hook()` function is to define the data slots for network. The Six features and label are all IndexSlots. -``` -def hook(settings, word_dict, label_dict, **kwargs): - settings.word_dict = word_dict - settings.label_dict = label_dict - #all inputs are integral and sequential type - settings.slots = [ - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(predicate_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(2), - integer_value_sequence(len(label_dict))] -``` -The corresponding data iterator is as following: -``` -@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size, - can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \ - line.strip().split('\t') - - words = sentence.split() - sen_len = len(words) - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words] - - predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len - ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - label_list = label.split() - label_slot = [settings.label_dict.get(w) for w in label_list] - yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot -``` -The `process`function yield 9 lists which are 8 features and label. - -### Neural Network Config -`db_lstm.py` is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure. - -Nine `data_layer` load instances from data provider. Eight features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels. - -### Run Training -The script for training is `train.sh`, user just need to execute: -```bash - ./train.sh -``` -The content in `train.sh`: -``` -paddle train \ - --config=./db_lstm.py \ - --use_gpu=0 \ - --log_period=5000 \ - --trainer_count=1 \ - --show_parameter_stats_period=5000 \ - --save_dir=./output \ - --num_passes=10000 \ - --average_test_period=10000000 \ - --init_model_path=./data \ - --load_missing_parameter_strategy=rand \ - --test_all_data_in_one_period=1 \ -2>&1 | tee 'train.log' -``` - -- \--config=./db_lstm.py : network config file. -- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train, until now crf_layer do not support GPU -- \--log_period=500: print log every 20 batches. -- \--trainer_count=1: set thread number (or GPU count). -- \--show_parameter_stats_period=5000: show parameter statistic every 100 batches. -- \--save_dir=./output: output path to save models. -- \--num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time. -- \--average_test_period=10000000: do test on average parameter every average_test_period batches -- \--init_model_path=./data: parameter initialization path -- \--load_missing_parameter_strategy=rand: random initialization unexisted parameters -- \--test_all_data_in_one_period=1: test all data in one period - - -After training, the models will be saved in directory `output`. Our training curve is as following: -
-![pic](./src/curve.jpg) -
- -### Run testing -The script for testing is `test.sh`, user just need to execute: -```bash - ./test.sh -``` -The main part in `tesh.sh` -``` -paddle train \ - --config=./db_lstm.py \ - --model_list=$model_list \ - --job=test \ - --config_args=is_test=1 \ -``` - - - \--config=./db_lstm.py: network config file - - \--model_list=$model_list.list: model list file - - \--job=test: indicate the test job - - \--config_args=is_test=1: flag to indicate test - - \--test_all_data_in_one_period=1: test all data in 1 period - - -### Run prediction -The script for prediction is `predict.sh`, user just need to execute: -```bash - ./predict.sh - -``` -In `predict.sh`, user should offer the network config file, model path, label file, word dictionary file, feature file -``` -python predict.py - -c $config_file \ - -w $best_model_path \ - -l $label_file \ - -p $predicate_dict_file \ - -d $dict_file \ - -i $input_file \ - -o $output_file -``` - -`predict.py` is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix. - -After prediction, the result is saved in `predict.res`. - -## Reference -[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005. - -[2] Zhou, Jie, and Wei Xu. "End-to-end learning of semantic role labeling using recurrent neural networks." Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015. diff --git a/develop/doc/_sources/tutorials/sentiment_analysis/index_en.md.txt b/develop/doc/_sources/tutorials/sentiment_analysis/index_en.md.txt deleted file mode 100644 index bb7681db44ca6f286ad6935ddfecb9becb429192..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/sentiment_analysis/index_en.md.txt +++ /dev/null @@ -1,328 +0,0 @@ -# Sentiment Analysis Tutorial - -Sentiment analysis has many applications. A basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence or feature/aspect level. One simple example is to classify the customer reviews in a shopping website, a tourism website, and group buying websites like Amazon, TaoBao, Tmall etc. - -Sentiment analysis is also used to monitor social media based on large amount of reviews or blogs. For example, the researchers analyzed several surveys on consumer confidence and political opinion, found they correlate to sentiment word frequencies in contemporaneous Twitter messages [1]. Another example is to forecast stock movements through analyzing the text content of a daily Twitter blog [2]. - -On the other hand, grabbing the user comments of products and analyzing their sentiment are useful to understand user preferences for companies, products, even competing products. - -This tutorial will guide you through the process of training a Long Short Term Memory (LSTM) Network to classify the sentiment of sentences from [Large Movie Review Dataset](http://ai.stanford.edu/~amaas/data/sentiment/), sometimes known as the Internet Movie Database (IMDB). This dataset contains movie reviews along with their associated binary sentiment polarity labels, namely positive and negative. So randomly guessing yields 50% accuracy. - -## Data Preparation - -### IMDB Data Introduction - -Before training models, we need to preprocess the data and build a dictionary. First, you can use following script to download IMDB dataset and [Moses](http://www.statmt.org/moses/) tool, which is a statistical machine translation system. We provide a data preprocessing script, which is capable of handling not only IMDB data, but also other user-defined data. In order to use the pre-written script, it needs to move labeled train and test samples to another path, which has been done in `get_imdb.sh`. - -``` -cd demo/sentiment/data -./get_imdb.sh -``` -If the data is obtained successfuly, you will see the following files at ```./demo/sentiment/data```: - -``` -aclImdb get_imdb.sh imdb mosesdecoder-master -``` - -* aclImdb: raw dataset downloaded from website. -* imdb: only contains train and test data. -* mosesdecoder-master: Moses tool. - -IMDB dataset contains 25,000 highly polar movie reviews for training, and 25,000 for testing. A negative review has a score ≤ 4 out of 10, and a positive review has a score ≥ 7 out of 10. After running `./get_imdb.sh`, we can find the dataset has the following structure in `aclImdb`. - -``` -imdbEr.txt imdb.vocab README test train -``` -* train: train sets. -* test : test sets. -* imdb.vocab: dictionary. -* imdbEr.txt: expected rating for each token in imdb.vocab. -* README: data documentation. - -The file in train set directory is as follows. The test set also contains them except `unsup` and `urls_unsup.txt`. - -``` -labeledBow.feat neg pos unsup unsupBow.feat urls_neg.txt urls_pos.txt urls_unsup.txt -``` - -* pos: positive samples, contains 12,500 txt files, each file is one movie review. -* neg: negative samples, contains 12,500 txt files, each file is one movie review. -* unsup: unlabeled samples, contains 50,000 txt files. -* urls_xx.txt: urls of each reviews. -* xxBow.feat: already-tokenized bag of words (BoW) features. - -### IMDB Data Preparation - -In this demo, we only use labled train and test set and not use imdb.vocab as dictionary. By default, dictionary is builded on train set. Train set is shuffled and test set is not. `tokenizer.perl` in Moses tool is used to tokenize the words and punctuation. Simply execute the following command to preprcess data. - -``` -cd demo/sentiment/ -./preprocess.sh -``` -preprocess.sh: - -``` -data_dir="./data/imdb" -python preprocess.py -i data_dir -``` - -* data_dir: input data directory. -* preprocess.py: preprocess script. - -If running successfully, you will see `demo/sentiment/data/pre-imdb` directory as follows: - -``` -dict.txt labels.list test.list test_part_000 train.list train_part_000 -``` -* test\_part\_000 and train\_part\_000: all labeled test and train sets. Train sets have be shuffled. -* train.list and test.list: train and test file lists. -* dict.txt: dictionary generated on train sets by default. -* labels.txt: neg 0, pos 1, means label 0 is negative review, label 1 is positive review. - -### User-defined Data Preparation - -If you perform other sentiment classifcation task, you can prepare data as follows. We have provided the scripts to build dictionary and preprocess data. So just organize data as follows. - -``` -dataset -|----train -| |----class1 -| | |----text_files -| |----class2 -| | |----text_files -| | ... -|----test -| |----class1 -| | |----text_files -| |----class2 -| | |----text_files -| | ... -``` -* dataset: 1st directory. -* train, test: 2nd directory. -* class1,class2,...: 3rd directory. -* text_files: samples with text file format. - -All samples with text files format under the same folder are same category. Each text file contains one or more samples and each line is one sample. In order to shuffle fully, the preprocessing is a little different for data with multiple lines in one text file, which needs to set `-m True` in `preprocess.sh`. And tokenizer.perl is used by default. If you don't need it, only set `-t False` in `preprocess.sh'. - -## Training - -In this task, we use Recurrent Neural Network (RNN) of LSTM architecure to train sentiment analysis model. LSTM model was introduced primarily in order to overcome the problem of vanishing gradients. LSTM network resembles a standard recurrent neural network with a hidden layer, but each ordinary node in the hidden layer is replaced by a memory cell. Each memory cell contains four main elements: an input gate, a neuron with a self-recurrent connection, a forget gate and an output gate. More details can be found in the literature [4]. The biggest advantage of the LSTM architecture is that it learns to memorize information over long time intervals without the loss of short time memory. At each time step with a new coming word, historical information stored in the memory block is updated to iteratively learn the sequence representation. - -
![LSTM](./lstm.png)
-
Figure 1. LSTM [3]
- -Sentiment analysis is among the most typical problems in natural language understanding. It aims at predicting the attitude expressed in a sequence. Usually, only some key words, like adjectives and adverbs words, play a major role in predicting the sentiment of sequences or paragraphs. However, some review or comment contexts are very long, such as IMDB dataset. We use LSTM to perform this task for its improved design with the gate mechanism. First, it is able to summarize the representation from word level to context level with variable context length which is adapted by the gate values. Second, it can utilize the expanded context at the sentence level, while most methods are good at utilizing n-gram level knowledge. Third, it learns the paragraph representation directly rather than combining the context level information. This results in this end-to-end framework. - -In this demo we provide two network, namely bidirectional-LSTM and three layers of stacked-LSTM. - -#### Bidirectional-LSTM - -One is a bidirectional LSTM network, connected by fully connected layer and softmax, as shown in Figure 2. - -
![BiLSTM](./bi_lstm.jpg)
-
Figure 2. Bidirectional-LSTM
- -#### Stacked-LSTM -Another is three-layer LSTM structure in Figure 3. The bottom of the figure is word embedding. Next, three LSTM-Hidden layers are connected and the second LSTM is reversed. Then extract the maximum hidden vectors of all time step of hidden and LSTM layer as the representation for the entire sequence. Finally, a fully connected feed forward layer with softmax activation is used to perform the classification task. This network is refered to paper [5]. - -
![StackedLSTM](./stacked_lstm.jpg)
-
Figure 3. Stacked-LSTM for sentiment analysis
- -**Config** - -Switch into `demo/sentiment` directory, `trainer_config.py` file is an example of the config, containing algorithm and newtork configure. The first line imports predefined networks from `sentiment_net.py`. - -trainer_config.py: - -```python -from sentiment_net import * - -data_dir = "./data/pre-imdb" -# whether this config is used for test -is_test = get_config_arg('is_test', bool, False) -# whether this config is used for prediction -is_predict = get_config_arg('is_predict', bool, False) -dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict) - -################## Algorithm Config ##################### - -settings( - batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - average_window=0.5, - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25 -) - -#################### Network Config ###################### -stacked_lstm_net(dict_dim, class_dim=class_dim, - stacked_num=3, is_predict=is_predict) -#bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict) -``` - -* **Data Definition**: - * get\_config\_arg(): get arguments setted by `--config_args=xx` in commandline argument. - * Define data provider, here using Python interface to load data. For details, you can refer to the document of PyDataProvider2. - -* **Algorithm Configuration**: - * set batch size of 128. - * set global learning rate. - * use adam optimization. - * set average sgd window. - * set L2 regularization. - * set gradient clipping threshold. -* **Network Configuration**: - * dict_dim: dictionary dimension. - * class_dim: category number, IMDB has two label, namely positive and negative label. - * `stacked_lstm_net`: predefined network as shown in Figure 3, use this network by default. - * `bidirectional_lstm_net`: predefined network as shown in Figure 2. - -**Training** - -Install PaddlePaddle first if necessary. Then you can use script `train.sh` as follows to launch local training. - -``` -cd demo/sentiment/ -./train.sh -``` - -train.sh: - -``` -config=trainer_config.py -output=./model_output -paddle train --config=$config \ - --save_dir=$output \ - --job=train \ - --use_gpu=false \ - --trainer_count=4 \ - --num_passes=10 \ - --log_period=20 \ - --dot_period=20 \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -``` - -* \--config=$config: set network config. -* \--save\_dir=$output: set output path to save models. -* \--job=train: set job mode to train. -* \--use\_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train. -* \--trainer\_count=4: set thread number (or GPU count). -* \--num\_passes=15: set pass number, one pass in PaddlePaddle means training all samples in dataset one time. -* \--log\_period=20: print log every 20 batches. -* \--show\_parameter\_stats\_period=100: show parameter statistic every 100 batches. -* \--test\_all_data\_in\_one\_period=1: test all data every testing. - -If the run succeeds, the output log is saved in path of `demo/sentiment/train.log` and model is saved in path of `demo/sentiment/model_output/`. The output log is explained as follows. - -``` -Batch=20 samples=2560 AvgCost=0.681644 CurrentCost=0.681644 Eval: classification_error_evaluator=0.36875 CurrentEval: classification_error_evaluator=0.36875 -... -Pass=0 Batch=196 samples=25000 AvgCost=0.418964 Eval: classification_error_evaluator=0.1922 -Test samples=24999 cost=0.39297 Eval: classification_error_evaluator=0.149406 -``` -- Batch=xx: means passing xx batches. -- samples=xx: means passing xx samples. -- AvgCost=xx: averaged cost from 0-th batch to current batch. -- CurrentCost=xx: current cost of latest log_period batches. -- Eval: classification\_error\_evaluator=xx: means classfication error from 0-th batch ro current batch. -- CurrentEval: classification\_error\_evaluator: current classfication error of the lates log_period batches. -- Pass=0: Going through all training set one time is called one pass. 0 means going through training set first time. - -By default, we use the `stacked_lstm_net` network, which converges at a faster rate than `bidirectional_lstm_net` when passing same sample number. If you want to use bidirectional LSTM, just remove comment in the last line and comment `stacked_lstm_net`. - -## Testing - -Testing means evaluating the labeled validation set using trained model. - -``` -cd demo/sentiment -./test.sh -``` - -test.sh: - -```bash -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* error=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \ - sort | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="model_output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass - -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list -net_conf=trainer_config.py -paddle train --config=$net_conf \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --trainer_count=4 \ - --config_args=is_test=1 \ - 2>&1 | tee 'test.log' -``` - -The function `get_best_pass` gets the best model by classification error rate for testing. In this example, We use test dataset of IMDB as validation by default. Unlike training, it needs to specify `--job=test` and model path, namely `--model_list=$model_list` here. If running successfully, the log is saved in path of `demo/sentiment/test.log`. For example, in our test, the best model is `model_output/pass-00002`, the classification error is 0.115645 as follows. - -``` -Pass=0 samples=24999 AvgCost=0.280471 Eval: classification_error_evaluator=0.115645 -``` - -## Prediction - -`predict.py` provides a predicting interface. You should install python api of PaddlePaddle before using it. One example to predict unlabeled review of IMDB is as follows. Simply running: - -``` -cd demo/sentiment -./predict.sh -``` -predict.sh: - -``` -#Note the default model is pass-00002, you shold make sure the model path -#exists or change the mode path. -model=model_output/pass-00002/ -config=trainer_config.py -label=data/pre-imdb/labels.list -cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \ - --tconf=$config\ - --model=$model \ - --label=$label \ - --dict=./data/pre-imdb/dict.txt \ - --batch_size=1 -``` - -* `cat ./data/aclImdb/test/pos/10007_10.txt` : the input sample. -* `predict.py` : predicting interface. -* `--tconf=$config` : set network configure. -* ` --model=$model` : set model path. -* `--label=$label` : set dictionary about corresponding relation between integer label and string label. -* `--dict=data/pre-imdb/dict.txt` : set dictionary. -* `--batch_size=1` : set batch size. - -Note you should make sure the default model path `model_output/pass-00002` -exists or change the model path. - -Predicting result of this example: - -``` -Loading parameters from model_output/pass-00002/ -./data/aclImdb/test/pos/10014_7.txt: predicting label is pos -``` -We sincerely appreciate your interest and welcome your contributions. - -## Reference -[1] Brendan O'Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. [From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series](http://homes.cs.washington.edu/~nasmith/papers/oconnor+balasubramanyan+routledge+smith.icwsm10.pdf). In ICWSM-2010.
-[2] Johan Bollen, Huina Mao, Xiaojun Zeng. 2011. [Twitter mood predicts the stock market](http://arxiv.org/abs/1010.3003), Journal of Computational Science.
-[3] Alex Graves, Marcus Liwicki, Santiago Fernan- dez, Roman Bertolami, Horst Bunke, and Ju ̈rgen Schmidhuber. 2009. [A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine In- telligence](http://www.cs.toronto.edu/~graves/tpami_2009.pdf), 31(5):855–868.
-[4] Zachary C. Lipton, [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/abs/1506.00019v1), arXiv:1506.00019.
-[5] Jie Zhou and Wei Xu; [End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf); ACL-IJCNLP 2015.
diff --git a/develop/doc/_sources/tutorials/text_generation/index_en.md.txt b/develop/doc/_sources/tutorials/text_generation/index_en.md.txt deleted file mode 100644 index 5d8e667c20bd1fda64a6e11a88517d52112b72fa..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/tutorials/text_generation/index_en.md.txt +++ /dev/null @@ -1,338 +0,0 @@ -# Text generation Tutorial # - -Sequence to sequence has been proven to be a powerful model for language generation. It can be used for machine translation, query rewriting, image captioning, etc. - -This tutorial guides you through training a sequence to sequence model for neural machine translation (NMT) network that translates French to English. - -We follow the paper [Neural Machine Translation by Jointly Learning to Align and Translate](http://arxiv.org/abs/1409.0473) , which details the model architecture and training procedure for good performance on WMT-14 dataset. This tutorial reproduces this result in PaddlePaddle. - -We thank @caoying for the pull request that defines the model architecture and solver configurations. - -## Data Preparation ## -### Download and Extract ### -Download the WMT-14 dataset from [http://www-lium.univ-lemans.fr/~schwenk/cslm\_joint\_paper/](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/), extract it, and divide Develop and Test data into separate folder. - -- **Train data**: [bitexts (after selection)](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz) -- **Develop and Test data**: [dev+test data](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz) - -To do this, simply run the following commands in linux, otherwise, you need to download, extract, divide, and rename the file suffix respectively. - -```bash -cd demo/seqToseq/data -./wmt14_data.sh -``` - -We should find that the dataset `wmt14` has three folders as shown in the following table. - ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
folder nameFrench-English parallel corpora filenumber of total filesize
train_dataccb2_pc30.src, ccb2_pc30.trg, etctwelve3.55G
test_datantst1213.src, ntst1213.trgtwo1636k
gen_datantst14.src, ntst14.trgtwo864k
-
- -- Each folder has French-English parallel corpora -- **XXX.src** are source French files; **XXX.trg** are target English files. -- The number of lines of **XXX.src** and **XXX.trg** should be the same. -- Each line is a French/English sentence. -- There is a one-to-one correspondence between the sentence at the i-th line of **XXX.src** and **XXX.trg**. - -### User Defined Dataset ### - -If you need to do other sequence-to-sequence tasks, such as Paraphrasing, you only need to organize the data as follows, and place them in `demo/seqToseq/data`: - - dataset - train - file1.src file1.trg - file2.src file2.trg - ...... - test - file1.src file1.trg - file2.src file2.trg - ...... - gen - file1.src file1.trg - file2.src file2.trg - ...... -- 1st directory: dataset folder name -- 2nd directory: folder of train, test, and gen. The names of these three folders are fixed. -- 3rd file: Source-Target parallel corpora files. - - **XXX.src** are source files, **XXX.trg** are target files. - - Each line of the file must be a sequence. - - There should be a one-to-one correspondence between the i-th sequence of **XXX.src** and **XXX.trg**. - -## Data Preprocess ## -### Preprocessing Workflow ### -- Concat each Source-Target parallel corpora to be one file: - - concat each **XXX.src** and **XXX.trg** to be **XXX**. - - the i-th line of **XXX** = the i-th line of **XXX.src** + '\t' + the i-th line of **XXX.trg** -- Build source and target dictionary of train data, each dictionary has DICTSIZE words: - - the most frequent (DICTSIZE-3) words - - 3 special token: - - ``: the start of a sequence - - ``: the end of a sequence - - ``: a word not included in dictionary - -### Preprocessing Command and Result -The general command for preprocessing the dataset is: - -```python -cd demo/seqToseq/ -python preprocess.py -i INPUT [-d DICTSIZE] [-m] -``` - -- `-i INPUT`: the path of input original dataset -- `-d DICTSIZE`: the specified word count of dictionary, if not set, dictionary will contain all the words in input dataset -- `-m --mergeDict`: merge source and target dictionary, thus, two dictionaries have the same context - -And you will see messages like this: - - concat parallel corpora for dataset - build source dictionary for train data - build target dictionary for train data - dictionary size is XXX - -Here, you can simply run the command: - -```python -python preprocess.py -i data/wmt14 -d 30000 -``` - -It will take several minutes, and store the preprocessed dataset in `demo/seqToseq/data/pre-wmt14`, the directory has following structure. - - train test gen train.list test.list gen.list src.dict trg.dict - -- **train, test, gen**: folder contains French-English parallel corpora of train data, test data and gen data respectively. Each line of file in folder contains two parts, the former is a French sequence, and the latter is a corresponding English sequence. -- **train.list, test.list, gen.list**: text contains a file list in train folder, test folder and gen folder respectively -- **src.dict, trg.dict**: source (French) / target (English) dictionary, each dictionary has 30000 words: the most frequent 29997 words and 3 special token - -## Model Training ## -### Introduction ### - -Neural machine translation (NMT) aims at building a single neural network that can be jointly tuned to maximize translation performance. Recently proposed NMT models often belong to a family of encoder–decoder models. Encoder-Decoder models encode a source sentence into a fixed-length vector from which a decoder generates a target sentence. - -In this task, we use an extension to the encoder–decoder model which learns to align and translate jointly. Each time the model generates a word in a translation, it searches for a set of positions in the source sentence for the most relevant information. The decoder predicts a target word based on the context vectors associated with these source positions and all the previous generated target words. For more detailed explanation, readers can refer to paper [Neural Machine Translation by Jointly Learning to Align and Translate](http://arxiv.org/abs/1409.0473). - -The most distinguishing feature of this model is that it doesn't encode an input sentence into a single fixed-length vector. Instead, it encodes the input sentence into a sequence of vectors, where one vector corresponds to an input element. A subset of these vectors is chosen adaptively while decoding the translated sentence. This frees a NMT model from having to squash all the information of a source sentence, regardless of its length, into a fixed-length vector. The improvement of this model is more apparent for longer sentences, but the improvement can be observed for sentences of any length. -
![](./encoder-decoder-attention-model.png)
-
Figure 1. Encoder-Decoder-Attention-Model
- -### Training Model in PaddlePaddle ### -We need to create a model config file before training. Here is an example `demo/seqToseq/translation/train.conf`. The first three lines import python function for defining network, and define the job_mode and attention_mode. - -```python -from seqToseq_net import * -is_generating = False - -### Data Definiation -train_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating) -``` - -1. **Data Definiation**: We define a SeqToSeq train and test data in our example. It returns train_conf as the configuration, following is its input arguments: - - data_dir: directory of train data and test data - - is\_generating: whether this config is used for generating, here is false -2. **Algorithm Configuration**: We use the SGD training algorithm (default), ADAM learning method in our example, specify batch_size as 50, and learning rate as 5e-4. -3. **Network Architecture**: We use an attention version of GRU Encoder-Decoder network in our example. It consists a bidirectional GRU as an encoder and a decoder that emulates searching through a source sentence during decoding a translation. - -### Training Command and Result### -After writing the model config, we can train the model by running the command: - -```bash -cd demo/seqToseq/translation -./train.sh -``` - -The `train.sh` is shown as follows: - -```bash -paddle train \ ---config='translation/train.conf' \ ---save_dir='translation/model' \ ---use_gpu=false \ ---num_passes=16 \ ---show_parameter_stats_period=100 \ ---trainer_count=4 \ ---log_period=10 \ ---dot_period=5 \ -2>&1 | tee 'translation/train.log' -``` -- config: set config of neural network -- save_dir: set output path to save models -- use_gpu: whether to use GPU to train, here use CPU -- num_passes: set number of passes. One pass in paddle means training all samples in dataset one time -- show_parameter_stats_period: here show parameter statistic every 100 batches -- trainer_count: set number of CPU threads or GPU devices -- log_period: here print log every 10 batches -- dot_period: here print '.' every 5 batches - -The training loss function is printed every 10 batch by default, and you will see messages like this: - - I0719 19:16:45.952062 15563 TrainerInternal.cpp:160] Batch=10 samples=500 AvgCost=198.475 CurrentCost=198.475 Eval: classification_error_evaluator=0.737155 CurrentEval: classification_error_evaluator=0.737155 - I0719 19:17:56.707319 15563 TrainerInternal.cpp:160] Batch=20 samples=1000 AvgCost=157.479 CurrentCost=116.483 Eval: classification_error_evaluator=0.698392 CurrentEval: classification_error_evaluator=0.659065 - ..... -- AvgCost: Average Cost from 0th batch to current batch -- CurrentCost: Cost in current batch -- classification\_error\_evaluator(Eval): False prediction rate for each word from 0th evaluation to current evaluation -- classification\_error\_evaluator(CurrentEval): False prediction rate for each word in current evaluation - -And when the classification\_error\_evaluator is less than 0.35, the model is trained sucessfully. - -## Text Generation ## -### Introduction ### - -Generally speaking, the NMT model is conditioned on the encodings of the source sentence, and then to predict the next target word by given the current target word. In the training process, the current word is always knowns as the ground truth, by contrast. In the generating process, the current word is the output of the decoder in last time step, which is accessed to from a memory in PaddlePaddle. - -Besides, we use Beam Search to generate sequences. Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. However, it only stores a predetermined number of best states at each level (called the beam size). - -### Pretrained model ### -We trained the model on a cluster with 50 nodes, each node has two 6-core CPUs. We trained 16 passes in 5 days, where each pass takes 7 hours. The model_dir has 16 sub-folder, each of which contains the whole model parameters with 202MB size. And we find pass-00012 model has the highest BLEU 27.77 (see paper [BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf)). To download and extract this model, simply run the following commands in linux. - -```bash -cd demo/seqToseq/data -./wmt14_model.sh -``` - -### Generating Model in PaddlePaddle ### -We need to create a model config file before translating French sequence. Here is an example `demo/seqToseq/translation/gen.conf`, the first three lines import python function for defining network, and define the job\_mode and attention\_mode. - -```python -from seqToseq_net import * -is_generating = True - -################## Data Definiation ##################### -gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating, - gen_result = "./translation/gen_result") - -############## Algorithm Configuration ################## -settings( - learning_method = AdamOptimizer(), - batch_size = 1, - learning_rate = 0) - -################# Network configure ##################### -gru_encoder_decoder(gen_conf, is_generating) -``` - -1. **Data Definiation**: We defines an SeqToSeq gen data in our example. It returns gen_conf as the configuration, following is its input arguments: - - data\_dir: directory of gen data -   - is\_generating: whether this config is used for generating, here is true -   - gen\_result: file to store the generation result -2. **Algorithm Configuration**: We use SGD traing algorithm in generation, and specify batch_size as 1 (each time generate one sequence), and learning rate as 0. -3. **Network Architecture**: Essentially the same as the training model. - -### Generating Command and Result ### -After writing the model config, we can do text translation from French to English by running the command: - -```bash -cd demo/seqToseq/translation -./gen.sh -``` - -The `gen.sh` is shown as follows, unlike training, there are some different arguments to specify: - -```bash -paddle train \ ---job=test \ ---config='translation/gen.conf' \ ---save_dir='data/wmt14_model' \ ---use_gpu=true \ ---num_passes=13 \ ---test_pass=12 \ ---trainer_count=1 \ -2>&1 | tee 'translation/gen.log' -``` -- job: set job mode to test -- save_dir: the path of saved models -- num_passes and test_pass: loading model parameters from test_pass to (num_passes - 1), here only loads `data/wmt14_model/pass-00012` - -You will see messages like this: - - I0706 14:48:31.178915 31441 GradientMachine.cpp:143] Loading parameters from data/wmt14_model/pass-00012 - I0706 14:48:40.012039 31441 Tester.cpp:125] Batch=100 samples=100 AvgCost=0 - I0706 14:48:48.898632 31441 Tester.cpp:125] Batch=200 samples=200 AvgCost=0 - ... - -And the generating result in `demo/seqToseq/translation/gen_result` likes: - - 0 - 0 -11.1314 The about the width of the seats while large controls are at stake - 1 -11.1519 The on the width of the seats while large controls are at stake - 2 -11.5988 The about the width of the seats while large controls are at stake . - - 1 - 0 -24.4149 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of the Dubai . - 1 -26.9524 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of Dubai ' s . - 2 -27.9574 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of Dubai ' s Dubai . - ... - -- This is the beam search result, where beam size is 3 -- '0' in 1st-line and '1' in 6th-line mean the sequence-id in gen data -- Other six lines list the beam search results - - The 2nd-column is the score of beam search (from large to small) - - The 3rd-colunm is the generating English sequence -- There is 2 special tokens: - - ``: the end of a sequence - - ``: a word not included in dictionary - -### Bleu Evalutaion ### -Human evaluations of machine translation are extensive but expensive. Paper [BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf) presents a method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations. [Moses](http://www.statmt.org/moses/) is a statistical machine translation system, and we use [multi-bleu.perl](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) of it to do Bleu Evalution. To download this script, simply run the following command: - -```bash -cd demo/seqToseq/translation -./moses_bleu.sh -``` - -Since the standard translation is alrealy downloaded as `data/wmt14/gen/ntst14.trg`, we can do Bleu Evalution by running the command: - -```bash -cd demo/seqToseq/translation -./eval_bleu.sh FILE BEAMSIZE -``` - -- FILE: the generation result file -- BEAMSIZE: expand width in beam search diff --git a/develop/doc/_sources/v1_api_tutorials/README.md.txt b/develop/doc/_sources/v1_api_tutorials/README.md.txt new file mode 100644 index 0000000000000000000000000000000000000000..071b8da61fbcab3e88819273008b4526546202ad --- /dev/null +++ b/develop/doc/_sources/v1_api_tutorials/README.md.txt @@ -0,0 +1,5 @@ +The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later. +Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future. + +Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and +[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/develop/doc/_sources/tutorials/embedding_model/index_en.md.txt b/develop/doc/_sources/v1_api_tutorials/embedding_model/index_en.md.txt similarity index 100% rename from develop/doc/_sources/tutorials/embedding_model/index_en.md.txt rename to develop/doc/_sources/v1_api_tutorials/embedding_model/index_en.md.txt diff --git a/develop/doc/_sources/tutorials/gan/index_en.md.txt b/develop/doc/_sources/v1_api_tutorials/gan/index_en.md.txt similarity index 100% rename from develop/doc/_sources/tutorials/gan/index_en.md.txt rename to develop/doc/_sources/v1_api_tutorials/gan/index_en.md.txt diff --git a/develop/doc/_sources/tutorials/imagenet_model/resnet_model_en.md.txt b/develop/doc/_sources/v1_api_tutorials/imagenet_model/resnet_model_en.md.txt similarity index 100% rename from develop/doc/_sources/tutorials/imagenet_model/resnet_model_en.md.txt rename to develop/doc/_sources/v1_api_tutorials/imagenet_model/resnet_model_en.md.txt diff --git a/develop/doc/_sources/tutorials/quick_start/index_en.md.txt b/develop/doc/_sources/v1_api_tutorials/quick_start/index_en.md.txt similarity index 100% rename from develop/doc/_sources/tutorials/quick_start/index_en.md.txt rename to develop/doc/_sources/v1_api_tutorials/quick_start/index_en.md.txt diff --git a/develop/doc/objects.inv b/develop/doc/objects.inv index cb047a35e64bcf2e0e23a9ad11032f20031d9fe9..91d62ed28b699f41432e879257e2d56f7436444d 100644 Binary files a/develop/doc/objects.inv and b/develop/doc/objects.inv differ diff --git a/develop/doc/searchindex.js b/develop/doc/searchindex.js index 325d53d952dc487eeb2b92bef31fdac7efabed28..ae000a97bdf022c8adfe06fcb01d72b0111b9e6c 100644 --- a/develop/doc/searchindex.js +++ b/develop/doc/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/file_manager/README","design/file_manager/pfs/pfsclient","design/functions_operators_layers","design/gan_api","design/graph","design/if_else_op","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/ops/rnn","design/optimizer","design/parameters_in_cpp","design/program","design/python_api","design/reader/README","design/refactor/distributed_architecture","design/refactor/parameter_server","design/refactor/session","design/refactorization","design/register_grad_op","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/tensor_array","design/var_desc","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/build_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/dev/new_op_en","howto/dev/use_eigen_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","survey/cluster_bootstrapping_tools","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/if_else_op.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/ops/rnn.md","design/optimizer.md","design/parameters_in_cpp.md","design/program.md","design/python_api.md","design/reader/README.md","design/refactor/distributed_architecture.md","design/refactor/parameter_server.md","design/refactor/session.md","design/refactorization.md","design/register_grad_op.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/tensor_array.md","design/var_desc.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/build_en.md","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/dev/new_op_en.md","howto/dev/use_eigen_en.md","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","survey/cluster_bootstrapping_tools.md","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[2,0,1,""]}},objnames:{"0":["py","function","Python function"]},objtypes:{"0":"py:function"},terms:{"0000x":83,"00186201e":4,"00m":66,"01852v1":8,"03m":66,"0424m":66,"0473v3":9,"055ee37d":72,"05d":80,"0630u":66,"06u":66,"0810u":66,"08823112e":4,"0957m":66,"0ab":8,"0rc1":47,"0rc2":47,"0th":88,"10007_10":87,"10014_7":87,"100gb":66,"100gi":72,"10g":27,"10m":66,"1150u":66,"11\u5b9e\u73b0\u4e86c":35,"11e6":73,"12194102e":4,"124n":66,"13m":73,"1490u":66,"15501715e":4,"1550u":66,"15mb":83,"1636k":88,"16mb":83,"16u":66,"173m":81,"173n":66,"1770u":66,"18ad":72,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":73,"197u":66,"1gb":66,"1st":[78,81,87,88],"202mb":88,"210u":66,"211839e770f7b538e2d8":9,"215n":66,"228u":66,"234m":81,"2520u":66,"252kb":83,"25639710e":4,"25k":83,"2680u":66,"27787406e":4,"279n":66,"27m":66,"285m":66,"2863m":66,"28m":66,"28x28":2,"2977m":66,"2cbf7385":72,"2nd":[8,87,88],"302n":66,"30u":66,"32777140e":4,"328n":66,"32u":66,"32x32":[12,80],"331n":66,"3320u":66,"36540484e":4,"365e":72,"36u":66,"3710m":66,"3768m":66,"387u":66,"38u":66,"3920u":66,"39u":66,"3rd":[85,87,88],"4035m":66,"4090u":66,"4096mb":69,"4279m":66,"43630644e":4,"43u":66,"448a5b355b84":73,"4560u":66,"4563m":66,"45u":66,"4650u":66,"4726m":66,"473m":73,"48565123e":4,"48684503e":4,"49316648e":4,"4gb":69,"4yf":8,"50bd":72,"50gi":72,"51111044e":4,"514u":66,"525n":66,"526u":66,"53018653e":4,"536u":66,"5460u":66,"5470u":66,"54u":66,"55g":88,"5690m":66,"573u":66,"578n":66,"5798m":66,"586u":66,"58s":73,"5969m":66,"5delta":8,"6080u":66,"6082v4":8,"6140u":66,"6305m":66,"639u":66,"655u":66,"6780u":66,"6810u":66,"682u":66,"6970u":66,"6ce9":72,"6node":67,"6th":88,"704u":66,"70634608e":4,"7090u":66,"72296313e":4,"72u":66,"73u":66,"75u":66,"760u":66,"767u":66,"783n":66,"784u":66,"78m":66,"7eamaa":12,"7kb":73,"8250u":66,"8300u":66,"830n":66,"849m":66,"85625684e":4,"861u":66,"864k":88,"8661m":66,"892m":66,"901n":66,"90u":66,"918u":66,"9247m":66,"924n":66,"9261m":66,"93137714e":4,"9330m":66,"94u":66,"9530m":66,"96644767e":4,"983m":66,"988u":66,"997u":66,"99982715e":4,"99m":81,"99u":66,"9f18":73,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":20,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":47,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":47,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":21,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":35,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":34,"\u4e0d\u4f7f\u7528c":34,"\u4e0d\u4f7f\u7528swig":34,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":34,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":34,"\u4e0d\u5728":35,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":34,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":34,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":21,"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":47,"\u4e0e\u53ef\u80fd\u6709\u7684":47,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":35,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":34,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":34,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":47,"\u4e2a\u6027\u5316\u63a8\u8350":47,"\u4e2d":[34,35],"\u4e2d\u5199\u5165json\u5185\u5bb9":20,"\u4e2d\u5b8c\u5168\u4e00\u81f4":34,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":35,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":21,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":35,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":35,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":35,"\u4e5f\u4e0d\u751f\u6210":35,"\u4e66\u5199":34,"\u4eba\u8138\u8bc6\u522b":21,"\u4ec5\u4ec5\u4f7f\u7528":34,"\u4ece":47,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":20,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":20,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":35,"\u4ed6\u662f\u5c06":35,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":34,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":34,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":21,"\u4ee3\u8868shard\u7684index":21,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":21,"\u4ee5\u4e0b":21,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u53canumpi":21,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":20,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":34,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":34,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":21,"\u4f20\u5165":21,"\u4f46":35,"\u4f46\u4e0d\u66b4\u9732":35,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":47,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":47,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":35,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":34,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":21,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":34,"\u4f7f\u7528":[35,47],"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":21,"\u4f7f\u7528\u52a8\u6001\u5e93":34,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":20,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":35,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":35,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":20,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":34,"\u4f7f\u7528c":35,"\u4f7f\u7528c99\u505a\u63a5\u53e3":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":34,"\u4f7f\u7528regress":47,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":34,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":34,"\u4f7f\u7528void":34,"\u4f8b\u5982":[21,34,35,47],"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":34,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":34,"\u4f8b\u5982\u5bf9\u4e8epython":34,"\u4f8b\u5982c":34,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":34,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":34,"\u4f8b\u5982python\u7684":34,"\u4f9d\u6b21\u7c7b\u63a8":47,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":34,"\u4fee\u590d\u6240\u6709bug\u540e":47,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":47,"\u4fee\u590dubuntu":47,"\u4fee\u6539\u6210":47,"\u505a\u53ea\u8bfb\u6302\u8f7d":21,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":47,"\u505a\u63a5\u53e3":34,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":35,"\u5176\u4e2d":[34,47],"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":35,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":47,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":35,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":35,"\u5177\u4f53\u8bf7\u53c2\u8003":35,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":34,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":34,"\u518d\u57fa\u4e8e":47,"\u5199\u4ee3\u7801":34,"\u5199\u5165\u5feb\u7167\u6570\u636e":20,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":21,"\u51fd\u6570\u540d\u4e3a":35,"\u51fd\u6570\u547d\u540d":34,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":20,"\u5206\u652f":47,"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":47,"\u5206\u652f\u4e2d":47,"\u5206\u652f\u4e3a\u5f00\u53d1":47,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":47,"\u5206\u652f\u4e3a\u7a33\u5b9a":47,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":47,"\u5206\u652f\u5408\u5165":47,"\u5206\u652f\u5408\u5165master\u5206\u652f":47,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":47,"\u5206\u652f\u540d\u4e3a":47,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":47,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":47,"\u5206\u7247":20,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":20,"\u5219\u5ffd\u7565":20,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":20,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":20,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":20,"\u5230":20,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":47,"\u52a8\u6001\u5e93":34,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":35,"\u5305\u62ec":21,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":20,"\u534f\u540c\u5b8c\u6210releas":47,"\u5355\u4e2a\u503c":21,"\u5355\u70b9\u6545\u969c":20,"\u5373":35,"\u5373\u4f7f\u7528":35,"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5373\u4f7fc":35,"\u5373\u4f8b\u5982":35,"\u5373\u4fbfpaddl":35,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":35,"\u5373\u66b4\u9732":35,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":34,"\u53c2\u6570":34,"\u53c2\u8003":[28,34],"\u53cc\u5411\u9a8c\u8bc1":28,"\u53d1\u5e03\u5230dockerhub":47,"\u53d1\u5e03\u5230github":47,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":20,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":35,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":34,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":20,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":20,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":34,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":21,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":20,"\u53ef\u4ee5\u7528":28,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":21,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":47,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":20,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":20,"\u540c\u65f6\u518d\u5c06":47,"\u540c\u65f6\u63d0\u8d77":47,"\u540d\u5b57\u4fee\u9970":34,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":20,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":47,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":34,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":20,"\u548c":[21,34,35,47],"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":21,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":20,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":20,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":34,"\u56fe\u50cf\u5206\u7c7b":47,"\u5728":[35,47],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":20,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":21,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":47,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":20,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":35,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":21,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":20,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":35,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":20,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":20,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":21,"\u5728\u6837\u4f8b\u4e2d":35,"\u5728\u7528\u6237\u4f7f\u7528c":35,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":21,"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":47,"\u5728\u8fd9\u4e2a":47,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":47,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":35,"\u5728c":34,"\u5728c\u7684\u5934\u6587\u4ef6":34,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":21,"\u5728paramet":20,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":35,"\u5747\u662f\u5728":35,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u591a\u4e2a\u503c":21,"\u591a\u4e2aparamet":20,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":34,"\u5982\u56fe\u4e2dtrainer":20,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":20,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":34,"\u5982\u679c\u5931\u8d25":47,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":20,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":21,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":47,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":35,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":20,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":34,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":47,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":34,"\u5982\u679cparamet":20,"\u5b57\u7b26\u4e32":21,"\u5b58\u50a8":21,"\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":21,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":35,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":21,"\u5b9e\u73b0\u7b80\u5355":34,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":34,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":34,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":34,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":34,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":35,"\u5bf9\u4e8e\u6bcf\u79cdc":35,"\u5bf9\u6bd4":34,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":35,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":47,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":35,"\u5c06":47,"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":20,"\u5c06\u5927\u91cf\u7684":34,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":47,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":47,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":34,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":20,"\u5e73\u5747\u6545\u969c\u7387":20,"\u5e76\u4e14\u4f7f\u7528":35,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":34,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":34,"\u5e76\u5220\u9664":47,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":20,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":20,"\u5e76\u53d1\u5e03\u5230pypi":47,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":21,"\u5e76\u5c06c":35,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":20,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":34,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":21,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":47,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":47,"\u5efa\u8bae":47,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":35,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":47,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":20,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":47,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":35,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"\u5f97\u4f7f\u7528":34,"\u5fc5\u8981":35,"\u60c5\u611f\u5206\u6790":47,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":35,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":21,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u9009\u62e9":21,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":21,"\u6216\u8005":[34,35],"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":20,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":21,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":21,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":20,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":35,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":35,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":35,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":35,"\u628a":21,"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":21,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":20,"\u63a5\u53e3":[34,35],"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":35,"\u63a5\u53e3\u662f":21,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a7\u5236\u7528\u6237\u6743\u9650":21,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":21,"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u6570\u636e":28,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":34,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":21,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":21,"\u6587\u4ef6":34,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":34,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":20,"\u6587\u4ef6\u5bf9\u5e94\u7684data":21,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":47,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":47,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":34,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":21,"\u65e0\u8bba\u662f\u4ece":21,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":21,"\u65f6":20,"\u662f":28,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":34,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":35,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":34,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":35,"\u662f\u56e0\u4e3ac99\u652f\u6301":34,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u6307":35,"\u662f\u7528\u6237\u4f7f\u7528c":35,"\u662fc":35,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":20,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":35,"\u6700\u540e\u5220\u9664":47,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":34,"\u6709\u6807\u51c6\u7684":34,"\u6709\u7684\u65f6\u5019":34,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":47,"\u672c\u6587\u6863\u63cf\u8ff0paddl":35,"\u673a\u5668\u7ffb\u8bd1":47,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":20,"\u6765\u786e\u4fdd\u628a":34,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":34,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":21,"\u6765\u8fdb\u884c\u8ba8\u8bba":35,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":47,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":20,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":20,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":20,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":34,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":20,"\u6bcf\u4e00\u4e2a":47,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":21,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":21,"\u6bcf\u4e2adata":21,"\u6bcf\u4e2aparamet":20,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":20,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":21,"\u6bcf\u969410\u5206\u949f":20,"\u6bd4\u5982":21,"\u6bd4\u5982\u5c06":47,"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":20,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":21,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":21,"\u6ce8":20,"\u6d4b\u8bd5docker\u955c\u50cf":47,"\u6d6e\u70b9\u578b\u6570\u636e":21,"\u7136\u540e\u5728etcd\u7684":20,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7248\u672c\u5206\u652f":47,"\u7248\u672c\u53f7":47,"\u7248\u672c\u53f7rc":47,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":47,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":34,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":21,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":21,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":34,"\u751f\u6210\u6587\u6863":34,"\u751f\u6210\u7684":21,"\u751f\u6210\u7ed9\u5b9a":21,"\u751f\u6210api\u6587\u6863":34,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u7528":28,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":21,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":35,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":21,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":35,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":21,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u901a\u8fc7c":35,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":20,"\u7531\u4e8ec":34,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8epypi":47,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u7684\u5934\u6587\u4ef6":34,"\u7684\u63a5\u53e3\u6837\u5f0f":34,"\u7684\u6570\u636e\u6d41\u56fe":21,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":34,"\u7684\u7f29\u5199":28,"\u7684\u89c4\u8303":34,"\u7684\u89d2\u5ea6":21,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":21,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":20,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":34,"\u76ee\u5f55\u4e0b":35,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":34,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":35,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":34,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":34,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":20,"\u79bb\u7ebf\u6279\u5904\u7406":21,"\u7b2c\u4e00\u4e2atag\u4e3a":47,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":47,"\u7b2c\u4e8c\u4e2a\u4e3a":47,"\u7b49":35,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":35,"\u7b49\u6587\u4ef6":35,"\u7c7b\u4f3c":35,"\u7c7b\u540d\u548cc":34,"\u7c7b\u578b":34,"\u7ea2\u697c\u68a6":78,"\u7ed3\u8bba":34,"\u7edf\u4e00\u7528":21,"\u7f16\u8bd1\u5668\u6ca1\u6709":34,"\u7f16\u8bd1\u578b\u8bed\u8a00":34,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684ubuntu":47,"\u7f16\u8bd1c":35,"\u7f16\u8bd1master\u5206\u652f\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1ubuntu\u7684deb\u5305":47,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":35,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":34,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":35,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":20,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":34,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":34,"\u800c\u5bf9\u4e8egolang":34,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":34,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":35,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":21,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":34,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":20,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":35,"\u826f\u597d\u7684\u6587\u6863":34,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":20,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":35,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":34,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":34,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":20,"\u8ba9paddle\u6838\u5fc3\u4e2d":35,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":20,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":47,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":47,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":47,"\u8bbe\u7f6e":35,"\u8bc6\u522b\u6570\u5b57":47,"\u8bcd\u5411\u91cf":47,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":47,"\u8bf4\u660e":20,"\u8bf7\u53c2\u8003":35,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":21,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":20,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":47,"\u8fd8\u662f\u4ece":21,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":35,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":35,"\u8fd9\u4e09\u4e2a\u5206\u652f":47,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":35,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":35,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":35,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":34,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":34,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":35,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":35,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":21,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":21,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":34,"\u8fd9\u662f\u56e0\u4e3a":34,"\u8fd9\u6837":35,"\u8fd9\u6837\u4fdd\u8bc1":47,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":21,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":34,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":20,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":47,"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u901a\u5e38":35,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":20,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":35,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":47,"\u90a3\u4e48":35,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":21,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":34,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":20,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":34,"\u91cd\u547d\u540d\u6210":34,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":34,"\u9519\u8bef\u5904\u7406":34,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":34,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":34,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":35,"\u9700\u8981":21,"\u9700\u8981\u4fee\u6539build":47,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":35,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":47,"\u9700\u8981\u5f15\u7528":35,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":34,"\u9700\u8981\u6ce8\u610f\u7684\u662f":47,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":35,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":47,"\u9ed8\u8ba4256k":28,"\ufb01xed":88,"abstract":[48,62,69],"api\u4e2d\u4f7f\u7528":34,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":35,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":35,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":35,"api\u63a5\u53e3":28,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":35,"api\u65f6":35,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":35,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":35,"api\u66b4\u9732\u7684\u7c7b\u578b":35,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":35,"api\u7684\u5b9e\u4f8b":35,"api\u7684\u5b9e\u73b0\u7ec6\u8282":35,"api\u7684\u63a5\u53e3":35,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":35,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":35,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":35,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":35,"block\u6784\u6210\u4e00\u4e2amodel":20,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":47,"boolean":[29,33,34],"break":[18,51,83],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":47,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":47,"byte":28,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":34,"c\u6709\u6807\u51c6\u7684abi":34,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":34,"case":[8,22,35,41,42,45,53,55,59,62,63,66,70,72,77,79,83],"char":[24,85],"class":[4,5,6,7,8,9,10,11,12,14,15,17,30,32,34,37,39,40,42,45,46,48,49,50,51,64,68,80,87],"const":[17,22,24,38,46,48,50,51,62,63,64],"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":35,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":35,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":35,"core\u6982\u5ff5":35,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":21,"deb\u5305":47,"deb\u5305\u7f16\u8bd1\u95ee\u9898":47,"default":[2,6,7,8,9,11,12,14,15,17,18,31,36,48,49,50,52,55,60,63,67,69,71,72,73,77,83,85,87,88],"enum":[22,24,39,49,50,52],"export":[54,80],"final":[8,9,16,36,51,53,54,61,62,63,87],"float":[2,6,7,8,10,12,50,53,62,63,64,66,71,78,81],"function":[2,4,8,9,10,12,15,17,19,23,24,25,27,32,36,37,38,39,41,42,43,45,46,48,50,51,53,59,62,63,64,66,67,69,77,79,80,83,86,87,88],"golang\u53ef\u4ee5\u4f7f\u7528":34,"golang\u7684":34,"h\u5e76\u4e0d\u56f0\u96be":34,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":21,"import":[2,4,7,8,15,17,18,31,33,36,39,43,48,53,59,63,66,72,78,79,80,81,83,87,88],"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":21,"instance\u5305\u6db5\u4e24\u4e2a\u503c":21,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":21,"int":[2,6,7,8,9,12,17,22,23,24,27,33,34,35,39,40,41,49,50,51,52,62,64,71,83,86],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":34,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":47,"long":[1,8,9,12,55,66,86,87],"model\u505a\u5206\u652f\u7ba1\u7406":47,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":21,"new":[2,8,12,16,17,18,19,22,23,24,25,26,40,41,42,44,45,50,51,60,61,65,72,73,77,79,83,86,87],"note\u7684\u4e66\u5199":47,"null":[8,62,69],"org\u76ee\u524d\u9075\u5faa":47,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":34,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":34,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":34,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":34,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":35,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":34,"paddle\u7684c":35,"paddle\u8bad\u7ec3\u4efb\u52a1":21,"paddle\u8def\u5f84\u4e0b":35,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":34,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":35,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":34,"paddle_\u7c7b\u578b\u540d":35,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":35,"paddlepaddle\u4f7f\u7528git":47,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":47,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":21,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":47,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":47,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":47,"patch\u53f7":47,"patch\u53f7\u52a0\u4e00":47,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"public":[12,17,30,46,48,50,51,62,63,64,67,72,73,87],"py\u4e2d":47,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":47,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":21,"reader\u8f93\u51fa\u7684data":21,"release\u9875\u9762":47,"return":[2,6,7,8,9,11,12,14,15,16,17,21,22,24,27,30,31,36,37,39,40,42,44,46,48,50,51,53,59,62,63,64,72,79,81,83,84,85,88],"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":21,"server\u4e4b\u4e0a":20,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":20,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":20,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":20,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":20,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":20,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":20,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":20,"server\u751f\u6210\u4e00\u4e2auuid":20,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":20,"server\u7684\u6570\u636e\u5feb\u7167":20,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":20,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":20,"short":[8,9,31,48,51,53,63,85,86,87],"static":[14,24,35,48,50,72,77],"super":[40,62],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":34,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":34,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"swig\u76f4\u63a5\u8bfb\u53d6c":34,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":34,"switch":[17,35,44,72,87],"tag\u4e3a":47,"throw":72,"true":[2,6,7,8,9,11,12,14,15,17,22,33,37,39,41,50,51,53,59,62,69,71,72,81,85,86,87,88],"try":[10,18,19,22,23,24,41,48,60,66,79],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":35,"ubuntu\u5b89\u88c5\u5305\u7684\u529f\u80fd\u6b63\u786e\u6027":47,"var":[17,30,32,33,37,39,40,45,48,51],"void":[17,22,24,30,34,35,39,49,50,62,63,64],"wheel\u5305":47,"while":[1,2,6,12,17,26,38,41,48,55,59,63,64,69,79,83,87,88],AGE:[72,73],AND:85,ARE:85,AWS:[21,65,74,75],Age:84,And:[2,7,8,10,12,14,16,22,26,27,31,41,42,48,59,71,72,73,78,81,85,87,88],But:[2,8,9,12,16,30,48,77],EOS:8,For:[1,2,7,8,10,12,14,15,17,23,24,25,27,30,32,36,38,39,40,41,42,44,45,46,49,50,52,53,54,55,59,61,62,63,64,66,67,68,69,71,77,78,80,81,83,87,88],Going:87,Has:2,IDE:60,IDs:[12,26,83],IRs:42,Ids:83,Into:72,Its:[2,49,59,63,72,85],K8s:77,NMS:8,NOT:[40,63],Not:[15,19,67,77],ONE:2,OPs:[42,43],One:[7,9,14,16,26,44,48,59,62,69,79,83,87,88],Ops:[45,50,63],PFS:28,QoS:73,Such:51,THE:2,TLS:[15,28,72],That:[8,12,41,55,69,71],The:[1,2,4,5,6,7,8,9,10,12,14,15,16,18,19,23,25,26,27,29,35,36,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,66,67,69,71,72,73,78,79,80,81,83,84,85,86,87,88],Their:[2,8,19],Then:[4,8,30,54,55,59,61,62,66,72,73,78,80,85,86,87],There:[7,8,12,14,15,17,18,19,24,26,27,29,36,38,48,49,53,55,63,66,72,79,80,81,82,83,85,88],These:[7,17,32,37,50,67,71,80,86],USE:85,USING:85,Use:[2,7,12,15,29,41,45,55,62,66,69,70,72,85],Used:[9,45],Useful:2,Using:[19,45,48,60,64,73,87],VMs:60,VPS:72,WITH:61,Will:[12,14],With:[2,8,9,39,51,53,79,86],YES:27,Yes:[55,60],___fc_layer_0__:72,__doc__:50,__file__:27,__gradient_machines__:14,__impl__:50,__init__:[31,37,40,51,62],__main__:[31,81],__meta__:85,__metaclass__:63,__name__:[31,81],__param_conf__:14,__rnn_step__:59,__tmp_params__:14,__va_args__:46,_binari:18,_create_global_var:40,_error:79,_librari:18,_link:9,_loss:31,_op:63,_proj:8,_res2_1_branch1_bn:81,_source_language_embed:[59,78],_target_language_embed:[59,78],_test:18,a_op:63,aaaaa:21,aaaaaaaaaaaaa:72,abc:8,abil:31,abl:[8,15,37,40,42,44,52,77,79,87],about:[4,8,9,17,18,27,29,36,42,48,50,53,63,66,68,69,72,86,87,88],abov:[2,4,7,8,15,17,18,19,23,30,32,36,37,39,40,42,44,50,51,53,55,60,61,63,64,66,72,73,77,79,81,83,86],abs:[8,9,16,31,79],abs_numerical_grad:16,absolut:[1,67],academ:84,acceler:[20,71],accept:[2,4,6,8,12,15,41,45,83,86],acceptor:86,access:[1,8,9,15,18,23,26,27,40,42,59,88],accessmod:72,accessor:40,accident:84,accomplish:55,accord:[1,2,7,8,16,24,32,42,43,45,51,63,67,68,69,71],accordingli:[4,7,8,62],accordingto:86,account:[45,77],accrodingli:22,accumul:[19,24],accur:[16,26],accuraci:[7,62,83,84,87],achiev:[66,80],ack:69,acl:87,aclimdb:87,across:[8,12,36],act:[8,9,17,42,44,51,53,59,83],act_output:50,act_typ:83,action:[72,84],activ:[4,9,13,18,42,50,53,54,59,62,64,69,83,87],activi:9,actual:[2,22,31,50,53,64],adadelta:83,adagrad:[49,83],adagradoptim:37,adam:[15,24,31,83,87,88],adamax:83,adamoptim:[78,83,87,88],adapt:[7,10,14,53,87,88],add:[2,8,9,12,14,16,17,18,22,26,30,33,37,42,43,45,48,53,54,60,61,62,63,64,66,71,83,85],add_depend:18,add_execut:18,add_input:[36,62],add_memori:36,add_output:36,add_scalar:[17,39],add_test:[18,62],add_to:8,add_two:[17,36],add_unittest_without_exec:62,addattr:[50,63],addbia:62,addcom:[50,63],added:[2,7,14,17,43,61,62,63],adding:81,addinput:[50,63],addit:[8,9,45,51,55,63,64,83],addop:[30,64],addoutput:63,addr:19,address:[19,24,42,44,55,66,69,77],addrow:62,addtion:67,addtolay:8,addtyp:50,adject:87,adjust:53,admin:[77,84],administr:[26,60,77],adopt:[31,86],advanc:[16,59,66,69],advantag:[16,87],adventur:84,adverb:87,adversari:[31,41],advic:66,affect:[8,17],afford:23,afi:2,aforement:[18,67],after:[8,9,12,17,18,23,24,26,29,38,42,43,54,55,59,61,62,63,64,67,69,71,72,73,79,80,81,83,85,86,87,88],again:[15,19,66],against:72,age:[12,85],agg_level:8,aggreg:72,ago:18,aid:66,aim:[87,88],aircraft:88,airplan:80,aistat:8,alex:[8,87],alexnet_pass1:71,alexnet_pass2:71,algorithm:[8,10,23,53,59,78,80,87,88],alia:[5,6,8],align:[8,9,12,88],all:[2,6,7,8,10,14,15,17,18,19,22,24,26,27,29,31,32,35,36,37,39,40,42,44,45,50,53,55,59,60,61,62,64,66,67,68,69,71,72,73,77,78,79,81,83,84,85,86,87,88],alloc:[6,24,27,62,64,71],allow:[15,24,42,55,61,62,66,69,72,83],allow_only_one_model_on_one_gpu:[68,69,71],almost:[53,60,67,78],along:87,alpha:18,alreadi:[18,19,40,42,43,48,55,66,67,69,72,73,87],alreali:[68,88],also:[1,2,8,9,12,15,17,18,22,25,30,31,32,38,39,40,41,48,50,51,54,55,59,60,62,63,66,67,73,77,79,80,81,83,86,87],altern:63,although:53,altogeth:77,alwai:[4,8,9,14,18,41,44,49,53,69,72,88],amaz:80,amazon:[72,73,83,87],amazonaw:72,amazonec2fullaccess:72,amazonelasticfilesystemfullaccess:72,amazonroute53domainsfullaccess:72,amazonroute53fullaccess:72,amazons3fullaccess:72,amazonvpcfullaccess:72,ambigu:[41,86],amd64:[54,72],american:80,among:[72,87],amount:[66,87],analysi:[53,66,82,86],analyz:[83,87],ancestor:[39,40],andd:72,ani:[1,2,8,9,12,15,18,19,24,26,27,40,41,42,43,44,60,63,64,66,72,83,85,88],anim:84,annot:86,annual:86,anoth:[2,8,14,15,17,27,48,50,55,60,69,72,86,87],ans:72,answer:[53,72,86],anyth:[12,41,61,72,86],anytim:31,api:[12,14,15,18,24,25,27,28,30,31,36,38,45,47,51,52,54,62,63,66,72,76,77,79,83,85,87],api_shar:18,api_test:18,api_trainer_config_helpers_data_sourc:85,api_trainer_config_helpers_lay:59,api_trainer_config_helpers_layers_context_project:85,api_trainer_config_helpers_layers_cos_sim:85,api_trainer_config_helpers_layers_data_lay:85,api_trainer_config_helpers_layers_embedding_lay:85,api_trainer_config_helpers_layers_fc_lay:85,api_trainer_config_helpers_layers_pooling_lay:85,apiserv:72,apivers:[72,73],apo:88,appar:88,appear:[32,86],append:[2,14,40,41,59,62,67],append_gradient_machin:14,append_oper:40,appleclang:54,appleyard:66,appli:[8,31,32,48,59,62,80,83],applic:[32,40,45,55,63,66,72,73,77,87],applyl1:22,appoint:63,appreci:[61,87],approach:[8,38,42,43,77],apt:[54,80],arbitrari:[8,42,64],architectur:[78,86,87,88],architecur:87,archiv:[12,34,35],area:31,arg:[2,7,9,37,50,53,63,68,79,80,81,83,86,87],arg_nam:8,argu:86,argument:[2,4,8,12,17,22,23,37,38,44,59,62,69,70,78,79,80,81,85,86,87,88],argv:81,arn:72,around:[2,8,26,72,77],arrai:[4,6,8,12,14,24,32,39,40,41,45,51,53,63,81],arrang:51,arrow:31,art:[53,86],articl:[32,60,61,67,73],artifact:72,artifici:79,artist:84,arxiv:[8,9,31,79,87],as_row_vector:8,as_step_input:17,ask:[19,26,60],aspect:87,assign:[7,8,23,64,69,72,77],associ:[38,46,64,86,87,88],assum:[7,8,17,42,59,71,78],assur:1,astyp:[41,63,79],asyc:19,async:[19,68],async_count:69,async_lagged_grad_discard_ratio:69,async_lagged_ratio_default:[68,69],async_lagged_ratio_min:[68,69],asynchron:[19,69],atla:54,atlas_root:54,attenion:9,attent:[8,9,55,88],attitud:87,attr1:8,attr2:8,attr:[6,8,9,17,39,40,50,59,63],attr_map:50,attrdesc:39,attribut:[2,8,9,13,17,39,43,45,48,50,51,62,63,78,86],attributemap:63,attrproto:50,attrtyp:[39,50,63],attrvalu:50,auc:68,aucvalidationlay:69,authent:72,author:[28,72,81],authorized_kei:67,auto:[17,22,34,45,48,51,62,63,64,66,82,85],autom:[72,88],automak:54,automat:[8,15,24,30,37,42,43,45,50,54,55,59,61,62,63,67,68,69,72,85,86,88],automaticli:8,automobil:80,avail:[19,24,43,44,54,72,77],averag:[7,8,11,23,69,81,83,85,86,87,88],average_test_period:[68,69,86],average_window:87,averagepool:8,avg:[66,83],avgcost:[83,85,87,88],avgpool:[8,83],avoid:[16,17,19,38,66],avx:[54,55,61],await:73,awar:[15,36,40,55,60,72],aws:28,aws_account_id:72,awsaccountid:72,awskeymanagementservicepowerus:72,aync:43,b2t:78,b363:73,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:73,ba5f:72,back:[2,14,19,31,42,55,63],background:[7,8],background_id:[7,8],backpropag:16,backward:[5,8,9,16,17,22,24,31,37,38,46,59,62,69,71],backward_first:59,backward_op:16,backwardactiv:62,bag:[83,87],baidu:[53,73,78],baik:78,bake:42,balanc:[43,69,72,79],balasubramanyan:87,bank:86,bare:[73,77],barrier:69,barrierstatset:66,base:[7,8,11,12,15,23,37,42,45,46,51,53,59,60,62,63,66,67,69,72,78,79,83,85,87,88],baseactiv:9,baseev:14,basematrix:62,basenam:7,basepoolingtyp:[8,9],basestr:[6,7,8,9,11,14],bash:[55,60,61,72,73],bashrc:54,basic:[2,8,14,39,45,46,51,55,61,62,83,84,87],batch:[2,8,9,10,12,14,15,17,19,21,22,31,33,36,51,62,67,69,72,73,79,80,81,83,85,86,87,88],batch_0:81,batch_id:[14,31],batch_im:31,batch_label:31,batch_norm:31,batch_norm_lay:9,batch_norm_typ:8,batch_read:[21,41],batch_siz:[2,12,31,53,67,78,79,80,83,85,87,88],batch_szi:31,batch_z:31,batchnorm:31,batchsiz:[8,62],bazel:18,bbbbb:21,bbox:[7,8],bcd:8,bcebo:12,bdist_wheel:47,beam:[8,59,69,86,88],beam_gen:[8,59],beam_search:[14,59],beam_siz:[8,59,68,69,71],beamsiz:88,becaus:[4,7,8,12,15,17,18,19,24,38,40,41,42,48,51,52,59,60,62,64,71,72,80,83,86],becom:[43,48,66],been:[2,18,23,54,60,80,83,86,87,88],befor:[4,8,9,19,26,29,32,38,41,55,61,63,67,72,77,80,87,88],begin:[4,7,8,22,24,29,32,62],beginiter:[14,15],beginn:59,beginpass:[14,15],begintrain:15,behavior:66,behind:51,being:[26,41,64,79],belong:[8,42,48,88],below:[2,8,17,19,24,38,41,42,43,51,52,59,62,66,67,72,79,80,83,85],benefit:[9,26,27],bengio:8,bertolami:87,besid:[1,8,12,42,88],best:[8,18,54,55,60,69,83,85,87,88],best_model_path:86,besteffort:73,beta1:10,beta2:10,beta:[31,81],better:[8,9,18,53,67,72,77,79,85],between:[7,8,10,14,18,19,24,35,38,43,44,46,48,53,63,64,72,79,83,84,87,88],bgr:81,bi_gru:9,bi_lstm:9,bia:[8,9,10,59,62,81],bias:[8,62],bias_attr:[8,9,53,59],bias_param_attr:9,biases_:62,biasparameter_:62,biassiz:62,bidi:73,bidirect:[8,9,59,86,88],bidirectional_lstm_net:87,big:[43,66,77],bigger:19,biggest:87,bilinear:8,bilinear_interpol:8,bilinearfwdbwd:66,bin:[54,55,67,72,73,85],binari:[2,7,8,12,18,27,31,42,60,66,72,78,83,87],bind:[30,48],bird:80,bison:54,bit:83,bitext:88,bla:54,black:31,blank:[8,72],block:[8,20,22,24,36,37,42,43,53,62,63,64,66,69,81,87],block_i:8,block_x:8,blockdesc:[17,32,37,40,45],blog:87,bn_bias_attr:9,bn_layer_attr:9,bn_param_attr:9,bollen:87,book:[12,45,59],bool:[2,6,7,8,9,11,12,14,17,33,40,49,50,51,52,62,69,71,83,87],boot:[8,59,77],boot_bia:8,boot_bias_active_typ:8,boot_lay:59,boot_stat:51,boot_with_const_id:8,bootstrap:54,bootstrapp:77,borrow:[31,51],bos_id:[8,59],both:[5,6,8,9,15,17,18,19,26,31,42,43,49,55,59,62,63,64,66,72,79,81,83],bottleneck:[66,81],bottom:[14,87],bound:8,boundari:42,boundri:7,bow:[83,87],box:[8,31,66],brace:[17,32],brain:26,branch:[8,15,17,18,33,39,42,47,63],breadth:[69,88],break_if:51,brendan:87,brew:54,brief:[18,24,64],briefli:66,bring:64,broadcast:[19,45,77],broken:61,brought:61,brows:55,browser:[55,72],bryan:87,bsd:60,bucket_nam:72,buf:22,buf_siz:12,buffer:[2,12,22,41,48,69],buffer_s:12,buffered_read:41,bug:[61,72],bui:87,build:[8,12,18,27,32,42,47,50,53,55,57,63,65,69,72,74,75,78,80,81,83,85,87,88],build_dict:12,build_model:31,built:[18,42,50,51,54,55,60,77,79,86],bunch:[66,83],bunk:87,button:[61,72],c11:34,c703c041:61,c99:35,c99e:72,cach:[42,83,86],cache_pass_in_mem:[2,83,86],cachetyp:[2,83,86],cacul:9,caff:17,caffe2:17,calc_batch_s:[2,86],calcul:[2,7,8,9,10,16,19,24,59,62,66,69,71,79,85],call:[2,7,8,9,14,15,16,17,22,23,24,25,27,31,32,36,37,40,42,45,46,48,50,51,53,55,59,60,61,62,63,64,66,69,72,80,81,83,87,88],callabl:[2,6,8,12],callback:62,caller:[16,72],caltech:80,can:[1,2,4,6,7,8,9,12,14,15,16,17,18,19,22,23,26,27,30,31,32,36,37,39,40,41,42,43,44,45,46,50,51,53,54,55,59,60,61,62,63,64,66,67,68,69,71,72,73,77,78,79,80,81,83,85,86,87,88],can_over_batch_s:[2,86],cancel:[26,61],candid:8,cannot:[44,45,48,51,62,63],caoi:88,capabl:[38,45,54,87],capac:72,capi:34,capi_prvi:35,caption:[53,88],captur:[53,67],card:67,care:[9,27,41,68,69,77,84],carefulli:[67,69,81],caret:14,carpedm20:31,cast_to_op_attr:50,cat:[55,80,81,87],categor:86,categori:[8,12,19,83,87],categorig:12,categoryfil:73,caus:[19,29,63],caution:[72,73],cc_:18,cc_binari:18,cc_test:18,ccb2_pc30:88,cclient:25,cde:8,cdn:12,cdot:8,ceil:8,ceil_mod:8,cell:[8,9,87],center:2,cento:77,ceph:[21,73],cephf:[21,27,28],certain:[1,37,48,68,86],certif:[15,28,72],cffi:34,cfg:73,cgo:34,chagn:46,chain:[12,32,62],challeng:[8,19,33],chanc:[15,62,83],chang:[8,12,18,23,27,38,39,41,46,48,53,55,59,61,62,63,64,66,69,72,83,87],channel:[8,9,66,67,81],channl:[67,81],chapter:36,chapter_data:36,chapter_out:36,charact:[83,85],character:53,characterist:[71,80],check:[2,12,17,18,45,53,54,55,61,63,69,71,72,84],check_align:12,check_attr:50,check_eq:62,check_fail_continu:2,check_grad:[16,63],check_l:62,check_sparse_distribution_batch:[68,69],check_sparse_distribution_in_pserv:[68,69],check_sparse_distribution_ratio:[68,69],check_sparse_distribution_unbalance_degre:[68,69],checker:45,checkgrad:69,checkgrad_ep:69,checkmark:77,checkout:61,checkpoint:43,checksum:28,child:17,children:84,china:55,chines:82,chmod:[54,72],choic:[18,55,84],choos:[60,69,83,85],chosen:[1,31,84,88],chunk:[23,28,79,86],chunk_schem:7,chunktyp:7,cifar:[79,80],cifar_vgg_model:80,circl:32,claim:72,claimnam:72,clang:[34,54,55,61],clarifi:7,class1:87,class2:87,class_dim:87,classfic:[81,87],classfiic:80,classic:[8,53],classif:[2,4,8,32,71,81,82,83,87,88],classifc:87,classifi:[8,31,79,80,81,83,87],classification_cost:[42,80,83],classification_error_evalu:[7,79,83,87,88],classification_evalu:7,claster:72,clean:[4,17,18,38,45,60,61,85],clear:[7,18,38,48],clearer:38,clearli:48,cleric:84,cli:72,click:[61,66,72],client:[22,25,45],clip:[6,9,69,83,87],clock:8,clone:[8,54,55,60],close:[2,41,44,61],closer:53,cloud:[18,19,27,28,29,44,45,77],cloud_read:12,cls:83,cludform:72,cluster:[12,14,15,17,19,24,42,44,68,69,73,83,88],cluster_train:67,cm469:72,cmake3:54,cmake:[35,54,60,62,63,66],cmakelist:[18,62],cmatrix:[34,35],cmd:73,cna:8,cname:72,cnn:[8,73,81,83],coars:30,code:[2,4,8,12,15,18,26,30,31,32,37,38,41,42,43,45,46,50,51,53,54,55,56,59,62,63,64,65,66,67,72,73,79,83,84],codebas:45,coeff:8,coeffici:8,collabor:19,collect:[8,12,14,53,84],collectbia:62,colleg:84,color:[80,81],colour:12,column:[7,8,32,41,44,62,78,88],column_evalu:7,column_nam:40,colunm:88,com:[8,9,12,18,31,54,55,60,61,72,73,77,81],combin:[7,8,9,12,14,37,45,48,79,85,87],come:[39,51,87],comedi:84,comma:[14,24,69,78],command:[1,4,18,22,27,29,53,54,55,60,61,62,63,65,66,67,72,73,74,75,78,79,80,81,85,86,87],commandlin:[66,87],commenc:83,comment:[10,18,50,61,63,83,87],commit:18,commnun:67,common:[21,59,62,68],common_util:67,commonli:[29,59,66,71],commun:[19,24,25,42,43,62,67,72],compani:87,compar:[16,18,45,60,62,63,79,83],comparison:18,compat:[2,30],compet:87,competit:79,compil:[8,18,42,46,49,50,52,54,55,60,61,62],complaint:18,complet:[4,8,9,10,12,14,17,19,23,24,28,32,45,62,63,64,72,73,77,83],complex:[1,2,9,26,41,45,59,66,83],complic:[8,30,42,51],compon:[42,51,62],compos:[12,15,30,36,40,45,79,86],composenotalign:12,composit:30,compress:23,compromis:60,comput:[8,9,15,16,19,37,42,43,44,46,48,52,53,54,55,59,60,62,63,66,71,72,83,85,86,87],computation:[8,59],conat:8,concat:[31,59,88],concaten:[9,31,36,51],concentr:45,concept:[2,7,15,30,31,36,38,39,44,48,51,52,55,59],conceptu:31,concern:15,concis:[31,51],conclud:63,concret:[45,63],concurr:[19,26,43],concurrentremoteparameterupdat:69,cond:[17,33,39],condit:[8,23,33,42,59,67,73,88],condtion:31,conduct:66,conf:[4,8,67,78,79,81,88],conf_paddle_gradient_num:72,conf_paddle_n:72,conf_paddle_port:72,conf_paddle_ports_num:72,conf_paddle_ports_num_spars:72,confid:[8,87],confidence_threshold:8,config:[2,6,8,21,29,53,62,67,68,69,72,73,77,78,79,80,81,83,87,88],config_:[22,69],config_arg:[68,69,71,81,83,86,87],config_bas:[7,8,14],config_fil:86,config_gener:[67,85],config_lay:62,config_len:24,config_pars:[4,62],config_proto:24,configur:[0,1,2,4,8,14,22,24,26,27,43,53,58,60,62,63,64,66,69,77,78,80,81,87,88],confirm:29,conflict:[48,61],confront:88,confus:31,congest:69,conll05st:86,conll:[12,86],connect:[1,9,27,42,43,53,62,72,73,77,79,80,81,83,85,87],connectionist:[8,87],connor:87,consequ:[8,9],consid:[7,8,10,54,55,60,66,71,77,80],consider:[2,9],consist:[7,8,12,23,39,41,45,46,50,63,80,81,83,86,88],consol:[66,72],consolid:17,const_cast:63,constant:[44,62,63],constraint:[42,48],construct:[2,4,7,15,36,40,45,48,50,52,59],constructbackwardgraph:32,constructoptimizationgraph:32,constructor:[40,45,48,50,62,63],consum:[19,87],contact:26,contain:[2,7,8,9,11,12,14,15,17,23,31,38,44,45,46,48,49,50,51,52,56,59,60,61,63,67,72,80,81,83,84,87,88],containerport:72,contemporan:87,content:[24,29,73,86,87],content_len:24,context:[8,9,12,48,49,59,63,64,78,83,85,86,87,88],context_attr:9,context_len:[8,9,83],context_proj_layer_nam:9,context_proj_param_attr:9,context_project:9,context_start:[8,9,83],contibut:61,contin:72,continu:[2,7,19,69],contrast:[8,88],contribut:[56,60,65,87],contributor:45,control:[6,17,44,55,61,69,72,73,77,88],conv2d:31,conv:[9,31],conv_act:9,conv_batchnorm_drop_r:9,conv_bias_attr:9,conv_filter_s:9,conv_layer_attr:9,conv_num_filt:9,conv_op:8,conv_pad:9,conv_param_attr:9,conv_strid:9,conv_with_batchnorm:9,conveni:[15,37,50,67],convent:[24,63],converg:[67,79,87],convers:42,convert:[2,4,12,21,41,46,78,80,81,83,85],convlay:8,convolut:[8,9,12,31,79,81,85],convoper:8,convtran:8,convtranslay:8,cool:[2,61],coordin:[19,24],copi:[14,15,23,26,29,32,36,51,55,61,72,79,85],copy_shared_paramet:79,copytonumpymat:79,core:[2,6,35,38,51,60,69,88],coreo:[72,77],corespond:86,corner:45,corpora:88,corpu:[12,86],correct:[2,8,16,62,63,72],correctli:[7,12,31,62,79],correl:[53,80,87],correspoind:15,correspond:[2,4,15,17,18,33,36,40,44,45,46,50,53,61,62,63,64,80,84,86,87,88],corss_entropi:15,cos:[8,50],cosin:[8,50,85],cosineop:50,cosineopproto:50,cosineopprotomak:50,cost:[4,10,14,15,32,37,39,42,44,53,69,79,83,85,87,88],cost_id:8,cost_val:42,could:[2,4,8,12,14,15,16,23,36,37,38,39,41,42,43,46,55,60,66,67,72,83,85],count:[7,19,27,41,66,69,71,73,78,85,86,87,88],counter:[19,23,32],coupl:53,cours:[7,27,60],cover:64,coverag:54,coveral:54,coveralls_uploadpackag:54,cpickl:81,cpp:[16,22,30,34,35,38,43,45,52,61,62,66,83,85,88],cpu:[1,2,6,8,16,27,38,42,44,45,47,54,60,63,64,66,69,73,79,86,87,88],cpu_per_p:44,cpu_per_train:44,cpuinfo:55,cpuplac:[63,64],cpusparsematrix:35,craftsman:84,crash:[19,66,67,69],crazi:67,creat:[4,6,8,12,14,15,16,17,19,24,28,29,30,31,32,36,37,38,40,46,53,54,55,60,62,63,67,69,77,78,79,80,88],create_backward_pass:37,create_bias_paramet:62,create_block:40,create_cloud_job:44,create_doc_str:50,create_global_var:40,create_input_paramet:62,create_op:63,create_oper:30,create_optimization_pass:37,create_paramet:40,create_python_ops_creatation_funct:50,create_rnn:17,create_rnn_op:36,create_var:40,create_whileloop:51,createargu:79,createfromconfigproto:[4,79],creategradientoper:46,createop:50,createoper:17,createstack:72,createvari:17,creation:[30,72],creationd:72,creator:[12,21,45,46],creator_:46,credenti:29,credit:79,crf:86,crime:84,critic:[31,87],crlf:61,crop:81,crop_siz:81,cross:[8,63,83,86],cross_entropi:[8,15,31,44,79],cross_entropy_with_selfnorm:8,crt:28,csc:62,cslm:88,csr:62,csv:84,ctc:7,ctc_evalu:7,ctest:[55,60,61,63],ctor:40,ctrl:[60,67,85],ctx:[63,64,86],ctx_0:86,ctx_0_slot:86,ctx_n1:86,ctx_n1_slot:86,ctx_n2:86,ctx_n2_slot:86,ctx_p1:86,ctx_p1_slot:86,ctx_p2:86,ctx_p2_slot:86,cub:80,cuda:[18,45,54,55,60,66,67,69],cuda_dir:[68,69],cudaconfigurecal:66,cudadevicegetattribut:66,cudaeventcr:66,cudaeventcreatewithflag:66,cudafre:66,cudagetdevic:66,cudagetdevicecount:66,cudagetdeviceproperti:66,cudagetlasterror:66,cudahostalloc:66,cudalaunch:66,cudamalloc:66,cudamemcpi:66,cudaprofilerstart:66,cudaprofilerstop:66,cudaruntimegetvers:66,cudasetdevic:66,cudasetupargu:66,cudastreamcr:66,cudastreamcreatewithflag:66,cudastreamsynchron:66,cudeviceget:66,cudevicegetattribut:66,cudevicegetcount:66,cudevicegetnam:66,cudevicetotalmem:66,cudnn:[8,11,18,54,69],cudnn_batch_norm:8,cudnn_conv:8,cudnn_conv_workspace_limit_in_mb:[68,69],cudnn_convt:8,cudnn_dir:[68,69],cudrivergetvers:66,cuinit:66,cumul:8,curl:[54,72],curli:[17,32],current:[2,8,17,18,19,22,24,36,38,40,43,44,48,51,53,55,59,60,61,62,67,69,72,83,87,88],current_block:[39,40],current_oper:39,current_word:59,currentcost:[83,85,87,88],currentev:[83,85,87,88],curv:[15,80,86],custom:[1,2,15,27,31,45,62,72,84,87],custom_batch_read:41,cut:[43,51],cutoff:12,cycl:19,cyclic:8,cython:34,d3e0:72,d_b0:31,d_b1:31,d_b2:31,d_block:31,d_f:31,d_g:31,d_h0:31,d_h0_bn:31,d_h0_relu:31,d_h1:31,d_h1_bn:31,d_h1_relu:31,d_h2:31,d_loss:31,d_loss_fak:31,d_loss_real:31,d_optim:31,d_step:31,d_t:31,d_w0:31,d_w1:31,d_w2:31,dai:88,daili:87,dalla:2,dan:86,danger:2,dangl:60,darwin:72,dash:31,dat:[21,67,85],data:[0,1,2,4,7,10,14,15,16,17,21,22,23,28,31,32,36,37,38,39,43,44,45,48,49,50,51,52,54,55,59,62,63,64,66,67,68,69,71,74,81,84],data_batch_gen:79,data_dir:[78,80,87,88],data_fil:53,data_i:31,data_initialz:83,data_lay:[2,22,40,53,79,80,83,86],data_read:[12,41],data_reader_creator_random_imag:41,data_shar:51,data_sourc:79,data_typ:[12,49,52,59],data_x:31,databas:[12,87],datacent:[21,29],datacenter1:21,datacenter2:21,datacenter_1:21,datacenter_2:21,datacenter_nam:21,datadim:8,dataprovid:[1,53,67,85,86],dataprovider_bow:83,dataprovider_emb:83,dataproviderconvert:4,datasci:8,dataset:[0,2,21,27,41,53,59,69,78,80,81,83,86,87],datatyp:[49,52],date:86,db_lstm:86,dcgan:[31,79],dcmake_install_prefix:54,ddim:64,dead:19,deal:[77,79],debian:55,debug:[2,16,29,42],decai:[10,80],decar:12,decayr:22,decent:23,decid:[15,26,31,41,46,49],declar:[8,17,31,36,85],decod:[8,9,59,86,88],decoder_boot:59,decoder_group_nam:59,decoder_input:59,decoder_mem:59,decoder_prev:9,decoder_s:59,decoder_st:[9,59],deconv:[8,31],deconvolut:8,decor:[2,12,62],decreas:53,decrypt:72,deduc:45,deep:[8,26,31,32,45,53,55,57,66,79,80,81,83,86],deeper:[53,55,81],deer:80,def:[2,8,12,15,16,21,27,30,31,36,37,40,41,50,51,53,59,62,63,79,81,83,86],def_block:31,defalut:[8,69,71],default_block:31,default_devic:71,default_st:51,default_valu:71,defect:38,defer:26,defferenct:2,defin:[1,2,8,9,12,14,15,17,18,19,26,30,31,36,39,40,41,43,45,48,50,51,53,59,62,64,67,69,78,79,80,86],define_py_data_sources2:[2,53,80,81,83],defini:88,definit:[2,17,19,23,39,42,46,50,51,53,55,63,78,83,87],definiton:30,degre:8,deisgn:46,delai:[64,69],delar:83,delet:[27,28],deletestack:72,delimit:[7,84,85],deliv:77,delta:[8,16],delv:8,demand:19,demo:[8,12,45,67,73,74,78,79,80,81,82,83,84,85,86,87,88],demograph:84,demolish:73,demonstr:[53,59,64,79,85],denot:[63,71,83,84,86],dens:[2,8,12,24,25,49,62,72,83,85],dense_arrai:12,dense_vector:[2,4,12,53],dense_vector_sequ:12,dep:18,depend:[17,18,19,27,42,43,53,55,60,63,67,71,77,80,84],deploi:[8,67,71,77],deploy:[45,67,72,77],deprec:8,depth:17,dequeu:43,deriv:[5,15,33,37],desc:[17,40,50,51],desc_:17,descend:51,descent:[8,19],describ:[15,17,18,23,38,39,40,45,49,50,52,53,61,62,63,64,72,73,79,83,86],describestack:72,describestackev:72,describestackresourc:72,descript:[4,7,17,18,46,49,52,54,61,63,70,72,80,85],deseri:[14,38],deserializ:45,desgin:32,design:[2,8,12,22,34,63,77,87],desir:[19,72,73,78],destin:[24,29],destroi:17,destruct:48,destructor:62,det_output:7,detail:[2,4,6,7,8,9,10,16,23,27,29,31,36,40,42,44,48,51,52,54,59,60,61,62,63,64,66,67,70,71,72,73,77,78,79,81,83,85,87,88],detect:[55,61],detection_evalu:7,detection_output:7,determin:[2,8,12,17,45,62,79],dev:[45,54,55,60,61,77,80,88],dev_ctx:17,devel:54,develop:[18,38,46,47,54,64,68,69,88],deverlop:69,deviat:6,devic:[6,38,42,44,45,63,64,69,88],device_context:63,device_context_:63,devicecontext:[17,63],deviceid:71,devid:[8,69],dez:87,dhcp:77,diagnos:67,diagram:[36,81],diamond:31,dict:[2,7,12,14,40,44,83,85,87,88],dict_dim:87,dict_fil:[7,83,86],dict_siz:[12,22],dictionai:83,dictionari:[2,7,8,12,14,15,16,44,71,81,83,85,86,87,88],dictsiz:88,did:[2,38],diff:61,diff_mat:16,differ:[2,7,8,14,17,18,19,24,26,31,33,42,43,44,46,48,51,53,55,59,61,62,63,64,67,69,72,73,78,80,81,83,87,88],differenti:[30,63],difficult:[7,16,53,60],dig:[55,66,72],digit:[2,8],dilat:8,dilation_i:8,dim0:63,dim1:63,dim:[8,12,22,36,40,45,49,52,62,63,64,78,81,83,87],dim_:64,dimens:[5,8,11,12,31,45,49,51,62,63,64,71,78,83,85,87],dimension:[2,53,59,62,64,79,83],dimenst:78,dimes:8,dir:[67,81,83,85,86,87,88],dirctori:55,direct:[8,9,55,81,86],directli:[1,2,9,18,25,27,38,42,50,51,53,55,67,73,87],director:63,directori:[1,8,18,21,26,28,29,54,55,60,61,64,66,67,69,73,80,81,83,85,86,87,88],diretcoti:81,dis_conf:79,dis_train:79,dis_training_machin:79,disabl:2,discard:[12,19,23,61,69],discount:8,discov:[19,86],discoveri:72,discrep:66,discrim:31,discrimin:79,discriminator_train:79,discuss:[15,17,23,24,25,42],disk:[60,73],dispatch:[38,42,67,69],displai:[27,29],disput:88,dist:47,dist_train:[15,27],distanc:7,distibut:78,distinguish:[18,67,79,88],distribut:[8,17,23,24,25,26,43,44,45,52,54,65,73,74,75,77,79,83,86],distribute_test:[68,69],distributedli:[42,62],disucss:15,divid:[10,50,52,68,80,88],diy_beam_search_prob_so:[68,69],dmkl_root:54,dns:72,do_forward_backward:41,doc:[4,12,36,51,54,55,61,63,64,67],dockefil:60,docker:[47,56,61,72,74,75,77],docker_build:15,docker_push:15,dockerfil:[55,60,61],dockerhub:55,doctor:84,document:[2,4,9,16,28,32,36,45,54,60,61,63,64,71,80,83,85,86,87],documentari:[2,84],doe:[2,4,9,19,23,24,26,27,38,41,42,43,45,46,53,60,62,63,64,66,83,85,86],doesn:[6,8,12,15,17,41,44,60,61,66,73,88],dog:[80,81],doing:[22,26,32,42,66],domain:72,don:[9,15,18,30,32,41,53,60,63,72,87],done:[7,8,9,18,19,23,24,42,46,61,66,72,79,87],dopenblas_root:54,dot:[63,69,81,88],dot_period:[69,71,79,80,85,87,88],dotmuloper:8,dotmulproject:8,doubl:[2,8,32,42,54,63,69],down:[66,83],download:[12,18,19,22,26,28,55,77,79,80,83,86,87],download_cifar:80,downsampl:80,doxygen:[54,61],dozen:18,drama:84,drive:48,drop:[2,9],drop_rat:6,dropout:[6,9,62,83],dropout_r:8,drwxr:73,dst:24,dtoh:66,dtype:[4,40,53,81],dubai:88,due:[23,26,31,40,84],dummi:[14,23],duplic:[43,84],durat:[23,66],dure:[1,2,8,9,17,19,23,26,27,45,53,62,63,68,69,72,77,83,85,86,88],durn:2,dwith_c_api:35,dwith_doc:54,dwith_profil:66,dwith_python:35,dwith_swig_pi:35,dwith_test:63,dwith_tim:66,dynam:[1,2,24,35,41,54,66,69],dynamic_cast:62,dynamic_recurrent_op:51,e2e:77,each:[1,2,4,7,8,9,11,12,14,16,18,19,22,23,24,26,27,32,36,38,40,41,42,43,45,46,48,49,50,51,53,55,59,61,62,67,69,71,72,77,78,80,81,83,84,85,86,87,88],each_feature_vector:5,each_pixel_str:2,each_time_step_output:5,each_word:2,eaqual:8,earli:63,eas:[12,41,63,81],easi:[16,41,45,55,62,67,83],easier:[15,41,43,51,60,62],easili:[15,31,41,46,48,53],echo:[55,85,87],edg:44,edit:[7,55,60,72],editor:[55,60],edu:[12,72,73,80],educ:84,eeoi3ezpr86c:72,effect:[2,69,72],effici:[1,2,8,42,59,60,62],effort:42,efg:8,efs:72,efs_dns_nam:72,efsvol:72,eigen:[45,63],eigen_test:64,eigen_use_gpu:63,eigenmatrix:64,eigenscalar:64,eigentensor:64,eigenvector:64,eight:86,either:[8,12,14,15,31,33,36,66,83,85],elb:72,elbapis:72,elec:83,electron:[73,83],elem_dim:8,element:[2,4,7,8,9,12,14,16,23,41,43,44,45,63,64,83,87,88],element_typ:24,elementari:45,elif:[15,50],elimin:86,els:[15,22,27,31,33,42,43,48,50,55,60,62,63,81,83],emac:[55,60],emailweixu:18,emb1:22,emb2:22,emb:[73,83],embed:[15,17,22,43,49,51,59,82,85,87],embedd:86,embedding_lay:[22,83],embedding_nam:[8,59],embedding_s:[8,59],emphas:66,empir:8,emplace_back:62,emploi:[50,59,84],empti:[7,12,19,53,63],emul:88,enabl:[2,6,8,17,18,23,43,60,66,67,69,72],enable_grad_shar:[68,69],enable_parallel_vector:69,enc_proj:[9,59],enc_seq:9,enc_vec:59,encapsul:[24,44],encod:[9,23,59,88],encoded_proj:[9,59],encoded_sequ:[9,59],encoded_vector:59,encoder_last:8,encoder_s:59,encount:22,encourag:42,encrypt:72,encrypt_decrypt:72,end2end:77,end:[2,7,8,14,17,38,41,48,53,59,60,61,69,78,86,87,88],end_pass:15,end_po:8,endforwardbackward:14,enditer:[14,15],endpass:[14,15],endpoint:[12,21,72],endtrain:15,engin:[27,66,84],english:[2,8,88],enjoi:55,enlarg:63,enough:[17,53,60],enqueu:43,ensembl:9,ensur:[2,19,48,60,62],enter:[17,55,84],enterpris:45,entir:[8,9,24,26,63,87],entiti:[7,17,48],entri:[12,23,27,60,62,72,84],entropi:[8,83,86],entry_point:27,enueu:43,enumer:[5,83],env:72,environ:[15,44,54,55,60,61,66,67,68,69,72,73,79,80,85],eol:61,eos_id:[8,59],epel:54,epoch:[31,84],epsilon:10,equal:[8,9,19,51,63,69],equat:[7,8,9,10,55,63],equilibrium:79,equip:[54,59],equival:[8,15,17,33,50,77],error:[6,7,8,9,10,15,16,23,29,48,53,62,63,67,69,72,80,81,83,84,85,87,88],error_clipping_threshold:6,especi:[2,9,60,86],essenc:15,essenti:[8,15,54,64,86,88],estat:53,estim:[8,15,43],eta:73,etc:[7,12,17,41,42,48,55,67,68,71,72,77,87,88],etcd:[12,14,19,23,24,26],etcd_addr:24,etcd_endpoint:12,eth0:[67,72],ethternet:67,eval:[7,17,31,44,45,83,85,87,88],eval_bleu:88,evalu:[1,8,13,14,26,42,44,66,67,83,87,88],evaluate_difficult:7,evaluate_pass:87,evalut:[53,88],even:[15,41,60,66,69,87],evenli:[24,72],event:73,event_handl:[14,15],eventu:51,everi:[1,2,7,8,9,12,15,19,23,24,26,32,43,48,50,59,61,62,63,64,69,83,86,87,88],everyth:[31,42,43,53,61],everywher:60,evid:38,exactli:[2,8,9,55,72,86],exampl:[1,2,7,8,9,10,12,14,17,27,29,30,31,32,36,38,39,40,41,43,45,46,49,51,53,54,55,59,60,61,62,63,64,66,67,68,69,71,72,73,80,81,82,83,87,88],exceed:8,except:[2,8,12,26,32,51,71,78,87],exchang:38,excluded_chunk_typ:7,exconv:8,exconvt:8,exdb:12,exec:[55,69],execut:[18,19,23,27,31,44,46,60,62,66,72,84,86,87],executioncontext:[63,64],executor:[31,37,39],exist:[15,17,19,29,40,41,44,50,51,60,62,64,69,72,84,87],exit:[24,29,69,73],expand:[62,86,87,88],expand_a:8,expand_level:8,expandconvlay:8,expans:8,expect:[8,66,87],expens:88,experi:71,expert:18,expir:19,explain:[2,7,19,30,32,67,79,87],explan:[8,16,27,42,48,54,83,88],explanatori:[53,55],explicit:[51,62],explicitli:[2,15,44,63,64],exploit:80,explor:8,exponenti:5,expos:[25,51,55,72],express:[15,43,63,72,87],ext:8,extend:[7,43,51],extens:[26,43,63,84,85,88],extent:35,extern:[2,18,34,35,45],external_librari:18,extra:[6,8,9,42,53,77],extra_lay:14,extraattr:[6,71],extraattribut:8,extract:[7,8,38,42,63,72,80,86,87],extract_fea_c:81,extract_fea_pi:81,extract_para:78,extralayerattribut:[6,9],extralayeroutput:9,extrem:[8,66],extremli:1,f120da72:73,f7e3:72,fa0wx:73,fabric:67,face:18,facotr:8,fact:[39,40,81],factor:[6,8,10],factori:34,fail:[2,19,23,44,63,69,71,73,80],failur:[19,24,63],fake:[31,79],fake_imag:41,faked_imag:31,falloc:28,fals:[2,6,7,8,9,10,12,16,17,33,36,39,41,49,52,53,59,62,63,69,71,73,78,83,85,86,87,88],false_block:[17,33,39],false_label:41,false_read:41,famili:88,familiar:[2,53],fanscin:2,fantasi:84,fantast:83,far:51,farmer:84,fascinatingli:1,fast:[8,23,46,66],faster:[8,9,19,59,66,87],fault:[14,23,45],favorit:60,favourit:55,fbd1f2bb71f4:73,fc1:[44,62,71],fc2:[44,71],fc3:71,fc4:71,fc8a365:72,fc8a:72,fc_act:9,fc_attr:9,fc_bias_attr:9,fc_layer:[40,50,53,62,71,83,85],fc_layer_nam:9,fc_mat:14,fc_op:50,fc_out:17,fc_output:50,fc_param_attr:9,fc_without_b:17,fclayer:62,fcop:30,fdata:86,fea:81,fea_output:81,feat:87,featur:[2,5,8,12,61,69,80,83,87,88],feature_map:85,feed:[9,14,15,32,36,40,42,44,53,87],feed_dict:[31,44],feeder:12,feedforward:80,femal:84,fernan:87,festiv:2,fetch:[12,19,22,42,59,61,62],few:[2,18,19,41,49,55,60],fewer:8,fg0:8,field1:14,field2:14,field:[8,14,17,46,49,50,66,72],fifth:32,figur:[15,18,31,36,43,59,62,66,78,79,80,81,86,87,88],file1:88,file2:88,file:[1,2,4,7,8,12,14,15,18,19,21,23,24,26,27,28,29,35,41,42,45,52,53,54,55,59,60,61,62,63,64,67,69,77,78,80,81,86,87,88],file_list:2,file_nam:[2,53,81,83,86],filenam:[2,21,40,85],fileoffset:28,filer:8,filesystem:[26,27,28,42,55,72],fill:[8,19,23,40,72,83],fill_zero_grad:45,film:84,filter:[8,9,81],filter_s:[8,9],filter_size_i:8,finali:67,find:[8,10,17,19,26,48,55,66,80,87,88],find_var:16,findop:17,findvar:[17,48],fine:[6,23,30,85],fingerprint:72,finish:[2,19,23,26,27,50,55,67,72,73,80],finit:62,first:[2,8,14,15,17,19,23,26,27,29,31,32,36,39,40,42,45,49,50,51,53,55,59,60,61,62,63,64,66,69,71,72,77,78,79,80,81,83,85,86,87,88],first_seq:59,firstli:[7,8],firstn:12,firstseen:73,fit:[1,12,45,61],five:[39,66,83],fix:[2,6,34,42,61,88],flag:[12,63,69,79,80,86],flatten:[39,40,64],flexiabl:41,flexibl:[1,8,9,15,24,32,36,42,51,59],flight:88,float32:[4,12,30,31,40,41,53,63,79,81],floor:8,flow:[17,36,47,61],fly:[53,83],fnt03:72,focu:[2,66],focus:63,folder:[18,21,27,29,54,72,80,87,88],follow:[1,2,7,8,9,10,12,14,15,16,17,18,19,23,27,30,31,32,33,36,39,41,43,45,48,49,50,51,54,55,59,60,61,62,63,64,66,67,71,72,73,74,75,77,78,79,80,81,83,84,85,86,87,88],fool:79,forbid:15,force_load:34,forecast:87,forest:17,forget:[10,15,87],fork:8,form:[1,2,8,9,10,66,86],format:[1,2,7,12,14,16,23,51,53,61,62,63,64,69,72,78,80,84,85,87],former:[15,18,88],formula:[8,9,16],formular:8,forth:31,forward:[5,8,9,16,17,22,24,31,37,38,39,45,46,59,62,71,79,86,87],forward_op:16,forwardactiv:62,forwardbackward:14,forwardtest:4,found:[2,4,8,39,48,54,59,79,80,83,87],four:[2,7,32,78,81,83,85,86,87],fp16:[45,52],fp32:[45,52],fp64:52,fpga:44,frame:[7,45,51],framework:[15,17,39,45,48,50,62,63,81,83,87],free:[12,77,88],french:88,frequenc:[12,66,78,83,87],frequent:[23,41,45,67,88],fresh:[26,44],friend:48,friendli:31,frog:80,from:[2,4,7,8,9,12,14,16,17,18,19,21,22,23,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,48,51,53,55,59,61,62,63,64,65,66,67,69,71,72,73,77,78,79,80,81,83,84,85,86,87,88],from_no_sequ:8,from_sequ:8,from_tar:14,fromfil:[41,53,81],fulfil:66,full:[8,19,26,36,55,59,62,77],full_matrix_project:[9,59],fulli:[42,43,53,61,62,66,77,79,80,81,83,85,87],fullmatrixproject:8,fullsiz:22,fully_matrix_project:9,fullyconnect:78,fullyconnectedlay:62,func:[12,23,46],funciton:9,functor:30,fundament:[43,45,53],further:[8,50,77],furthermor:44,futur:[8,26,42,45],fvs:50,fwd_op:46,g_b0:31,g_b1:31,g_b2:31,g_block:31,g_h0:31,g_h0_bn:31,g_h0_relu:31,g_h1:31,g_h1_bn:31,g_h1_relu:31,g_h2:31,g_im:31,g_loss:31,g_optim:31,g_step:31,g_w0:31,g_w1:31,g_w2:31,gain:8,game:79,gamma:81,gan:15,gan_train:79,gangliao:18,gap:69,gate:[8,9,87],gate_act:[8,9],gate_attr:8,gate_bias_attr:8,gate_param_attr:8,gate_recurr:8,gather:[8,38,62,63],gauss:6,gaussian:79,gaussian_normal_random:31,gcc:[34,45,54,55,60],gcreators_:50,gen:[8,88],gen_conf:[79,88],gen_data:88,gen_result:88,gen_train:79,gen_training_machin:79,gender:[12,84,85],gener:[1,2,4,7,8,9,12,14,15,16,17,18,19,21,23,24,26,30,37,39,41,42,43,45,46,49,50,51,53,54,55,61,63,66,67,69,71,72,78,81,82,83,85,87],generated_word_embed:8,generatedinput:[8,59],generator_conf:79,generator_machin:79,generator_train:79,genert:2,genr:[84,85],geq:8,gereat:7,get:[2,7,8,12,14,16,17,18,19,23,24,26,27,28,31,36,44,45,46,48,50,51,53,54,59,62,63,66,67,72,76,80,81,83,85,86,87],get_all_op_proto:50,get_batch_s:86,get_best_pass:87,get_block:40,get_cloud_job:44,get_config_arg:[71,83,87],get_data:[73,83,86],get_dict:12,get_dim:16,get_embed:12,get_float_el:16,get_grad:14,get_imdb:87,get_input_lay:62,get_mnist_data:79,get_model:81,get_movie_title_dict:12,get_nois:79,get_numeric_gradi:16,get_numerical_gradi:16,get_output:16,get_shap:14,get_tensor:16,get_training_loss:79,get_vari:17,get_word_dict:12,getbatchs:62,geteigendevic:64,getenv:[15,27],getinput:62,getinputgrad:62,getinputvalu:62,getlayeroutput:14,getmat:22,getoptconfig:22,getoutputgrad:62,getoutputvalu:62,getparam:22,getparameterconfig:22,getparameterptr:62,getparameterspars:22,getparametersremot:22,getplac:[63,64],getsiz:62,getslotvalu:79,gettask:23,gettempl:72,gettranspos:62,getw:62,getweight:62,getwgrad:62,gfortran:54,gildea:86,gist:9,git:[47,54,55,60,61],github:[9,18,31,54,55,60,81],give:[2,19,36,45,53,55,60,62,66,72,83],given:[2,8,12,14,24,26,30,31,41,43,44,51,62,69,79,83,86,87,88],glide:18,global:[2,6,15,17,18,19,38,40,44,45,48,50,60,66,69,72,87],global_block:40,global_learning_r:6,globalstat:66,globalstatinfo:66,globe:2,glolal_block:40,go1:54,go_librari:18,go_test:18,goal:[32,45,66,86],gob:23,godep:18,godoc:34,goe:[8,9,19,33,48,53],going:[30,77,83,87],golang:[18,54],good:[8,31,41,66,77,87,88],goodfellow13:8,googl:[15,45],googleapi:[54,72],gopath:54,goroot:54,got:48,gpg2:72,gpg:72,gprotos_:50,gpu:[1,2,6,8,11,16,27,38,42,44,45,47,54,60,61,63,64,65,67,77,79,80,81,85,86,87,88],gpu_id:[69,71,79],gpu_per_train:[42,44],gpugpu_id:68,gpukernel:45,gpuplac:63,grab:[19,87],grad:[16,24,49,69,84],grad_op_class:45,grad_op_maker_:46,grad_op_typ:[45,46],grad_op_type_:46,grad_share_block_num:[68,69],grad_var_nam:16,gradient:[6,7,8,10,14,19,23,32,37,38,45,49,63,69,83,87],gradient_check:63,gradient_clipping_threshold:[6,83,87],gradient_evalu:7,gradient_flat:16,gradient_machin:[14,35],gradientcheck:63,gradientmachin:[4,14,35,38,79,85,88],gradientmachine_:22,gradopdescmak:46,gradopdescmakerbas:46,gradopmak:46,gradual:[53,66],grai:80,grain:30,gram:[78,87],grandient:14,grant:72,graph:[8,14,17,18,19,31,36,39,42,44,52,64,78],graphviz:81,grave:87,grayscal:2,great:[43,77],greater:8,greaterthan:50,green:31,grep:[55,87],groudtruth:59,ground:[7,8,83,88],group:[9,23,77,87],group_input1:59,group_input2:59,group_input:59,grouplen:[12,84],grpc:77,gru:[8,59,83,88],gru_bias_attr:9,gru_decod:59,gru_decoder_with_attent:59,gru_encoder_decod:[78,88],gru_layer_attr:9,gru_memori:9,gru_siz:83,gru_step:59,gru_step_lay:9,grumemori:[9,59],gserver:[8,62],gsizex:66,guarante:[40,62],guard:22,guess:[53,87],guest:60,gui:66,guid:[28,45,56,59,61,62,66,72,73,78,80,87,88],guidenc:53,gzip:[23,73],h0_bn:31,h_prev:17,hack:[56,67],had:60,hadoop:15,half:72,hand:[45,64,84,85,87],handi:18,handl:[12,15,27,38,41,42,44,48,51,67,85,87],handler:[14,17],handwrit:[2,87],happen:[23,50],hard:[42,43,51,60,72,83],hardwar:[55,60,66],has:[2,4,7,8,9,10,12,15,16,17,18,19,23,24,26,31,39,42,43,44,45,49,50,55,59,60,62,63,66,72,73,77,78,80,83,84,85,86,87,88],has_kei:14,have:[1,2,4,8,9,12,15,16,17,18,19,23,24,26,27,30,31,32,36,38,39,40,41,42,43,44,45,46,48,49,52,53,54,55,59,60,61,62,63,66,67,69,71,72,77,78,80,83,84,85,87,88],haven:60,hdf:[1,21],head:[61,63,78,87],header:[24,35,45,53,62,78,81],health:84,heard:60,heavi:67,height:[8,12,17,34,41,62,63,80],height_:49,held:19,hello:15,help:[2,4,17,29,45,51,60,61,67],helper:[8,42,46,51,62],henc:[40,48],here:[2,4,6,7,8,9,12,15,18,19,25,29,32,41,50,53,54,59,63,67,68,71,72,73,77,78,80,81,82,83,84,85,86,87,88],heterogen:[42,43],heurist:[8,43,69,88],hidden:[8,9,37,42,59,72,83,87],hidden_out:17,hidden_s:9,hierarch:[8,39,40,45,59],hierarchi:45,high:[6,62,77,79],higher:[1,30,51],highest:[12,17,88],highli:[1,2,12,51,59,71,85,87],him:15,hint:[43,53],his:44,histor:[30,87],hl_get_sync_flag:62,hold:[15,19,23,25,31,42,44,48,50,64,72],holder_:64,home:[21,29,42,44,54,67,72,73],homemak:84,honor:23,hook:[2,6,86],hookattr:6,hookattribut:6,horizont:[8,81],horror:84,hors:80,horst:87,host:[18,27,54,55,67,72,73],hostnam:[67,72],hostpath:73,hostport:72,hot:85,hour:[60,88],hous:[2,12,53,78],how:[1,2,6,8,15,17,19,23,29,30,38,50,53,59,60,67,69,72,73,76,80,81,83,85],howev:[2,8,9,16,26,38,40,41,42,46,49,50,53,59,68,69,72,87,88],hpp:34,html:[12,55,80],htod:66,http:[8,9,12,18,27,31,54,55,60,61,72,73,77,79,80,81,88],huber:8,huge:[8,61],huina:87,human:[8,88],hyper:[8,31,62],hyperplan:12,i0601:85,i0706:88,i0719:88,i1117:66,iamfullaccess:72,iamusersshkei:72,ib0:67,ics:12,icwsm:87,id_input:7,idea:[8,18,41],ident:[8,46,53,55,63,72,84],identifi:[33,62],identityoffsetproject:8,identityproject:8,ids:[7,8,62,83,85],idx:[23,31,62],ieee:87,ies:29,ifels:[17,39],ifelseop:39,ight:8,ignor:[2,8,69,78],ijcnlp:87,illustr:[2,7,19,24,30,36,42,44,59,62,66,83],ilsvrc:81,im_siz:31,imag:[2,11,12,15,31,32,37,39,41,44,53,56,60,61,71,72,74,75,77,79,81,82,88],image_a:41,image_b:41,image_classif:80,image_fil:41,image_lay:41,image_list_provid:81,image_nam:15,image_path:41,image_provid:80,image_reader_cr:41,image_s:81,imagenet:[8,21,82],imagepullpolici:72,imageri:8,images_reader_cr:41,imagin:32,imdb:84,imdber:87,img:[2,8,9,42,80],img_conv_lay:9,img_featur:2,img_pool_lay:9,img_siz:80,imgsiz:66,imgsizei:66,imgsizex:66,immedi:72,immutable_paramet:15,imperfect:45,implement:[2,8,9,10,12,17,23,24,25,26,27,30,33,34,35,38,42,43,48,50,51,59,83,86],implemet:22,impli:18,implicit:44,imposs:77,improv:[8,43,45,66,72,87,88],inarg:22,inbound:72,includ:[1,2,7,8,9,12,15,17,18,24,27,31,34,35,36,39,40,42,45,50,54,55,59,60,61,62,63,66,69,72,73,78,83,84,86,88],inconsist:84,incorpor:8,incorrect:8,increas:[19,23,69,88],increment:[32,69],incupd:62,inde:[12,41,55],independ:[8,16,24,44,48,77,83],index:[2,7,8,11,12,14,16,17,19,23,39,40,51,67,72,85],indexslot:[8,86],indic:[2,7,8,17,24,31,36,39,46,49,51,53,67,72,86],indice_map:51,indices_map:51,individu:[19,53,72],industri:[19,77],ineffici:38,infer:[0,15,17,19,33,34,40,44,45,49,54],infer_shap:40,inferior:26,infershap:[17,40,45,63,64],infershapecontext:[63,64],infiniband:67,info:[7,8,12,36,62,67,77],inform:[4,8,12,14,17,27,29,36,40,42,48,49,62,63,64,66,69,72,84,85,86,87,88],infrastructur:[72,79],ingor:69,inherit:[17,37,45,63],ininst:15,init:[6,14,17,31,36,42,62,71,72,79,83,86],init_attr:40,init_from_tar:14,init_hook:[83,86],init_model_path:[68,69,71,78,83,86],initi:[2,4,6,8,9,12,14,18,23,32,36,40,42,43,50,51,59,62,63,69,78,79,83,86],initial_max:6,initial_mean:[6,8],initial_min:6,initial_std:[6,8],initialize_op_attr:40,initpaddl:[4,79],initrd:77,inlcud:9,inlin:[64,72],inner:62,inner_param_attr:9,inproj_attr:8,inproj_bias_attr:8,inproj_param_attr:8,input0:64,input1:[8,9,64],input2:8,input:[2,4,5,7,8,9,11,12,14,16,17,22,26,30,31,32,36,38,40,41,42,43,44,45,46,48,50,51,53,59,62,63,64,71,78,79,80,81,83,85,86,87,88],input_conf:8,input_data:62,input_data_target:62,input_featur:5,input_fil:[53,86],input_hassub_sequence_data:62,input_id:8,input_imag:[9,80],input_index:62,input_label:62,input_lay:62,input_loc:8,input_nam:15,input_proj_bias_attr:9,input_proj_layer_attr:9,input_seg:51,input_seq:8,input_sequence_data:62,input_sequence_label:62,input_sparse_float_value_data:62,input_sparse_non_value_data:62,input_t:62,input_to_check:16,input_typ:[53,83],input_valu:16,input_var:16,inputbuff:22,inputdef:62,inputgradi:46,inputlayers_:62,inputs_to_check:16,inputtyp:[2,12],insert:[45,46,61],insid:[7,8,19,38,41,43,45,46,55,72],inspect:61,inspir:78,instal:[8,27,47,55,57,60,61,67,73,80,81,85,86,87],instanc:[8,16,17,19,21,25,33,36,40,42,45,46,59,62,64,66,69,86],instance_ip:72,instanti:19,instead:[8,9,11,18,22,27,32,41,42,55,60,67,83,88],instruct:[17,32,55,60,66,83],int16:52,int32:[39,51,52,69],int64:[28,49,52],integ:[2,7,8,12,23,27,34,62,83,87],integer_valu:[2,12,83],integer_value_sequ:[2,12,59,83,86],integr:[7,54,77,86],inter:[8,42,67],interact:[55,72],intercept:8,interchang:[32,45],interest:[66,87],interfac:[0,4,6,8,9,14,17,23,27,29,38,45,46,63,64,67,72,77,80,85,87],interg:83,intergr:8,intermedi:[29,31,37,42,60,86],intern:[8,9,14,72],internet:[18,19,77,87],interpret:[2,7,54,66],interv:[8,87],inth:64,intrins:54,introduc:[2,8,17,19,31,48,50,63,73,85,87],introduct:[3,79],introductori:60,intuit:[26,45],invalid:[41,48],invari:80,invoc:[18,30,45],invok:[2,8,14,38,42,43,45,46,50,60,66,72],involv:[63,79],iob:7,ioe:7,ips:72,ipt:[8,50,59],ipx:77,ipython:15,is_discriminator_train:79,is_gener:[78,79,88],is_generator_train:79,is_kei:85,is_loc:14,is_predict:[83,87],is_seq:[8,59],is_sequ:85,is_stat:6,is_tensor:50,is_test:[81,86,87],is_train:2,isn:66,isol:55,isspars:62,issu:[18,31,44,54,55,60,66],item:[8,12,14,26,41,77],iter:[8,9,10,12,14,15,19,41,42,51,80,86,87],its:[2,8,9,14,15,16,17,19,23,31,32,36,38,40,45,46,48,49,50,61,62,63,64,66,69,72,78,79,80,83,87,88],itself:[19,26,48],ivs:50,java:[17,34,39,45],jeremi:66,jie:[86,87],jmlr:8,job:[4,12,26,42,44,45,68,69,71,81,83,85,86,87,88],job_dispatch_packag:67,job_id:12,job_mod:78,job_nam:[27,72],job_namespac:72,job_path:72,job_workspac:67,jobpath:72,jobport0:72,jobport1:72,jobport2:72,jobport3:72,jobserv:27,johan:87,join:19,joint:[78,88],jointli:[9,88],journal:[86,87],journei:55,jpeg:80,jpg:81,json:[67,72,73,85],jth:9,judg:88,jupyt:[27,55],just:[2,5,7,8,9,12,18,23,24,31,36,38,42,45,46,48,49,53,60,61,67,71,72,78,80,85,86,87],jx4xr:72,jypyt:15,k8s:77,k8s_data:72,k8s_job:15,k8s_token:15,k8s_train:72,k8s_user:15,kafka:21,kaim:8,kaimingh:81,kebilinearinterpbw:66,kebilinearinterpfw:66,keep:[2,8,12,19,32,48,50,77],keep_top_k:8,kei:[2,12,14,16,17,19,21,23,28,45,46,50,51,60,61,63,66,67,85,87],kept:[8,40],kernel:[8,16,49,63,64,66,83],key1:69,key2:69,key_pair_nam:72,keyid:72,keymetadata:72,keypair:72,keyserv:72,keystat:72,keyusag:72,keyword:2,kill:[19,72],kind:[1,2,15,16,19,25,32,37,42,49,52,53,72,73,79,83,85],kingsburi:86,kms:72,know:[2,15,23,53,61,62,66,72,85],knowledg:87,known:[17,30,36,79,87,88],kriz:[12,80],kselectedrow:49,ksimonyan:9,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeconfig:72,kubectl:73,kuberent:[19,72],kubernet:[15,19,45,65,67,74,75,77],kubernetes_service_host:15,kwarg:[2,9,10,12,50,83,86],l1_rate:6,l2_rate:6,l2regular:[80,83,87],l93:22,label:[2,4,7,8,10,12,14,31,32,37,39,41,42,43,44,53,73,79,80,81,82,83,87],label_dict:86,label_dim:[8,83],label_fil:[41,86],label_lay:41,label_list:86,label_path:41,label_slot:86,labeledbow:87,labl:87,lag:69,lake:2,lambdacost:8,lambdarank:8,languag:[8,12,32,45,48,71,78,86,87,88],larg:[11,12,42,43,61,86,87,88],larger:[2,6,7,8,67],larger_than:[17,33,39],last:[7,8,9,36,39,53,59,67,69,83,87,88],last_time_step_output:8,lastseen:73,late:87,latenc:[8,42,67,72],later:[18,45,54,63,64,72,83],latest:[8,17,18,19,26,55,61,73,87],latter:[51,88],launch:[69,72,87],launcher:15,lawyer:84,layer1:[8,9],layer2:8,layer3:8,layer:[4,6,7,9,11,12,13,14,17,22,31,32,33,37,39,41,42,43,45,50,51,53,59,65,68,69,78,79,80,81,83,85,86,87],layer_0:62,layer_attr:[8,59,71],layer_num:[71,81],layer_s:8,layer_typ:8,layerbas:62,layerconfig:62,layergradutil:62,layermap:62,layeroutout:8,layeroutput:9,lbl:[7,80],ld_library_path:[54,67],lead:66,leaki:31,learing_r:37,learn:[6,7,8,9,10,12,15,24,26,31,32,41,42,43,44,45,53,55,57,59,60,62,63,66,80,81,83,86,87,88],learnabl:14,learning_method:[53,78,80,83,87,88],learning_r:[6,24,42,53,78,80,83,87,88],leas:19,least:[7,8,19,54,84],leav:[2,17,72],lecun:12,left:[8,17,53,64,81],legal:50,leman:88,len:[2,8,24,28,40,62,83,85,86],length:[8,9,12,24,36,45,51,59,69,73,87,88],leq:8,less:[8,15,67,77,88],less_than:15,let02:73,let:[4,7,8,15,17,26,30,32,36,37,46,53,63,72,85],level:[6,8,30,36,51,52,67,69,79,85,87,88],lgtest:18,lgtest_main:18,lib64:[54,67,69],lib:35,libapi:18,libari:35,libcudnn:54,libjpeg:80,libpaddl:[34,35,45],libpaddle_capi:35,libpaddle_gserv:35,libpaddle_math:35,libpython:54,librari:[8,18,25,35,42,54,55,63,67,69,85],licens:86,life:19,lifecycl:77,lifetim:48,lightweight:30,like:[2,7,8,12,17,18,19,22,27,30,31,32,40,41,42,45,48,49,51,53,54,59,60,66,67,68,71,72,77,78,81,83,85,87,88],limit:[8,12,45,66,69],line:[1,2,4,7,12,18,22,27,29,32,39,45,53,60,61,65,66,67,71,72,78,80,81,85,86,87,88],linear:8,linearactiv:53,linguist:86,link:[8,9,18,28,29,45,48,54,63,72,77,83,87],linux:[28,54,55,60,72,88],linux_x86_64:47,lipeng:78,lipton:87,list:[1,2,7,8,9,12,14,15,17,18,23,27,29,31,37,38,40,44,46,48,51,53,55,59,60,62,63,67,69,71,72,80,81,83,85,86,87,88],listen:[19,69],literatur:87,littl:[1,2,24,69,83,87],lium:88,live:[55,63],liwicki:87,load:[1,2,4,8,15,19,31,40,42,53,63,69,72,81,86,87,88],load_featur:81,load_feature_c:81,load_feature_pi:81,load_missing_parameter_strategi:[68,69,71,78,86],load_mnist:31,load_uniform_data:79,loadparamet:4,loadsave_parameters_in_pserv:[22,68,69],loc:7,local:[6,14,16,17,19,25,26,32,36,39,45,54,55,60,67,68,69,73,80,87],local_scop:16,localhost:55,localpath:29,locat:[8,14,18,51,59,62,83,86],lock:[18,19,23,24,43],lod:[36,49,51,52],lod_desc:[49,52],lod_level:[40,49,52],lod_tensor:[36,49,52],lodtensor:[45,52],lodtensordesc:49,log:[2,23,29,31,42,62,67,69,72,73,80,85,86,87,88],log_barrier_abstract:69,log_barrier_lowest_nod:[68,69],log_barrier_show_log:[68,69],log_clip:[68,69],log_error_clip:[68,69],log_period:[69,71,73,79,80,83,85,86,87,88],log_period_serv:[68,69],logarithm:5,logger:2,logic:[2,26,31,37,38,42,43,48,51,63,67],login:55,logit:31,longer:[19,42,88],look:[2,7,17,27,32,42,53,67,68,72,73,79,83],lookahead:8,lookup:83,loop:[16,17,41,48],loop_var:51,loss:[8,31,37,62,79,83,87,88],lost:37,lot:[42,68,77],low:[8,37,51],low_rnn:36,lower:[8,36,67],lower_level_rnn:36,lowest:69,lpaddle_capi_shar:35,lpaddle_capi_whol:35,lrelu:31,lstm:[8,59,73,83],lstm_bias_attr:9,lstm_cell_attr:9,lstm_group:9,lstm_layer_attr:9,lstm_size:83,lstm_step:9,lstmemori:[9,59],lstmemory_group:8,ltr:8,lucki:53,mac:[35,54,55,60],machin:[8,9,12,14,31,42,43,53,60,62,68,69,71,72,73,77,83,85,87,88],machine_transl:59,maco:60,macro:[30,46,63],made:[2,19,24,53,59,84],mai:[2,8,9,16,17,41,42,43,44,45,48,55,64,66,72,84],main:[2,4,39,45,61,72,80,86,87],mainli:[25,63,69],maintain:[8,17,23,40,45,72],majel:18,major:[42,55,79,81,87,88],make:[2,7,8,15,17,18,19,23,24,26,32,36,38,41,42,45,46,51,54,55,60,61,62,63,66,67,72,77,80,83,85,87],make_ddim:64,make_function_oper:30,make_vari:50,maker:[45,46],male:84,malloc:62,man:28,manag:[14,19,24,25,29,42,48,61,67],manageri:84,mandarin:8,mani:[8,9,18,23,31,38,45,46,48,49,50,51,53,55,60,69,83,84,85,87],manipul:[40,46],mannal:67,manner:8,manual:[37,42,46,55,77],manufactur:88,manylinux1_x86_64:47,mao:87,map:[2,7,8,12,14,15,17,23,40,46,48,50,51,60,69,77,80,81,85],map_fn:51,map_read:12,mapper:12,mapreduc:15,marcu:87,mark:[2,31,32,36,43,48,59,77,86],mark_slot:86,market:[53,84,87],martha:86,mask:[6,8],master:[15,26,45,47,61,69,87],mastermind:18,mat:[34,35],mat_cache_row:22,mat_norm:22,mat_normal_shar:22,mat_param_attr:9,mat_sparse_row:22,mat_sparse_row_auto_grow:22,mat_sparse_row_id:22,mat_sparse_row_prefetch:22,mat_sparse_row_prefetch_full_s:22,mat_value_shar:22,match:[8,18,66],matchbox:77,math:[9,34,45,62,63,66],matirx:8,matmul:[17,36,51,63],matplotlib:80,matric:[4,59,62],matrix:[7,8,9,12,14,22,34,35,62,63,68,71,81,86],matrixptr:62,matrixtyp:35,matter:2,mattyp:22,max:[2,6,8,12,16,40,66,69,71,80,83,85],max_diff:16,max_id:[8,14,83],max_job_id:12,max_length:[8,59],max_movie_id:12,max_relative_error:[16,63],max_sort_s:8,max_user_id:12,maxframe_evalu:7,maxid:[7,83],maxid_evalu:7,maxid_lay:83,maxim:[8,88],maximum:[7,8,12,17,24,59,63,66,69,83,86,87],maxinum:11,maxpool:8,mayb:[8,17,80],md5:[12,20],mean:[2,6,7,8,9,10,11,12,14,18,36,41,42,48,53,59,60,63,66,67,69,71,72,77,78,79,80,81,83,85,86,87,88],mean_img_s:80,mean_meta:81,mean_meta_224:81,mean_valu:81,mean_var_nam:8,meant:51,measur:[53,66],mechan:[8,9,25,46,59,72,87],media:87,meet:86,mem:[8,17,27],mem_per_p:44,mem_per_train:44,member:[12,15,32,38,40,48,63],memcpi:[38,66],memor:87,memori:[1,2,9,17,22,23,27,45,59,60,62,64,66,69,71,73,83,86,87,88],memory_boot:9,memory_nam:8,memory_test:60,memory_threshold_on_load_data:69,mention:[18,23,43,60],mere:9,merg:[8,24,26,36,38,61,69,78,88],mergedict:[78,88],messag:[17,32,39,40,45,46,49,52,53,61,69,73,85,87,88],meta:[67,80,81,83],meta_config:[67,85],meta_gener:[67,85],meta_path:80,metaclass:63,metadata:[28,72,73],metal:77,metaphor:32,metaplotlib:15,method:[2,8,10,14,16,17,26,31,32,37,43,45,48,49,51,55,62,63,64,66,69,71,83,87,88],might:[8,17,18,39,43,55,60,62,72],mileag:66,million:[12,71,84],min:[6,8,40,66,71,72,85],min_block:17,min_count:43,min_desc:17,min_pool_s:2,min_word_freq:12,mind:67,mini:[2,8,12,14,17,19,33,36],mini_batch:41,minibatch:[8,17,32,33,39],minim:[2,10,17,31,37,43,45,53,69],minimum:8,minimun:69,minst:2,minu:46,minus_grad:46,minusgradop:46,minusop:46,minusopgradmak:46,minusopprotoandcheckermak:46,minut:[19,26,60,72,88],mirror:[18,55],mislead:24,miss:[31,69,78,86],mit:72,mix:[9,51,59,86],mixed_lay:[9,86],mixed_layer_attr:9,mixedlayertyp:8,mkdir:[29,54,55,72],mkl:[45,54],mkl_path:54,mkl_root:54,ml_data:[67,85],mnist:[2,4,21,31,32,39,41,42,44,45],mnist_provid:2,mnist_random_image_batch_read:41,mnist_train:[2,41],mnist_train_batch_read:41,mobil:45,mod:86,modal:86,mode:[8,14,61,69,79,80,81,85,87,88],model:[0,1,4,8,9,12,14,17,19,20,32,37,42,43,44,45,51,61,62,65,69,72,85,86,87],model_config:[4,79],model_list:[69,71,86,87],model_output:87,model_path:71,model_zoo:[78,81],modifi:[4,8,42,59,61,62,63,67,72],modul:[1,2,4,9,12,14,30,31,51,53,54,63,80,81,83,86],modulo:8,momentum:[6,48,53,83],momentumoptim:[53,80],mon:73,monitor:[83,87],mono:8,month:[18,83,88],mood:87,more:[1,2,4,7,8,9,12,15,16,18,19,23,26,27,29,30,32,36,37,40,41,42,43,45,46,51,53,55,59,60,61,62,63,64,66,67,71,73,77,80,83,86,87,88],morin:8,mose:[87,88],moses_bleu:88,mosesdecod:87,most:[2,4,8,12,15,18,26,32,41,42,53,59,62,66,68,77,85,86,87,88],mostli:[77,80,84],motiv:45,mount:[27,55,72,73],mountpath:[72,73],move:[8,19,23,29,66,72,77,85,87],movement:[66,87],movi:[2,12,87],movie_categori:12,movie_id:85,movie_info:12,movie_review:12,movieid:84,movieinfo:12,movielen:82,moving_average_fract:8,mpi:67,mse:[32,37,39],much:[8,19,37,41,51,66],mul:[30,44,62,63],mul_grad:63,mul_op:63,mulgradkernel:63,mulit:67,mulkernel:63,mulop:[30,63],mulopgrad:63,mulopmak:63,multi:[8,38,62,68,69,77,81,88],multi_binary_label_cross_entropi:8,multi_crop:81,multigradientmachin:38,multinomi:8,multipl:[7,8,9,12,14,15,16,23,24,26,30,42,43,44,45,52,55,59,62,63,69,71,72,79,83,85,87],multipli:[7,8,62,80],multiprocess:12,multithread:2,music:84,must:[2,5,7,8,9,12,24,40,41,45,50,54,55,59,61,62,63,64,67,69,71,72,88],mutabl:64,mutable_data:[63,64],mutuable_data:64,mxnet:17,my_cluster_nam:72,my_external_dns_nam:72,mypaddl:73,mysteri:84,name:[2,6,7,8,9,11,14,15,16,17,19,21,22,24,27,30,35,39,40,44,45,47,49,50,51,52,53,55,59,60,61,62,63,66,67,69,71,73,74,75,77,78,79,80,81,83,85,87,88],name_prefix:21,namespac:[17,33,34,55,62,63,73],nativ:8,natur:[23,26,43,51,71,86,87],nchw:8,ndarrai:[14,21],ndcg:8,ndcg_num:8,nearest:83,nearli:16,necess:51,necessari:[2,8,17,24,26,38,40,50,51,54,62,67,83,87],necessarili:62,need:[2,7,8,9,12,15,16,18,22,23,24,26,27,29,30,31,37,38,40,42,43,44,45,46,48,50,51,53,54,55,59,61,62,63,64,67,68,69,71,72,73,77,79,80,81,83,85,86,87,88],neg:[2,7,8,83,86,87],neg_distribut:8,neg_overlap:8,neg_pos_ratio:8,negat:86,neighbor:83,ner:7,nerual:42,nest:[2,8,12,17,39],net:[8,9,17,31,36,48],net_conf:87,net_diagram:81,netop:[17,45],network:[1,2,4,6,7,8,10,12,13,14,15,16,17,19,22,31,36,37,41,42,43,48,50,52,53,55,62,63,64,66,67,69,77,78,87,88],network_config:71,networkadministr:72,neural:[2,4,8,9,10,12,14,15,17,19,42,48,52,53,64,66,69,78,79,81,87,88],neuralnetwork:38,neuron:[4,62,83,87],never:[12,41,48,72,73],new_block_idx:40,new_stat:36,newblock:40,newest:24,newli:77,newop:17,newopdesc:40,newprogram:40,newremot:42,newtork:87,newvardesc:40,next:[8,12,19,25,51,59,61,62,63,66,69,72,73,86,87,88],nfs4:72,nfs:72,nfsver:72,nginx:55,ngram:12,nic:[67,68,69],nil:23,nine:[12,86],nlp:[2,8],nltk:12,nms_threshold:8,nms_top_k:8,nmt:88,nnz:62,no_cach:2,no_grad_set:[16,63],no_sequ:[2,8,85],noah:87,noavx:55,node:[8,18,26,42,43,44,45,52,60,62,67,69,72,73,77,87,88],node_0:72,node_1:72,node_2:72,nodefil:67,noir:84,nois:[8,19,31,79],noise_dim:79,noisi:31,non:[8,19,49,62,63,69,72],none:[1,2,4,6,7,8,9,10,11,14,15,16,17,31,33,36,37,39,40,44,50,51,53,59,81,83],nonlinear:62,nor:60,norm:[9,31,79],norm_by_tim:8,normal:[2,4,8,9,12,59,62,67,69,73,78,79,81],normzal:81,north:80,notat:8,note:[2,4,6,8,9,11,14,15,17,22,23,27,41,45,54,55,63,64,66,69,71,72,78,80,85,87],notebook:[27,55],noth:[5,14,48,60,61,69],notic:[46,59,62],notingradi:63,notion:51,notori:16,novel:87,now:[2,8,12,18,19,31,43,45,46,48,53,55,61,69,72,79,85,86],np_arrai:12,nproc:[54,60],ntst1213:88,ntst14:88,nullptr:[46,48,62],num:[8,9,67,69,83,86,87,88],num_channel:[8,9,80],num_chunk_typ:7,num_class:[8,9,80],num_filt:[8,9],num_gradient_serv:[68,69],num_group:8,num_neg_sampl:8,num_p:[42,44],num_parameter_serv:15,num_pass:[14,53,68,69,71,73,83,85,86,87,88],num_repeat:8,num_result:7,num_results_per_sampl:8,num_row:49,num_shard:21,num_step:51,num_train:[42,44],number:[2,7,8,9,12,17,19,21,41,43,45,50,51,53,60,61,62,67,69,72,78,80,81,83,86,87,88],numchunktyp:7,numdevices_:71,numer:63,numeric_grad:16,numerical_grad:16,numlogicaldevices_:71,numofallsampl:7,numofwrongpredict:7,numpi:[6,12,14,21,31,40,41,53,54,63,79,81],numreal:22,numsampl:66,numtagtyp:7,numtimeout:23,nv_:18,nv_gpu:60,nv_librari:18,nv_test:18,nvcc:[18,55],nvidia:[54,55,60,66,69],obei:7,obj:[2,53,80,81,83,85],object:[2,4,6,8,9,10,12,14,15,22,31,34,37,40,44,45,48,64,66,79,80,81,83,86],observ:[8,10,53,62,66,88],obtain:[26,83,86,87],obvious:18,occup:[84,85],occur:[12,14],occurr:17,oct:73,odd:8,off:[35,55,60,61,77],offer:[4,17,44,45,50,86],offici:[8,18,55,72,80],offlin:[19,21,77],offset:[8,22,85],often:[22,67,83,88],ograd:62,old:[16,24,26,45,55,69],omit:83,on_init:2,on_travisexclud:54,onc:[2,8,19,23,32,42,43,55,62,72,83],one:[2,5,7,8,9,10,11,12,14,15,16,17,19,22,23,24,26,27,30,31,36,37,38,39,40,41,42,44,45,46,48,49,51,53,55,60,61,62,63,67,69,71,72,73,77,78,79,80,81,83,85,86,87,88],one_host_dens:85,one_hot_dens:85,onehotcrossentropyopkernel:63,ones:[30,31,45,63],onli:[1,2,4,7,8,9,11,14,15,16,18,22,23,24,25,26,27,29,31,32,36,37,38,40,42,43,44,45,49,50,51,53,54,59,60,61,62,63,64,66,68,69,71,72,73,77,78,81,83,84,87,88],onlin:[8,10,19,21,41],only_cpu:16,onto:[42,43,72],op_:63,op_check:63,op_class:[45,50],op_maker_class:[45,50],op_proto:50,op_test_util:63,op_typ:45,opattrcheck:63,opcreat:50,opdesc:[17,32,39,40,45,46,50,52],opdescbind:46,opdescbuild:17,open:[2,8,15,21,31,41,53,55,72,81,83,86],openbla:54,openblas_path:54,openblas_root:54,oper:[8,9,10,12,16,17,31,32,36,37,42,44,48,52,55,59,62,64,66,69,72,78,80,85],operaotr:46,operator_grad:16,operatorbas:[17,30,45,46,50,63],operatorwithkernel:63,opinfo:[45,46],opinfomap:46,opinion:87,opkernel:64,opkernelkei:45,opmak:50,opproto:63,opprotoandcheckermak:[46,63],opprotomak:[50,63],opregist:50,opregistri:50,ops:[16,17,18,32,39,40,45,63,77],ops_:17,ops_test:18,opt:[15,37,44,50,54],opt_op_list:37,optestmeta:63,optim:[2,6,13,14,16,31,38,39,42,43,44,45,49,53,62,66,87],optimis:37,optimize_op_attr:40,option:[2,7,8,15,18,31,39,45,49,50,52,53,60,61,62,67,71,77],optmization_op_list:37,optyp:50,opwithkernel:49,order:[2,8,9,12,14,32,41,51,62,69,72,73,77,79,81,83,87,88],ordereddict:14,ordinari:87,oregon:72,org:[7,8,9,12,21,28,31,54,55,79],organ:[7,8,80,87,88],orient:50,origin:[1,2,8,12,16,31,48,51,64,79,86,88],other:[2,7,8,9,12,17,19,24,29,36,48,50,54,55,59,60,61,71,72,73,77,78,79,80,81,83,84,86,87,88],otherchunktyp:7,otherwis:[1,8,12,15,19,24,26,31,41,59,61,67,71,85,88],our:[15,18,31,42,43,48,51,55,59,60,61,62,72,73,78,80,83,86,87,88],out:[8,14,15,17,18,23,26,36,40,53,59,63,64,66,69,72,73,80,87],out_dir:72,out_left:8,out_mem:59,out_memori:9,out_right:8,out_size_i:8,out_size_x:8,outlier:8,outlin:70,outout_lay:14,outout_layer1:14,outout_layer2:14,outperform:86,output:[4,5,6,7,9,11,12,14,15,16,17,21,26,29,30,31,32,33,36,39,40,41,42,43,45,46,48,49,50,51,53,59,60,62,63,64,66,69,71,73,78,79,80,81,83,85,86,87,88],output_:[8,62],output_all_step:36,output_dir:81,output_fil:86,output_id:8,output_lay:[14,81],output_max_index:11,output_mem:[8,59],output_nam:16,output_num:36,output_path:21,output_seg:51,outputbuff:22,outputgradi:46,outputh:8,outputw:8,outsid:[2,8,9,48],outter_kwarg:2,outupt:51,outv:62,over:[1,8,9,14,15,51,61,62,66,83,86,87],overal:[31,77],overcom:87,overhead:66,overlap:[7,8,62],overlap_threshold:[7,8],overrid:[17,19,29,44,62,63,64],overview:[23,24,25],overwrit:29,own:[24,26,37,42,44,50,55,63,67,72],owner:60,pack:[51,55],packag:[2,12,23,27,30,47,55,61,63,72],pad:[9,83],pad_c:8,pad_h:8,pad_w:8,paddepaddl:1,padding_attr:8,padding_i:8,padding_x:8,paddl:[2,4,5,6,7,8,9,10,11,12,14,15,17,18,19,21,27,29,30,31,33,34,35,36,38,39,42,44,45,50,51,53,54,55,56,59,60,61,62,63,65,66,67,69,71,72,77,79,80,83,85,86,87,88],paddle_begin_init_param:24,paddle_dir:63,paddle_element_typ:24,paddle_element_type_float32:24,paddle_element_type_float64:24,paddle_element_type_int32:24,paddle_element_type_int64:24,paddle_element_type_uint32:24,paddle_element_type_uint64:24,paddle_enforc:17,paddle_enforce_eq:[63,64],paddle_error:[34,35],paddle_exampl:27,paddle_finish_init_param:24,paddle_get_param:24,paddle_gradi:24,paddle_init_param:24,paddle_job:27,paddle_matrix:[34,35],paddle_matrix_cr:35,paddle_matrix_get_shap:34,paddle_matrix_shap:34,paddle_n:67,paddle_new_etcd_pserver_cli:24,paddle_new_pserver_cli:24,paddle_on_cloud:27,paddle_output:73,paddle_paramet:24,paddle_port:67,paddle_ports_num:67,paddle_ports_num_for_spars:67,paddle_pserver2:67,paddle_pserver_cli:24,paddle_pserver_client_releas:24,paddle_root:78,paddle_save_model:24,paddle_send_grad:24,paddle_source_root:78,paddle_train:[35,47,67],paddledev:[72,73],paddlepaddl:[1,2,4,8,9,12,14,18,19,21,24,25,26,27,28,29,30,31,32,33,36,37,38,40,41,44,45,48,51,52,53,54,59,61,62,63,65,66,67,74,75,77,81,83,85,86,87],paddlepadl:2,paddpepaddl:2,page:[61,72,85],pai:55,pain:44,pair:[7,8,17,32,37,42,45,86],pakcag:18,palceholder_just_ignore_the_embed:78,palmer:86,paper:[8,31,78,79,81,86,87,88],para:22,paraconvert:78,paradigm:45,paragraph:[36,87],paragraph_data:36,paragraph_out:36,parallel:[42,43,45,60,66,69,71,72,73,88],parallel_nn:[6,68,69],param:[6,8,9,12,16,17,24,38,64],param_attr:[8,9,22,53,59],param_config_proto:24,paramattr:[6,8,53,59],paramet:[1,2,4,7,9,10,11,12,13,16,17,18,20,22,26,29,31,32,36,37,39,41,42,48,50,51,53,62,64,65,71,79,80,83,85,86,87,88],parameter_attribut:8,parameter_block_s:[68,69],parameter_block_size_for_spars:[68,69],parameter_learning_r:6,parameter_list:37,parameter_nam:[14,15],parameter_serv:15,parameter_valu:22,parameterattribut:[6,8,9,22],parameterclient_:22,parametermap:62,parametermutex_:22,parameters_:62,parameters_and_grad:37,parameterserver2:22,parameterset:15,parameterupdat:38,parameterupdater_:22,parametris:10,params_grad:37,paramt:[72,78],paramutil:85,paraphras:88,paraphrase_data:78,paraphrase_model:78,paraspars:62,parent:[17,39,40,45,62],parent_:[17,48],parent_idx:40,parenthes:45,pars:[4,12,18,60,71,72,79,85,86],parse_config:[4,79],parser:85,part:[2,7,8,17,26,39,40,53,59,61,62,66,77,79,83,85,86,87,88],parti:[60,66,85],partial:[8,14,79],partial_sum:8,particip:63,participl:78,particular:[32,45,66],partit:[19,21,42,43,45,72],pass:[2,8,14,17,19,31,37,38,41,45,48,51,53,61,62,66,67,69,72,73,79,80,83,85,86,87,88],pass_id:14,pass_idx:41,pass_test:79,passtyp:62,password:67,past:[15,55,72],patch:28,path:[1,2,7,12,14,19,23,24,27,41,53,54,67,69,71,72,73,78,80,81,83,86,87,88],pattern:[12,19,34,53,72,87],paul:86,paus:[19,26],pave:88,pdf:[8,9],pem:[15,21,72],pend:[19,23],penn:86,peopl:60,per:[7,8,12,19,24,41,63,69,80,83],perfom:[69,71],perform:[1,8,16,24,31,38,45,53,59,60,62,63,65,67,68,79,80,83,87,88],period:[1,19,26,44,69,83,85,86,87,88],perl:[87,88],permiss:72,peroid:8,persist:[49,52,72],persistentvolum:72,persistentvolumeclaim:72,person:[7,15],perspect:[45,66],perturb:[16,62],peter:44,pex:77,pfs:[21,29,44],pfsclient:21,pfspath:29,pgp:72,phase:[46,53,77],photo:[31,80],physic:77,pick:[2,72],pickl:85,pictur:83,piec:[8,9,53,64],pillow:[27,80],pip:[47,54,61,67,80,85],pipe:84,pipelin:86,pixel:[2,8,12],pixels_float:2,pixels_str:2,place:[1,2,19,26,42,43,45,62,63,64,66,67,81,88],placehold:[31,53,64,78],placement:43,plai:[86,87],plain:[1,7,8,27,35],plan:[19,45,62],platform:[17,53,63,64,72],pleas:[2,4,6,8,9,10,15,19,23,24,25,36,40,41,42,44,45,52,54,55,56,59,60,61,62,63,64,72,78,80,83,85,86],plot:[15,80],plotcurv:80,plu:[8,16],pne:63,png:[80,81],pnpairvalidationlay:69,pnpairvalidationpredict_fil:68,pod:[21,27,72,73],pod_nam:72,point:[17,19,27,44,53,60,63,64,66,77],pointer:[17,24,40,45,48,64],polar:[12,87],polici:72,polit:87,poll:87,pollut:26,poo:80,pool3:62,pool:[2,9,13,80,83,85],pool_attr:9,pool_bias_attr:9,pool_layer_attr:9,pool_pad:9,pool_siz:[2,8,9],pool_size_i:8,pool_strid:9,pool_typ:[8,9],pooling_lay:[9,83],pooling_typ:[8,83],poolingtyp:11,pop:17,popul:24,popular:[18,31,53,81],port:[18,55,67,68,69,72,73],port_num:68,ports_num:69,ports_num_for_spars:[22,68,69,71],pos:[85,87],pose:19,posit:[2,7,8,9,83,86,87,88],positive_label:7,possibl:[15,17,23,40,43,66,79],post1:54,post:[27,28],potenti:66,power:[64,77,83,88],practic:[8,53,59,62],pre:[2,8,9,12,15,24,55,72,73,78,80,86,87,88],pre_dictandmodel:78,pre_stat:[36,51],preambl:40,precis:[7,54],precision_evalu:7,pred:[83,86],predefin:87,predetermin:[8,69,88],predic:[12,86],predicate_dict:86,predicate_dict_fil:86,predicate_slot:86,predict:[2,3,7,8,10,14,42,53,59,67,69,78,83,88],predict_fil:69,predict_lay:14,predict_output_dir:[68,69,83],predict_sampl:4,predicted_label_id:83,prediction1:14,prediction2:14,predictor:85,predin:80,prefer:87,prefetch:[22,62],prefix:[7,19,21,63,72],pregrad:62,preinstal:54,premodel:78,prepand:40,prepar:[4,16,27,38,59,74,83],prepend:40,prepend_oper:40,preprcess:87,preprocess:[12,51,67,73,87],prerequisit:54,present:[15,17,51,61,81,86,88],preserv:29,pretti:53,prev_batch_st:[68,69],prevent:[1,10,15,19,23,26],preview:45,previou:[8,9,14,19,29,36,43,62,69,72,86,88],previous:[8,73,81],previous_memori:17,price:[12,45,53],primari:32,primarili:87,primit:51,principl:[15,18],print:[6,14,15,42,53,69,78,83,85,86,87,88],printallstatu:66,printer:7,printstatu:66,priorbox:8,prioriti:45,prite:7,privat:[17,35,48,49,50,51,61,64],privileg:[60,72],prob:[7,14,79],probabilist:[8,78],probability_of_label_0:83,probability_of_label_1:83,probabl:[7,8,14,59,81,83,86],problem:[4,8,10,15,16,18,26,31,32,45,60,61,83,86,87],proc:55,proc_from_raw_data:83,proce:[12,19,41,72],procedur:[17,64,78,86,88],proceed:[8,86],process:[1,2,4,6,8,9,12,15,17,21,22,23,26,42,50,53,55,59,67,69,71,72,73,78,80,81,83,85,86,87,88],process_num:12,process_pr:83,processdata:[80,81],processor:66,prod:[55,61],produc:[8,9,12,19,41,55,81,83],product:[8,27,55,61,62,72,83,87],productgraph:73,profil:[29,54],proflier:66,program:[1,12,15,21,24,26,32,33,37,41,42,44,45,48,55,61,66,67,69],programdesc:[40,44,46],programm:[40,42,84],progress:[19,23,69],proivid:2,proj:8,project:[8,9,27,35,54,59,62,63,85],promis:[8,9],prompt:29,prone:15,prop:86,propag:[10,63,69,71],properli:[60,83],properti:[2,69],propos:[17,37,43,51,88],proposit:86,protect:[50,62,63],proto:[11,39,45,50,52,63],proto_:50,protobuf:[14,17,27,32,39,40,45,46,50,54],protocol:[7,69,77],prove:83,proven:88,provid:[8,12,15,17,24,27,31,44,50,51,53,55,64,66,67,72,77,78,79,80,81,84,87],providermemory_threshold_on_load_data:68,provis:[72,77],provod:2,prune:[8,17],ps_desir:19,pserver:[14,22,24,25,27,45,67,68,69,72],pserver_addr:24,pserver_cpu:27,pserver_id:20,pserver_mem:27,pserver_num_thread:[22,68,69],pserver_spec:14,pserverstart_pserv:68,pseudo:[15,27,46,51],pseudocod:51,psize:62,ptr:35,pull:[18,45,47,55,78,88],punctuat:87,purchas:83,purpos:[8,19,42,43,66],push:17,push_back:62,put:[18,19,22,40,43,55,62,67,73,83],pvc:72,pwd:[55,60,61],pxe:77,py_paddl:[4,79],pybind:17,pydataprovid:[1,2,83],pydataprovider2:[3,4,53,83,85,87],pyramid:8,pyramid_height:8,python:[1,2,3,14,15,17,25,30,31,32,34,38,45,47,51,53,54,59,60,61,67,78,79,80,86,87,88],pythonpath:80,pzo:87,qualifi:54,qualiti:83,queri:[8,72,88],question:[8,15,43,50,72,86],queue:43,quick:[69,73,82,88],quick_start:[27,72,73,74,83],quick_start_data:73,quickli:[45,53],quickstart:73,quit:66,quot:84,r_t:8,rac:8,rais:12,rajathkmp:31,ramnath:87,ran:[43,66],rand:[31,66,69,71,79,86],random:[2,6,8,12,21,31,38,41,53,63,69,79,80,86],random_imag:21,randomli:[26,87],randomnumberse:68,rang:[2,8,12,21,31,41,42,44,50,69,71,80,84,86],rank:[8,15,51,64,72,81,83],rare:2,rate:[6,7,9,10,12,24,62,67,80,83,85,87,88],rather:[4,27,31,51,72,87],ratio:[8,69],raw:[8,53,83,87],raw_meta:85,rdma:[54,69],rdma_tcp:[68,69],reach:[19,66,86],read:[1,2,12,14,15,19,21,41,42,43,45,51,53,59,60,61,67,72,77,81,83,85],read_from_realistic_imag:15,read_from_rng:15,read_lock:20,read_mnist_imag:15,read_ranking_model_data:15,readabl:45,reader:[0,14,21,31,32,39,40,42,44,88],reader_cr:21,reader_creator_bool:41,reader_creator_random_imag:[12,41],reader_creator_random_image_and_label:[12,41],readi:[19,53,72,73,77,80],readlockguard:22,readm:[35,61,84,85,87],readonesamplefromfil:2,readwritebuffer_:22,readwritemani:72,real:[2,8,22,31,41,53,79],realist:15,realiz:[17,36],reason:[9,15,16,19,55,73],recal:7,receiv:[19,27,43],recent:88,reciev:69,recogn:80,recognit:[2,8,81,87],recommand:2,recommend:[1,9,15,55,59,62,67,69,85],recommonmark:54,recompil:66,record:[12,23,50,61,72,86],recordio:[12,15,21,23,42,44],recov:[19,51,53,79],recover:45,recoveri:23,rectangular:8,rectifi:8,recurr:[48,86,87],recurrent_group:[9,59],recurrent_lay:9,recurrent_op:51,recurrentgradientmachin:[35,51],recurrentgroup:7,recurrentlay:69,recurs:[17,18,29,45],recv:[42,43,72],recvparametertyp:22,red:31,reduc:[10,43,45,67,69,71],reduce_by_kei:45,reduce_mean:31,refactor:[32,38,40,42,43,51],refer:[1,4,6,8,9,10,16,17,19,23,24,25,36,39,40,45,48,51,52,59,60,61,62,63,64,67,73,78,80,83,85,88],referenc:[8,23],reflect:23,refrain:63,reg:50,regard:[77,86],regardless:88,regex:85,region:[8,48,66,86],regist:[46,62,66],register_gpu_profil:66,register_lay:62,register_op:[30,45,46,50,63],register_op_cpu_kernel:63,register_op_gpu_kernel:63,register_op_without_gradi:[45,63],register_oper:46,register_tim:22,register_timer_info:66,registerop:50,registr:63,registri:[27,55,73,77],regress:[8,82],regular:[6,62,72,80,83,87],reinforc:44,rel:[1,9,16,26,63,67],relat:[2,19,26,27,48,49,55,73,77,87],relationship:[46,53,79],releas:[44,47,54,55,72,84,86],relev:[63,86,88],reli:[16,37,54,63],reliabl:19,relu:[8,31,62],remain:[51,83],rememb:8,remot:[6,18,22,45,61,62,67,69,71,72],remote_ess:44,remote_sess:44,remoteparameterupdat:[22,25,69],remov:[12,29,61,67,69,87],renam:[29,88],reorgan:8,repeat:[17,32,39,49,50,52],repeatedli:32,replac:[18,23,44,46,55,87],replic:42,replicaset:27,repo:18,report:[23,42,66,67],reportdataset:23,repositori:[8,61],repres:[2,4,8,9,17,23,40,43,44,45,49,51,52,59,62,72,80,83,84],represent:[8,24,31,32,42,49,83,87],reproduc:[60,88],request:[18,19,22,26,42,45,47,72,73,77,78,88],requir:[1,7,8,15,19,24,26,27,29,36,39,42,43,45,46,49,50,52,60,62,63,67,72,73,77,79,80,83,85],res5_3_branch2c_bn:81,res5_3_branch2c_conv:81,res:86,research:[12,42,80,84,87],resembl:87,reserv:[2,29],reserveoutput:62,reset:[8,19],reshap:[16,41,64],reshape_s:8,resid:60,residu:81,resiz:[22,63,64],resnet:82,resnet_101:81,resnet_152:81,resnet_50:81,resolv:[18,61,73],resourc:[44,55,72],respect:[2,16,31,36,53,59,62,69,80,81,86,88],respons:[8,22,31,38,72,73],rest:[2,8,17,27,28,53,77],restart:[19,24,72,73,77],restartpolici:[72,73],restor:16,restrict:[48,69],resu:41,result:[4,5,7,8,14,16,23,31,32,37,38,42,63,64,66,69,72,80,81,83,85,86,87],result_fil:7,resum:26,retain:64,retir:84,retran:72,retriev:[17,48,60,62,73],return_seq:9,reuqest:47,reus:[17,26,41,45,62,63],rev:60,reveal:15,revers:[8,9,59,86,87],review:[12,61,73,83,87],reviews_electronics_5:73,revis:83,rewrit:[18,63,88],rgb:8,rgen:87,rho:10,rich:53,right:[2,8,16,17,18,27,45,81],rkt:[27,60],rmsprop:83,rnn:[8,9,17,31,40,45,48,65,68,83,87],rnn_bias_attr:59,rnn_layer_attr:59,rnn_out:59,rnn_output:51,rnn_step:8,rnn_use_batch:[68,69],rnnlm:12,rnnstep:51,roadmap:51,robot:80,robust:8,role:[12,15,23,24,42,72,82,87],rollback:40,roman:87,romanc:84,root:[10,11,67,72,73],root_dir:67,rot:8,roughli:[2,79],routledg:87,row:[4,7,8,12,22,62,81],row_id:8,rows_:49,rpc:23,rpcserver:23,rsize:72,rtk:77,rtype:[8,12],rule:[7,32,42,62,72],run:[15,16,17,18,19,27,30,31,32,36,37,39,42,43,44,45,48,49,55,61,62,64,65,66,69,72,74,75,77,78,80,81,83,85,87,88],runinitfunct:66,runnabl:43,running_on_cloud:27,runtim:[1,2,17,36,44,45,52,54,55,67],runtime_table_:17,s_param:79,s_recurrent_group:59,sacrif:1,safe:27,sai:[8,32,33,53,60,69,71],sake:62,sale:84,same:[2,4,7,8,9,14,15,16,23,24,26,30,31,36,42,44,45,46,48,51,59,63,64,67,71,72,78,83,85,86,87,88],samping_id:8,sampl:[2,4,7,12,31,50,67,69,71,78,79,81,83,85,86,87,88],sample_dim:79,sample_id:7,sample_num:7,sampler:31,santiago:87,satifi:7,satisfi:[18,49,67,72,83],save:[2,8,12,14,19,21,23,24,27,32,42,49,52,53,60,69,71,72,73,80,81,83,85,86,87,88],save_dir:[53,69,71,73,79,80,83,85,86,87,88],save_only_on:[68,69],saving_period:[68,69],saving_period_by_batch:[68,69,71,83],saw:2,scalabl:45,scalar:[2,8,17,33,51],scale:[5,42,43,46,50,63,81,84],scaleop:63,scaleopmak:[45,63],scalingproject:8,scan:[23,45],scatter:8,scenario:[53,68],scene:68,schdule:72,schedul:[23,27,43,72,79],scheduler_factor:6,schema:78,scheme:[7,22,63,86],schmidhub:87,schwenk:88,sci:84,scienc:87,scientist:84,scope:[16,40,44],score:[7,8,85,87,88],screen:85,scrip:83,script:[4,12,60,63,67,72,80,81,83,86,87,88],seaplane_s_000978:80,search:[8,19,48,54,59,69,86,88],seat:88,second:[2,8,15,29,31,36,39,41,48,50,53,55,63,67,78,81,83,84,87],secret:72,section:[2,40,43,59,62,67,72,83],sed:87,see:[2,4,8,9,15,19,40,42,44,53,55,61,63,64,66,72,78,79,81,83,85,87,88],seed:[66,69],seem:18,seen:63,segment:[7,36,51,64],segmentor:78,sel_fc:8,selcet:8,select:[8,61,72,84,88],selected_id:8,selected_indic:8,selected_row:[49,52],selected_rows_desc:[49,52],selectedrow:52,selectiv:8,selector:73,self:[16,31,37,40,51,53,62,63,84,87],selfnorm:8,semant:[12,15,47,82,87],semat:15,sen_len:86,send:[19,24,42,43,45,50,52,69,72],send_back_parameter_typ:22,sendbackparameterspars:22,sendbackparametertyp:22,sendparameterrequest:22,sendparameterrespons:22,sensit:8,sent:[15,24,42,45,50,73],sentenc:[2,8,12,36,51,59,83,86,87,88],sentence_input:51,sentiment:[2,53,82,83,86],sentiment_data:87,sentiment_net:87,sentimental_provid:2,separ:[2,7,24,30,46,69,78,83,84,85,86,88],seper:51,seq:[8,12,85],seq_len:51,seq_pool:8,seq_silc:8,seq_text_print:7,seq_to_seq_data:[78,88],seq_typ:[2,12],seqtext_evalu:7,seqtoseq:[8,78,88],seqtoseq_net:[8,78,88],sequel:2,sequenc:[2,5,7,8,9,11,12,17,32,37,39,51,62,78,83,85,86,87,88],sequence_conv_pool:83,sequence_group:8,sequence_nest_group:8,sequencestartposit:8,sequencetextprint:7,sequencetyp:[2,8],sequenti:[8,17,59,83,86],seri:[9,87],serial:[2,14,17,23,38,45,52],serializ:45,serv:[42,45,51,55,66,72,79],server:[15,18,22,25,26,42,45,55,62,67,68,77],serverless:19,servic:[55,77,84],sess:[31,37,44],session:[37,55,66],set:[1,2,4,6,7,8,9,12,14,15,19,27,31,36,40,45,46,48,51,53,54,55,59,60,62,63,64,65,66,67,68,69,71,72,73,78,80,81,83,84,85,86,87,88],set_active_typ:62,set_default_parameter_nam:6,set_drop_r:62,set_float_el:16,set_input:8,set_siz:62,set_typ:62,setdatatyp:49,setdefault:63,setp:72,setq:60,settup:62,setup:[2,47,55,62,63,77,83],sever:[2,7,8,16,22,31,36,38,49,51,67,71,72,82,83,85,86,87,88],sexstant:77,sgd:[10,14,15,19,27,38,42,43,44,49,67,79,87,88],sgdasync_count:68,shall:18,shallow:86,shape:[8,12,14,16,17,31,33,36,39,40,44,45,49,63,64,81],shard:[19,20,21,22,23,24,26,42,43,72],share:[8,18,31,35,38,45,51,54,55,60,63,66,69,73,86],shared_bia:9,shared_bias:8,shared_librari:18,shared_ptr:[34,35,48,64],shell:[72,81],shift:81,ship:80,shold:87,shop:87,shorten:8,shorter:81,should:[2,4,6,7,8,12,14,15,16,17,24,27,30,31,36,37,38,39,41,42,45,46,49,50,51,52,53,59,61,63,67,72,80,83,85,86,87,88],should_be_fals:15,should_be_tru:15,should_shuffl:[2,86],show:[4,7,10,17,19,29,33,36,39,49,51,53,60,64,69,72,73,78,81,83,85,86,87,88],show_check_sparse_distribution_log:[68,69],show_layer_stat:[68,69],show_parameter_stats_period:[68,69,71,73,83,86,87,88],shown:[2,8,15,42,59,62,64,66,72,79,80,81,83,85,87,88],shrink:62,shuf:85,shuffl:[2,12,85,87],sid:72,side:[8,14,38,64,81],sig:72,sigint:67,sigmod:50,sigmod_op:50,sigmod_output:50,sigmoid:[8,17,44,50,51,62],sigmoidactiv:9,sign:[28,72],signal:67,signatur:72,signific:66,similar:[8,17,41,43,45,51,63,72,77,83,85],similarli:[8,12,63,86],simpl:[1,2,5,7,8,9,12,14,32,39,43,48,50,51,54,55,61,66,69,83,85,86,87],simple_attent:59,simple_gru:[59,83],simple_lstm:[8,83],simple_rnn:[8,59],simpler:38,simplest:72,simpli:[1,8,15,24,36,54,55,59,66,78,81,85,87,88],simplifi:[15,40,50,62,73],simultan:72,sinc:[8,19,23,25,26,41,42,44,46,49,51,53,55,64,66,72,77,79,83,84,88],sincer:[61,87],singl:[2,7,9,12,19,42,43,44,45,48,55,62,67,73,81,83,86,88],sinlg:14,site:[18,72],six:[78,86,88],size:[2,7,8,9,10,12,14,19,21,22,24,31,40,41,42,44,49,50,51,53,59,62,63,64,67,69,79,80,81,83,84,86,87,88],size_a:8,size_b:8,size_t:[22,51,62],sizeof:[17,78],skill:88,skip:[41,53,61,67,72,81],sliceproject:8,slide:[8,10,12,19],slightli:[31,80],slope:8,slopeinterceptlay:8,slot:[85,86],slow:[2,66],slowli:60,small:[2,12,16,31,62,67,69,80,88],small_messag:[68,69],small_vgg:80,smaller:[8,16,19],smart:48,smartli:8,smith:87,smooth:8,snap:73,snapshot:[20,26,72],snippet:[30,37,59,62,66,72,83],social:87,sock:27,sock_recv_buf_s:[68,69],sock_send_buf_s:[68,69],socket:69,softmax:[8,9,15,17,33,39,42,43,44,59,62,78,83,86,87],softmax_param_attr:9,softmax_selfnorm_alpha:8,softmaxactiv:83,softwar:[55,66,77],solid:31,solut:77,solv:[15,42,45,86],solver:88,some:[2,6,8,12,14,15,17,18,22,23,24,26,27,30,31,32,36,37,39,40,42,43,45,46,48,51,53,54,61,62,63,64,66,68,69,71,72,77,79,83,84,85,86,87,88],some_c_api_funct:35,some_inst:35,some_op:[36,51],some_python_class:34,somecppclass:34,somedata:14,somegotyp:34,someth:[2,8,22,40,60],sometim:[8,10,41,60,66,87],somewhat:24,somewher:48,soon:19,sophist:[53,62,67],sort:[8,12,51,69,72,85,87,88],sort_by_length:51,sourc:[8,12,16,18,29,31,35,41,45,53,55,59,61,65,72,73,78,83,85,88],source_dict_dim:59,source_language_word:59,space:[7,8,40,43,55,59,60,66],space_seperated_tokens_from_dictionary_according_to_seq:7,space_seperated_tokens_from_dictionary_according_to_sub_seq:7,spars:[2,6,8,10,12,22,62,64,67,69,72,83],sparse_binary_vector:[2,12,83],sparse_binary_vector_sequ:12,sparse_float_vector:2,sparse_non_value_slot:12,sparse_remot:22,sparse_upd:[6,22],sparse_value_slot:12,sparse_vector:12,sparse_vector_sequ:12,sparseparam:62,sparseprefetchrowcpumatrix:62,spatial:[8,80],speak:[59,88],spec:[72,73],specfii:69,speci:80,special:[8,24,37,40,42,54,63,78,83,88],specif:[1,14,18,19,29,45,48,60,63,71,80,83,85],specifi:[1,2,7,8,15,16,22,23,24,27,29,31,40,42,44,48,50,51,53,54,59,60,62,64,69,72,79,80,81,83,84,85,87,88],speech:8,speed:[9,55,77],spefici:81,sphinx:[34,54,55],sphinx_rtd_them:54,split:[2,8,26,33,45,51,67,71,72,78,81,83,86],split_count:72,sql:1,sqrt:8,squar:[8,10,11,53],square_error_cost:53,squarerootnpool:8,squash:88,srand:69,src:[18,88],src_backward:59,src_embed:59,src_forward:59,src_root:4,src_word_id:59,srl:[12,86],ssd:8,ssh:[55,67,72,73],sshd:55,ssl:54,sstabl:15,stabil:[16,63],stabl:[47,72],stack:[45,51,53,72,83,86],stacked_lstm_net:87,stacked_num:87,stackexchang:8,stage:[18,25,31,52,61,67],stake:88,stale:[19,44],stamp:66,standard:[6,45,60,78,80,86,87,88],stanford:[12,16,73],star:[18,84],start:[8,9,14,18,19,22,23,24,26,27,38,42,53,55,59,60,66,67,69,76,78,82,85,88],start_pass:[68,69],start_po:8,start_pserv:69,startup:[19,27,72],stat:[54,66,69,86,87,88],state:[8,9,19,36,48,51,53,59,69,73,79,86,88],state_act:[8,9],statement:[32,62,72],static_cast:64,staticinput:[8,59],statist:[8,69,83,86,87,88],statset:66,statu:[27,61,66,72,73],status:73,std:[14,18,22,34,35,45,46,48,50,62,63,64,69],stderr:67,stdout:67,step:[4,8,9,11,16,17,19,24,31,32,38,40,42,43,45,50,51,55,59,61,62,66,67,72,73,77,83,85,86,87,88],step_id:51,step_input:51,step_net:17,step_output:51,step_scop:45,stepnet:[17,36,45,48],still:[23,26,42,46,64,81],stirng:40,stmt1482205552000:72,stmt1482205746000:72,stochast:[10,19,23,26],stock:87,stop:[8,55,60,67,69,73,85],storag:[28,54,72,73,80],store:[7,8,12,14,16,17,18,22,38,39,40,42,44,45,46,48,51,62,63,64,67,69,72,73,78,80,81,83,85,86,87,88],str:[14,27,51,71],straight:39,straightforward:49,strategi:[2,11,19,43,69,86],street:[8,86],strength:79,strict:41,stride:[8,9],stride_i:8,stride_x:8,string:[1,2,7,8,14,17,23,29,39,40,44,45,46,48,49,50,52,62,63,69,72,87],strip:[83,86],struct:[23,24,28,35,46,50],structur:[17,23,31,39,40,45,49,67,72,78,80,83,85,86,87,88],sts:72,student:84,stuff:61,stun:2,style:[2,8,45,50,54,61],sub:[7,8,12,15,26,31,36,38,40,42,59,62,80,83,88],sub_nest_seq:8,sub_sequ:[2,8],subclass:40,subcommand:29,subgradi:10,subgraph:[31,43],submiss:42,submit:[45,61,68,69,72],subnet0:72,subnet:[15,72],subobjectpath:73,subsequ:8,subsequenceinput:8,subset:[62,88],substanti:81,substitut:88,succe:87,succeed:[23,73],success:[8,24,72,73,81,86],successfulcr:73,successfuli:87,successfulli:[63,81,85,87],successor:[69,88],sucessfulli:88,sudo:[54,60,72,80],suffer:16,suffic:[41,53],suffici:69,suffix:[27,88],suggest:[8,18,66],suit:77,suitabl:[49,61,69,80],sum:[8,10,17,20,59,62],sum_:8,summar:[31,83,87],sumopgradmak:46,sumpool:8,suppli:49,support:[6,7,8,11,12,16,17,19,26,27,30,31,38,41,42,43,45,46,49,54,55,59,60,61,62,63,64,66,69,72,77,86],suppos:[18,30,49,53,62,83],suppress:[8,29],sure:[45,60,61,62,72,80,87],surpass:8,survei:87,svs:50,swagger:28,swap_channel:81,swig:[4,25,34,35,54],swig_paddl:[4,79],switchop:17,symbol:[8,17,35],symbols_ready_:17,symbolt:[17,45],symlink:61,sync:[19,61,69,79],syncflag:62,synchron:[10,19,23,67,69,72],syntact:86,syntax:[41,85],synthect:53,synthes:79,synthet:53,sys:81,system:[17,18,19,24,26,28,30,31,42,43,54,55,63,67,73,83,86,87,88],t2b:78,tab:[55,83],tabl:[2,7,8,17,49,52,81,83,88],tablelookup:49,tablelookupgrad:49,tablelookupop:49,tableproject:8,tag:[7,12,55,59],tagtyp:7,take:[2,4,7,8,9,15,17,18,19,26,31,32,33,39,40,45,46,51,59,60,62,63,66,72,73,79,86,88],taken:[2,51,86],talk:24,tanh:[8,9,31,42,59,62],tanhactiv:9,taobao:87,tar:[14,54,72],tarbal:72,target:[8,12,14,17,18,31,37,42,44,45,59,61,63,78,83,88],target_dict_dim:59,target_dictionary_dim:8,target_language_embed:8,target_language_word:59,target_link_librari:18,targetinlink:8,task:[2,7,8,42,50,53,59,71,78,81,86,87,88],task_queu:23,taskentri:23,taskqueu:23,tbd:25,tconf:87,tcp:[69,72],teach:83,tear:66,technic:19,technician:84,techniqu:[59,62],technolog:60,tee:[73,80,86,87,88],tell:[19,23,24,50,55,66,85],tellig:87,templat:[30,50,63,64,73,77,86],tempor:[8,83,86],temporari:27,ten:60,tensor:[16,18,31,36,43,44,49,51,52,63],tensor_array_read:51,tensor_array_s:51,tensor_array_stack:51,tensor_array_unstack:51,tensor_array_writ:51,tensor_s:16,tensor_test:18,tensor_to_check:16,tensorarraydesc:51,tensordesc:49,tensorflow:[17,31,33,42,43,51,64],term:[8,9,19,86,87],termin:73,terminolog:53,tese:1,tesh:86,tessorarrai:51,test100:12,test10:12,test1:21,test:[1,2,8,12,14,15,16,18,35,41,44,47,54,55,64,65,66,67,68,78,80,81,83,84,88],test_:63,test_all_data_in_one_period:[73,80,85,86,87],test_check_grad_ingore_i:63,test_check_grad_ingore_x:63,test_check_grad_norm:63,test_data:88,test_fcgrad:62,test_gpuprofil:66,test_layergrad:62,test_list:[2,53,80,83],test_mul_op:63,test_norm:63,test_part_000:87,test_pass:[68,69,71,88],test_period:[68,69,71],test_ratio:85,test_wait:[68,69],testa:15,testb:15,testbilinearfwdbwd:66,testcas:63,testconfig:62,tester:[85,88],testfcgrad:62,testfclay:62,testlayergrad:62,testmodel_list:68,testmulgradop:63,testmulop:63,testq:15,testresult:14,testsave_dir:68,testutil:62,text1:29,text:[1,2,7,9,12,15,36,55,72,78,82,83,85,87],text_conv:83,text_conv_pool:85,text_fil:[12,87],tflop:66,tftp:77,tgz:[12,54],than:[2,4,6,7,8,9,19,27,30,31,40,45,46,51,54,55,59,60,62,67,72,77,81,86,87,88],thank:[78,88],the_current_program:40,thei:[2,8,15,18,19,24,26,29,31,32,37,40,43,44,45,49,50,51,52,53,55,59,60,62,63,64,66,67,68,72,81,87],them:[1,2,7,8,9,15,16,18,19,22,27,30,41,43,45,46,48,49,50,51,52,53,55,60,63,66,68,69,72,80,81,83,85,87,88],themselv:18,theori:66,therefor:54,therein:[8,17],therun:81,theta:31,theta_d:31,theta_g:31,thi:[1,2,6,7,8,9,10,12,14,15,16,17,18,19,22,23,24,25,26,27,30,31,32,36,37,38,39,40,41,42,43,44,45,50,51,53,54,55,59,60,61,62,63,64,66,67,69,71,72,73,77,78,79,80,81,83,84,85,86,87,88],thing:[2,31,45,53,61,66,85,86],think:[15,18],third:[8,19,63,66,81,87],third_parti:8,thirt:60,those:[17,18,19,30,32,33,39,81,86],though:[51,77],thought:[18,66],thread:[62,66,69,71,85,86,87,88],thread_local_rand_use_global_se:[68,69],threadid:71,threadloc:66,three:[2,7,8,16,19,32,37,38,39,41,53,69,79,81,87,88],threshold:[6,7,8,19,23,69,87],thriller:84,through:[4,8,18,19,23,25,37,44,59,62,63,66,67,78,79,80,87,88],throughout:83,throughput:66,thrust:45,thu:[2,8,26,53,62,72,88],tier:73,tight:54,time:[2,8,9,11,12,15,16,18,19,23,26,30,36,40,41,42,43,45,46,49,50,51,52,53,59,60,64,66,69,71,73,77,83,84,86,87,88],timelin:[8,45,66],timeo:72,timeout:[19,23],timeout_sec:12,timer:54,timestamp:[8,20,84],timestep:[2,8,48],titil:85,titl:[12,84,85],tls:28,tmall:87,to_no_sequ:8,to_sequ:8,todo:[7,10,12,17,19,23,26,50],toend:8,togeth:[2,8,9,12,14,51,59],token:[7,8,15,59,78,87,88],toler:[14,16,63],too:[12,16,42,51,55],took:77,tool:[55,59,60,61,72,87],toolchain:54,toolkit:54,top:[7,14,36,63,81,86],top_k:7,top_level_rnn:36,toplevel:60,topolog:[15,19,38,42,44],topolopi:14,torch:17,toronto:[12,80],total:[14,19,41,43,66,67,73,77,78,88],total_pass:41,touch:87,tourism:87,tourist:88,toward:53,tra:88,trace:[17,31],track:[19,23,40,61],tractabl:8,tradesman:84,tradit:[8,17],traffic:42,trail:12,train100:12,train10:12,train:[0,1,2,4,6,7,8,10,12,17,21,23,24,26,31,32,38,39,44,45,49,52,59,62,65,66,68,74,75,81],train_conf:[78,88],train_config_dir:72,train_data:88,train_id:72,train_list:[2,53,80,81,83],train_part_000:87,trainabl:[8,40],traindot_period:68,trainer:[2,4,15,20,21,22,23,25,38,42,43,45,53,62,67,69,71,79,83,86,87,88],trainer_config:[1,2,53,67,72,73,83,85,87],trainer_config_help:[2,53,62,80,83],trainer_count:[68,69,71,72,73,85,86,87,88],trainer_cpu:27,trainer_cr:27,trainer_gpu:27,trainer_id:[69,72],trainer_intern:22,trainer_mem:27,trainer_packag:27,trainerid:26,trainerintern:[83,85,88],training_machin:79,trainingtest_period:68,trainonebatch:22,trainonedatabatch:79,tran:[62,69],trane:2,transact:[19,23,87],transfer:[1,2],transform:[8,45,59,62,64,79,80,83,86],transform_param_attr:9,translat:[8,9,53,78,85,87,88],transpar:67,transport:69,transpos:[8,62,79],transposedfullmatrixproject:8,travel:2,travers:32,travi:[54,61],treat:[8,17,24],treatment:24,tree:[8,17,40,69,88],trg:88,trg_embed:59,triain:1,tricki:34,trigger:[26,38],trim:8,trivial:[2,51],trn:83,truck:80,true_block:[17,33,39],true_imag:41,true_label:41,true_read:41,truth:[7,8,83,88],tst:83,tune:[6,8,65,83,85,88],tuninglog_barrier_abstract:68,tupl:[2,8,9,12,14,40,41],ture:8,turn:[8,40,41,79],tutori:[55,59,61,62,63,66,67,72,73,74,75,81,83],tweet:87,twelv:88,twice:[31,43],twine:47,twitter:87,two:[1,2,7,8,9,15,24,25,26,27,29,31,32,39,41,42,44,45,46,48,49,50,51,52,53,55,59,63,64,66,67,71,72,78,79,80,81,83,85,86,87,88],txt:[2,18,27,29,62,67,72,83,85,87],type:[2,7,8,9,11,12,14,15,17,19,22,23,26,27,28,29,34,35,36,39,40,41,45,46,49,50,52,53,55,59,60,62,64,69,71,72,73,80,81,83,85,86],type_nam:50,typedef:[24,34,35],typeid:50,typenam:[30,50,63,64],typic:[4,7,42,55,66,87],ubuntu:47,ubyt:41,uci:12,ufldl:8,uid:73,uint32:28,uint64:34,uint64_t:34,unawar:24,unbalanc:69,unbound:59,unclear:26,unconstrain:87,under:[18,23,43,53,54,55,64,72,84,87],underli:53,understand:[55,66,77,78,80,87],understand_senti:59,understudi:88,undeterminist:66,unemploi:84,unexist:86,unidirect:8,unifi:49,uniform:[6,8,12,21,31,41,69,79],uniform_random:40,uniqu:[15,17,19,26,27,48,63,69,72],unique_name_gener:40,unique_ptr:[46,48,62],unit:[8,9,18,53,54,55,59,61,64,65,86],unittest:[35,63],unittestcheckgrad_ep:68,univ:88,unix:67,unk:[49,52,78,88],unk_idx:[83,86],unknown:8,unlabel:87,unlik:[8,63,86,87,88],unordered_map:48,unpack:51,unrol:36,unseg:8,unsign:24,unstack:51,unstack_from:51,unsup:87,unsupbow:87,unsupervis:31,unsupport:63,until:[19,24,43,48,67,72,86],untrack:61,unzip:85,updat:[6,8,10,19,23,24,28,31,36,37,38,42,48,51,54,61,62,67,69,71,87],update_equ:14,update_hook:6,update_memori:17,update_op:37,updatecallback:62,updatestack:72,upload:[19,27,28,47],upon:[19,86],upper:8,upstream:61,uri:72,url:[12,87],urls_neg:87,urls_po:87,urls_unsup:87,usag:[1,2,7,8,9,14,33,38,53,63,66,78,79],use:[1,2,4,6,7,8,9,11,12,14,15,16,17,18,19,25,31,36,37,38,42,43,44,48,49,50,51,52,53,54,55,56,59,60,61,62,63,66,67,69,71,72,73,78,79,80,81,83,84,85,86,87,88],use_etcd:14,use_global_stat:8,use_gpu:[68,69,71,73,79,80,81,83,85,86,87,88],use_jpeg:80,use_old_updat:[22,68,69],use_seq:[53,85],use_sparse_remote_updat:22,used:[1,2,4,7,8,9,10,11,12,14,15,16,17,18,19,25,26,31,36,38,40,41,42,44,45,48,50,51,53,56,59,60,62,63,64,66,67,68,69,71,72,78,80,81,83,85,86,87,88],useful:[1,2,8,9,16,48,59,62,71,83,86,87],usegpu:[62,79],useless:67,user:[1,2,6,8,9,12,14,15,16,17,18,21,23,26,27,29,30,31,32,37,40,41,42,43,44,45,46,48,50,51,53,55,67,68,69,72,77,81,83,86],user_id:85,user_info:12,user_nam:21,usercert:21,userid:84,userinfo:12,userkei:21,usernam:[21,61],uses:[2,19,26,38,42,59,60,61,62,64,69,72,80,81,83,85,88],using:[1,2,4,6,8,9,12,14,15,17,18,19,23,24,26,27,29,30,31,36,37,39,41,42,46,48,50,53,55,59,60,61,62,63,64,66,69,71,72,73,78,79,80,81,83,86,87],usr:[54,67,69,72],usrdict:78,usrmodel:78,usual:[8,14,27,39,53,54,63,66,69,71,72,87],utf:78,util:[4,54,59,62,63,66,77,80,85,87],uuid:[20,26],v28:8,valid:[8,41,45,48,63,72,81,87],valu:[2,4,6,7,8,10,11,12,14,16,17,19,33,36,37,38,39,42,44,45,48,49,50,51,52,53,59,62,63,69,71,72,79,80,81,86,87],value1:69,value2:69,value_:49,value_evalu:7,value_rang:12,values_:51,vanilla:59,vanish:87,varabl:43,vardesc:[17,32,39,40,45,49],vardescbuild:17,vari:[66,72],variabl:[2,8,12,15,16,17,31,32,33,36,37,39,42,43,44,46,49,50,51,53,54,62,63,67,72,73,87],variablenamemap:63,varialbl:31,varianc:[8,81],variant:[8,51,55],varienc:51,varient:51,variou:17,varproto:50,vars_:[17,48],vartyp:[49,52],vector:[2,8,9,12,15,17,22,24,33,36,40,45,46,49,51,59,62,64,78,83,85,87,88],vectorenable_parallel_vector:68,vendor:18,verb:[12,86],verbos:29,veri:[2,8,11,18,23,30,31,38,43,48,51,59,66,80,83,87],verifi:[17,62],versa:54,version:[8,9,18,27,29,31,33,47,54,55,60,62,66,67,68,69,72,73,78,80,84,86,87,88],versu:15,vertic:[8,81],vgg:[9,80],vgg_16_cifar:80,via:[19,36,41,54,61,66,67,72,77,83],vice:54,view:8,virtual:[46,55,60],virtualenv:[60,85],visibl:[26,48,55],vision:80,visipedia:80,visit:14,visual:[8,55,66],viterbi:86,vlog:22,voc_dim:83,vocab:87,volum:[55,73],volumemount:[72,73],volumn:72,voluntarili:84,vutbr:12,wai:[2,7,8,9,15,24,26,42,44,51,53,55,59,60,62,67,71,85,86,88],wait:[10,19,24,61,69],walk:[4,79],wall:86,wangkuiyi:18,want:[2,8,15,27,31,41,44,48,51,53,54,55,60,61,62,69,71,78,81,83,85,86,87],war:84,warn:29,warp:[8,66],warpctc:8,watch:19,wbia:[72,81],web:55,websit:[80,83,86,87],wei:[86,87],weight:[7,8,9,10,59,62,69,71,80,81],weight_act:9,weightlist:62,weights_:62,weights_t:62,welcom:[18,85,87],well:[27,30,31,42,44,49,55,62,69,72,80,83],were:[7,18],west:72,western:84,wether:8,wget:54,what:[6,8,10,18,31,43,50,53,61,63,67,77,83,85],whatev:60,wheel:54,when:[1,2,6,7,8,12,14,16,17,18,19,22,23,24,27,29,38,39,40,42,43,45,51,59,60,61,62,63,64,66,69,71,72,73,77,78,79,80,86,87,88],whenev:[40,85],where:[2,8,9,10,15,17,19,26,32,36,39,45,51,53,59,62,63,66,67,69,71,78,81,86,88],wherea:[17,23,30,33],whether:[7,8,14,16,17,41,49,51,62,63,69,79,80,85,87,88],which:[1,2,4,6,7,8,9,10,12,14,15,16,17,18,19,21,23,24,26,27,30,31,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,53,59,60,61,62,63,64,66,67,69,71,72,77,79,80,81,83,84,85,86,87,88],whichev:79,while_loop:51,whileloop:51,whileop:17,whl:54,who:[30,32,40,78,81,84],whoever:24,whole:[2,7,12,31,33,34,35,36,50,72,73,77,83,84,85,88],whose:[2,8,12,16,19,26,36,45,50,51,59,85,86],why:[9,16,35,60],wide:[18,31,86],width:[7,8,12,22,34,41,62,63,80,88],wiki:[8,18],wikipedia:[8,12],wilder:2,window:[8,11,12,55,60,87],wise:[8,43,45,64],with_avx:[55,61],with_avxcompil:54,with_bia:50,with_coveragecompil:54,with_doccompil:54,with_doubl:62,with_doublecompil:54,with_dsocompil:54,with_gpu:[55,60,61],with_gpucompil:54,with_profil:66,with_profilercompil:54,with_pythoncompil:54,with_rdmacompil:54,with_style_check:61,with_style_checkcompil:54,with_swig_pycompil:54,with_test:[55,61,63],with_testingcompil:54,with_tim:66,with_timercompil:54,within:[8,23,53],without:[7,8,19,24,41,43,45,63,67,87],wloop:51,wmt14:[59,88],wmt14_data:88,wmt14_model:88,wmt:88,wmt_shrinked_data:12,woboq:55,won:[66,81],wonder:2,word2vec:27,word:[2,7,8,12,32,36,43,45,50,51,59,71,82,85,86,87,88],word_dict:[83,86],word_dim:83,word_id:2,word_idx:12,word_slot:86,word_vector:83,word_vector_dim:[8,59,78],words_freq_sort:12,work:[2,4,12,15,17,18,19,37,40,41,54,59,60,61,62,66,67,69,72,73,77,83,85],worker:[43,52,72],workercount:72,workflow:[45,55,61,72],workspac:[55,69,85],worri:53,wors:79,would:[14,17,18,19,26,30,31,32,37,38,40,41,43,49,51,55,60,67,72,77,79,83,86],wouldn:32,wrap:[30,31,77,86],wrapper:[9,18,30,42,46,51,66],writ:85,write:[2,12,15,19,26,30,37,40,41,42,43,45,46,51,55,60,61,65,67,72,80,85,86,88],write_lock:20,writelin:53,writer:[15,40,84],written:[17,31,42,45,49,63,64,85,87],wrong:[2,41],wrote:43,wsize:72,wsj:86,www:[8,12,80,88],x64:54,x_1:8,x_n:8,x_neg:16,x_po:16,xarg:[7,62],xgbe0:69,xgbe1:69,xiaojun:87,xmap_read:12,xrang:[16,31,41,53,62],xxbow:87,xxx:[15,51,81,88],xxxx:20,xxxxxxxxx:72,xxxxxxxxxx:72,xxxxxxxxxxxxx:72,xxxxxxxxxxxxxxxxxxx:72,xzf:54,y_dim:31,y_neg:16,y_po:16,y_predict:53,yaml:[18,72,77,85],yancey1989:27,yann:12,yapf:61,year:84,yeild:[14,80],yet:77,yield:[2,12,15,21,41,53,83,85,86,87],yin:8,you:[1,2,4,6,8,9,14,16,27,48,53,54,55,59,60,61,62,66,67,69,71,72,77,78,79,80,81,83,85,86,87,88],your:[2,8,14,15,18,22,27,29,45,54,55,60,61,62,66,67,71,72,77,83,87],your_access_key_id:72,your_secrete_access_kei:72,your_source_root:35,yourself:8,yum:54,yuyang18:[10,12],z_dim:31,z_size:31,zachari:87,zeng:87,zero:[2,6,8,9,10,12,16,19,31,38,49,62,69,72,83],zhidao:78,zhou:[86,87],zip:[12,84],zone:72,zxvf:72},titles:["API","Introduction","PyDataProvider2","API","Python Prediction","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","The IfElse Operator","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","RNNOp design","Optimizer Design","Design Doc: The C++ Class Parameters","Design Doc: PaddlePaddle Programs","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Distributed Training Architecture","Design Doc: Operation Graph Based Parameter Server","Design Doc: Session","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","Design for TensorArray","Background","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","GET STARTED","RNN Models","RNN Configuration","Build PaddlePaddle from Source Code and Run Unit Test","Contribute Code","Write New Layers","How to write a new operator","How to use Eigen in Paddle","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","<no title>","<no title>","PaddlePaddle Documentation","Cluster bootstrapping tool survey","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":21,"\u4e0d\u4f7f\u7528":34,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":34,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":34,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4ec5\u4ec5\u4f7f\u7528void":34,"\u4ece\u5feb\u7167\u6062\u590d":20,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u4f7f\u7528\u8f6c\u6362\u5e93":21,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":35,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u652f\u89c4\u8303":47,"\u52a0\u901f\u6267\u884c":20,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u52a8\u6001\u6269\u5bb9":20,"\u539f\u56e0":34,"\u539f\u56e0\u5217\u8868":34,"\u53c2\u8003\u6587\u6863":28,"\u540d\u8bcd\u89e3\u91ca":28,"\u57fa\u672c\u8981\u6c42":34,"\u5b9e\u73b0":34,"\u5b9e\u73b0\u65b9\u5f0f":35,"\u5bfc\u51fac":34,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":20,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":34,"\u63a8\u6d4b\u6267\u884c":20,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":21,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":21,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":21,"\u6587\u4ef6\u9884\u5904\u7406":21,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":35,"\u672f\u8bed":20,"\u67b6\u6784\u56fe":28,"\u6846\u67b6\u751f\u6210":28,"\u6982\u5ff5\u89e3\u91ca":21,"\u6a21\u5757":28,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":20,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":35,"\u6d41\u7a0b\u4ecb\u7ecd":21,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u76ee\u5f55\u7ed3\u6784":35,"\u76ee\u6807":28,"\u793a\u4f8b\u7a0b\u5e8f":21,"\u7b26\u53f7":34,"\u7c7b":34,"\u7f16\u8bd1\u9009\u9879":35,"\u7f29\u5bb9":20,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u80cc\u666f":34,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":21,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":21,"\u8f6c\u6362\u5e93":21,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":34,"\u8fdb\u884c\u8bad\u7ec3":21,"abstract":[42,43,44,77],"book\u4e2d\u6240\u6709\u7ae0\u8282":47,"case":71,"class":[31,38,62,63],"filemanager\u8bbe\u8ba1\u6587\u6863":28,"function":[18,30,31,40,78],"new":[62,63],"paddle\u52a8\u6001\u5e93\u4e2d":34,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":34,"paddlepaddle\u53d1\u884c\u89c4\u8303":47,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":47,"return":41,"tensor\u5230eigentensor\u7684\u8f6c\u6362":64,AWS:72,Abs:5,DNS:72,EFS:72,For:[18,73],KMS:72,Not:60,The:[17,24,31,32,33,37,38,45,46],USE:45,Use:[17,39,71,73],Using:[18,24,55,61],With:[27,55],about:31,access:72,account:72,activ:[5,8],adadelta:10,adagrad:10,adam:10,adamax:10,add:72,address:72,addto:8,adversari:79,aggreg:8,aggregatelevel:8,alalysi:22,algorithm:[16,19,36,42,83],all:[48,51],analysi:[42,87],api:[0,3,35,37,40,50,55],appendix:[77,83],applic:3,approach:66,architectur:[42,59,83],argument:[29,41,68,71,83],arrai:16,asset:72,associ:[48,72],assumpt:77,async:69,attent:59,attribut:6,auc:7,auto:16,avg:11,aws:72,backgraound:16,background:[43,44,51,52,53,63],backward:[32,45,63],base:[27,43],basepool:11,basic:77,batch:41,batch_norm:8,batch_siz:41,beam_search:8,benefit:[43,45],between:[15,45,50],bidirect:87,bidirectional_gru:9,bidirectional_lstm:9,bilinear_interp:8,binari:17,bind:63,bleu:88,block:[17,31,32,39,40,45],block_expand:8,blockdesc:39,book:55,bootstrap:77,branch:61,brelu:5,bring:77,bucket:72,build:[31,45,54,56,60,61,73],built:66,cach:2,can:48,capi:35,capi_priv:35,cento:54,challeng:43,check:[8,16,62,67],checker:16,checkpoint:[19,20,26],chines:78,choos:[18,72],chunk:7,cifar:12,classif:[7,80],classification_error:7,classification_error_print:7,client:24,clip:8,clone:61,close:16,cloudform:72,cluster:[25,67,71,72,77],cmake:18,code:[27,60,61],column_sum:7,command:[70,71,83,88],commit:[61,73],common:69,commun:69,compar:77,compil:[17,39,45,63],compos:41,comput:[17,32,45,64],con:77,concat:8,concept:[40,45,72],conclus:[26,77],condit:31,config:[3,71,85,86],configur:[13,59,65,67,72,83,85],conll05:12,connect:8,construct:32,contain:[55,73],content:[35,66,72],context_project:8,contribut:61,control:45,conv:8,conv_oper:8,conv_project:8,conv_shift:8,convert:[26,42,43],convolut:[80,83],core:[16,40,72],cos_sim:8,cost:8,cpu:[55,71],creat:[41,44,45,48,61,72,73],creation:23,creator:41,credenti:72,crf:8,crf_decod:8,cross_channel_norm:8,cross_entropy_cost:8,cross_entropy_with_selfnorm_cost:8,ctc:8,ctc_error:7,cudnnavg:11,cudnnmax:11,current:46,custom:41,dat:84,data:[8,12,19,40,41,42,53,72,73,78,79,80,83,85,86,87,88],datafeed:12,dataprovid:[2,3,69],dataset:[12,19,23,84,85,88],datatyp:12,date:61,decayedadagrad:10,decor:41,deep:17,defin:[63,72,83,87,88],definit:52,delet:[61,72],delv:80,demo:[31,72],dens:26,depend:[31,54],deploi:27,deriv:62,describ:37,descript:[29,45,69,79,84,86],design:[15,16,17,19,23,24,25,26,30,31,32,36,37,38,39,40,41,42,43,44,45,46,48,49,51],destroi:[48,72],detail:[22,69,80],detect:[7,8],detection_map:7,detection_output:8,develop:[45,55,60,61,65],devic:71,dictionari:[41,78],differ:[45,71],directori:72,discrimin:31,discuss:[31,43],dispatch:[19,23],distribut:[15,19,22,27,42,67,69,72],doc:[15,17,19,23,24,25,26,30,32,38,39,40,41,42,43,44,45,46,49],docker:[27,55,60,73],document:[55,76],dotmul_oper:8,dotmul_project:8,down:72,download:[54,72,73,78,81,85,88],dropout:8,dylib:35,dynam:[19,51],ec2:72,eigen:64,elast:72,elect:26,els:17,embed:[8,78,83],engin:31,enough:16,entri:41,environ:27,eos:8,equat:62,eval:42,evalu:[7,53,85],evalutaion:88,event:[14,15],exampl:[15,18,33,35,44,78,79],execut:[17,39,45],exercis:80,exp:5,expand:8,expandlevel:8,explain:16,extern:72,extract:[78,81,85,88],fault:19,featur:[81,84,85,86],field:85,file:[17,72,73,83,84,85],find:72,first_seq:8,fork:61,format:[17,19,83],forward:[32,63],frame:17,framework:[16,64],from:[15,26,50,54,56,60],full_matrix_project:8,fulli:8,gan:[31,79],gate:59,gated_unit:8,gener:[31,59,60,77,79,88],get:[57,73],get_output:8,github:61,global:39,gotcha:60,gpu:[55,66,69,71],gradient:[16,24,46,62],gradient_print:7,graident:16,graph:[32,43,45],group:[8,72],gru:[9,69],gru_group:9,gru_step:8,gru_unit:9,grumemori:8,hand:66,handler:[15,34],happen:26,hierarchi:17,high:[37,50],hook:61,how:[16,22,41,45,63,64,65,66],hsigmoid:8,huber_classification_cost:8,huber_regression_cost:8,iam:72,ident:5,identity_project:8,ifels:33,ifelseop:17,imag:[8,9,27,55,73,80],imagenet:81,imdb:[12,87],img_cmrnorm:8,img_conv:8,img_conv_bn_pool:9,img_conv_group:9,img_pool:8,imikolov:12,implement:[16,18,22,36,41,45,46,62,63,64,79],infer:[14,83],infershap:[39,49],info:81,ingredi:15,ingress:28,init_hook:2,initi:[24,31,71,72],input_typ:2,insid:48,inspect:72,instal:[54,56,72,77,83],instanc:72,integr:72,interact:50,interfac:[12,16,19,24,25,37,41,44,48,81],intermedi:45,interpol:8,introduc:51,introduct:[1,78,81,87,88],isn:41,issu:61,job:[19,27,67,72,73],join:8,keep:61,kei:72,kernel:45,kill:67,kmax_sequence_scor:8,kube:72,kubectl:72,kubernet:[27,72,73],label:86,lambda_cost:8,languag:17,larg:22,last_seq:8,launch:67,layer:[8,15,30,40,62,71],learn:17,learnabl:8,leval:50,level:[37,50],libpaddle_capi_shar:35,libpaddle_capi_whol:35,librari:[24,45],limit:42,line:[70,83],linear:[5,53],linear_comb:8,list:[20,41],local:[42,44,48,61,71,72],lodtensor:[36,51],lodtensordesc:52,log:[5,83],logic:23,logist:83,low:50,lstm:[9,69,86,87],lstm_step:8,lstmemori:8,lstmemory_group:9,lstmemory_unit:9,macro:45,main:31,manag:18,map:[41,45],master:[19,23,27],math:8,mathemat:16,matrix:69,max:11,maxframe_print:7,maxid:8,maxid_print:7,maxout:8,member:31,memori:[8,36],messag:50,meta:85,might:31,migrat:45,mileston:45,mini:41,minibatch:12,misc:8,mix:[8,71],mnist:[12,79],model:[2,3,13,15,22,24,26,31,53,55,58,59,67,71,78,79,80,81,82,83,88],modifi:73,modul:[45,64],momentum:10,more:31,movi:[84,85],movielen:[12,84,85],multi_binary_label_cross_entropy_cost:8,multibox_loss:8,multipl:41,multiplex:8,name:[48,72],nce:8,necessari:45,need:[41,60,66],nest:36,network:[9,45,59,71,79,80,81,83,85,86],neural:[59,80,83,85,86],neuralnetwork:53,nlp:[9,69],non:2,norm:8,note:16,numer:16,numpi:16,nvprof:66,nvvp:66,object:[19,85],observ:[78,81],onli:[41,48,55],op_mak:45,oper:[30,33,39,40,43,45,46,49,51,63],opinfomap:45,opkernel:[45,63],opproto:50,optim:[10,19,24,32,37,40,65,83],option:[29,54,78],opwithkernel:45,order:29,origin:[45,61],orthogon:48,outlin:68,output:[8,67,72],overview:[26,45,48,83],packag:18,pad:8,paddl:[22,41,48,64,73],paddlejob:27,paddlepaddl:[15,17,39,42,47,55,56,60,72,76,78,88],pair:72,parallel_nn:71,paramet:[6,8,14,15,19,24,25,27,38,40,43,69,70,72,78,81],paraphras:78,parent:48,part:32,partit:24,pass:71,path:[26,29],perform:[66,69],persist:23,pfsclient:[28,29],pfsserver:28,placement:42,pnpair:7,point:72,pool:[8,11],pose:46,power:8,pre:61,precision_recal:7,predict:[4,80,81,85,86,87],prefetch:41,prelu:8,prepar:[53,67,72,78,79,80,85,87,88],preprocess:[78,80,83,85,88],prerequisit:67,pretrain:[78,88],print:7,privat:72,pro:77,problem:[37,46,53],procedur:77,process:[19,24,27,37,45,60],profil:66,program:[17,39,40],programdesc:39,project:18,propos:46,protobuf:49,protomak:63,provid:[2,41,83,85,86],pserver:26,pull:61,push:61,pydataprovider2:2,python:[4,16,27,36,37,40,41,42,50,52,55,62,63,81,83,85],qualiti:45,queue:[19,23],quick:83,randomnumb:69,rank:7,rank_cost:8,rat:85,rate:84,reader:[12,15,41],realiz:45,recoveri:19,recurr:[8,9,59,83],recurrent_group:8,ref:16,refactor:45,refer:[2,42,43,66,86,87],region:72,regist:[45,50,63],registr:[45,46],registri:45,regress:[53,83,85],regular:24,relat:[45,51],relu:5,remark:63,remot:[25,44],render:72,repeat:8,represent:[17,45],request:61,requir:[18,31,54,61],reshap:8,resiz:8,resnet:81,result:[67,73,88],retri:23,revis:78,rmsprop:10,rnn:[36,51,58,59,69],rnnop:[17,36,45],role:86,rotat:8,route53:72,row:49,row_conv:8,row_l2_norm:8,run:[60,63,67,73,86],runtim:[27,42],sampl:8,sampling_id:8,save:26,scale:[8,19],scale_shift:8,scaling_project:8,scope:[17,36,45,48],script:73,secur:72,select:[24,49],selectedrow:49,selective_fc:8,semant:86,sentiment:[12,87],separ:45,seq_concat:8,seq_reshap:8,seq_slic:8,seqtext_print:7,sequenc:59,sequence_conv_pool:9,sequencesoftmax:5,sequenti:2,server:[19,23,24,27,43,69,72],servic:72,session:[42,44],set:70,setup:[54,72],sextant:77,sgd:69,share:[15,48],should:48,shuffl:41,sigmoid:5,simpl:[53,59],simple_attent:9,simple_gru2:9,simple_gru:9,simple_img_conv_pool:9,simple_lstm:9,singl:41,slice:8,slice_project:8,slope_intercept:8,small_vgg:9,smooth_l1_cost:8,softmax:5,softrelu:5,solut:46,some:60,sourc:[54,56,60],span:54,spars:[24,25,26,49,71],specifi:[71,78],split:85,spp:8,squar:5,square_error_cost:8,squarerootn:11,stack:[17,87],standard:83,stanh:5,start:[15,57,61,72,73,83],startup:73,step:36,store:19,structur:79,sub_nested_seq:8,subcommond:29,submit:27,suffici:41,suitabl:18,sum:[7,11],sum_cost:8,sum_to_one_norm:8,summar:15,summari:83,support:51,survei:77,synopsi:29,system:72,tabl:35,table_project:8,take:41,tanh:5,task:[19,23],tear:72,tecton:77,templat:72,tensor:[8,45,64],tensorarrai:51,tensordesc:52,test:[60,61,62,63,69,71,85,86,87],text:88,text_conv_pool:9,theori:16,thi:48,think:31,three:51,timelin:26,timer:66,tip:66,todo:[20,21],togeth:48,toi:79,toler:19,tool:[18,66,77],train:[14,15,19,22,25,27,37,41,42,53,55,67,69,71,72,73,78,79,80,83,85,86,87,88],trainer:[14,19,24,26,27,72,85],tran:8,trans_full_matrix_project:8,transfer:83,tune:[66,69],tutori:[78,80,82,86,87,88],two:16,type:63,ubuntu:54,uci_h:12,uniform:51,unit:[60,62,63,69],updat:[15,25,26,72],usag:[36,41,55,64,65],use:[22,41,64],user:[19,78,84,85,87,88],util:7,value_print:7,vardesc:52,variabl:[40,45,48,52],vector:69,verifi:72,vgg_16_network:9,visual:81,volum:72,vpc:72,warp_ctc:8,what:[22,26,60,66],when:[26,48],why:[41,45,51,66],wmt14:12,word:[78,83],work:55,workflow:88,workspac:67,wrapper:62,write:[62,63,83],yaml:73,zoo:[81,82]}}) \ No newline at end of file +Search.setIndex({docnames:["api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/file_manager/README","design/file_manager/pfs/pfsclient","design/functions_operators_layers","design/gan_api","design/graph","design/if_else_op","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/ops/rnn","design/optimizer","design/parameters_in_cpp","design/program","design/python_api","design/reader/README","design/refactor/distributed_architecture","design/refactor/parameter_server","design/refactor/session","design/refactorization","design/register_grad_op","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/tensor_array","design/var_desc","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/build_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/dev/new_op_en","howto/dev/use_eigen_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","survey/cluster_bootstrapping_tools","v1_api_tutorials/README","v1_api_tutorials/embedding_model/index_en","v1_api_tutorials/gan/index_en","v1_api_tutorials/imagenet_model/resnet_model_en","v1_api_tutorials/quick_start/index_en"],envversion:50,filenames:["api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/if_else_op.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/ops/rnn.md","design/optimizer.md","design/parameters_in_cpp.md","design/program.md","design/python_api.md","design/reader/README.md","design/refactor/distributed_architecture.md","design/refactor/parameter_server.md","design/refactor/session.md","design/refactorization.md","design/register_grad_op.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/tensor_array.md","design/var_desc.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/build_en.md","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/dev/new_op_en.md","howto/dev/use_eigen_en.md","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","survey/cluster_bootstrapping_tools.md","v1_api_tutorials/README.md","v1_api_tutorials/embedding_model/index_en.md","v1_api_tutorials/gan/index_en.md","v1_api_tutorials/imagenet_model/resnet_model_en.md","v1_api_tutorials/quick_start/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[2,0,1,""]}},objnames:{"0":["py","function","Python function"]},objtypes:{"0":"py:function"},terms:{"0000x":82,"00186201e":4,"00m":66,"01852v1":8,"03m":66,"0424m":66,"0473v3":9,"055ee37d":72,"0630u":66,"06u":66,"0810u":66,"08823112e":4,"0957m":66,"0ab":8,"0rc1":47,"0rc2":47,"100gb":66,"100gi":72,"10g":27,"10m":66,"1150u":66,"11\u5b9e\u73b0\u4e86c":35,"11e6":73,"12194102e":4,"124n":66,"13m":73,"1490u":66,"15501715e":4,"1550u":66,"15mb":82,"16mb":82,"16u":66,"173m":81,"173n":66,"1770u":66,"18ad":72,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":73,"197u":66,"1gb":66,"1st":[79,81],"210u":66,"211839e770f7b538e2d8":9,"215n":66,"228u":66,"234m":81,"2520u":66,"252kb":82,"25639710e":4,"25k":82,"2680u":66,"27787406e":4,"279n":66,"27m":66,"285m":66,"2863m":66,"28m":66,"28x28":2,"2977m":66,"2cbf7385":72,"2nd":8,"302n":66,"30u":66,"32777140e":4,"328n":66,"32u":66,"32x32":12,"331n":66,"3320u":66,"36540484e":4,"365e":72,"36u":66,"3710m":66,"3768m":66,"387u":66,"38u":66,"3920u":66,"39u":66,"4035m":66,"4090u":66,"4096mb":69,"4279m":66,"43630644e":4,"43u":66,"448a5b355b84":73,"4560u":66,"4563m":66,"45u":66,"4650u":66,"4726m":66,"473m":73,"48565123e":4,"48684503e":4,"49316648e":4,"4gb":69,"4yf":8,"50bd":72,"50gi":72,"51111044e":4,"514u":66,"525n":66,"526u":66,"53018653e":4,"536u":66,"5460u":66,"5470u":66,"54u":66,"5690m":66,"573u":66,"578n":66,"5798m":66,"586u":66,"58s":73,"5969m":66,"5delta":8,"6080u":66,"6082v4":8,"6140u":66,"6305m":66,"639u":66,"655u":66,"6780u":66,"6810u":66,"682u":66,"6970u":66,"6ce9":72,"6node":67,"704u":66,"70634608e":4,"7090u":66,"72296313e":4,"72u":66,"73u":66,"75u":66,"760u":66,"767u":66,"783n":66,"784u":66,"78m":66,"7eamaa":12,"7kb":73,"8250u":66,"8300u":66,"830n":66,"849m":66,"85625684e":4,"861u":66,"8661m":66,"892m":66,"901n":66,"90u":66,"918u":66,"9247m":66,"924n":66,"9261m":66,"93137714e":4,"9330m":66,"94u":66,"9530m":66,"96644767e":4,"983m":66,"988u":66,"997u":66,"99982715e":4,"99m":81,"99u":66,"9f18":73,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":20,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":47,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":47,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":21,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":35,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":34,"\u4e0d\u4f7f\u7528c":34,"\u4e0d\u4f7f\u7528swig":34,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":34,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":34,"\u4e0d\u5728":35,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":34,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":34,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":21,"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":47,"\u4e0e\u53ef\u80fd\u6709\u7684":47,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":35,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":34,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":34,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":47,"\u4e2a\u6027\u5316\u63a8\u8350":47,"\u4e2d":[34,35],"\u4e2d\u5199\u5165json\u5185\u5bb9":20,"\u4e2d\u5b8c\u5168\u4e00\u81f4":34,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":35,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":21,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":35,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":35,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":35,"\u4e5f\u4e0d\u751f\u6210":35,"\u4e66\u5199":34,"\u4eba\u8138\u8bc6\u522b":21,"\u4ec5\u4ec5\u4f7f\u7528":34,"\u4ece":47,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":20,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":20,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":35,"\u4ed6\u662f\u5c06":35,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":34,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":34,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":21,"\u4ee3\u8868shard\u7684index":21,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":21,"\u4ee5\u4e0b":21,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u53canumpi":21,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":20,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":34,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":34,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":21,"\u4f20\u5165":21,"\u4f46":35,"\u4f46\u4e0d\u66b4\u9732":35,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":47,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":47,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":35,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":34,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":21,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":34,"\u4f7f\u7528":[35,47],"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":21,"\u4f7f\u7528\u52a8\u6001\u5e93":34,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":20,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":35,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":35,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":20,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":34,"\u4f7f\u7528c":35,"\u4f7f\u7528c99\u505a\u63a5\u53e3":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":34,"\u4f7f\u7528regress":47,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":34,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":34,"\u4f7f\u7528void":34,"\u4f8b\u5982":[21,34,35,47],"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":34,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":34,"\u4f8b\u5982\u5bf9\u4e8epython":34,"\u4f8b\u5982c":34,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":34,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":34,"\u4f8b\u5982python\u7684":34,"\u4f9d\u6b21\u7c7b\u63a8":47,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":34,"\u4fee\u590d\u6240\u6709bug\u540e":47,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":47,"\u4fee\u590dubuntu":47,"\u4fee\u6539\u6210":47,"\u505a\u53ea\u8bfb\u6302\u8f7d":21,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":47,"\u505a\u63a5\u53e3":34,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":35,"\u5176\u4e2d":[34,47],"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":35,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":47,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":35,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":35,"\u5177\u4f53\u8bf7\u53c2\u8003":35,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":34,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":34,"\u518d\u57fa\u4e8e":47,"\u5199\u4ee3\u7801":34,"\u5199\u5165\u5feb\u7167\u6570\u636e":20,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":21,"\u51fd\u6570\u540d\u4e3a":35,"\u51fd\u6570\u547d\u540d":34,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":20,"\u5206\u652f":47,"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":47,"\u5206\u652f\u4e2d":47,"\u5206\u652f\u4e3a\u5f00\u53d1":47,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":47,"\u5206\u652f\u4e3a\u7a33\u5b9a":47,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":47,"\u5206\u652f\u5408\u5165":47,"\u5206\u652f\u5408\u5165master\u5206\u652f":47,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":47,"\u5206\u652f\u540d\u4e3a":47,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":47,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":47,"\u5206\u7247":20,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":20,"\u5219\u5ffd\u7565":20,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":20,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":20,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":20,"\u5230":20,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":47,"\u52a8\u6001\u5e93":34,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":35,"\u5305\u62ec":21,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":20,"\u534f\u540c\u5b8c\u6210releas":47,"\u5355\u4e2a\u503c":21,"\u5355\u70b9\u6545\u969c":20,"\u5373":35,"\u5373\u4f7f\u7528":35,"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5373\u4f7fc":35,"\u5373\u4f8b\u5982":35,"\u5373\u4fbfpaddl":35,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":35,"\u5373\u66b4\u9732":35,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":34,"\u53c2\u6570":34,"\u53c2\u8003":[28,34],"\u53cc\u5411\u9a8c\u8bc1":28,"\u53d1\u5e03\u5230dockerhub":47,"\u53d1\u5e03\u5230github":47,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":20,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":35,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":34,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":20,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":20,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":34,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":21,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":20,"\u53ef\u4ee5\u7528":28,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":21,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":47,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":20,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":20,"\u540c\u65f6\u518d\u5c06":47,"\u540c\u65f6\u63d0\u8d77":47,"\u540d\u5b57\u4fee\u9970":34,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":20,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":47,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":34,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":20,"\u548c":[21,34,35,47],"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":21,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":20,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":20,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":34,"\u56fe\u50cf\u5206\u7c7b":47,"\u5728":[35,47],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":20,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":21,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":47,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":20,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":35,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":21,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":20,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":35,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":20,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":20,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":21,"\u5728\u6837\u4f8b\u4e2d":35,"\u5728\u7528\u6237\u4f7f\u7528c":35,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":21,"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":47,"\u5728\u8fd9\u4e2a":47,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":47,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":35,"\u5728c":34,"\u5728c\u7684\u5934\u6587\u4ef6":34,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":21,"\u5728paramet":20,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":35,"\u5747\u662f\u5728":35,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u591a\u4e2a\u503c":21,"\u591a\u4e2aparamet":20,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":34,"\u5982\u56fe\u4e2dtrainer":20,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":20,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":34,"\u5982\u679c\u5931\u8d25":47,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":20,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":21,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":47,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":35,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":20,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":34,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":47,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":34,"\u5982\u679cparamet":20,"\u5b57\u7b26\u4e32":21,"\u5b58\u50a8":21,"\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":21,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":35,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":21,"\u5b9e\u73b0\u7b80\u5355":34,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":34,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":34,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":34,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":34,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":35,"\u5bf9\u4e8e\u6bcf\u79cdc":35,"\u5bf9\u6bd4":34,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":35,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":47,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":35,"\u5c06":47,"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":20,"\u5c06\u5927\u91cf\u7684":34,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":47,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":47,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":34,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":20,"\u5e73\u5747\u6545\u969c\u7387":20,"\u5e76\u4e14\u4f7f\u7528":35,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":34,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":34,"\u5e76\u5220\u9664":47,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":20,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":20,"\u5e76\u53d1\u5e03\u5230pypi":47,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":21,"\u5e76\u5c06c":35,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":20,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":34,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":21,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":47,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":47,"\u5efa\u8bae":47,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":35,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":47,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":20,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":47,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":35,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"\u5f97\u4f7f\u7528":34,"\u5fc5\u8981":35,"\u60c5\u611f\u5206\u6790":47,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":35,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":21,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u9009\u62e9":21,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":21,"\u6216\u8005":[34,35],"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":20,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":21,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":21,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":20,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":35,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":35,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":35,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":35,"\u628a":21,"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":21,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":20,"\u63a5\u53e3":[34,35],"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":35,"\u63a5\u53e3\u662f":21,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a7\u5236\u7528\u6237\u6743\u9650":21,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":21,"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u6570\u636e":28,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":34,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":21,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":21,"\u6587\u4ef6":34,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":34,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":20,"\u6587\u4ef6\u5bf9\u5e94\u7684data":21,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":47,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":47,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":34,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":21,"\u65e0\u8bba\u662f\u4ece":21,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":21,"\u65f6":20,"\u662f":28,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":34,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":35,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":34,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":35,"\u662f\u56e0\u4e3ac99\u652f\u6301":34,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u6307":35,"\u662f\u7528\u6237\u4f7f\u7528c":35,"\u662fc":35,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":20,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":35,"\u6700\u540e\u5220\u9664":47,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":34,"\u6709\u6807\u51c6\u7684":34,"\u6709\u7684\u65f6\u5019":34,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":47,"\u672c\u6587\u6863\u63cf\u8ff0paddl":35,"\u673a\u5668\u7ffb\u8bd1":47,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":20,"\u6765\u786e\u4fdd\u628a":34,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":34,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":21,"\u6765\u8fdb\u884c\u8ba8\u8bba":35,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":47,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":20,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":20,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":20,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":34,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":20,"\u6bcf\u4e00\u4e2a":47,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":21,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":21,"\u6bcf\u4e2adata":21,"\u6bcf\u4e2aparamet":20,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":20,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":21,"\u6bcf\u969410\u5206\u949f":20,"\u6bd4\u5982":21,"\u6bd4\u5982\u5c06":47,"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":20,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":21,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":21,"\u6ce8":20,"\u6d4b\u8bd5docker\u955c\u50cf":47,"\u6d6e\u70b9\u578b\u6570\u636e":21,"\u7136\u540e\u5728etcd\u7684":20,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7248\u672c\u5206\u652f":47,"\u7248\u672c\u53f7":47,"\u7248\u672c\u53f7rc":47,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":47,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":34,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":21,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":21,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":34,"\u751f\u6210\u6587\u6863":34,"\u751f\u6210\u7684":21,"\u751f\u6210\u7ed9\u5b9a":21,"\u751f\u6210api\u6587\u6863":34,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u7528":28,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":21,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":35,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":21,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":35,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":21,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u901a\u8fc7c":35,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":20,"\u7531\u4e8ec":34,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8epypi":47,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u7684\u5934\u6587\u4ef6":34,"\u7684\u63a5\u53e3\u6837\u5f0f":34,"\u7684\u6570\u636e\u6d41\u56fe":21,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":34,"\u7684\u7f29\u5199":28,"\u7684\u89c4\u8303":34,"\u7684\u89d2\u5ea6":21,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":21,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":20,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":34,"\u76ee\u5f55\u4e0b":35,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":34,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":35,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":34,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":34,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":20,"\u79bb\u7ebf\u6279\u5904\u7406":21,"\u7b2c\u4e00\u4e2atag\u4e3a":47,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":47,"\u7b2c\u4e8c\u4e2a\u4e3a":47,"\u7b49":35,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":35,"\u7b49\u6587\u4ef6":35,"\u7c7b\u4f3c":35,"\u7c7b\u540d\u548cc":34,"\u7c7b\u578b":34,"\u7ea2\u697c\u68a6":79,"\u7ed3\u8bba":34,"\u7edf\u4e00\u7528":21,"\u7f16\u8bd1\u5668\u6ca1\u6709":34,"\u7f16\u8bd1\u578b\u8bed\u8a00":34,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684ubuntu":47,"\u7f16\u8bd1c":35,"\u7f16\u8bd1master\u5206\u652f\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1ubuntu\u7684deb\u5305":47,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":35,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":34,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":35,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":20,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":34,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":34,"\u800c\u5bf9\u4e8egolang":34,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":34,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":35,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":21,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":34,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":20,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":35,"\u826f\u597d\u7684\u6587\u6863":34,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":20,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":35,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":34,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":34,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":20,"\u8ba9paddle\u6838\u5fc3\u4e2d":35,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":20,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":47,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":47,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":47,"\u8bbe\u7f6e":35,"\u8bc6\u522b\u6570\u5b57":47,"\u8bcd\u5411\u91cf":47,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":47,"\u8bf4\u660e":20,"\u8bf7\u53c2\u8003":35,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":21,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":20,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":47,"\u8fd8\u662f\u4ece":21,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":35,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":35,"\u8fd9\u4e09\u4e2a\u5206\u652f":47,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":35,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":35,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":35,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":34,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":34,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":35,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":35,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":21,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":21,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":34,"\u8fd9\u662f\u56e0\u4e3a":34,"\u8fd9\u6837":35,"\u8fd9\u6837\u4fdd\u8bc1":47,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":21,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":34,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":20,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":47,"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u901a\u5e38":35,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":20,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":35,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":47,"\u90a3\u4e48":35,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":21,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":34,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":20,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":34,"\u91cd\u547d\u540d\u6210":34,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":34,"\u9519\u8bef\u5904\u7406":34,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":34,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":34,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":35,"\u9700\u8981":21,"\u9700\u8981\u4fee\u6539build":47,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":35,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":47,"\u9700\u8981\u5f15\u7528":35,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":34,"\u9700\u8981\u6ce8\u610f\u7684\u662f":47,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":35,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":47,"\u9ed8\u8ba4256k":28,"abstract":[48,62,69],"api\u4e2d\u4f7f\u7528":34,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":35,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":35,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":35,"api\u63a5\u53e3":28,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":35,"api\u65f6":35,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":35,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":35,"api\u66b4\u9732\u7684\u7c7b\u578b":35,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":35,"api\u7684\u5b9e\u4f8b":35,"api\u7684\u5b9e\u73b0\u7ec6\u8282":35,"api\u7684\u63a5\u53e3":35,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":35,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":35,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":35,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":35,"block\u6784\u6210\u4e00\u4e2amodel":20,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":47,"boolean":[29,33,34],"break":[18,51,82],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":47,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":47,"byte":28,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":34,"c\u6709\u6807\u51c6\u7684abi":34,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":34,"case":[8,22,35,41,42,45,53,55,59,62,63,66,70,72,77,80,82],"char":24,"class":[4,5,6,7,8,9,10,11,12,14,15,17,30,32,34,37,39,40,42,45,46,48,49,50,51,64,68],"const":[17,22,24,38,46,48,50,51,62,63,64],"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":35,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":35,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":35,"core\u6982\u5ff5":35,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":21,"deb\u5305":47,"deb\u5305\u7f16\u8bd1\u95ee\u9898":47,"default":[2,6,7,8,9,11,12,14,15,17,18,31,36,48,49,50,52,55,60,63,67,69,71,72,73,77,82],"enum":[22,24,39,49,50,52],"export":54,"final":[8,9,16,36,51,53,54,61,62,63],"float":[2,6,7,8,10,12,50,53,62,63,64,66,71,79,81],"function":[2,4,8,9,10,12,15,17,19,23,24,25,27,32,36,37,38,39,41,42,43,45,46,48,50,51,53,59,62,63,64,66,67,69,77,80,82],"golang\u53ef\u4ee5\u4f7f\u7528":34,"golang\u7684":34,"h\u5e76\u4e0d\u56f0\u96be":34,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":21,"import":[2,4,7,8,15,17,18,31,33,36,39,43,48,53,59,63,66,72,79,80,81,82],"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":21,"instance\u5305\u6db5\u4e24\u4e2a\u503c":21,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":21,"int":[2,6,7,8,9,12,17,22,23,24,27,33,34,35,39,40,41,49,50,51,52,62,64,71,82],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":34,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":47,"long":[1,8,9,12,55,66],"model\u505a\u5206\u652f\u7ba1\u7406":47,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":21,"new":[2,8,12,16,17,18,19,22,23,24,25,26,40,41,42,44,45,50,51,60,61,65,72,73,77,80,82],"note\u7684\u4e66\u5199":47,"null":[8,62,69],"org\u76ee\u524d\u9075\u5faa":47,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":34,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":34,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":34,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":34,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":35,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":34,"paddle\u7684c":35,"paddle\u8bad\u7ec3\u4efb\u52a1":21,"paddle\u8def\u5f84\u4e0b":35,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":34,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":35,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":34,"paddle_\u7c7b\u578b\u540d":35,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":35,"paddlepaddle\u4f7f\u7528git":47,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":47,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":21,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":47,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":47,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":47,"patch\u53f7":47,"patch\u53f7\u52a0\u4e00":47,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"public":[12,17,30,46,48,50,51,62,63,64,67,72,73],"py\u4e2d":47,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":47,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":21,"reader\u8f93\u51fa\u7684data":21,"release\u9875\u9762":47,"return":[2,6,7,8,9,11,12,14,15,16,17,21,22,24,27,30,31,36,37,39,40,42,44,46,48,50,51,53,59,62,63,64,72,80,81,82],"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":21,"server\u4e4b\u4e0a":20,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":20,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":20,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":20,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":20,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":20,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":20,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":20,"server\u751f\u6210\u4e00\u4e2auuid":20,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":20,"server\u7684\u6570\u636e\u5feb\u7167":20,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":20,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":20,"short":[8,9,31,48,51,53,63],"static":[14,24,35,48,50,72,77],"super":[40,62],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":34,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":34,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"swig\u76f4\u63a5\u8bfb\u53d6c":34,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":34,"switch":[17,35,44,72],"tag\u4e3a":47,"throw":72,"true":[2,6,7,8,9,11,12,14,15,17,22,33,37,39,41,50,51,53,59,62,69,71,72,81],"try":[10,18,19,22,23,24,41,48,60,66,80],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":35,"ubuntu\u5b89\u88c5\u5305\u7684\u529f\u80fd\u6b63\u786e\u6027":47,"var":[17,30,32,33,37,39,40,45,48,51],"void":[17,22,24,30,34,35,39,49,50,62,63,64],"wheel\u5305":47,"while":[1,2,6,12,17,26,38,41,48,55,59,63,64,69,80,82],AGE:[72,73],AWS:[21,65,74,75],And:[2,7,8,10,12,14,16,22,26,27,31,41,42,48,59,71,72,73,79,81],But:[2,8,9,12,16,30,48,77],EOS:8,For:[1,2,7,8,10,12,14,15,17,23,24,25,27,30,32,36,38,39,40,41,42,44,45,46,49,50,52,53,54,55,59,61,62,63,64,66,67,68,69,71,77,79,81,82],Has:2,IDE:60,IDs:[12,26,82],IRs:42,Ids:82,Into:72,Its:[2,49,59,63,72],K8s:77,NMS:8,NOT:[40,63],Not:[15,19,67,77],ONE:2,OPs:[42,43],One:[7,9,14,16,26,44,48,59,62,69,80,82],Ops:[45,50,63],PFS:28,QoS:73,Such:51,THE:2,TLS:[15,28,72],That:[8,12,41,55,69,71],The:[1,2,4,5,6,7,8,9,10,12,14,15,16,18,19,23,25,26,27,29,35,36,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,66,67,69,71,72,73,78,79,80,81,82],Their:[2,8,19],Then:[4,8,30,54,55,59,61,62,66,72,73,79],There:[7,8,12,14,15,17,18,19,24,26,27,29,36,38,48,49,53,55,63,66,72,80,81,82],These:[7,17,32,37,50,67,71],Use:[2,7,12,15,29,41,45,55,62,66,69,70,72],Used:[9,45],Useful:2,Using:[19,45,48,60,64,73],VMs:60,VPS:72,WITH:61,Will:[12,14],With:[2,8,9,39,51,53,80],YES:27,Yes:[55,60],___fc_layer_0__:72,__doc__:50,__file__:27,__gradient_machines__:14,__impl__:50,__init__:[31,37,40,51,62],__main__:[31,81],__metaclass__:63,__name__:[31,81],__param_conf__:14,__rnn_step__:59,__tmp_params__:14,__va_args__:46,_binari:18,_create_global_var:40,_error:80,_librari:18,_link:9,_loss:31,_op:63,_proj:8,_res2_1_branch1_bn:81,_source_language_embed:[59,79],_target_language_embed:[59,79],_test:18,a_op:63,aaaaa:21,aaaaaaaaaaaaa:72,abc:8,abil:31,abl:[8,15,37,40,42,44,52,77,80],about:[4,8,9,17,18,27,29,36,42,48,50,53,63,66,68,69,72],abov:[2,4,7,8,15,17,18,19,23,30,32,36,37,39,40,42,44,50,51,53,55,60,61,63,64,66,72,73,77,80,81,82],abs:[8,9,16,31,80],abs_numerical_grad:16,absolut:[1,67],acceler:[20,71],accept:[2,4,6,8,12,15,41,45,82],access:[1,8,9,15,18,23,26,27,40,42,59],accessmod:72,accessor:40,accomplish:55,accord:[1,2,7,8,16,24,32,42,43,45,51,63,67,68,69,71],accordingli:[4,7,8,62],account:[45,77],accrodingli:22,accumul:[19,24],accur:[16,26],accuraci:[7,62,82],achiev:66,ack:69,across:[8,12,36],act:[8,9,17,42,44,51,53,59,82],act_output:50,act_typ:82,action:72,activ:[4,9,13,18,42,50,53,54,59,62,64,69,82],activi:9,actual:[2,22,31,50,53,64],adadelta:82,adagrad:[49,82],adagradoptim:37,adam:[15,24,31,82],adamax:82,adamoptim:[79,82],adapt:[7,10,14,53],add:[2,8,9,12,14,16,17,18,22,26,30,33,37,42,43,45,48,53,54,60,61,62,63,64,66,71,82],add_depend:18,add_execut:18,add_input:[36,62],add_memori:36,add_output:36,add_scalar:[17,39],add_test:[18,62],add_to:8,add_two:[17,36],add_unittest_without_exec:62,addattr:[50,63],addbia:62,addcom:[50,63],added:[2,7,14,17,43,61,62,63],adding:81,addinput:[50,63],addit:[8,9,45,51,55,63,64,82],addop:[30,64],addoutput:63,addr:19,address:[19,24,42,44,55,66,69,77],addrow:62,addtion:67,addtolay:8,addtyp:50,adjust:53,admin:77,administr:[26,60,77],adopt:31,advanc:[16,59,66,69],advantag:16,adversari:[31,41],advic:66,affect:[8,17],afford:23,afi:2,aforement:[18,67],after:[8,9,12,17,18,23,24,26,29,38,42,43,54,55,59,61,62,63,64,67,69,71,72,73,80,81,82],again:[15,19,66],against:72,age:12,agg_level:8,aggreg:72,ago:18,aid:66,aistat:8,alex:8,alexnet_pass1:71,alexnet_pass2:71,algorithm:[8,10,23,53,59,79],alia:[5,6,8],align:[8,9,12],all:[2,6,7,8,10,14,15,17,18,19,22,24,26,27,29,31,32,35,36,37,39,40,42,44,45,50,53,55,59,60,61,62,64,66,67,68,69,71,72,73,77,79,80,81,82],alloc:[6,24,27,62,64,71],allow:[15,24,42,55,61,62,66,69,72,82],allow_only_one_model_on_one_gpu:[68,69,71],almost:[53,60,67,79],alpha:18,alreadi:[18,19,40,42,43,48,55,66,67,69,72,73],alreali:68,also:[1,2,8,9,12,15,17,18,22,25,30,31,32,38,39,40,41,48,50,51,54,55,59,60,62,63,66,67,73,77,80,81,82],altern:63,although:53,altogeth:77,alwai:[4,8,9,14,18,41,44,49,53,69,72],amazon:[72,73,82],amazonaw:72,amazonec2fullaccess:72,amazonelasticfilesystemfullaccess:72,amazonroute53domainsfullaccess:72,amazonroute53fullaccess:72,amazons3fullaccess:72,amazonvpcfullaccess:72,ambigu:41,amd64:[54,72],among:72,amount:66,analysi:[53,66],analyz:82,ancestor:[39,40],andd:72,ani:[1,2,8,9,12,15,18,19,24,26,27,40,41,42,43,44,60,63,64,66,72,82],anoth:[2,8,14,15,17,27,48,50,55,60,69,72],ans:72,answer:[53,72],anyth:[12,41,61,72],anytim:31,api:[12,14,15,18,24,25,27,28,30,31,36,38,45,47,51,52,54,62,63,66,72,76,77,78,80,82],api_shar:18,api_test:18,api_trainer_config_helpers_lay:59,apiserv:72,apivers:[72,73],appear:32,append:[2,14,40,41,59,62,67],append_gradient_machin:14,append_oper:40,appleclang:54,appleyard:66,appli:[8,31,32,48,59,62,82],applic:[32,40,45,55,63,66,72,73,77],applyl1:22,appoint:63,appreci:61,approach:[8,38,42,43,77],apt:54,arbitrari:[8,42,64],architectur:79,archiv:[12,34,35],area:31,arg:[2,7,9,37,50,53,63,68,80,81,82],arg_nam:8,argument:[2,4,8,12,17,22,23,37,38,44,59,62,69,70,79,80,81],argv:81,arn:72,around:[2,8,26,72,77],arrai:[4,6,8,12,14,24,32,39,40,41,45,51,53,63,81],arrang:51,arrow:31,art:53,articl:[32,60,61,67,73],artifact:72,artifici:80,arxiv:[8,9,31,80],as_row_vector:8,as_step_input:17,ask:[19,26,60],assign:[7,8,23,64,69,72,77],associ:[38,46,64],assum:[7,8,17,42,59,71,79],assur:1,astyp:[41,63,80],asyc:19,async:[19,68],async_count:69,async_lagged_grad_discard_ratio:69,async_lagged_ratio_default:[68,69],async_lagged_ratio_min:[68,69],asynchron:[19,69],atla:54,atlas_root:54,attenion:9,attent:[8,9,55],attr1:8,attr2:8,attr:[6,8,9,17,39,40,50,59,63],attr_map:50,attrdesc:39,attribut:[2,8,9,13,17,39,43,45,48,50,51,62,63,79],attributemap:63,attrproto:50,attrtyp:[39,50,63],attrvalu:50,auc:68,aucvalidationlay:69,authent:72,author:[28,72,81],authorized_kei:67,auto:[17,22,34,45,48,51,62,63,64,66],autom:72,automak:54,automat:[8,15,24,30,37,42,43,45,50,54,55,59,61,62,63,67,68,69,72],automaticli:8,avail:[19,24,43,44,54,72,77],averag:[7,8,11,23,69,81,82],average_test_period:[68,69],averagepool:8,avg:[66,82],avgcost:82,avgpool:[8,82],avoid:[16,17,19,38,66],avx:[54,55,61],await:73,awar:[15,36,40,55,60,72],aws:28,aws_account_id:72,awsaccountid:72,awskeymanagementservicepowerus:72,aync:43,b2t:79,b363:73,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:73,ba5f:72,back:[2,14,19,31,42,55,63],background:[7,8],background_id:[7,8],backpropag:16,backward:[5,8,9,16,17,22,24,31,37,38,46,59,62,69,71],backward_first:59,backward_op:16,backwardactiv:62,bag:82,baidu:[53,73,79],baik:79,bake:42,balanc:[43,69,72,80],bare:[73,77],barrier:69,barrierstatset:66,base:[7,8,11,12,15,23,37,42,45,46,51,53,59,60,62,63,66,67,69,72,79,80,82],baseactiv:9,baseev:14,basematrix:62,basenam:7,basepoolingtyp:[8,9],basestr:[6,7,8,9,11,14],bash:[55,60,61,72,73],bashrc:54,basic:[2,8,14,39,45,46,51,55,61,62,82],batch:[2,8,9,10,12,14,15,17,19,21,22,31,33,36,51,62,67,69,72,73,80,81,82],batch_0:81,batch_id:[14,31],batch_im:31,batch_label:31,batch_norm:31,batch_norm_lay:9,batch_norm_typ:8,batch_read:[21,41],batch_siz:[2,12,31,53,67,79,80,82],batch_szi:31,batch_z:31,batchnorm:31,batchsiz:[8,62],bazel:18,bbbbb:21,bbox:[7,8],bcd:8,bcebo:12,bdist_wheel:47,beam:[8,59,69],beam_gen:[8,59],beam_search:[14,59],beam_siz:[8,59,68,69,71],becaus:[4,7,8,12,15,17,18,19,24,38,40,41,42,48,51,52,59,60,62,64,71,72,82],becom:[43,48,66],been:[2,18,23,54,60,82],befor:[4,8,9,19,26,29,32,38,41,55,61,63,67,72,77],begin:[4,7,8,22,24,29,32,62],beginiter:[14,15],beginn:59,beginpass:[14,15],begintrain:15,behavior:66,behind:51,being:[26,41,64,80],belong:[8,42,48],below:[2,8,17,19,24,38,41,42,43,51,52,59,62,66,67,72,80,82],benefit:[9,26,27],bengio:8,besid:[1,8,12,42],best:[8,18,54,55,60,69,82],besteffort:73,beta1:10,beta2:10,beta:[31,81],better:[8,9,18,53,67,72,77,80],between:[7,8,10,14,18,19,24,35,38,43,44,46,48,53,63,64,72,80,82],bgr:81,bi_gru:9,bi_lstm:9,bia:[8,9,10,59,62,81],bias:[8,62],bias_attr:[8,9,53,59],bias_param_attr:9,biases_:62,biasparameter_:62,biassiz:62,bidi:73,bidirect:[8,9,59],big:[43,66,77],bigger:19,bilinear:8,bilinear_interpol:8,bilinearfwdbwd:66,bin:[54,55,67,72,73],binari:[2,7,8,12,18,27,31,42,60,66,72,79,82],bind:[30,48],bison:54,bit:82,bla:54,black:31,blank:[8,72],block:[8,20,22,24,36,37,42,43,53,62,63,64,66,69,81],block_i:8,block_x:8,blockdesc:[17,32,37,40,45],bn_bias_attr:9,bn_layer_attr:9,bn_param_attr:9,book:[12,45,59,78],bool:[2,6,7,8,9,11,12,14,17,33,40,49,50,51,52,62,69,71,82],boot:[8,59,77],boot_bia:8,boot_bias_active_typ:8,boot_lay:59,boot_stat:51,boot_with_const_id:8,bootstrap:54,bootstrapp:77,borrow:[31,51],bos_id:[8,59],both:[5,6,8,9,15,17,18,19,26,31,42,43,49,55,59,62,63,64,66,72,80,81,82],bottleneck:[66,81],bottom:14,bound:8,boundari:42,boundri:7,bow:82,box:[8,31,66],brace:[17,32],brain:26,branch:[8,15,17,18,33,39,42,47,63],breadth:69,break_if:51,brew:54,brief:[18,24,64],briefli:66,bring:64,broadcast:[19,45,77],broken:61,brought:61,brows:55,browser:[55,72],bsd:60,bucket_nam:72,buf:22,buf_siz:12,buffer:[2,12,22,41,48,69],buffer_s:12,buffered_read:41,bug:[61,72],build:[8,12,18,27,32,42,47,50,53,55,57,63,65,69,72,74,75,79,81,82],build_dict:12,build_model:31,built:[18,42,50,51,54,55,60,77,80],bunch:[66,82],button:[61,72],c11:34,c703c041:61,c99:35,c99e:72,cach:[42,82],cache_pass_in_mem:[2,82],cachetyp:[2,82],cacul:9,caff:17,caffe2:17,calc_batch_s:2,calcul:[2,7,8,9,10,16,19,24,59,62,66,69,71,80],call:[2,7,8,9,14,15,16,17,22,23,24,25,27,31,32,36,37,40,42,45,46,48,50,51,53,55,59,60,61,62,63,64,66,69,72,81,82],callabl:[2,6,8,12],callback:62,caller:[16,72],can:[1,2,4,6,7,8,9,12,14,15,16,17,18,19,22,23,26,27,30,31,32,36,37,39,40,41,42,43,44,45,46,50,51,53,54,55,59,60,61,62,63,64,66,67,68,69,71,72,73,77,79,80,81,82],can_over_batch_s:2,cancel:[26,61],candid:8,cannot:[44,45,48,51,62,63],capabl:[38,45,54],capac:72,capi:34,capi_prvi:35,caption:53,captur:[53,67],card:67,care:[9,27,41,68,69,77],carefulli:[67,69,81],caret:14,carpedm20:31,cast_to_op_attr:50,cat:[55,81],categori:[8,12,19,82],categorig:12,categoryfil:73,caus:[19,29,63],caution:[72,73],cc_:18,cc_binari:18,cc_test:18,cclient:25,cde:8,cdn:12,cdot:8,ceil:8,ceil_mod:8,cell:[8,9],center:2,cento:77,ceph:[21,73],cephf:[21,27,28],certain:[1,37,48,68],certif:[15,28,72],cffi:34,cfg:73,cgo:34,chagn:46,chain:[12,32,62],challeng:[8,19,33],chanc:[15,62,82],chang:[8,12,18,23,27,38,39,41,46,48,53,55,59,61,62,63,64,66,69,72,82],channel:[8,9,66,67,81],channl:[67,81],chapter:36,chapter_data:36,chapter_out:36,charact:82,character:53,characterist:71,check:[2,12,17,18,45,53,54,55,61,63,69,71,72],check_align:12,check_attr:50,check_eq:62,check_fail_continu:2,check_grad:[16,63],check_l:62,check_sparse_distribution_batch:[68,69],check_sparse_distribution_in_pserv:[68,69],check_sparse_distribution_ratio:[68,69],check_sparse_distribution_unbalance_degre:[68,69],checker:45,checkgrad:69,checkgrad_ep:69,checkmark:77,checkout:61,checkpoint:43,checksum:28,child:17,china:55,chmod:[54,72],choic:[18,55],choos:[60,69,82],chosen:[1,31],chunk:[23,28,80],chunk_schem:7,chunktyp:7,cifar:80,circl:32,claim:72,claimnam:72,clang:[34,54,55,61],clarifi:7,classfic:81,classic:[8,53],classif:[2,4,8,32,71,81,82],classifi:[8,31,80,81,82],classification_cost:[42,82],classification_error_evalu:[7,80,82],classification_evalu:7,claster:72,clean:[4,17,18,38,45,60,61],clear:[7,18,38,48],clearer:38,clearli:48,cli:72,click:[61,66,72],client:[22,25,45],clip:[6,9,69,82],clock:8,clone:[8,54,55,60],close:[2,41,44,61],closer:53,cloud:[18,19,27,28,29,44,45,77],cloud_read:12,cls:82,cludform:72,cluster:[12,14,15,17,19,24,42,44,68,69,73,82],cluster_train:67,cm469:72,cmake3:54,cmake:[35,54,60,62,63,66],cmakelist:[18,62],cmatrix:[34,35],cmd:73,cna:8,cname:72,cnn:[8,73,81,82],coars:30,code:[2,4,8,12,15,18,26,30,31,32,37,38,41,42,43,45,46,50,51,53,54,55,56,59,62,63,64,65,66,67,72,73,80,82],codebas:45,coeff:8,coeffici:8,collabor:19,collect:[8,12,14,53],collectbia:62,color:81,colour:12,column:[7,8,32,41,44,62,79],column_evalu:7,column_nam:40,com:[8,9,12,18,31,54,55,60,61,72,73,77,81],combin:[7,8,9,12,14,37,45,48,80],come:[39,51],comma:[14,24,69,79],command:[1,4,18,22,27,29,53,54,55,60,61,62,63,65,66,67,72,73,74,75,79,80,81],commandlin:66,commenc:82,comment:[10,18,50,61,63,82],commit:18,commnun:67,common:[21,59,62,68],common_util:67,commonli:[29,59,66,71],commun:[19,24,25,42,43,62,67,72],compar:[16,18,45,60,62,63,80,82],comparison:18,compat:[2,30],competit:80,compil:[8,18,42,46,49,50,52,54,55,60,61,62],complaint:18,complet:[4,8,9,10,12,14,17,19,23,24,28,32,45,62,63,64,72,73,77,82],complex:[1,2,9,26,41,45,59,66,82],complic:[8,30,42,51],compon:[42,51,62],compos:[12,15,30,36,40,45,80],composenotalign:12,composit:30,compress:23,compromis:60,comput:[8,9,15,16,19,37,42,43,44,46,48,52,53,54,55,59,60,62,63,66,71,72,82],computation:[8,59],conat:8,concat:[31,59],concaten:[9,31,36,51],concentr:45,concept:[2,7,15,30,31,36,38,39,44,48,51,52,55,59],conceptu:31,concern:15,concis:[31,51],conclud:63,concret:[45,63],concurr:[19,26,43],concurrentremoteparameterupdat:69,cond:[17,33,39],condit:[8,23,33,42,59,67,73],condtion:31,conduct:66,conf:[4,8,67,79,80,81],conf_paddle_gradient_num:72,conf_paddle_n:72,conf_paddle_port:72,conf_paddle_ports_num:72,conf_paddle_ports_num_spars:72,confid:8,confidence_threshold:8,config:[2,6,8,21,29,53,62,67,68,69,72,73,77,79,80,81,82],config_:[22,69],config_arg:[68,69,71,81,82],config_bas:[7,8,14],config_gener:67,config_lay:62,config_len:24,config_pars:[4,62],config_proto:24,configur:[0,1,2,4,8,14,22,24,26,27,43,53,58,60,62,63,64,66,69,77,79,81],confirm:29,conflict:[48,61],confus:31,congest:69,conll:12,connect:[1,9,27,42,43,53,62,72,73,77,80,81,82],connectionist:8,consequ:[8,9],consid:[7,8,10,54,55,60,66,71,77],consider:[2,9],consist:[7,8,12,23,39,41,45,46,50,63,81,82],consol:[66,72],consolid:17,const_cast:63,constant:[44,62,63],constraint:[42,48],construct:[2,4,7,15,36,40,45,48,50,52,59],constructbackwardgraph:32,constructoptimizationgraph:32,constructor:[40,45,48,50,62,63],consum:19,contact:26,contain:[2,7,8,9,11,12,14,15,17,23,31,38,44,45,46,48,49,50,51,52,56,59,60,61,63,67,72,81,82],containerport:72,content:[24,29,73],content_len:24,context:[8,9,12,48,49,59,63,64,79,82],context_attr:9,context_len:[8,9,82],context_proj_layer_nam:9,context_proj_param_attr:9,context_project:9,context_start:[8,9,82],contibut:61,contin:72,continu:[2,7,19,69],contrast:8,contribut:[56,60,65],contributor:45,control:[6,17,44,55,61,69,72,73,77],conv2d:31,conv:[9,31],conv_act:9,conv_batchnorm_drop_r:9,conv_bias_attr:9,conv_filter_s:9,conv_layer_attr:9,conv_num_filt:9,conv_op:8,conv_pad:9,conv_param_attr:9,conv_strid:9,conv_with_batchnorm:9,conveni:[15,37,50,67],convent:[24,63],converg:[67,80],convers:42,convert:[2,4,12,21,41,46,79,81,82],convlay:8,convolut:[8,9,12,31,80,81],convoper:8,convtran:8,convtranslay:8,cool:[2,61],coordin:[19,24],copi:[14,15,23,26,29,32,36,51,55,61,72,80],copy_shared_paramet:80,copytonumpymat:80,core:[2,6,35,38,51,60,69],coreo:[72,77],corner:45,corpu:12,correct:[2,8,16,62,63,72],correctli:[7,12,31,62,80],correl:53,correspoind:15,correspond:[2,4,15,17,18,33,36,40,44,45,46,50,53,61,62,63,64],corss_entropi:15,cos:[8,50],cosin:[8,50],cosineop:50,cosineopproto:50,cosineopprotomak:50,cost:[4,10,14,15,32,37,39,42,44,53,69,80,82],cost_id:8,cost_val:42,could:[2,4,8,12,14,15,16,23,36,37,38,39,41,42,43,46,55,60,66,67,72,82],count:[7,19,27,41,66,69,71,73,79],counter:[19,23,32],coupl:53,cours:[7,27,60],cover:64,coverag:54,coveral:54,coveralls_uploadpackag:54,cpickl:81,cpp:[16,22,30,34,35,38,43,45,52,61,62,66,82],cpu:[1,2,6,8,16,27,38,42,44,45,47,54,60,63,64,66,69,73,80],cpu_per_p:44,cpu_per_train:44,cpuinfo:55,cpuplac:[63,64],cpusparsematrix:35,crash:[19,66,67,69],crazi:67,creat:[4,6,8,12,14,15,16,17,19,24,28,29,30,31,32,36,37,38,40,46,53,54,55,60,62,63,67,69,77,79,80],create_backward_pass:37,create_bias_paramet:62,create_block:40,create_cloud_job:44,create_doc_str:50,create_global_var:40,create_input_paramet:62,create_op:63,create_oper:30,create_optimization_pass:37,create_paramet:40,create_python_ops_creatation_funct:50,create_rnn:17,create_rnn_op:36,create_var:40,create_whileloop:51,createargu:80,createfromconfigproto:[4,80],creategradientoper:46,createop:50,createoper:17,createstack:72,createvari:17,creation:[30,72],creationd:72,creator:[12,21,45,46],creator_:46,credenti:29,credit:80,critic:31,crlf:61,crop:81,crop_siz:81,cross:[8,63,82],cross_entropi:[8,15,31,44,80],cross_entropy_with_selfnorm:8,crt:28,csc:62,csr:62,ctc:7,ctc_evalu:7,ctest:[55,60,61,63],ctor:40,ctrl:[60,67],ctx:[63,64],cuda:[18,45,54,55,60,66,67,69],cuda_dir:[68,69],cudaconfigurecal:66,cudadevicegetattribut:66,cudaeventcr:66,cudaeventcreatewithflag:66,cudafre:66,cudagetdevic:66,cudagetdevicecount:66,cudagetdeviceproperti:66,cudagetlasterror:66,cudahostalloc:66,cudalaunch:66,cudamalloc:66,cudamemcpi:66,cudaprofilerstart:66,cudaprofilerstop:66,cudaruntimegetvers:66,cudasetdevic:66,cudasetupargu:66,cudastreamcr:66,cudastreamcreatewithflag:66,cudastreamsynchron:66,cudeviceget:66,cudevicegetattribut:66,cudevicegetcount:66,cudevicegetnam:66,cudevicetotalmem:66,cudnn:[8,11,18,54,69],cudnn_batch_norm:8,cudnn_conv:8,cudnn_conv_workspace_limit_in_mb:[68,69],cudnn_convt:8,cudnn_dir:[68,69],cudrivergetvers:66,cuinit:66,cumul:8,curl:[54,72],curli:[17,32],current:[2,8,17,18,19,22,24,36,38,40,43,44,48,51,53,55,59,60,61,62,67,69,72,78,82],current_block:[39,40],current_oper:39,current_word:59,currentcost:82,currentev:82,curv:15,custom:[1,2,15,27,31,45,62,72],custom_batch_read:41,cut:[43,51],cutoff:12,cycl:19,cyclic:8,cython:34,d3e0:72,d_b0:31,d_b1:31,d_b2:31,d_block:31,d_f:31,d_g:31,d_h0:31,d_h0_bn:31,d_h0_relu:31,d_h1:31,d_h1_bn:31,d_h1_relu:31,d_h2:31,d_loss:31,d_loss_fak:31,d_loss_real:31,d_optim:31,d_step:31,d_t:31,d_w0:31,d_w1:31,d_w2:31,dalla:2,danger:2,dangl:60,darwin:72,dash:31,dat:[21,67],data:[0,1,2,4,7,10,14,15,16,17,21,22,23,28,31,32,36,37,38,39,43,44,45,48,49,50,51,52,54,55,59,62,63,64,66,67,68,69,71,74,81],data_batch_gen:80,data_dir:79,data_fil:53,data_i:31,data_initialz:82,data_lay:[2,22,40,53,80,82],data_read:[12,41],data_reader_creator_random_imag:41,data_shar:51,data_sourc:80,data_typ:[12,49,52,59],data_x:31,databas:12,datacent:[21,29],datacenter1:21,datacenter2:21,datacenter_1:21,datacenter_2:21,datacenter_nam:21,datadim:8,dataprovid:[1,53,67],dataprovider_bow:82,dataprovider_emb:82,dataproviderconvert:4,datasci:8,dataset:[0,2,21,27,41,53,59,69,79,81,82],datatyp:[49,52],dcgan:[31,80],dcmake_install_prefix:54,ddim:64,dead:19,deal:[77,80],debian:55,debug:[2,16,29,42],decai:10,decar:12,decayr:22,decent:23,decid:[15,26,31,41,46,49,78],declar:[8,17,31,36],decod:[8,9,59],decoder_boot:59,decoder_group_nam:59,decoder_input:59,decoder_mem:59,decoder_prev:9,decoder_s:59,decoder_st:[9,59],deconv:[8,31],deconvolut:8,decor:[2,12,62],decreas:53,decrypt:72,deduc:45,deep:[8,26,31,32,45,53,55,57,66,80,81,82],deeper:[53,55,81],def:[2,8,12,15,16,21,27,30,31,36,37,40,41,50,51,53,59,62,63,80,81,82],def_block:31,defalut:[8,69,71],default_block:31,default_devic:71,default_st:51,default_valu:71,defect:38,defer:26,defferenct:2,defin:[1,2,8,9,12,14,15,17,18,19,26,30,31,36,39,40,41,43,45,48,50,51,53,59,62,64,67,69,79,80],define_py_data_sources2:[2,53,81,82],definit:[2,17,19,23,39,42,46,50,51,53,55,63,79,82],definiton:30,degre:8,deisgn:46,delai:[64,69],delar:82,delet:[27,28,78],deletestack:72,delimit:7,deliv:77,delta:[8,16],delv:8,demand:19,demo:[8,12,45,67,73,74,79,80,81,82],demolish:73,demonstr:[53,59,64,80],denot:[63,71,82],dens:[2,8,12,24,25,49,62,72,82],dense_arrai:12,dense_vector:[2,4,12,53],dense_vector_sequ:12,dep:18,depend:[17,18,19,27,42,43,53,55,60,63,67,71,77],deploi:[8,67,71,77],deploy:[45,67,72,77],deprec:8,depth:17,dequeu:43,deriv:[5,15,33,37],desc:[17,40,50,51],desc_:17,descend:51,descent:[8,19],describ:[15,17,18,23,38,39,40,45,49,50,52,53,61,62,63,64,72,73,80,82],describestack:72,describestackev:72,describestackresourc:72,descript:[4,7,17,18,46,49,52,54,61,63,70,72],deseri:[14,38],deserializ:45,desgin:32,design:[2,8,12,22,34,63,77],desir:[19,72,73,79],destin:[24,29],destroi:17,destruct:48,destructor:62,det_output:7,detail:[2,4,6,7,8,9,10,16,23,27,29,31,36,40,42,44,48,51,52,54,59,60,61,62,63,64,66,67,70,71,72,73,77,79,80,81,82],detect:[55,61],detection_evalu:7,detection_output:7,determin:[2,8,12,17,45,62,80],dev:[45,54,55,60,61,77],dev_ctx:17,devel:54,develop:[18,38,46,47,54,64,68,69],deverlop:69,deviat:6,devic:[6,38,42,44,45,63,64,69],device_context:63,device_context_:63,devicecontext:[17,63],deviceid:71,devid:[8,69],dhcp:77,diagnos:67,diagram:[36,81],diamond:31,dict:[2,7,12,14,40,44,82],dict_fil:[7,82],dict_siz:[12,22],dictionai:82,dictionari:[2,7,8,12,14,15,16,44,71,81,82],did:[2,38],diff:61,diff_mat:16,differ:[2,7,8,14,17,18,19,24,26,31,33,42,43,44,46,48,51,53,55,59,61,62,63,64,67,69,72,73,79,81,82],differenti:[30,63],difficult:[7,16,53,60],dig:[55,66,72],digit:[2,8],dilat:8,dilation_i:8,dim0:63,dim1:63,dim:[8,12,22,36,40,45,49,52,62,63,64,79,81,82],dim_:64,dimens:[5,8,11,12,31,45,49,51,62,63,64,71,79,82],dimension:[2,53,59,62,64,80,82],dimenst:79,dimes:8,dir:[67,81,82],dirctori:55,direct:[8,9,55,81],directli:[1,2,9,18,25,27,38,42,50,51,53,55,67,73],director:63,directori:[1,8,18,21,26,28,29,54,55,60,61,64,66,67,69,73,78,81,82],diretcoti:81,dis_conf:80,dis_train:80,dis_training_machin:80,disabl:2,discard:[12,19,23,61,69],discount:8,discov:19,discoveri:72,discrep:66,discrim:31,discrimin:80,discriminator_train:80,discuss:[15,17,23,24,25,42],disk:[60,73],dispatch:[38,42,67,69],displai:[27,29],dist:47,dist_train:[15,27],distanc:7,distibut:79,distinguish:[18,67,80],distribut:[8,17,23,24,25,26,43,44,45,52,54,65,73,74,75,77,80,82],distribute_test:[68,69],distributedli:[42,62],disucss:15,divid:[10,50,52,68],diy_beam_search_prob_so:[68,69],dmkl_root:54,dns:72,do_forward_backward:41,doc:[4,12,36,51,54,55,61,63,64,67],dockefil:60,docker:[47,56,61,72,74,75,77],docker_build:15,docker_push:15,dockerfil:[55,60,61],dockerhub:55,document:[2,4,9,16,28,32,36,45,54,60,61,63,64,71,82],documentari:2,doe:[2,4,9,19,23,24,26,27,38,41,42,43,45,46,53,60,62,63,64,66,82],doesn:[6,8,12,15,17,41,44,60,61,66,73],dog:81,doing:[22,26,32,42,66],domain:72,don:[9,15,18,30,32,41,53,60,63,72],done:[7,8,9,18,19,23,24,42,46,61,66,72,80],dopenblas_root:54,dot:[63,69,81],dot_period:[69,71,80],dotmuloper:8,dotmulproject:8,doubl:[2,8,32,42,54,63,69],down:[66,82],download:[12,18,19,22,26,28,55,77,80,82],doxygen:[54,61],dozen:18,drive:48,drop:[2,9],drop_rat:6,dropout:[6,9,62,82],dropout_r:8,drwxr:73,dst:24,dtoh:66,dtype:[4,40,53,81],due:[23,26,31,40],dummi:[14,23],duplic:43,durat:[23,66],dure:[1,2,8,9,17,19,23,26,27,45,53,62,63,68,69,72,77,82],durn:2,dwith_c_api:35,dwith_doc:54,dwith_profil:66,dwith_python:35,dwith_swig_pi:35,dwith_test:63,dwith_tim:66,dynam:[1,2,24,35,41,54,66,69],dynamic_cast:62,dynamic_recurrent_op:51,e2e:77,each:[1,2,4,7,8,9,11,12,14,16,18,19,22,23,24,26,27,32,36,38,40,41,42,43,45,46,48,49,50,51,53,55,59,61,62,67,69,71,72,77,79,81,82],each_feature_vector:5,each_pixel_str:2,each_time_step_output:5,each_word:2,eaqual:8,earli:63,eas:[12,41,63,81],easi:[16,41,45,55,62,67,82],easier:[15,41,43,51,60,62],easili:[15,31,41,46,48,53],echo:55,edg:44,edit:[7,55,60,72],editor:[55,60],edu:[12,72,73],eeoi3ezpr86c:72,effect:[2,69,72],effici:[1,2,8,42,59,60,62],effort:42,efg:8,efs:72,efs_dns_nam:72,efsvol:72,eigen:[45,63],eigen_test:64,eigen_use_gpu:63,eigenmatrix:64,eigenscalar:64,eigentensor:64,eigenvector:64,either:[8,12,14,15,31,33,36,66,82],elb:72,elbapis:72,elec:82,electron:[73,82],elem_dim:8,element:[2,4,7,8,9,12,14,16,23,41,43,44,45,63,64,82],element_typ:24,elementari:45,elif:[15,50],els:[15,22,27,31,33,42,43,48,50,55,60,62,63,81,82],emac:[55,60],emailweixu:18,emb1:22,emb2:22,emb:[73,82],embed:[15,17,22,43,49,51,59],embedding_lay:[22,82],embedding_nam:[8,59],embedding_s:[8,59],emphas:66,empir:8,emplace_back:62,emploi:[50,59],empti:[7,12,19,53,63],enabl:[2,6,8,17,18,23,43,60,66,67,69,72],enable_grad_shar:[68,69],enable_parallel_vector:69,enc_proj:[9,59],enc_seq:9,enc_vec:59,encapsul:[24,44],encod:[9,23,59],encoded_proj:[9,59],encoded_sequ:[9,59],encoded_vector:59,encoder_last:8,encoder_s:59,encount:22,encourag:42,encrypt:72,encrypt_decrypt:72,end2end:77,end:[2,7,8,14,17,38,41,48,53,59,60,61,69,79],end_pass:15,end_po:8,endforwardbackward:14,enditer:[14,15],endpass:[14,15],endpoint:[12,21,72],endtrain:15,engin:[27,66],english:[2,8],enjoi:55,enlarg:63,enough:[17,53,60],enqueu:43,ensembl:9,ensur:[2,19,48,60,62],enter:[17,55],enterpris:45,entir:[8,9,24,26,63],entiti:[7,17,48],entri:[12,23,27,60,62,72],entropi:[8,82],entry_point:27,enueu:43,enumer:[5,82],env:72,environ:[15,44,54,55,60,61,66,67,68,69,72,73,80],eol:61,eos_id:[8,59],epel:54,epoch:31,epsilon:10,equal:[8,9,19,51,63,69],equat:[7,8,9,10,55,63],equilibrium:80,equip:[54,59],equival:[8,15,17,33,50,77],error:[6,7,8,9,10,15,16,23,29,48,53,62,63,67,69,72,81,82],error_clipping_threshold:6,especi:[2,9,60],essenc:15,essenti:[8,15,54,64],estat:53,estim:[8,15,43],eta:73,etc:[7,12,17,41,42,48,55,67,68,71,72,77],etcd:[12,14,19,23,24,26],etcd_addr:24,etcd_endpoint:12,eth0:[67,72],ethternet:67,eval:[7,17,31,44,45,82],evalu:[1,8,13,14,26,42,44,66,67,82],evaluate_difficult:7,evalut:53,even:[15,41,60,66,69],evenli:[24,72],event:73,event_handl:[14,15],eventu:51,everi:[1,2,7,8,9,12,15,19,23,24,26,32,43,48,50,59,61,62,63,64,69,82],everyth:[31,42,43,53,61],everywher:60,evid:38,exactli:[2,8,9,55,72],exampl:[1,2,7,8,9,10,12,14,17,27,29,30,31,32,36,38,39,40,41,43,45,46,49,51,53,54,55,59,60,61,62,63,64,66,67,68,69,71,72,73,81,82],exceed:8,except:[2,8,12,26,32,51,71,79],exchang:38,excluded_chunk_typ:7,exconv:8,exconvt:8,exdb:12,exec:[55,69],execut:[18,19,23,27,31,44,46,60,62,66,72],executioncontext:[63,64],executor:[31,37,39],exist:[15,17,19,29,40,41,44,50,51,60,62,64,69,72],exit:[24,29,69,73],expand:62,expand_a:8,expand_level:8,expandconvlay:8,expans:8,expect:[8,66],experi:71,expert:18,expir:19,explain:[2,7,19,30,32,67,80],explan:[8,16,27,42,48,54,82],explanatori:[53,55],explicit:[51,62],explicitli:[2,15,44,63,64],explor:8,exponenti:5,expos:[25,51,55,72],express:[15,43,63,72],ext:8,extend:[7,43,51],extens:[26,43,63],extent:35,extern:[2,18,34,35,45],external_librari:18,extra:[6,8,9,42,53,77],extra_lay:14,extraattr:[6,71],extraattribut:8,extract:[7,8,38,42,63,72],extract_fea_c:81,extract_fea_pi:81,extract_para:79,extralayerattribut:[6,9],extralayeroutput:9,extrem:[8,66],extremli:1,f120da72:73,f7e3:72,fa0wx:73,fabric:67,face:18,facotr:8,fact:[39,40,81],factor:[6,8,10],factori:34,fail:[2,19,23,44,63,69,71,73],failur:[19,24,63],fake:[31,80],fake_imag:41,faked_imag:31,falloc:28,fals:[2,6,7,8,9,10,12,16,17,33,36,39,41,49,52,53,59,62,63,69,71,73,79,82],false_block:[17,33,39],false_label:41,false_read:41,familiar:[2,53],fanscin:2,fantast:82,far:51,fascinatingli:1,fast:[8,23,46,66],faster:[8,9,19,59,66],fault:[14,23,45],favorit:60,favourit:55,fbd1f2bb71f4:73,fc1:[44,62,71],fc2:[44,71],fc3:71,fc4:71,fc8a365:72,fc8a:72,fc_act:9,fc_attr:9,fc_bias_attr:9,fc_layer:[40,50,53,62,71,82],fc_layer_nam:9,fc_mat:14,fc_op:50,fc_out:17,fc_output:50,fc_param_attr:9,fc_without_b:17,fclayer:62,fcop:30,fea:81,fea_output:81,featur:[2,5,8,12,61,69,82],feed:[9,14,15,32,36,40,42,44,53],feed_dict:[31,44],feeder:12,festiv:2,fetch:[12,19,22,42,59,61,62],few:[2,18,19,41,49,55,60],fewer:8,fg0:8,field1:14,field2:14,field:[8,14,17,46,49,50,66,72],fifth:32,figur:[15,18,31,36,43,59,62,66,79,80,81],file:[1,2,4,7,8,12,14,15,18,19,21,23,24,26,27,28,29,35,41,42,45,52,53,54,55,59,60,61,62,63,64,67,69,77,79,81],file_list:2,file_nam:[2,53,81,82],filenam:[2,21,40],fileoffset:28,filer:8,filesystem:[26,27,28,42,55,72],fill:[8,19,23,40,72,82],fill_zero_grad:45,filter:[8,9,81],filter_s:[8,9],filter_size_i:8,finali:67,find:[8,10,17,19,26,48,55,66],find_var:16,findop:17,findvar:[17,48],fine:[6,23,30],fingerprint:72,finish:[2,19,23,26,27,50,55,67,72,73],finit:62,first:[2,8,14,15,17,19,23,26,27,29,31,32,36,39,40,42,45,49,50,51,53,55,59,60,61,62,63,64,66,69,71,72,77,79,80,81,82],first_seq:59,firstli:[7,8],firstn:12,firstseen:73,fit:[1,12,45,61],five:[39,66,82],fix:[2,6,34,42,61],flag:[12,63,69,80],flatten:[39,40,64],flexiabl:41,flexibl:[1,8,9,15,24,32,36,42,51,59],float32:[4,12,30,31,40,41,53,63,80,81],floor:8,flow:[17,36,47,61],fly:[53,82],fnt03:72,focu:[2,66],focus:63,folder:[18,21,27,29,54,72],follow:[1,2,7,8,9,10,12,14,15,16,17,18,19,23,27,30,31,32,33,36,39,41,43,45,48,49,50,51,54,55,59,60,61,62,63,64,66,67,71,72,73,74,75,77,79,80,81,82],fool:80,forbid:15,force_load:34,forest:17,forget:[10,15],fork:8,form:[1,2,8,9,10,66],format:[1,2,7,12,14,16,23,51,53,61,62,63,64,69,72,79],former:[15,18],formula:[8,9,16],formular:8,forth:31,forward:[5,8,9,16,17,22,24,31,37,38,39,45,46,59,62,71,80],forward_op:16,forwardactiv:62,forwardbackward:14,forwardtest:4,found:[2,4,8,39,48,54,59,80,82],four:[2,7,32,79,81,82],fp16:[45,52],fp32:[45,52],fp64:52,fpga:44,frame:[7,45,51],framework:[15,17,39,45,48,50,62,63,81,82],free:[12,77],frequenc:[12,66,79,82],frequent:[23,41,45,67],fresh:[26,44],friend:48,friendli:31,from:[2,4,7,8,9,12,14,16,17,18,19,21,22,23,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,48,51,53,55,59,61,62,63,64,65,66,67,69,71,72,73,77,79,80,81,82],from_no_sequ:8,from_sequ:8,from_tar:14,fromfil:[41,53,81],fulfil:66,full:[8,19,26,36,55,59,62,77],full_matrix_project:[9,59],fulli:[42,43,53,61,62,66,77,80,81,82],fullmatrixproject:8,fullsiz:22,fully_matrix_project:9,fullyconnect:79,fullyconnectedlay:62,func:[12,23,46],funciton:9,functor:30,fundament:[43,45,53],further:[8,50,77],furthermor:44,futur:[8,26,42,45,78],fvs:50,fwd_op:46,g_b0:31,g_b1:31,g_b2:31,g_block:31,g_h0:31,g_h0_bn:31,g_h0_relu:31,g_h1:31,g_h1_bn:31,g_h1_relu:31,g_h2:31,g_im:31,g_loss:31,g_optim:31,g_step:31,g_w0:31,g_w1:31,g_w2:31,gain:8,game:80,gamma:81,gan:15,gan_train:80,gangliao:18,gap:69,gate:[8,9],gate_act:[8,9],gate_attr:8,gate_bias_attr:8,gate_param_attr:8,gate_recurr:8,gather:[8,38,62,63],gauss:6,gaussian:80,gaussian_normal_random:31,gcc:[34,45,54,55,60],gcreators_:50,gen:8,gen_conf:80,gen_train:80,gen_training_machin:80,gender:12,gener:[1,2,4,7,8,9,12,14,15,16,17,18,19,21,23,24,26,30,37,39,41,42,43,45,46,49,50,51,53,54,55,61,63,66,67,69,71,72,79,81,82],generated_word_embed:8,generatedinput:[8,59],generator_conf:80,generator_machin:80,generator_train:80,genert:2,geq:8,gereat:7,get:[2,7,8,12,14,16,17,18,19,23,24,26,27,28,31,36,44,45,46,48,50,51,53,54,59,62,63,66,67,72,76,81,82],get_all_op_proto:50,get_block:40,get_cloud_job:44,get_config_arg:[71,82],get_data:[73,82],get_dict:12,get_dim:16,get_embed:12,get_float_el:16,get_grad:14,get_input_lay:62,get_mnist_data:80,get_model:81,get_movie_title_dict:12,get_nois:80,get_numeric_gradi:16,get_numerical_gradi:16,get_output:16,get_shap:14,get_tensor:16,get_training_loss:80,get_vari:17,get_word_dict:12,getbatchs:62,geteigendevic:64,getenv:[15,27],getinput:62,getinputgrad:62,getinputvalu:62,getlayeroutput:14,getmat:22,getoptconfig:22,getoutputgrad:62,getoutputvalu:62,getparam:22,getparameterconfig:22,getparameterptr:62,getparameterspars:22,getparametersremot:22,getplac:[63,64],getsiz:62,getslotvalu:80,gettask:23,gettempl:72,gettranspos:62,getw:62,getweight:62,getwgrad:62,gfortran:54,gist:9,git:[47,54,55,60,61],github:[9,18,31,54,55,60,81],give:[2,19,36,45,53,55,60,62,66,72,82],given:[2,8,12,14,24,26,30,31,41,43,44,51,62,69,80,82],glide:18,global:[2,6,15,17,18,19,38,40,44,45,48,50,60,66,69,72],global_block:40,global_learning_r:6,globalstat:66,globalstatinfo:66,globe:2,glolal_block:40,go1:54,go_librari:18,go_test:18,goal:[32,45,66],gob:23,godep:18,godoc:34,goe:[8,9,19,33,48,53],going:[30,77,82],golang:[18,54],good:[8,31,41,66,77],goodfellow13:8,googl:[15,45],googleapi:[54,72],gopath:54,goroot:54,got:48,gpg2:72,gpg:72,gprotos_:50,gpu:[1,2,6,8,11,16,27,38,42,44,45,47,54,60,61,63,64,65,67,77,80,81],gpu_id:[69,71,80],gpu_per_train:[42,44],gpugpu_id:68,gpukernel:45,gpuplac:63,grab:19,grad:[16,24,49,69],grad_op_class:45,grad_op_maker_:46,grad_op_typ:[45,46],grad_op_type_:46,grad_share_block_num:[68,69],grad_var_nam:16,gradient:[6,7,8,10,14,19,23,32,37,38,45,49,63,69,82],gradient_check:63,gradient_clipping_threshold:[6,82],gradient_evalu:7,gradient_flat:16,gradient_machin:[14,35],gradientcheck:63,gradientmachin:[4,14,35,38,80],gradientmachine_:22,gradopdescmak:46,gradopdescmakerbas:46,gradopmak:46,gradual:[53,66],grain:30,gram:79,grandient:14,grant:72,graph:[8,14,17,18,19,31,36,39,42,44,52,64,79],graphviz:81,grayscal:2,great:[43,77],greater:8,greaterthan:50,green:31,grep:55,groudtruth:59,ground:[7,8,82],group:[9,23,77],group_input1:59,group_input2:59,group_input:59,grouplen:12,grpc:77,gru:[8,59,82],gru_bias_attr:9,gru_decod:59,gru_decoder_with_attent:59,gru_encoder_decod:79,gru_layer_attr:9,gru_memori:9,gru_siz:82,gru_step:59,gru_step_lay:9,grumemori:[9,59],gserver:[8,62],gsizex:66,guarante:[40,62],guard:22,guess:53,guest:60,gui:66,guid:[28,45,56,59,61,62,66,72,73,79],guidenc:53,gzip:[23,73],h0_bn:31,h_prev:17,hack:[56,67],had:60,hadoop:15,half:72,hand:[45,64],handi:18,handl:[12,15,27,38,41,42,44,48,51,67],handler:[14,17],handwrit:2,happen:[23,50],hard:[42,43,51,60,72,82],hardwar:[55,60,66],has:[2,4,7,8,9,10,12,15,16,17,18,19,23,24,26,31,39,42,43,44,45,49,50,55,59,60,62,63,66,72,73,77,79,82],has_kei:14,have:[1,2,4,8,9,12,15,16,17,18,19,23,24,26,27,30,31,32,36,38,39,40,41,42,43,44,45,46,48,49,52,53,54,55,59,60,61,62,63,66,67,69,71,72,77,79,82],haven:60,hdf:[1,21],head:[61,63,79],header:[24,35,45,53,62,79,81],heard:60,heavi:67,height:[8,12,17,34,41,62,63],height_:49,held:19,hello:15,help:[2,4,17,29,45,51,60,61,67],helper:[8,42,46,51,62],henc:[40,48],here:[2,4,6,7,8,9,12,15,18,19,25,29,32,41,50,53,54,59,63,67,68,71,72,73,77,79,81,82],heterogen:[42,43],heurist:[8,43,69],hidden:[8,9,37,42,59,72,82],hidden_out:17,hidden_s:9,hierarch:[8,39,40,45,59],hierarchi:45,high:[6,62,77,80],higher:[1,30,51],highest:[12,17],highli:[1,2,12,51,59,71],him:15,hint:[43,53],his:44,histor:30,hl_get_sync_flag:62,hold:[15,19,23,25,31,42,44,48,50,64,72],holder_:64,home:[21,29,42,44,54,67,72,73],honor:23,hook:[2,6],hookattr:6,hookattribut:6,horizont:[8,81],host:[18,27,54,55,67,72,73],hostnam:[67,72],hostpath:73,hostport:72,hour:60,hous:[2,12,53,79],how:[1,2,6,8,15,17,19,23,29,30,38,50,53,59,60,67,69,72,73,76,81,82],howev:[2,8,9,16,26,38,40,41,42,46,49,50,53,59,68,69,72],hpp:34,html:[12,55],htod:66,http:[8,9,12,18,27,31,54,55,60,61,72,73,77,80,81],huber:8,huge:[8,61],human:8,hyper:[8,31,62],hyperplan:12,i1117:66,iamfullaccess:72,iamusersshkei:72,ib0:67,ics:12,id_input:7,idea:[8,18,41],ident:[8,46,53,55,63,72],identifi:[33,62],identityoffsetproject:8,identityproject:8,ids:[7,8,62,82],idx:[23,31,62],ies:29,ifels:[17,39],ifelseop:39,ight:8,ignor:[2,8,69,79],illustr:[2,7,19,24,30,36,42,44,59,62,66,82],ilsvrc:81,im_siz:31,imag:[2,11,12,15,31,32,37,39,41,44,53,56,60,61,71,72,74,75,77,80,81],image_a:41,image_b:41,image_fil:41,image_lay:41,image_list_provid:81,image_nam:15,image_path:41,image_reader_cr:41,image_s:81,imagenet:[8,21],imagepullpolici:72,imageri:8,images_reader_cr:41,imagin:32,img:[2,8,9,42],img_conv_lay:9,img_featur:2,img_pool_lay:9,imgsiz:66,imgsizei:66,imgsizex:66,immedi:72,immutable_paramet:15,imperfect:45,implement:[2,8,9,10,12,17,23,24,25,26,27,30,33,34,35,38,42,43,48,50,51,59,82],implemet:22,impli:18,implicit:44,imposs:77,improv:[8,43,45,66,72],inarg:22,inbound:72,includ:[1,2,7,8,9,12,15,17,18,24,27,31,34,35,36,39,40,42,45,50,54,55,59,60,61,62,63,66,69,72,73,79,82],incorpor:8,incorrect:8,increas:[19,23,69],increment:[32,69],incupd:62,inde:[12,41,55],independ:[8,16,24,44,48,77,82],index:[2,7,8,11,12,14,16,17,19,23,39,40,51,67,72],indexslot:8,indic:[2,7,8,17,24,31,36,39,46,49,51,53,67,72],indice_map:51,indices_map:51,individu:[19,53,72],industri:[19,77],ineffici:38,infer:[0,15,17,19,33,34,40,44,45,49,54],infer_shap:40,inferior:26,infershap:[17,40,45,63,64],infershapecontext:[63,64],infiniband:67,info:[7,8,12,36,62,67,77],inform:[4,8,12,14,17,27,29,36,40,42,48,49,62,63,64,66,69,72],infrastructur:[72,80],ingor:69,inherit:[17,37,45,63],ininst:15,init:[6,14,17,31,36,42,62,71,72,80,82],init_attr:40,init_from_tar:14,init_hook:82,init_model_path:[68,69,71,79,82],initi:[2,4,6,8,9,12,14,18,23,32,36,40,42,43,50,51,59,62,63,69,79,80,82],initial_max:6,initial_mean:[6,8],initial_min:6,initial_std:[6,8],initialize_op_attr:40,initpaddl:[4,80],initrd:77,inlcud:9,inlin:[64,72],inner:62,inner_param_attr:9,inproj_attr:8,inproj_bias_attr:8,inproj_param_attr:8,input0:64,input1:[8,9,64],input2:8,input:[2,4,5,7,8,9,11,12,14,16,17,22,26,30,31,32,36,38,40,41,42,43,44,45,46,48,50,51,53,59,62,63,64,71,79,80,81,82],input_conf:8,input_data:62,input_data_target:62,input_featur:5,input_fil:53,input_hassub_sequence_data:62,input_id:8,input_imag:9,input_index:62,input_label:62,input_lay:62,input_loc:8,input_nam:15,input_proj_bias_attr:9,input_proj_layer_attr:9,input_seg:51,input_seq:8,input_sequence_data:62,input_sequence_label:62,input_sparse_float_value_data:62,input_sparse_non_value_data:62,input_t:62,input_to_check:16,input_typ:[53,82],input_valu:16,input_var:16,inputbuff:22,inputdef:62,inputgradi:46,inputlayers_:62,inputs_to_check:16,inputtyp:[2,12],insert:[45,46,61],insid:[7,8,19,38,41,43,45,46,55,72],inspect:61,inspir:79,instal:[8,27,47,55,57,60,61,67,73,81],instanc:[8,16,17,19,21,25,33,36,40,42,45,46,59,62,64,66,69],instance_ip:72,instanti:19,instead:[8,9,11,18,22,27,32,41,42,55,60,67,82],instruct:[17,32,55,60,66,82],int16:52,int32:[39,51,52,69],int64:[28,49,52],integ:[2,7,8,12,23,27,34,62,82],integer_valu:[2,12,82],integer_value_sequ:[2,12,59,82],integr:[7,54,77],inter:[8,42,67],interact:[55,72],intercept:8,interchang:[32,45],interest:66,interfac:[0,4,6,8,9,14,17,23,27,29,38,45,46,63,64,67,72,77],interg:82,intergr:8,intermedi:[29,31,37,42,60],intern:[8,9,14,72],internet:[18,19,77],interpret:[2,7,54,66],interv:8,inth:64,intrins:54,introduc:[2,8,17,19,31,48,50,63,73],introduct:[3,80],introductori:60,intuit:[26,45],invalid:[41,48],invoc:[18,30,45],invok:[2,8,14,38,42,43,45,46,50,60,66,72],involv:[63,80],iob:7,ioe:7,ips:72,ipt:[8,50,59],ipx:77,ipython:15,is_discriminator_train:80,is_gener:[79,80],is_generator_train:80,is_loc:14,is_predict:82,is_seq:[8,59],is_stat:6,is_tensor:50,is_test:81,is_train:2,isn:66,isol:55,isspars:62,issu:[18,31,44,54,55,60,66],item:[8,12,14,26,41,77],iter:[8,9,10,12,14,15,19,41,42,51],its:[2,8,9,14,15,16,17,19,23,31,32,36,38,40,45,46,48,49,50,61,62,63,64,66,69,72,79,80,82],itself:[19,26,48],ivs:50,java:[17,34,39,45],jeremi:66,jmlr:8,job:[4,12,26,42,44,45,68,69,71,81,82],job_dispatch_packag:67,job_id:12,job_mod:79,job_nam:[27,72],job_namespac:72,job_path:72,job_workspac:67,jobpath:72,jobport0:72,jobport1:72,jobport2:72,jobport3:72,jobserv:27,join:19,joint:79,jointli:9,journei:55,jpg:81,json:[67,72,73],jth:9,jupyt:[27,55],just:[2,5,7,8,9,12,18,23,24,31,36,38,42,45,46,48,49,53,60,61,67,71,72,79],jx4xr:72,jypyt:15,k8s:77,k8s_data:72,k8s_job:15,k8s_token:15,k8s_train:72,k8s_user:15,kafka:21,kaim:8,kaimingh:81,kebilinearinterpbw:66,kebilinearinterpfw:66,keep:[2,8,12,19,32,48,50,77],keep_top_k:8,kei:[2,12,14,16,17,19,21,23,28,45,46,50,51,60,61,63,66,67],kept:[8,40],kernel:[8,16,49,63,64,66,82],key1:69,key2:69,key_pair_nam:72,keyid:72,keymetadata:72,keypair:72,keyserv:72,keystat:72,keyusag:72,keyword:2,kill:[19,72],kind:[1,2,15,16,19,25,32,37,42,49,52,53,72,73,80,82],kms:72,know:[2,15,23,53,61,62,66,72],known:[17,30,36,80],kriz:12,kselectedrow:49,ksimonyan:9,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeconfig:72,kubectl:73,kuberent:[19,72],kubernet:[15,19,45,65,67,74,75,77],kubernetes_service_host:15,kwarg:[2,9,10,12,50,82],l1_rate:6,l2_rate:6,l2regular:82,l93:22,label:[2,4,7,8,10,12,14,31,32,37,39,41,42,43,44,53,73,80,81,82],label_dim:[8,82],label_fil:41,label_lay:41,label_path:41,lag:69,lake:2,lambdacost:8,lambdarank:8,languag:[8,12,32,45,48,71,79],larg:[11,12,42,43,61],larger:[2,6,7,8,67],larger_than:[17,33,39],last:[7,8,9,36,39,53,59,67,69,82],last_time_step_output:8,lastseen:73,latenc:[8,42,67,72],later:[18,45,54,63,64,72,78,82],latest:[8,17,18,19,26,55,61,73],latter:51,launch:[69,72],launcher:15,layer1:[8,9],layer2:8,layer3:8,layer:[4,6,7,9,11,12,13,14,17,22,31,32,33,37,39,41,42,43,45,50,51,53,59,65,68,69,79,80,81,82],layer_0:62,layer_attr:[8,59,71],layer_num:[71,81],layer_s:8,layer_typ:8,layerbas:62,layerconfig:62,layergradutil:62,layermap:62,layeroutout:8,layeroutput:9,lbl:7,ld_library_path:[54,67],lead:66,leaki:31,learing_r:37,learn:[6,7,8,9,10,12,15,24,26,31,32,41,42,43,44,45,53,55,57,59,60,62,63,66,78,81,82],learnabl:14,learning_method:[53,79,82],learning_r:[6,24,42,53,79,82],leas:19,least:[7,8,19,54],leav:[2,17,72],lecun:12,left:[8,17,53,64,81],legal:50,len:[2,8,24,28,40,62,82],length:[8,9,12,24,36,45,51,59,69,73],leq:8,less:[8,15,67,77],less_than:15,let02:73,let:[4,7,8,15,17,26,30,32,36,37,46,53,63,72],level:[6,8,30,36,51,52,67,69,80],lgtest:18,lgtest_main:18,lib64:[54,67,69],lib:35,libapi:18,libari:35,libcudnn:54,libpaddl:[34,35,45],libpaddle_capi:35,libpaddle_gserv:35,libpaddle_math:35,libpython:54,librari:[8,18,25,35,42,54,55,63,67,69],life:19,lifecycl:77,lifetim:48,lightweight:30,like:[2,7,8,12,17,18,19,22,27,30,31,32,40,41,42,45,48,49,51,53,54,59,60,66,67,68,71,72,77,79,81,82],limit:[8,12,45,66,69],line:[1,2,4,7,12,18,22,27,29,32,39,45,53,60,61,65,66,67,71,72,79,81],linear:8,linearactiv:53,link:[8,9,18,28,29,45,48,54,63,72,77,82],linux:[28,54,55,60,72],linux_x86_64:47,lipeng:79,list:[1,2,7,8,9,12,14,15,17,18,23,27,29,31,37,38,40,44,46,48,51,53,55,59,60,62,63,67,69,71,72,81,82],listen:[19,69],littl:[1,2,24,69,82],live:[55,63],load:[1,2,4,8,15,19,31,40,42,53,63,69,72,81],load_featur:81,load_feature_c:81,load_feature_pi:81,load_missing_parameter_strategi:[68,69,71,79],load_mnist:31,load_uniform_data:80,loadparamet:4,loadsave_parameters_in_pserv:[22,68,69],loc:7,local:[6,14,16,17,19,25,26,32,36,39,45,54,55,60,67,68,69,73],local_scop:16,localhost:55,localpath:29,locat:[8,14,18,51,59,62,82],lock:[18,19,23,24,43],lod:[36,49,51,52],lod_desc:[49,52],lod_level:[40,49,52],lod_tensor:[36,49,52],lodtensor:[45,52],lodtensordesc:49,log:[2,23,29,31,42,62,67,69,72,73],log_barrier_abstract:69,log_barrier_lowest_nod:[68,69],log_barrier_show_log:[68,69],log_clip:[68,69],log_error_clip:[68,69],log_period:[69,71,73,80,82],log_period_serv:[68,69],logarithm:5,logger:2,logic:[2,26,31,37,38,42,43,48,51,63,67],login:55,logit:31,longer:[19,42],look:[2,7,17,27,32,42,53,67,68,72,73,80,82],lookahead:8,lookup:82,loop:[16,17,41,48],loop_var:51,loss:[8,31,37,62,80,82],lost:37,lot:[42,68,77],low:[8,37,51],low_rnn:36,lower:[8,36,67],lower_level_rnn:36,lowest:69,lpaddle_capi_shar:35,lpaddle_capi_whol:35,lrelu:31,lstm:[8,59,73,82],lstm_bias_attr:9,lstm_cell_attr:9,lstm_group:9,lstm_layer_attr:9,lstm_size:82,lstm_step:9,lstmemori:[9,59],lstmemory_group:8,ltr:8,lucki:53,mac:[35,54,55,60],machin:[8,9,12,14,31,42,43,53,60,62,68,69,71,72,73,77,82],machine_transl:59,maco:60,macro:[30,46,63],made:[2,19,24,53,59],mai:[2,8,9,16,17,41,42,43,44,45,48,55,64,66,72],main:[2,4,39,45,61,72],mainli:[25,63,69],maintain:[8,17,23,40,45,72,78],majel:18,major:[42,55,80,81],make:[2,7,8,15,17,18,19,23,24,26,32,36,38,41,42,45,46,51,54,55,60,61,62,63,66,67,72,77,82],make_ddim:64,make_function_oper:30,make_vari:50,maker:[45,46],malloc:62,man:28,manag:[14,19,24,25,29,42,48,61,67],mandarin:8,mani:[8,9,18,23,31,38,45,46,48,49,50,51,53,55,60,69,82],manipul:[40,46],mannal:67,manner:8,manual:[37,42,46,55,77],manylinux1_x86_64:47,map:[2,7,8,12,14,15,17,23,40,46,48,50,51,60,69,77,81],map_fn:51,map_read:12,mapper:12,mapreduc:15,mark:[2,31,32,36,43,48,59,77],market:53,mask:[6,8],master:[15,26,45,47,61,69],mastermind:18,mat:[34,35],mat_cache_row:22,mat_norm:22,mat_normal_shar:22,mat_param_attr:9,mat_sparse_row:22,mat_sparse_row_auto_grow:22,mat_sparse_row_id:22,mat_sparse_row_prefetch:22,mat_sparse_row_prefetch_full_s:22,mat_value_shar:22,match:[8,18,66],matchbox:77,math:[9,34,45,62,63,66],matirx:8,matmul:[17,36,51,63],matric:[4,59,62],matrix:[7,8,9,12,14,22,34,35,62,63,68,71,81],matrixptr:62,matrixtyp:35,matter:2,mattyp:22,max:[2,6,8,12,16,40,66,69,71,82],max_diff:16,max_id:[8,14,82],max_job_id:12,max_length:[8,59],max_movie_id:12,max_relative_error:[16,63],max_sort_s:8,max_user_id:12,maxframe_evalu:7,maxid:[7,82],maxid_evalu:7,maxid_lay:82,maxim:8,maximum:[7,8,12,17,24,59,63,66,69,82],maxinum:11,maxpool:8,mayb:[8,17],md5:[12,20],mean:[2,6,7,8,9,10,11,12,14,18,36,41,42,48,53,59,60,63,66,67,69,71,72,77,79,80,81,82],mean_meta:81,mean_meta_224:81,mean_valu:81,mean_var_nam:8,meant:51,measur:[53,66],mechan:[8,9,25,46,59,72],mem:[8,17,27],mem_per_p:44,mem_per_train:44,member:[12,15,32,38,40,48,63],memcpi:[38,66],memori:[1,2,9,17,22,23,27,45,59,60,62,64,66,69,71,73,82],memory_boot:9,memory_nam:8,memory_test:60,memory_threshold_on_load_data:69,mention:[18,23,43,60],mere:9,merg:[8,24,26,36,38,61,69,79],mergedict:79,messag:[17,32,39,40,45,46,49,52,53,61,69,73],meta:[67,81,82],meta_config:67,meta_gener:67,metaclass:63,metadata:[28,72,73],metal:77,metaphor:32,metaplotlib:15,method:[2,8,10,14,16,17,26,31,32,37,43,45,48,49,51,55,62,63,64,66,69,71,82],might:[8,17,18,39,43,55,60,62,72],mileag:66,million:[12,71],min:[6,8,40,66,71,72],min_block:17,min_count:43,min_desc:17,min_pool_s:2,min_word_freq:12,mind:67,mini:[2,8,12,14,17,19,33,36],mini_batch:41,minibatch:[8,17,32,33,39],minim:[2,10,17,31,37,43,45,53,69],minimum:8,minimun:69,minst:2,minu:46,minus_grad:46,minusgradop:46,minusop:46,minusopgradmak:46,minusopprotoandcheckermak:46,minut:[19,26,60,72],mirror:[18,55],mislead:24,miss:[31,69,79],mit:72,mix:[9,51,59],mixed_lay:9,mixed_layer_attr:9,mixedlayertyp:8,mkdir:[29,54,55,72],mkl:[45,54],mkl_path:54,mkl_root:54,ml_data:67,mnist:[2,4,21,31,32,39,41,42,44,45],mnist_provid:2,mnist_random_image_batch_read:41,mnist_train:[2,41],mnist_train_batch_read:41,mobil:45,mode:[8,14,61,69,80,81],model:[0,1,4,8,9,12,14,17,19,20,32,37,42,43,44,45,51,61,62,65,69,72,78],model_config:[4,80],model_list:[69,71],model_path:71,model_zoo:[79,81],modifi:[4,8,42,59,61,62,63,67,72],modul:[1,2,4,9,12,14,30,31,51,53,54,63,81,82],modulo:8,momentum:[6,48,53,82],momentumoptim:53,mon:73,monitor:82,mono:8,month:[18,82],more:[1,2,4,7,8,9,12,15,16,18,19,23,26,27,29,30,32,36,37,40,41,42,43,45,46,51,53,55,59,60,61,62,63,64,66,67,71,73,77,82],morin:8,most:[2,4,8,12,15,18,26,32,41,42,53,59,62,66,68,77],mostli:77,motiv:45,mount:[27,55,72,73],mountpath:[72,73],move:[8,19,23,29,66,72,77],movement:66,movi:[2,12],movie_categori:12,movie_info:12,movie_review:12,movieinfo:12,moving_average_fract:8,mpi:67,mse:[32,37,39],much:[8,19,37,41,51,66],mul:[30,44,62,63],mul_grad:63,mul_op:63,mulgradkernel:63,mulit:67,mulkernel:63,mulop:[30,63],mulopgrad:63,mulopmak:63,multi:[8,38,62,68,69,77,81],multi_binary_label_cross_entropi:8,multi_crop:81,multigradientmachin:38,multinomi:8,multipl:[7,8,9,12,14,15,16,23,24,26,30,42,43,44,45,52,55,59,62,63,69,71,72,80,82],multipli:[7,8,62],multiprocess:12,multithread:2,must:[2,5,7,8,9,12,24,40,41,45,50,54,55,59,61,62,63,64,67,69,71,72],mutabl:64,mutable_data:[63,64],mutuable_data:64,mxnet:17,my_cluster_nam:72,my_external_dns_nam:72,mypaddl:73,name:[2,6,7,8,9,11,14,15,16,17,19,21,22,24,27,30,35,39,40,44,45,47,49,50,51,52,53,55,59,60,61,62,63,66,67,69,71,73,74,75,77,79,80,81,82],name_prefix:21,namespac:[17,33,34,55,62,63,73],nativ:8,natur:[23,26,43,51,71],nchw:8,ndarrai:[14,21],ndcg:8,ndcg_num:8,nearest:82,nearli:16,necess:51,necessari:[2,8,17,24,26,38,40,50,51,54,62,67,82],necessarili:62,need:[2,7,8,9,12,15,16,18,22,23,24,26,27,29,30,31,37,38,40,42,43,44,45,46,48,50,51,53,54,55,59,61,62,63,64,67,68,69,71,72,73,77,80,81,82],neg:[2,7,8,82],neg_distribut:8,neg_overlap:8,neg_pos_ratio:8,neighbor:82,ner:7,nerual:42,nest:[2,8,12,17,39],net:[8,9,17,31,36,48],net_diagram:81,netop:[17,45],network:[1,2,4,6,7,8,10,12,13,14,15,16,17,19,22,31,36,37,41,42,43,48,50,52,53,55,62,63,64,66,67,69,77,79],network_config:71,networkadministr:72,neural:[2,4,8,9,10,12,14,15,17,19,42,48,52,53,64,66,69,79,80,81],neuralnetwork:38,neuron:[4,62,82],never:[12,41,48,72,73],new_block_idx:40,new_stat:36,newblock:40,newest:24,newli:77,newop:17,newopdesc:40,newprogram:40,newremot:42,newvardesc:40,next:[8,12,19,25,51,59,61,62,63,66,69,72,73],nfs4:72,nfs:72,nfsver:72,nginx:55,ngram:12,nic:[67,68,69],nil:23,nine:12,nlp:[2,8],nltk:12,nms_threshold:8,nms_top_k:8,nnz:62,no_cach:2,no_grad_set:[16,63],no_sequ:[2,8],noavx:55,node:[8,18,26,42,43,44,45,52,60,62,67,69,72,73,77],node_0:72,node_1:72,node_2:72,nodefil:67,nois:[8,19,31,80],noise_dim:80,noisi:31,non:[8,19,49,62,63,69,72],none:[1,2,4,6,7,8,9,10,11,14,15,16,17,31,33,36,37,39,40,44,50,51,53,59,81,82],nonlinear:62,nor:60,norm:[9,31,80],norm_by_tim:8,normal:[2,4,8,9,12,59,62,67,69,73,79,80,81],normzal:81,notat:8,note:[2,4,6,8,9,11,14,15,17,22,23,27,41,45,54,55,63,64,66,69,71,72,79],notebook:[27,55],noth:[5,14,48,60,61,69],notic:[46,59,62],notingradi:63,notion:51,notori:16,now:[2,8,12,18,19,31,43,45,46,48,53,55,61,69,72,80],np_arrai:12,nproc:[54,60],nullptr:[46,48,62],num:[8,9,67,69,82],num_channel:[8,9],num_chunk_typ:7,num_class:[8,9],num_filt:[8,9],num_gradient_serv:[68,69],num_group:8,num_neg_sampl:8,num_p:[42,44],num_parameter_serv:15,num_pass:[14,53,68,69,71,73,82],num_repeat:8,num_result:7,num_results_per_sampl:8,num_row:49,num_shard:21,num_step:51,num_train:[42,44],number:[2,7,8,9,12,17,19,21,41,43,45,50,51,53,60,61,62,67,69,72,79,81,82],numchunktyp:7,numdevices_:71,numer:63,numeric_grad:16,numerical_grad:16,numlogicaldevices_:71,numofallsampl:7,numofwrongpredict:7,numpi:[6,12,14,21,31,40,41,53,54,63,80,81],numreal:22,numsampl:66,numtagtyp:7,numtimeout:23,nv_:18,nv_gpu:60,nv_librari:18,nv_test:18,nvcc:[18,55],nvidia:[54,55,60,66,69],obei:7,obj:[2,53,81,82],object:[2,4,6,8,9,10,12,14,15,22,31,34,37,40,44,45,48,64,66,80,81,82],observ:[8,10,53,62,66],obtain:[26,82],obvious:18,occur:[12,14],occurr:17,oct:73,odd:8,off:[35,55,60,61,77],offer:[4,17,44,45,50],offici:[8,18,55,72],offlin:[19,21,77],offset:[8,22],often:[22,67,82],ograd:62,old:[16,24,26,45,55,69],omit:82,on_init:2,on_travisexclud:54,onc:[2,8,19,23,32,42,43,55,62,72,82],one:[2,5,7,8,9,10,11,12,14,15,16,17,19,22,23,24,26,27,30,31,36,37,38,39,40,41,42,44,45,46,48,49,51,53,55,60,61,62,63,67,69,71,72,73,77,79,80,81,82],onehotcrossentropyopkernel:63,ones:[30,31,45,63],onli:[1,2,4,7,8,9,11,14,15,16,18,22,23,24,25,26,27,29,31,32,36,37,38,40,42,43,44,45,49,50,51,53,54,59,60,61,62,63,64,66,68,69,71,72,73,77,79,81,82],onlin:[8,10,19,21,41],only_cpu:16,onto:[42,43,72],op_:63,op_check:63,op_class:[45,50],op_maker_class:[45,50],op_proto:50,op_test_util:63,op_typ:45,opattrcheck:63,opcreat:50,opdesc:[17,32,39,40,45,46,50,52],opdescbind:46,opdescbuild:17,open:[2,8,15,21,31,41,53,55,72,81,82],openbla:54,openblas_path:54,openblas_root:54,oper:[8,9,10,12,16,17,31,32,36,37,42,44,48,52,55,59,62,64,66,69,72,79],operaotr:46,operator_grad:16,operatorbas:[17,30,45,46,50,63],operatorwithkernel:63,opinfo:[45,46],opinfomap:46,opkernel:64,opkernelkei:45,opmak:50,opproto:63,opprotoandcheckermak:[46,63],opprotomak:[50,63],opregist:50,opregistri:50,ops:[16,17,18,32,39,40,45,63,77],ops_:17,ops_test:18,opt:[15,37,44,50,54],opt_op_list:37,optestmeta:63,optim:[2,6,13,14,16,31,38,39,42,43,44,45,49,53,62,66],optimis:37,optimize_op_attr:40,option:[2,7,8,15,18,31,39,45,49,50,52,53,60,61,62,67,71,77],optmization_op_list:37,optyp:50,opwithkernel:49,order:[2,8,9,12,14,32,41,51,62,69,72,73,77,80,81,82],ordereddict:14,oregon:72,org:[7,8,9,12,21,28,31,54,55,80],organ:[7,8],orient:50,origin:[1,2,8,12,16,31,48,51,64,80],other:[2,7,8,9,12,17,19,24,29,36,48,50,54,55,59,60,61,71,72,73,77,79,80,81,82],otherchunktyp:7,otherwis:[1,8,12,15,19,24,26,31,41,59,61,67,71],our:[15,18,31,42,43,48,51,55,59,60,61,62,72,73,79,82],out:[8,14,15,17,18,23,26,36,40,53,59,63,64,66,69,72,73],out_dir:72,out_left:8,out_mem:59,out_memori:9,out_right:8,out_size_i:8,out_size_x:8,outlier:8,outlin:70,outout_lay:14,outout_layer1:14,outout_layer2:14,output:[4,5,6,7,9,11,12,14,15,16,17,21,26,29,30,31,32,33,36,39,40,41,42,43,45,46,48,49,50,51,53,59,60,62,63,64,66,69,71,73,79,80,81,82],output_:[8,62],output_all_step:36,output_dir:81,output_id:8,output_lay:[14,81],output_max_index:11,output_mem:[8,59],output_nam:16,output_num:36,output_path:21,output_seg:51,outputbuff:22,outputgradi:46,outputh:8,outputw:8,outsid:[2,8,9,48],outter_kwarg:2,outupt:51,outv:62,over:[1,8,9,14,15,51,61,62,66,82],overal:[31,77],overhead:66,overlap:[7,8,62],overlap_threshold:[7,8],overrid:[17,19,29,44,62,63,64],overview:[23,24,25],overwrit:29,own:[24,26,37,42,44,50,55,63,67,72],owner:60,pack:[51,55],packag:[2,12,23,27,30,47,55,61,63,72],pad:[9,82],pad_c:8,pad_h:8,pad_w:8,paddepaddl:1,padding_attr:8,padding_i:8,padding_x:8,paddl:[2,4,5,6,7,8,9,10,11,12,14,15,17,18,19,21,27,29,30,31,33,34,35,36,38,39,42,44,45,50,51,53,54,55,56,59,60,61,62,63,65,66,67,69,71,72,77,80,82],paddle_begin_init_param:24,paddle_dir:63,paddle_element_typ:24,paddle_element_type_float32:24,paddle_element_type_float64:24,paddle_element_type_int32:24,paddle_element_type_int64:24,paddle_element_type_uint32:24,paddle_element_type_uint64:24,paddle_enforc:17,paddle_enforce_eq:[63,64],paddle_error:[34,35],paddle_exampl:27,paddle_finish_init_param:24,paddle_get_param:24,paddle_gradi:24,paddle_init_param:24,paddle_job:27,paddle_matrix:[34,35],paddle_matrix_cr:35,paddle_matrix_get_shap:34,paddle_matrix_shap:34,paddle_n:67,paddle_new_etcd_pserver_cli:24,paddle_new_pserver_cli:24,paddle_on_cloud:27,paddle_output:73,paddle_paramet:24,paddle_port:67,paddle_ports_num:67,paddle_ports_num_for_spars:67,paddle_pserver2:67,paddle_pserver_cli:24,paddle_pserver_client_releas:24,paddle_root:79,paddle_save_model:24,paddle_send_grad:24,paddle_source_root:79,paddle_train:[35,47,67],paddledev:[72,73],paddlepaddl:[1,2,4,8,9,12,14,18,19,21,24,25,26,27,28,29,30,31,32,33,36,37,38,40,41,44,45,48,51,52,53,54,59,61,62,63,65,66,67,74,75,77,78,81,82],paddlepadl:2,paddpepaddl:2,page:[61,72],pai:55,pain:44,pair:[7,8,17,32,37,42,45],pakcag:18,palceholder_just_ignore_the_embed:79,paper:[8,31,79,80,81],para:22,paraconvert:79,paradigm:45,paragraph:36,paragraph_data:36,paragraph_out:36,parallel:[42,43,45,60,66,69,71,72,73],parallel_nn:[6,68,69],param:[6,8,9,12,16,17,24,38,64],param_attr:[8,9,22,53,59],param_config_proto:24,paramattr:[6,8,53,59],paramet:[1,2,4,7,9,10,11,12,13,16,17,18,20,22,26,29,31,32,36,37,39,41,42,48,50,51,53,62,64,65,71,80,82],parameter_attribut:8,parameter_block_s:[68,69],parameter_block_size_for_spars:[68,69],parameter_learning_r:6,parameter_list:37,parameter_nam:[14,15],parameter_serv:15,parameter_valu:22,parameterattribut:[6,8,9,22],parameterclient_:22,parametermap:62,parametermutex_:22,parameters_:62,parameters_and_grad:37,parameterserver2:22,parameterset:15,parameterupdat:38,parameterupdater_:22,parametris:10,params_grad:37,paramt:[72,79],paraphrase_data:79,paraphrase_model:79,paraspars:62,parent:[17,39,40,45,62],parent_:[17,48],parent_idx:40,parenthes:45,pars:[4,12,18,60,71,72,80],parse_config:[4,80],part:[2,7,8,17,26,39,40,53,59,61,62,66,77,80,82],parti:[60,66],partial:[8,14,80],partial_sum:8,particip:63,participl:79,particular:[32,45,66],partit:[19,21,42,43,45,72],pass:[2,8,14,17,19,31,37,38,41,45,48,51,53,61,62,66,67,69,72,73,80,82],pass_id:14,pass_idx:41,pass_test:80,passtyp:62,password:67,past:[15,55,72],patch:28,path:[1,2,7,12,14,19,23,24,27,41,53,54,67,69,71,72,73,79,81,82],pattern:[12,19,34,53,72],paus:[19,26],pdf:[8,9],pem:[15,21,72],pend:[19,23],peopl:60,per:[7,8,12,19,24,41,63,69,82],perfom:[69,71],perform:[1,8,16,24,31,38,45,53,59,60,62,63,65,67,68,80,82],period:[1,19,26,44,69,82],permiss:72,peroid:8,persist:[49,52,72],persistentvolum:72,persistentvolumeclaim:72,person:[7,15],perspect:[45,66],perturb:[16,62],peter:44,pex:77,pfs:[21,29,44],pfsclient:21,pfspath:29,pgp:72,phase:[46,53,77],photo:31,physic:77,pick:[2,72],pictur:82,piec:[8,9,53,64],pillow:27,pip:[47,54,61,67],pixel:[2,8,12],pixels_float:2,pixels_str:2,place:[1,2,19,26,42,43,45,62,63,64,66,67,81],placehold:[31,53,64,79],placement:43,plain:[1,7,8,27,35],plan:[19,45,62],platform:[17,53,63,64,72],pleas:[2,4,6,8,9,10,15,19,23,24,25,36,40,41,42,44,45,52,54,55,56,59,60,61,62,63,64,72,78,79,82],plot:15,plu:[8,16],pne:63,png:81,pnpairvalidationlay:69,pnpairvalidationpredict_fil:68,pod:[21,27,72,73],pod_nam:72,point:[17,19,27,44,53,60,63,64,66,77],pointer:[17,24,40,45,48,64],polar:12,polici:72,pollut:26,pool3:62,pool:[2,9,13,82],pool_attr:9,pool_bias_attr:9,pool_layer_attr:9,pool_pad:9,pool_siz:[2,8,9],pool_size_i:8,pool_strid:9,pool_typ:[8,9],pooling_lay:[9,82],pooling_typ:[8,82],poolingtyp:11,pop:17,popul:24,popular:[18,31,53,81],port:[18,55,67,68,69,72,73],port_num:68,ports_num:69,ports_num_for_spars:[22,68,69,71],pose:19,posit:[2,7,8,9,82],positive_label:7,possibl:[15,17,23,40,43,66,80],post1:54,post:[27,28],potenti:66,power:[64,77,82],practic:[8,53,59,62],pre:[2,8,9,12,15,24,55,72,73,79],pre_dictandmodel:79,pre_stat:[36,51],preambl:40,precis:[7,54],precision_evalu:7,pred:82,predetermin:[8,69],predic:12,predict:[2,3,7,8,10,14,42,53,59,67,69,79,82],predict_fil:69,predict_lay:14,predict_output_dir:[68,69,82],predict_sampl:4,predicted_label_id:82,prediction1:14,prediction2:14,prefetch:[22,62],prefix:[7,19,21,63,72],pregrad:62,preinstal:54,premodel:79,prepand:40,prepar:[4,16,27,38,59,74,82],prepend:40,prepend_oper:40,preprocess:[12,51,67,73],prerequisit:54,present:[15,17,51,61,81],preserv:29,pretti:53,prev_batch_st:[68,69],prevent:[1,10,15,19,23,26],preview:45,previou:[8,9,14,19,29,36,43,62,69,72],previous:[8,73,81],previous_memori:17,price:[12,45,53],primari:32,primit:51,principl:[15,18],print:[6,14,15,42,53,69,79,82],printallstatu:66,printer:7,printstatu:66,priorbox:8,prioriti:45,prite:7,privat:[17,35,48,49,50,51,61,64],privileg:[60,72],prob:[7,14,80],probabilist:[8,79],probability_of_label_0:82,probability_of_label_1:82,probabl:[7,8,14,59,81,82],problem:[4,8,10,15,16,18,26,31,32,45,60,61,82],proc:55,proc_from_raw_data:82,proce:[12,19,41,72],procedur:[17,64,79],proceed:8,process:[1,2,4,6,8,9,12,15,17,21,22,23,26,42,50,53,55,59,67,69,71,72,73,79,81,82],process_num:12,process_pr:82,processdata:81,processor:66,prod:[55,61],produc:[8,9,12,19,41,55,81,82],product:[8,27,55,61,62,72,82],productgraph:73,profil:[29,54],proflier:66,program:[1,12,15,21,24,26,32,33,37,41,42,44,45,48,55,61,66,67,69],programdesc:[40,44,46],programm:[40,42],progress:[19,23,69],proivid:2,proj:8,project:[8,9,27,35,54,59,62,63],promis:[8,9],prompt:29,prone:15,propag:[10,63,69,71],properli:[60,82],properti:[2,69],propos:[17,37,43,51],protect:[50,62,63],proto:[11,39,45,50,52,63],proto_:50,protobuf:[14,17,27,32,39,40,45,46,50,54],protocol:[7,69,77],prove:82,provid:[8,12,15,17,24,27,31,44,50,51,53,55,64,66,67,72,77,79,80,81],providermemory_threshold_on_load_data:68,provis:[72,77],provod:2,prune:[8,17],ps_desir:19,pserver:[14,22,24,25,27,45,67,68,69,72],pserver_addr:24,pserver_cpu:27,pserver_id:20,pserver_mem:27,pserver_num_thread:[22,68,69],pserver_spec:14,pserverstart_pserv:68,pseudo:[15,27,46,51],pseudocod:51,psize:62,ptr:35,pull:[18,45,47,55,79],purchas:82,purpos:[8,19,42,43,66],push:17,push_back:62,put:[18,19,22,40,43,55,62,67,73,82],pvc:72,pwd:[55,60,61],pxe:77,py_paddl:[4,80],pybind:17,pydataprovid:[1,2,82],pydataprovider2:[3,4,53,82],pyramid:8,pyramid_height:8,python:[1,2,3,14,15,17,25,30,31,32,34,38,45,47,51,53,54,59,60,61,67,79,80],qualifi:54,qualiti:82,queri:[8,72],question:[8,15,43,50,72],queue:43,quick:[69,73],quick_start:[27,72,73,74,82],quick_start_data:73,quickli:[45,53],quickstart:73,quit:66,r_t:8,rac:8,rais:12,rajathkmp:31,ran:[43,66],rand:[31,66,69,71,80],random:[2,6,8,12,21,31,38,41,53,63,69,80],random_imag:21,randomli:26,randomnumberse:68,rang:[2,8,12,21,31,41,42,44,50,69,71],rank:[8,15,51,64,72,81,82],rare:2,rate:[6,7,9,10,12,24,62,67,82],rather:[4,27,31,51,72],ratio:[8,69],raw:[8,53,82],rdma:[54,69],rdma_tcp:[68,69],reach:[19,66],read:[1,2,12,14,15,19,21,41,42,43,45,51,53,59,60,61,67,72,77,81,82],read_from_realistic_imag:15,read_from_rng:15,read_lock:20,read_mnist_imag:15,read_ranking_model_data:15,readabl:45,reader:[0,14,21,31,32,39,40,42,44],reader_cr:21,reader_creator_bool:41,reader_creator_random_imag:[12,41],reader_creator_random_image_and_label:[12,41],readi:[19,53,72,73,77],readlockguard:22,readm:[35,61],readonesamplefromfil:2,readwritebuffer_:22,readwritemani:72,real:[2,8,22,31,41,53,80],realist:15,realiz:[17,36],reason:[9,15,16,19,55,73],recal:7,receiv:[19,27,43],reciev:69,recognit:[2,8,81],recommand:2,recommend:[1,9,15,55,59,62,67,69],recommonmark:54,recompil:66,record:[12,23,50,61,72],recordio:[12,15,21,23,42,44],recov:[19,51,53,80],recover:45,recoveri:23,rectangular:8,rectifi:8,recurr:48,recurrent_group:[9,59],recurrent_lay:9,recurrent_op:51,recurrentgradientmachin:[35,51],recurrentgroup:7,recurrentlay:69,recurs:[17,18,29,45],recv:[42,43,72],recvparametertyp:22,red:31,reduc:[10,43,45,67,69,71],reduce_by_kei:45,reduce_mean:31,refactor:[32,38,40,42,43,51],refer:[1,4,6,8,9,10,16,17,19,23,24,25,36,39,40,45,48,51,52,59,60,61,62,63,64,67,73,79,82],referenc:[8,23],reflect:23,refrain:63,reg:50,regard:77,region:[8,48,66],regist:[46,62,66],register_gpu_profil:66,register_lay:62,register_op:[30,45,46,50,63],register_op_cpu_kernel:63,register_op_gpu_kernel:63,register_op_without_gradi:[45,63],register_oper:46,register_tim:22,register_timer_info:66,registerop:50,registr:63,registri:[27,55,73,77],regress:8,regular:[6,62,72,82],reinforc:44,rel:[1,9,16,26,63,67],relat:[2,19,26,27,48,49,55,73,77],relationship:[46,53,80],releas:[44,47,54,55,72],relev:63,reli:[16,37,54,63],reliabl:19,relu:[8,31,62],remain:[51,82],rememb:8,remot:[6,18,22,45,61,62,67,69,71,72],remote_ess:44,remote_sess:44,remoteparameterupdat:[22,25,69],remov:[12,29,61,67,69],renam:29,reorgan:8,repeat:[17,32,39,49,50,52],repeatedli:32,replac:[18,23,44,46,55],replic:42,replicaset:27,repo:18,report:[23,42,66,67],reportdataset:23,repositori:[8,61],repres:[2,4,8,9,17,23,40,43,44,45,49,51,52,59,62,72,82],represent:[8,24,31,32,42,49,82],reproduc:60,request:[18,19,22,26,42,45,47,72,73,77,79],requir:[1,7,8,15,19,24,26,27,29,36,39,42,43,45,46,49,50,52,60,62,63,67,72,73,77,80,82],res5_3_branch2c_bn:81,res5_3_branch2c_conv:81,research:[12,42],reserv:[2,29],reserveoutput:62,reset:[8,19],reshap:[16,41,64],reshape_s:8,resid:60,residu:81,resiz:[22,63,64],resnet_101:81,resnet_152:81,resnet_50:81,resolv:[18,61,73],resourc:[44,55,72],respect:[2,16,31,36,53,59,62,69,81],respons:[8,22,31,38,72,73],rest:[2,8,17,27,28,53,77],restart:[19,24,72,73,77],restartpolici:[72,73],restor:16,restrict:[48,69],resu:41,result:[4,5,7,8,14,16,23,31,32,37,38,42,63,64,66,69,72,81,82],result_fil:7,resum:26,retain:64,retran:72,retriev:[17,48,60,62,73],return_seq:9,reuqest:47,reus:[17,26,41,45,62,63],rev:60,reveal:15,revers:[8,9,59],review:[12,61,73,82],reviews_electronics_5:73,revis:82,rewrit:[18,63],rgb:8,rho:10,rich:53,right:[2,8,16,17,18,27,45,81],rkt:[27,60],rmsprop:82,rnn:[8,9,17,31,40,45,48,65,68,82],rnn_bias_attr:59,rnn_layer_attr:59,rnn_out:59,rnn_output:51,rnn_step:8,rnn_use_batch:[68,69],rnnlm:12,rnnstep:51,roadmap:51,robust:8,role:[12,15,23,24,42,72],rollback:40,root:[10,11,67,72,73],root_dir:67,rot:8,roughli:[2,80],row:[4,7,8,12,22,62,81],row_id:8,rows_:49,rpc:23,rpcserver:23,rsize:72,rtk:77,rtype:[8,12],rule:[7,32,42,62,72],run:[15,16,17,18,19,27,30,31,32,36,37,39,42,43,44,45,48,49,55,61,62,64,65,66,69,72,74,75,77,79,81,82],runinitfunct:66,runnabl:43,running_on_cloud:27,runtim:[1,2,17,36,44,45,52,54,55,67],runtime_table_:17,s_param:80,s_recurrent_group:59,sacrif:1,safe:27,sai:[8,32,33,53,60,69,71],sake:62,same:[2,4,7,8,9,14,15,16,23,24,26,30,31,36,42,44,45,46,48,51,59,63,64,67,71,72,79,82],samping_id:8,sampl:[2,4,7,12,31,50,67,69,71,79,80,81,82],sample_dim:80,sample_id:7,sample_num:7,sampler:31,satifi:7,satisfi:[18,49,67,72,82],save:[2,8,12,14,19,21,23,24,27,32,42,49,52,53,60,69,71,72,73,81,82],save_dir:[53,69,71,73,80,82],save_only_on:[68,69],saving_period:[68,69],saving_period_by_batch:[68,69,71,82],saw:2,scalabl:45,scalar:[2,8,17,33,51],scale:[5,42,43,46,50,63,81],scaleop:63,scaleopmak:[45,63],scalingproject:8,scan:[23,45],scatter:8,scenario:[53,68],scene:68,schdule:72,schedul:[23,27,43,72,80],scheduler_factor:6,schema:79,scheme:[7,22,63],scope:[16,40,44],score:[7,8],scrip:82,script:[4,12,60,63,67,72,81,82],search:[8,19,48,54,59,69],second:[2,8,15,29,31,36,39,41,48,50,53,55,63,67,79,81,82],secret:72,section:[2,40,43,59,62,67,72,82],see:[2,4,8,9,15,19,40,42,44,53,55,61,63,64,66,72,79,80,81,82],seed:[66,69],seem:18,seen:63,segment:[7,36,51,64],segmentor:79,sel_fc:8,selcet:8,select:[8,61,72],selected_id:8,selected_indic:8,selected_row:[49,52],selected_rows_desc:[49,52],selectedrow:52,selectiv:8,selector:73,self:[16,31,37,40,51,53,62,63],selfnorm:8,semant:[12,15,47],semat:15,send:[19,24,42,43,45,50,52,69,72],send_back_parameter_typ:22,sendbackparameterspars:22,sendbackparametertyp:22,sendparameterrequest:22,sendparameterrespons:22,sensit:8,sent:[15,24,42,45,50,73],sentenc:[2,8,12,36,51,59,82],sentence_input:51,sentiment:[2,53,82],sentimental_provid:2,separ:[2,7,24,30,46,69,79,82],seper:51,seq:[8,12],seq_len:51,seq_pool:8,seq_silc:8,seq_text_print:7,seq_to_seq_data:79,seq_typ:[2,12],seqtext_evalu:7,seqtoseq:[8,79],seqtoseq_net:[8,79],sequel:2,sequenc:[2,5,7,8,9,11,12,17,32,37,39,51,62,79,82],sequence_conv_pool:82,sequence_group:8,sequence_nest_group:8,sequencestartposit:8,sequencetextprint:7,sequencetyp:[2,8],sequenti:[8,17,59,82],seri:9,serial:[2,14,17,23,38,45,52],serializ:45,serv:[42,45,51,55,66,72,80],server:[15,18,22,25,26,42,45,55,62,67,68,77],serverless:19,servic:[55,77],sess:[31,37,44],session:[37,55,66],set:[1,2,4,6,7,8,9,12,14,15,19,27,31,36,40,45,46,48,51,53,54,55,59,60,62,63,64,65,66,67,68,69,71,72,73,79,81,82],set_active_typ:62,set_default_parameter_nam:6,set_drop_r:62,set_float_el:16,set_input:8,set_siz:62,set_typ:62,setdatatyp:49,setdefault:63,setp:72,setq:60,settup:62,setup:[2,47,55,62,63,77,82],sever:[2,7,8,16,22,31,36,38,49,51,67,71,72,82],sexstant:77,sgd:[10,14,15,19,27,38,42,43,44,49,67,80],sgdasync_count:68,shall:18,shape:[8,12,14,16,17,31,33,36,39,40,44,45,49,63,64,81],shard:[19,20,21,22,23,24,26,42,43,72],share:[8,18,31,35,38,45,51,54,55,60,63,66,69,73],shared_bia:9,shared_bias:8,shared_librari:18,shared_ptr:[34,35,48,64],shell:[72,81],shift:81,shorten:8,shorter:81,should:[2,4,6,7,8,12,14,15,16,17,24,27,30,31,36,37,38,39,41,42,45,46,49,50,51,52,53,59,61,63,67,72,82],should_be_fals:15,should_be_tru:15,should_shuffl:2,show:[4,7,10,17,19,29,33,36,39,49,51,53,60,64,69,72,73,79,81,82],show_check_sparse_distribution_log:[68,69],show_layer_stat:[68,69],show_parameter_stats_period:[68,69,71,73,82],shown:[2,8,15,42,59,62,64,66,72,80,81,82],shrink:62,shuffl:[2,12],sid:72,side:[8,14,38,64,81],sig:72,sigint:67,sigmod:50,sigmod_op:50,sigmod_output:50,sigmoid:[8,17,44,50,51,62],sigmoidactiv:9,sign:[28,72],signal:67,signatur:72,signific:66,similar:[8,17,41,43,45,51,63,72,77,82],similarli:[8,12,63],simpl:[1,2,5,7,8,9,12,14,32,39,43,48,50,51,54,55,61,66,69,82],simple_attent:59,simple_gru:[59,82],simple_lstm:[8,82],simple_rnn:[8,59],simpler:38,simplest:72,simpli:[1,8,15,24,36,54,55,59,66,79,81],simplifi:[15,40,50,62,73],simultan:72,sinc:[8,19,23,25,26,41,42,44,46,49,51,53,55,64,66,72,77,80,82],sincer:61,singl:[2,7,9,12,19,42,43,44,45,48,55,62,67,73,81,82],sinlg:14,site:[18,72],six:79,size:[2,7,8,9,10,12,14,19,21,22,24,31,40,41,42,44,49,50,51,53,59,62,63,64,67,69,80,81,82],size_a:8,size_b:8,size_t:[22,51,62],sizeof:[17,79],skip:[41,53,61,67,72,81],sliceproject:8,slide:[8,10,12,19],slightli:31,slope:8,slopeinterceptlay:8,slow:[2,66],slowli:60,small:[2,12,16,31,62,67,69],small_messag:[68,69],smaller:[8,16,19],smart:48,smartli:8,smooth:8,snap:73,snapshot:[20,26,72],snippet:[30,37,59,62,66,72,82],sock:27,sock_recv_buf_s:[68,69],sock_send_buf_s:[68,69],socket:69,softmax:[8,9,15,17,33,39,42,43,44,59,62,79,82],softmax_param_attr:9,softmax_selfnorm_alpha:8,softmaxactiv:82,softwar:[55,66,77],solid:31,solut:77,solv:[15,42,45],some:[2,6,8,12,14,15,17,18,22,23,24,26,27,30,31,32,36,37,39,40,42,43,45,46,48,51,53,54,61,62,63,64,66,68,69,71,72,77,80,82],some_c_api_funct:35,some_inst:35,some_op:[36,51],some_python_class:34,somecppclass:34,somedata:14,somegotyp:34,someth:[2,8,22,40,60],sometim:[8,10,41,60,66],somewhat:24,somewher:48,soon:19,sophist:[53,62,67],sort:[8,12,51,69,72],sort_by_length:51,sourc:[8,12,16,18,29,31,35,41,45,53,55,59,61,65,72,73,79,82],source_dict_dim:59,source_language_word:59,space:[7,8,40,43,55,59,60,66],space_seperated_tokens_from_dictionary_according_to_seq:7,space_seperated_tokens_from_dictionary_according_to_sub_seq:7,spars:[2,6,8,10,12,22,62,64,67,69,72,82],sparse_binary_vector:[2,12,82],sparse_binary_vector_sequ:12,sparse_float_vector:2,sparse_non_value_slot:12,sparse_remot:22,sparse_upd:[6,22],sparse_value_slot:12,sparse_vector:12,sparse_vector_sequ:12,sparseparam:62,sparseprefetchrowcpumatrix:62,spatial:8,speak:59,spec:[72,73],specfii:69,special:[8,24,37,40,42,54,63,79,82],specif:[1,14,18,19,29,45,48,60,63,71,82],specifi:[1,2,7,8,15,16,22,23,24,27,29,31,40,42,44,48,50,51,53,54,59,60,62,64,69,72,80,81,82],speech:8,speed:[9,55,77],spefici:81,sphinx:[34,54,55],sphinx_rtd_them:54,split:[2,8,26,33,45,51,67,71,72,79,81,82],split_count:72,sql:1,sqrt:8,squar:[8,10,11,53],square_error_cost:53,squarerootnpool:8,srand:69,src:18,src_backward:59,src_embed:59,src_forward:59,src_root:4,src_word_id:59,srl:12,ssd:8,ssh:[55,67,72,73],sshd:55,ssl:54,sstabl:15,stabil:[16,63],stabl:[47,72],stack:[45,51,53,72,82],stackexchang:8,stage:[18,25,31,52,61,67],stale:[19,44],stamp:66,standard:[6,45,60,79],stanford:[12,16,73],star:18,start:[8,9,14,18,19,22,23,24,26,27,38,42,53,55,59,60,66,67,69,76,79],start_pass:[68,69],start_po:8,start_pserv:69,startup:[19,27,72],stat:[54,66,69],state:[8,9,19,36,48,51,53,59,69,73,80],state_act:[8,9],statement:[32,62,72],static_cast:64,staticinput:[8,59],statist:[8,69,82],statset:66,statu:[27,61,66,72,73],status:73,std:[14,18,22,34,35,45,46,48,50,62,63,64,69],stderr:67,stdout:67,step:[4,8,9,11,16,17,19,24,31,32,38,40,42,43,45,50,51,55,59,61,62,66,67,72,73,77,82],step_id:51,step_input:51,step_net:17,step_output:51,step_scop:45,stepnet:[17,36,45,48],still:[23,26,42,46,64,81],stirng:40,stmt1482205552000:72,stmt1482205746000:72,stochast:[10,19,23,26],stop:[8,55,60,67,69,73],storag:[28,54,72,73],store:[7,8,12,14,16,17,18,22,38,39,40,42,44,45,46,48,51,62,63,64,67,69,72,73,79,81,82],str:[14,27,51,71],straight:39,straightforward:49,strategi:[2,11,19,43,69],street:8,strength:80,strict:41,stride:[8,9],stride_i:8,stride_x:8,string:[1,2,7,8,14,17,23,29,39,40,44,45,46,48,49,50,52,62,63,69,72],strip:82,struct:[23,24,28,35,46,50],structur:[17,23,31,39,40,45,49,67,72,79,82],sts:72,stuff:61,stun:2,style:[2,8,45,50,54,61],sub:[7,8,12,15,26,31,36,38,40,42,59,62,82],sub_nest_seq:8,sub_sequ:[2,8],subclass:40,subcommand:29,subgradi:10,subgraph:[31,43],submiss:42,submit:[45,61,68,69,72],subnet0:72,subnet:[15,72],subobjectpath:73,subsequ:8,subsequenceinput:8,subset:62,substanti:81,succeed:[23,73],success:[8,24,72,73,81],successfulcr:73,successfulli:[63,81],successor:69,sudo:[54,60,72],suffer:16,suffic:[41,53],suffici:69,suffix:27,suggest:[8,18,66],suit:77,suitabl:[49,61,69],sum:[8,10,17,20,59,62],sum_:8,summar:[31,82],sumopgradmak:46,sumpool:8,suppli:49,support:[6,7,8,11,12,16,17,19,26,27,30,31,38,41,42,43,45,46,49,54,55,59,60,61,62,63,64,66,69,72,77],suppos:[18,30,49,53,62,82],suppress:[8,29],sure:[45,60,61,62,72],surpass:8,svs:50,swagger:28,swap_channel:81,swig:[4,25,34,35,54],swig_paddl:[4,80],switchop:17,symbol:[8,17,35],symbols_ready_:17,symbolt:[17,45],symlink:61,sync:[19,61,69,80],syncflag:62,synchron:[10,19,23,67,69,72],syntax:41,synthect:53,synthes:80,synthet:53,sys:81,system:[17,18,19,24,26,28,30,31,42,43,54,55,63,67,73,82],t2b:79,tab:[55,82],tabl:[2,7,8,17,49,52,81,82],tablelookup:49,tablelookupgrad:49,tablelookupop:49,tableproject:8,tag:[7,12,55,59],tagtyp:7,take:[2,4,7,8,9,15,17,18,19,26,31,32,33,39,40,45,46,51,59,60,62,63,66,72,73,80],taken:[2,51],talk:24,tanh:[8,9,31,42,59,62],tanhactiv:9,tar:[14,54,72],tarbal:72,target:[8,12,14,17,18,31,37,42,44,45,59,61,63,79,82],target_dict_dim:59,target_dictionary_dim:8,target_language_embed:8,target_language_word:59,target_link_librari:18,targetinlink:8,task:[2,7,8,42,50,53,59,71,79,81],task_queu:23,taskentri:23,taskqueu:23,tbd:25,tcp:[69,72],teach:82,tear:66,technic:19,techniqu:[59,62],technolog:60,tee:73,tell:[19,23,24,50,55,66],templat:[30,50,63,64,73,77],tempor:[8,82],temporari:[27,78],ten:60,tensor:[16,18,31,36,43,44,49,51,52,63],tensor_array_read:51,tensor_array_s:51,tensor_array_stack:51,tensor_array_unstack:51,tensor_array_writ:51,tensor_s:16,tensor_test:18,tensor_to_check:16,tensorarraydesc:51,tensordesc:49,tensorflow:[17,31,33,42,43,51,64],term:[8,9,19],termin:73,terminolog:53,tese:1,tessorarrai:51,test100:12,test10:12,test1:21,test:[1,2,8,12,14,15,16,18,35,41,44,47,54,55,64,65,66,67,68,79,81,82],test_:63,test_all_data_in_one_period:73,test_check_grad_ingore_i:63,test_check_grad_ingore_x:63,test_check_grad_norm:63,test_fcgrad:62,test_gpuprofil:66,test_layergrad:62,test_list:[2,53,82],test_mul_op:63,test_norm:63,test_pass:[68,69,71],test_period:[68,69,71],test_wait:[68,69],testa:15,testb:15,testbilinearfwdbwd:66,testcas:63,testconfig:62,testfcgrad:62,testfclay:62,testlayergrad:62,testmodel_list:68,testmulgradop:63,testmulop:63,testq:15,testresult:14,testsave_dir:68,testutil:62,text1:29,text:[1,2,7,9,12,15,36,55,72,79,82],text_conv:82,text_fil:12,tflop:66,tftp:77,tgz:[12,54],than:[2,4,6,7,8,9,19,27,30,31,40,45,46,51,54,55,59,60,62,67,72,77,81],thank:79,the_current_program:40,thei:[2,8,15,18,19,24,26,29,31,32,37,40,43,44,45,49,50,51,52,53,55,59,60,62,63,64,66,67,68,72,81],them:[1,2,7,8,9,15,16,18,19,22,27,30,41,43,45,46,48,49,50,51,52,53,55,60,63,66,68,69,72,81,82],themselv:18,theori:66,therefor:54,therein:[8,17],therun:81,theta:31,theta_d:31,theta_g:31,thi:[1,2,6,7,8,9,10,12,14,15,16,17,18,19,22,23,24,25,26,27,30,31,32,36,37,38,39,40,41,42,43,44,45,50,51,53,54,55,59,60,61,62,63,64,66,67,69,71,72,73,77,79,80,81,82],thing:[2,31,45,53,61,66],think:[15,18],third:[8,19,63,66,81],third_parti:8,thirt:60,those:[17,18,19,30,32,33,39,81],though:[51,77],thought:[18,66],thread:[62,66,69,71],thread_local_rand_use_global_se:[68,69],threadid:71,threadloc:66,three:[2,7,8,16,19,32,37,38,39,41,53,69,80,81],threshold:[6,7,8,19,23,69],through:[4,8,18,19,23,25,37,44,59,62,63,66,67,79,80],throughout:82,throughput:66,thrust:45,thu:[2,8,26,53,62,72,78],tier:73,tight:54,time:[2,8,9,11,12,15,16,18,19,23,26,30,36,40,41,42,43,45,46,49,50,51,52,53,59,60,64,66,69,71,73,77,82],timelin:[8,45,66],timeo:72,timeout:[19,23],timeout_sec:12,timer:54,timestamp:[8,20],timestep:[2,8,48],titl:12,tls:28,to_no_sequ:8,to_sequ:8,todo:[7,10,12,17,19,23,26,50],toend:8,togeth:[2,8,9,12,14,51,59],token:[7,8,15,59,79],toler:[14,16,63],too:[12,16,42,51,55],took:77,tool:[55,59,60,61,72],toolchain:54,toolkit:54,top:[7,14,36,63,81],top_k:7,top_level_rnn:36,toplevel:60,topolog:[15,19,38,42,44],topolopi:14,torch:17,toronto:12,total:[14,19,41,43,66,67,73,77,79],total_pass:41,toward:53,trace:[17,31],track:[19,23,40,61],tractabl:8,tradit:[8,17],traffic:42,trail:12,train100:12,train10:12,train:[0,1,2,4,6,7,8,10,12,17,21,23,24,26,31,32,38,39,44,45,49,52,59,62,65,66,68,74,75,81],train_conf:79,train_config_dir:72,train_id:72,train_list:[2,53,81,82],trainabl:[8,40],traindot_period:68,trainer:[2,4,15,20,21,22,23,25,38,42,43,45,53,62,67,69,71,80,82],trainer_config:[1,2,53,67,72,73,82],trainer_config_help:[2,53,62,82],trainer_count:[68,69,71,72,73],trainer_cpu:27,trainer_cr:27,trainer_gpu:27,trainer_id:[69,72],trainer_intern:22,trainer_mem:27,trainer_packag:27,trainerid:26,trainerintern:82,training_machin:80,trainingtest_period:68,trainonebatch:22,trainonedatabatch:80,tran:[62,69],trane:2,transact:[19,23],transfer:[1,2],transform:[8,45,59,62,64,80,82],transform_param_attr:9,translat:[8,9,53,79],transpar:67,transport:69,transpos:[8,62,80],transposedfullmatrixproject:8,travel:2,travers:32,travi:[54,61],treat:[8,17,24],treatment:24,tree:[8,17,40,69],trg_embed:59,triain:1,tricki:34,trigger:[26,38],trim:8,trivial:[2,51],trn:82,true_block:[17,33,39],true_imag:41,true_label:41,true_read:41,truth:[7,8,82],tst:82,tune:[6,8,65,82],tuninglog_barrier_abstract:68,tupl:[2,8,9,12,14,40,41],ture:8,turn:[8,40,41,80],tutori:[55,59,61,62,63,66,67,72,73,74,75,78,81,82],twice:[31,43],twine:47,two:[1,2,7,8,9,15,24,25,26,27,29,31,32,39,41,42,44,45,46,48,49,50,51,52,53,55,59,63,64,66,67,71,72,79,80,81,82],txt:[2,18,27,29,62,67,72,82],type:[2,7,8,9,11,12,14,15,17,19,22,23,26,27,28,29,34,35,36,39,40,41,45,46,49,50,52,53,55,59,60,62,64,69,71,72,73,81,82],type_nam:50,typedef:[24,34,35],typeid:50,typenam:[30,50,63,64],typic:[4,7,42,55,66],ubuntu:47,ubyt:41,uci:12,ufldl:8,uid:73,uint32:28,uint64:34,uint64_t:34,unawar:24,unbalanc:69,unbound:59,unclear:26,under:[18,23,43,53,54,55,64,72],underli:53,understand:[55,66,77,79],understand_senti:59,undeterminist:66,unidirect:8,unifi:49,uniform:[6,8,12,21,31,41,69,80],uniform_random:40,uniqu:[15,17,19,26,27,48,63,69,72],unique_name_gener:40,unique_ptr:[46,48,62],unit:[8,9,18,53,54,55,59,61,64,65],unittest:[35,63],unittestcheckgrad_ep:68,unix:67,unk:[49,52,79],unk_idx:82,unknown:8,unlik:[8,63],unordered_map:48,unpack:51,unrol:36,unseg:8,unsign:24,unstack:51,unstack_from:51,unsupervis:31,unsupport:63,until:[19,24,43,48,67,72],untrack:61,updat:[6,8,10,19,23,24,28,31,36,37,38,42,48,51,54,61,62,67,69,71],update_equ:14,update_hook:6,update_memori:17,update_op:37,updatecallback:62,updatestack:72,upgrad:78,upload:[19,27,28,47],upon:19,upper:8,upstream:61,uri:72,url:12,usag:[1,2,7,8,9,14,33,38,53,63,66,79,80],use:[1,2,4,6,7,8,9,11,12,14,15,16,17,18,19,25,31,36,37,38,42,43,44,48,49,50,51,52,53,54,55,56,59,60,61,62,63,66,67,69,71,72,73,79,80,81,82],use_etcd:14,use_global_stat:8,use_gpu:[68,69,71,73,80,81,82],use_old_updat:[22,68,69],use_seq:53,use_sparse_remote_updat:22,used:[1,2,4,7,8,9,10,11,12,14,15,16,17,18,19,25,26,31,36,38,40,41,42,44,45,48,50,51,53,56,59,60,62,63,64,66,67,68,69,71,72,79,81,82],useful:[1,2,8,9,16,48,59,62,71,82],usegpu:[62,80],useless:67,user:[1,2,6,8,9,12,14,15,16,17,18,21,23,26,27,29,30,31,32,37,40,41,42,43,44,45,46,48,50,51,53,55,67,68,69,72,77,81,82],user_info:12,user_nam:21,usercert:21,userinfo:12,userkei:21,usernam:[21,61],uses:[2,19,26,38,42,59,60,61,62,64,69,72,81,82],using:[1,2,4,6,8,9,12,14,15,17,18,19,23,24,26,27,29,30,31,36,37,39,41,42,46,48,50,53,55,59,60,61,62,63,64,66,69,71,72,73,78,79,80,81,82],usr:[54,67,69,72],usrdict:79,usrmodel:79,usual:[8,14,27,39,53,54,63,66,69,71,72],utf:79,util:[4,54,59,62,63,66,77],uuid:[20,26],v28:8,valid:[8,41,45,48,63,72,81],valu:[2,4,6,7,8,10,11,12,14,16,17,19,33,36,37,38,39,42,44,45,48,49,50,51,52,53,59,62,63,69,71,72,80,81],value1:69,value2:69,value_:49,value_evalu:7,value_rang:12,values_:51,vanilla:59,varabl:43,vardesc:[17,32,39,40,45,49],vardescbuild:17,vari:[66,72],variabl:[2,8,12,15,16,17,31,32,33,36,37,39,42,43,44,46,49,50,51,53,54,62,63,67,72,73],variablenamemap:63,varialbl:31,varianc:[8,81],variant:[8,51,55],varienc:51,varient:51,variou:17,varproto:50,vars_:[17,48],vartyp:[49,52],vector:[2,8,9,12,15,17,22,24,33,36,40,45,46,49,51,59,62,64,79,82],vectorenable_parallel_vector:68,vendor:18,verb:12,verbos:29,veri:[2,8,11,18,23,30,31,38,43,48,51,59,66,82],verifi:[17,62],versa:54,version:[8,9,18,27,29,31,33,47,54,55,60,62,66,67,68,69,72,73,79],versu:15,vertic:[8,81],vgg:9,via:[19,36,41,54,61,66,67,72,77,82],vice:54,view:8,virtual:[46,55,60],virtualenv:60,visibl:[26,48,55],visit:14,visual:[8,55,66],vlog:22,voc_dim:82,volum:[55,73],volumemount:[72,73],volumn:72,vutbr:12,wai:[2,7,8,9,15,24,26,42,44,51,53,55,59,60,62,67,71],wait:[10,19,24,61,69],walk:[4,80],wangkuiyi:18,want:[2,8,15,27,31,41,44,48,51,53,54,55,60,61,62,69,71,79,81,82],warn:29,warp:[8,66],warpctc:8,watch:19,wbia:[72,81],web:55,websit:82,weight:[7,8,9,10,59,62,69,71,81],weight_act:9,weightlist:62,weights_:62,weights_t:62,welcom:18,well:[27,30,31,42,44,49,55,62,69,72,82],were:[7,18],west:72,wether:8,wget:54,what:[6,8,10,18,31,43,50,53,61,63,67,77,82],whatev:60,wheel:54,when:[1,2,6,7,8,12,14,16,17,18,19,22,23,24,27,29,38,39,40,42,43,45,51,59,60,61,62,63,64,66,69,71,72,73,77,79,80],whenev:40,where:[2,8,9,10,15,17,19,26,32,36,39,45,51,53,59,62,63,66,67,69,71,79,81],wherea:[17,23,30,33],whether:[7,8,14,16,17,41,49,51,62,63,69,80],which:[1,2,4,6,7,8,9,10,12,14,15,16,17,18,19,21,23,24,26,27,30,31,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,53,59,60,61,62,63,64,66,67,69,71,72,77,80,81,82],whichev:80,while_loop:51,whileloop:51,whileop:17,whl:54,who:[30,32,40,79,81],whoever:24,whole:[2,7,12,31,33,34,35,36,50,72,73,77,82],whose:[2,8,12,16,19,26,36,45,50,51,59],why:[9,16,35,60],wide:[18,31],width:[7,8,12,22,34,41,62,63],wiki:[8,18],wikipedia:[8,12],wilder:2,window:[8,11,12,55,60],wise:[8,43,45,64],with_avx:[55,61],with_avxcompil:54,with_bia:50,with_coveragecompil:54,with_doccompil:54,with_doubl:62,with_doublecompil:54,with_dsocompil:54,with_gpu:[55,60,61],with_gpucompil:54,with_profil:66,with_profilercompil:54,with_pythoncompil:54,with_rdmacompil:54,with_style_check:61,with_style_checkcompil:54,with_swig_pycompil:54,with_test:[55,61,63],with_testingcompil:54,with_tim:66,with_timercompil:54,within:[8,23,53],without:[7,8,19,24,41,43,45,63,67],wloop:51,wmt14:59,wmt_shrinked_data:12,woboq:55,won:[66,81],wonder:2,word2vec:27,word:[2,7,8,12,32,36,43,45,50,51,59,71],word_dict:82,word_dim:82,word_id:2,word_idx:12,word_vector:82,word_vector_dim:[8,59,79],words_freq_sort:12,work:[2,4,12,15,17,18,19,37,40,41,54,59,60,61,62,66,67,69,72,73,77,82],worker:[43,52,72],workercount:72,workflow:[45,55,61,72],workspac:[55,69],worri:53,wors:80,would:[14,17,18,19,26,30,31,32,37,38,40,41,43,49,51,55,60,67,72,77,80,82],wouldn:32,wrap:[30,31,77],wrapper:[9,18,30,42,46,51,66],write:[2,12,15,19,26,30,37,40,41,42,43,45,46,51,55,60,61,65,67,72],write_lock:20,writelin:53,writer:[15,40],written:[17,31,42,45,49,63,64],wrong:[2,41],wrote:43,wsize:72,www:[8,12],x64:54,x_1:8,x_n:8,x_neg:16,x_po:16,xarg:[7,62],xgbe0:69,xgbe1:69,xmap_read:12,xrang:[16,31,41,53,62],xxx:[15,51,81],xxxx:20,xxxxxxxxx:72,xxxxxxxxxx:72,xxxxxxxxxxxxx:72,xxxxxxxxxxxxxxxxxxx:72,xzf:54,y_dim:31,y_neg:16,y_po:16,y_predict:53,yaml:[18,72,77],yancey1989:27,yann:12,yapf:61,yeild:14,yet:77,yield:[2,12,15,21,41,53,82],yin:8,you:[1,2,4,6,8,9,14,16,27,48,53,54,55,59,60,61,62,66,67,69,71,72,77,79,80,81,82],your:[2,8,14,15,18,22,27,29,45,54,55,60,61,62,66,67,71,72,77,82],your_access_key_id:72,your_secrete_access_kei:72,your_source_root:35,yourself:8,yum:54,yuyang18:[10,12],z_dim:31,z_size:31,zero:[2,6,8,9,10,12,16,19,31,38,49,62,69,72,82],zhidao:79,zip:12,zone:72,zxvf:72},titles:["API","Introduction","PyDataProvider2","API","Python Prediction","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","The IfElse Operator","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","RNNOp design","Optimizer Design","Design Doc: The C++ Class Parameters","Design Doc: PaddlePaddle Programs","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Distributed Training Architecture","Design Doc: Operation Graph Based Parameter Server","Design Doc: Session","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","Design for TensorArray","Background","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","GET STARTED","RNN Models","RNN Configuration","Build PaddlePaddle from Source Code and Run Unit Test","Contribute Code","Write New Layers","How to write a new operator","How to use Eigen in Paddle","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","<no title>","<no title>","PaddlePaddle Documentation","Cluster bootstrapping tool survey","<no title>","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Model Zoo - ImageNet","Quick Start"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":21,"\u4e0d\u4f7f\u7528":34,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":34,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":34,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4ec5\u4ec5\u4f7f\u7528void":34,"\u4ece\u5feb\u7167\u6062\u590d":20,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u4f7f\u7528\u8f6c\u6362\u5e93":21,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":35,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u652f\u89c4\u8303":47,"\u52a0\u901f\u6267\u884c":20,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u52a8\u6001\u6269\u5bb9":20,"\u539f\u56e0":34,"\u539f\u56e0\u5217\u8868":34,"\u53c2\u8003\u6587\u6863":28,"\u540d\u8bcd\u89e3\u91ca":28,"\u57fa\u672c\u8981\u6c42":34,"\u5b9e\u73b0":34,"\u5b9e\u73b0\u65b9\u5f0f":35,"\u5bfc\u51fac":34,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":20,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":34,"\u63a8\u6d4b\u6267\u884c":20,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":21,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":21,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":21,"\u6587\u4ef6\u9884\u5904\u7406":21,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":35,"\u672f\u8bed":20,"\u67b6\u6784\u56fe":28,"\u6846\u67b6\u751f\u6210":28,"\u6982\u5ff5\u89e3\u91ca":21,"\u6a21\u5757":28,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":20,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":35,"\u6d41\u7a0b\u4ecb\u7ecd":21,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u76ee\u5f55\u7ed3\u6784":35,"\u76ee\u6807":28,"\u793a\u4f8b\u7a0b\u5e8f":21,"\u7b26\u53f7":34,"\u7c7b":34,"\u7f16\u8bd1\u9009\u9879":35,"\u7f29\u5bb9":20,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u80cc\u666f":34,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":21,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":21,"\u8f6c\u6362\u5e93":21,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":34,"\u8fdb\u884c\u8bad\u7ec3":21,"abstract":[42,43,44,77],"book\u4e2d\u6240\u6709\u7ae0\u8282":47,"case":71,"class":[31,38,62,63],"filemanager\u8bbe\u8ba1\u6587\u6863":28,"function":[18,30,31,40,79],"new":[62,63],"paddle\u52a8\u6001\u5e93\u4e2d":34,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":34,"paddlepaddle\u53d1\u884c\u89c4\u8303":47,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":47,"return":41,"tensor\u5230eigentensor\u7684\u8f6c\u6362":64,AWS:72,Abs:5,DNS:72,EFS:72,For:[18,73],KMS:72,Not:60,The:[17,24,31,32,33,37,38,45,46],USE:45,Use:[17,39,71,73],Using:[18,24,55,61],With:[27,55],about:31,access:72,account:72,activ:[5,8],adadelta:10,adagrad:10,adam:10,adamax:10,add:72,address:72,addto:8,adversari:80,aggreg:8,aggregatelevel:8,alalysi:22,algorithm:[16,19,36,42,82],all:[48,51],analysi:42,api:[0,3,35,37,40,50,55],appendix:[77,82],applic:3,approach:66,architectur:[42,59,82],argument:[29,41,68,71,82],arrai:16,asset:72,associ:[48,72],assumpt:77,async:69,attent:59,attribut:6,auc:7,auto:16,avg:11,aws:72,backgraound:16,background:[43,44,51,52,53,63],backward:[32,45,63],base:[27,43],basepool:11,basic:77,batch:41,batch_norm:8,batch_siz:41,beam_search:8,benefit:[43,45],between:[15,45,50],bidirectional_gru:9,bidirectional_lstm:9,bilinear_interp:8,binari:17,bind:63,block:[17,31,32,39,40,45],block_expand:8,blockdesc:39,book:55,bootstrap:77,branch:61,brelu:5,bring:77,bucket:72,build:[31,45,54,56,60,61,73],built:66,cach:2,can:48,capi:35,capi_priv:35,cento:54,challeng:43,check:[8,16,62,67],checker:16,checkpoint:[19,20,26],chines:79,choos:[18,72],chunk:7,cifar:12,classif:7,classification_error:7,classification_error_print:7,client:24,clip:8,clone:61,close:16,cloudform:72,cluster:[25,67,71,72,77],cmake:18,code:[27,60,61],column_sum:7,command:[70,71,82],commit:[61,73],common:69,commun:69,compar:77,compil:[17,39,45,63],compos:41,comput:[17,32,45,64],con:77,concat:8,concept:[40,45,72],conclus:[26,77],condit:31,config:[3,71],configur:[13,59,65,67,72,82],conll05:12,connect:8,construct:32,contain:[55,73],content:[35,66,72],context_project:8,contribut:61,control:45,conv:8,conv_oper:8,conv_project:8,conv_shift:8,convert:[26,42,43],convolut:82,core:[16,40,72],cos_sim:8,cost:8,cpu:[55,71],creat:[41,44,45,48,61,72,73],creation:23,creator:41,credenti:72,crf:8,crf_decod:8,cross_channel_norm:8,cross_entropy_cost:8,cross_entropy_with_selfnorm_cost:8,ctc:8,ctc_error:7,cudnnavg:11,cudnnmax:11,current:46,custom:41,data:[8,12,19,40,41,42,53,72,73,79,80,82],datafeed:12,dataprovid:[2,3,69],dataset:[12,19,23],datatyp:12,date:61,decayedadagrad:10,decor:41,deep:17,defin:[63,72,82],definit:52,delet:[61,72],demo:[31,72],dens:26,depend:[31,54],deploi:27,deriv:62,describ:37,descript:[29,45,69,80],design:[15,16,17,19,23,24,25,26,30,31,32,36,37,38,39,40,41,42,43,44,45,46,48,49,51],destroi:[48,72],detail:[22,69],detect:[7,8],detection_map:7,detection_output:8,develop:[45,55,60,61,65],devic:71,dictionari:[41,79],differ:[45,71],directori:72,discrimin:31,discuss:[31,43],dispatch:[19,23],distribut:[15,19,22,27,42,67,69,72],doc:[15,17,19,23,24,25,26,30,32,38,39,40,41,42,43,44,45,46,49],docker:[27,55,60,73],document:[55,76],dotmul_oper:8,dotmul_project:8,down:72,download:[54,72,73,79,81],dropout:8,dylib:35,dynam:[19,51],ec2:72,eigen:64,elast:72,elect:26,els:17,embed:[8,79,82],engin:31,enough:16,entri:41,environ:27,eos:8,equat:62,eval:42,evalu:[7,53],event:[14,15],exampl:[15,18,33,35,44,79,80],execut:[17,39,45],exp:5,expand:8,expandlevel:8,explain:16,extern:72,extract:[79,81],fault:19,featur:81,file:[17,72,73,82],find:72,first_seq:8,fork:61,format:[17,19,82],forward:[32,63],frame:17,framework:[16,64],from:[15,26,50,54,56,60],full_matrix_project:8,fulli:8,gan:[31,80],gate:59,gated_unit:8,gener:[31,59,60,77,80],get:[57,73],get_output:8,github:61,global:39,gotcha:60,gpu:[55,66,69,71],gradient:[16,24,46,62],gradient_print:7,graident:16,graph:[32,43,45],group:[8,72],gru:[9,69],gru_group:9,gru_step:8,gru_unit:9,grumemori:8,hand:66,handler:[15,34],happen:26,hierarchi:17,high:[37,50],hook:61,how:[16,22,41,45,63,64,65,66],hsigmoid:8,huber_classification_cost:8,huber_regression_cost:8,iam:72,ident:5,identity_project:8,ifels:33,ifelseop:17,imag:[8,9,27,55,73],imagenet:81,imdb:12,img_cmrnorm:8,img_conv:8,img_conv_bn_pool:9,img_conv_group:9,img_pool:8,imikolov:12,implement:[16,18,22,36,41,45,46,62,63,64,80],infer:[14,82],infershap:[39,49],info:81,ingredi:15,ingress:28,init_hook:2,initi:[24,31,71,72],input_typ:2,insid:48,inspect:72,instal:[54,56,72,77,82],instanc:72,integr:72,interact:50,interfac:[12,16,19,24,25,37,41,44,48,81],intermedi:45,interpol:8,introduc:51,introduct:[1,79,81],isn:41,issu:61,job:[19,27,67,72,73],join:8,keep:61,kei:72,kernel:45,kill:67,kmax_sequence_scor:8,kube:72,kubectl:72,kubernet:[27,72,73],lambda_cost:8,languag:17,larg:22,last_seq:8,launch:67,layer:[8,15,30,40,62,71],learn:17,learnabl:8,leval:50,level:[37,50],libpaddle_capi_shar:35,libpaddle_capi_whol:35,librari:[24,45],limit:42,line:[70,82],linear:[5,53],linear_comb:8,list:[20,41],local:[42,44,48,61,71,72],lodtensor:[36,51],lodtensordesc:52,log:[5,82],logic:23,logist:82,low:50,lstm:[9,69],lstm_step:8,lstmemori:8,lstmemory_group:9,lstmemory_unit:9,macro:45,main:31,manag:18,map:[41,45],master:[19,23,27],math:8,mathemat:16,matrix:69,max:11,maxframe_print:7,maxid:8,maxid_print:7,maxout:8,member:31,memori:[8,36],messag:50,might:31,migrat:45,mileston:45,mini:41,minibatch:12,misc:8,mix:[8,71],mnist:[12,80],model:[2,3,13,15,22,24,26,31,53,55,58,59,67,71,79,80,81,82],modifi:73,modul:[45,64],momentum:10,more:31,movielen:12,multi_binary_label_cross_entropy_cost:8,multibox_loss:8,multipl:41,multiplex:8,name:[48,72],nce:8,necessari:45,need:[41,60,66],nest:36,network:[9,45,59,71,80,81,82],neural:[59,82],neuralnetwork:53,nlp:[9,69],non:2,norm:8,note:16,numer:16,numpi:16,nvprof:66,nvvp:66,object:19,observ:[79,81],onli:[41,48,55],op_mak:45,oper:[30,33,39,40,43,45,46,49,51,63],opinfomap:45,opkernel:[45,63],opproto:50,optim:[10,19,24,32,37,40,65,82],option:[29,54,79],opwithkernel:45,order:29,origin:[45,61],orthogon:48,outlin:68,output:[8,67,72],overview:[26,45,48,82],packag:18,pad:8,paddl:[22,41,48,64,73],paddlejob:27,paddlepaddl:[15,17,39,42,47,55,56,60,72,76,79],pair:72,parallel_nn:71,paramet:[6,8,14,15,19,24,25,27,38,40,43,69,70,72,79,81],paraphras:79,parent:48,part:32,partit:24,pass:71,path:[26,29],perform:[66,69],persist:23,pfsclient:[28,29],pfsserver:28,placement:42,pnpair:7,point:72,pool:[8,11],pose:46,power:8,pre:61,precision_recal:7,predict:[4,81],prefetch:41,prelu:8,prepar:[53,67,72,79,80],preprocess:[79,82],prerequisit:67,pretrain:79,print:7,privat:72,pro:77,problem:[37,46,53],procedur:77,process:[19,24,27,37,45,60],profil:66,program:[17,39,40],programdesc:39,project:18,propos:46,protobuf:49,protomak:63,provid:[2,41,82],pserver:26,pull:61,push:61,pydataprovider2:2,python:[4,16,27,36,37,40,41,42,50,52,55,62,63,81,82],qualiti:45,queue:[19,23],quick:82,randomnumb:69,rank:7,rank_cost:8,reader:[12,15,41],realiz:45,recoveri:19,recurr:[8,9,59,82],recurrent_group:8,ref:16,refactor:45,refer:[2,42,43,66],region:72,regist:[45,50,63],registr:[45,46],registri:45,regress:[53,82],regular:24,relat:[45,51],relu:5,remark:63,remot:[25,44],render:72,repeat:8,represent:[17,45],request:61,requir:[18,31,54,61],reshap:8,resiz:8,resnet:81,result:[67,73],retri:23,revis:79,rmsprop:10,rnn:[36,51,58,59,69],rnnop:[17,36,45],rotat:8,route53:72,row:49,row_conv:8,row_l2_norm:8,run:[60,63,67,73],runtim:[27,42],sampl:8,sampling_id:8,save:26,scale:[8,19],scale_shift:8,scaling_project:8,scope:[17,36,45,48],script:73,secur:72,select:[24,49],selectedrow:49,selective_fc:8,sentiment:12,separ:45,seq_concat:8,seq_reshap:8,seq_slic:8,seqtext_print:7,sequenc:59,sequence_conv_pool:9,sequencesoftmax:5,sequenti:2,server:[19,23,24,27,43,69,72],servic:72,session:[42,44],set:70,setup:[54,72],sextant:77,sgd:69,share:[15,48],should:48,shuffl:41,sigmoid:5,simpl:[53,59],simple_attent:9,simple_gru2:9,simple_gru:9,simple_img_conv_pool:9,simple_lstm:9,singl:41,slice:8,slice_project:8,slope_intercept:8,small_vgg:9,smooth_l1_cost:8,softmax:5,softrelu:5,solut:46,some:60,sourc:[54,56,60],span:54,spars:[24,25,26,49,71],specifi:[71,79],spp:8,squar:5,square_error_cost:8,squarerootn:11,stack:17,standard:82,stanh:5,start:[15,57,61,72,73,82],startup:73,step:36,store:19,structur:80,sub_nested_seq:8,subcommond:29,submit:27,suffici:41,suitabl:18,sum:[7,11],sum_cost:8,sum_to_one_norm:8,summar:15,summari:82,support:51,survei:77,synopsi:29,system:72,tabl:35,table_project:8,take:41,tanh:5,task:[19,23],tear:72,tecton:77,templat:72,tensor:[8,45,64],tensorarrai:51,tensordesc:52,test:[60,61,62,63,69,71],text_conv_pool:9,theori:16,thi:48,think:31,three:51,timelin:26,timer:66,tip:66,todo:[20,21],togeth:48,toi:80,toler:19,tool:[18,66,77],train:[14,15,19,22,25,27,37,41,42,53,55,67,69,71,72,73,79,80,82],trainer:[14,19,24,26,27,72],tran:8,trans_full_matrix_project:8,transfer:82,tune:[66,69],tutori:79,two:16,type:63,ubuntu:54,uci_h:12,uniform:51,unit:[60,62,63,69],updat:[15,25,26,72],usag:[36,41,55,64,65],use:[22,41,64],user:[19,79],util:7,value_print:7,vardesc:52,variabl:[40,45,48,52],vector:69,verifi:72,vgg_16_network:9,visual:81,volum:72,vpc:72,warp_ctc:8,what:[22,26,60,66],when:[26,48],why:[41,45,51,66],wmt14:12,word:[79,82],work:55,workspac:67,wrapper:62,write:[62,63,82],yaml:73,zoo:81}}) \ No newline at end of file diff --git a/develop/doc/tutorials/image_classification/index_en.html b/develop/doc/tutorials/image_classification/index_en.html deleted file mode 100644 index 58dd87f2d65041b173bd143334ac1ded4f36ec98..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/image_classification/index_en.html +++ /dev/null @@ -1,434 +0,0 @@ - - - - - - - - - - - Image Classification Tutorial — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • Image Classification Tutorial
  • -
-
- -
-
-
-
- -
-

Image Classification Tutorial

-

This tutorial will guide you through training a convolutional neural network to classify objects using the CIFAR-10 image classification dataset. -As shown in the following figure, the convolutional neural network can recognize the main object in images, and output the classification result.

-

Image Classification

-
-

Data Preparation

-

First, download CIFAR-10 dataset. CIFAR-10 dataset can be downloaded from its official website.

-

https://www.cs.toronto.edu/~kriz/cifar.html

-

We have prepared a script to download and process CIFAR-10 dataset. The script will download CIFAR-10 dataset from the official dataset. -It will convert it to jpeg images and organize them into a directory with the required structure for the tutorial. Make sure that you have installed pillow and its dependents. -Consider the following commands:

-
    -
  1. install pillow dependents
  2. -
-
sudo apt-get install libjpeg-dev
-pip install pillow
-
-
-
    -
  1. download data and preparation
  2. -
-
cd demo/image_classification/data/
-sh download_cifar.sh
-
-
-

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

-

Here are the classes in the dataset, as well as 10 random images from each: -

Image Classification

-

After downloading and converting, we should find a directory (cifar-out) containing the dataset in the following format:

-
train
----airplane
----automobile
----bird
----cat
----deer
----dog
----frog
----horse
----ship
----truck
-test
----airplane
----automobile
----bird
----cat
----deer
----dog
----frog
----horse
----ship
----truck
-
-
-

It has two directories:train and test. These two directories contain training data and testing data of CIFAR-10, respectively. Each of these two folders contains 10 sub-folders, ranging from airplane to truck. Each sub-folder contains images with the corresponding label. After the images are organized into this structure, we are ready to train an image classification model.

-
-
-

Preprocess

-

After the data has been downloaded, it needs to be pre-processed into the Paddle format. We can run the following command for preprocessing.

-
cd demo/image_classification/
-sh preprocess.sh
-
-
-

preprocess.sh calls ./demo/image_classification/preprocess.py to preprocess image data.

-
export PYTHONPATH=$PYTHONPATH:../../
-data_dir=./data/cifar-out
-python preprocess.py -i $data_dir -s 32 -c 1
-
-
-

./demo/image_classification/preprocess.py has the following arguments

-
    -
  • -i or --input specifes the input data directory.
  • -
  • -s or --size specifies the processed size of images.
  • -
  • -c or --color specifes whether images are color images or gray images.
  • -
-
-
-

Model Training

-

We need to create a model config file before training the model. An example of the config file (vgg_16_cifar.py) is listed below. Note, it is slightly different from the vgg_16_cifar.py which also applies to the prediction.

-
from paddle.trainer_config_helpers import *
-data_dir='data/cifar-out/batches/'
-meta_path=data_dir+'batches.meta'
-args = {'meta':meta_path, 'mean_img_size': 32,
-        'img_size': 32, 'num_classes': 10,
-        'use_jpeg': 1, 'color': "color"}
-define_py_data_sources2(train_list=data_dir+"train.list",
-                        test_list=data_dir+'test.list',
-                        module='image_provider',
-                        obj='processData',
-                        args=args)
-settings(
-    batch_size = 128,
-    learning_rate = 0.1 / 128.0,
-    learning_method = MomentumOptimizer(0.9),
-    regularization = L2Regularization(0.0005 * 128))
-
-img = data_layer(name='image', size=3*32*32)
-lbl = data_layer(name="label", size=10)
-# small_vgg is predined in trainer_config_helpers.network
-predict = small_vgg(input_image=img, num_channels=3)
-outputs(classification_cost(input=predict, label=lbl))
-
-
-

The first line imports python functions for defining networks.

-
from paddle.trainer_config_helpers import *
-
-
-

Then define an define_py_data_sources2 which use python data provider -interface. The arguments in args are used in image_provider.py which -yeilds image data and transform them to Paddle.

-
    -
  • meta: the mean value of training set.
  • -
  • mean_img_size: the size of mean feature map.
  • -
  • img_size: the height and width of input image.
  • -
  • num_classes: the number of classes.
  • -
  • use_jpeg: the data storage type when preprocessing.
  • -
  • color: specify color image.
  • -
-

settings specifies the training algorithm. In the following example, -it specifies learning rate as 0.1, but divided by batch size, and the weight decay -is 0.0005 and multiplied by batch size.

-
settings(
-    batch_size = 128,
-    learning_rate = 0.1 / 128.0,
-    learning_method = MomentumOptimizer(0.9),
-    regularization = L2Regularization(0.0005 * 128)
-)
-
-
-

The small_vgg specifies the network. We use a small version of VGG convolutional network as our network -for classification. A description of VGG network can be found here http://www.robots.ox.ac.uk/~vgg/research/very_deep/.

-
# small_vgg is predined in trainer_config_helpers.network
-predict = small_vgg(input_image=img, num_channels=3)
-
-
-

After writing the config, we can train the model by running the script train.sh.

-
config=vgg_16_cifar.py
-output=./cifar_vgg_model
-log=train.log
-
-paddle train \
---config=$config \
---dot_period=10 \
---log_period=100 \
---test_all_data_in_one_period=1 \
---use_gpu=1 \
---save_dir=$output \
-2>&1 | tee $log
-
-python -m paddle.utils.plotcurve -i $log > plot.png
-
-
-
    -
  • Here we use GPU mode to train. If you have no gpu environment, just set use_gpu=0.
  • -
  • ./demo/image_classification/vgg_16_cifar.py is the network and data configuration file. The meaning of the other flags can be found in the documentation of the command line flags.
  • -
  • The script plotcurve.py requires the python module of matplotlib, so if it fails, maybe you need to install matplotlib.
  • -
-

After training finishes, the training and testing error curves will be saved to plot.png using plotcurve.py script. An example of the plot is shown below:

-

Training and testing curves.

-
-
-

Prediction

-

After we train the model, the model file as well as the model parameters are stored in path ./cifar_vgg_model/pass-%05d. For example, the model of the 300-th pass is stored at ./cifar_vgg_model/pass-00299.

-

To make a prediction for an image, one can run predict.sh as follows. The script will output the label of the classfiication.

-
sh predict.sh
-
-
-

predict.sh:

-
model=cifar_vgg_model/pass-00299/
-image=data/cifar-out/test/airplane/seaplane_s_000978.png
-use_gpu=1
-python prediction.py $model $image $use_gpu
-
-
-
-
-

Exercise

-

Train a image classification of birds using VGG model and CUB-200 dataset. The birds dataset can be downloaded here. It contains an image dataset with photos of 200 bird species (mostly North American).

-

http://www.vision.caltech.edu/visipedia/CUB-200.html

-
-
-

Delve into Details

-
-

Convolutional Neural Network

-

A Convolutional Neural Network is a feedforward neural network that uses convolution layers. It is very suitable for building neural networks that process and understand images. A standard convolutional neural network is shown below:

-

Convolutional Neural Network

-

Convolutional Neural Network contains the following layers:

-
    -
  • Convolutional layer: It uses convolution operation to extract features from an image or a feature map.
  • -
  • Pooling layer: It uses max-pooling to downsample feature maps.
  • -
  • Fully Connected layer: It uses fully connected connections to transform features.
  • -
-

Convolutional Neural Network achieves amazing performance for image classification because it exploits two important characteristics of images: local correlation and spatial invariance. By iteratively applying convolution and max-pooing operations, convolutional neural network can well represent these two characteristics of images.

-

For more details of how to define layers and their connections, please refer to the documentation of layers.

-
-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/rec/ml_dataset_en.html b/develop/doc/tutorials/rec/ml_dataset_en.html deleted file mode 100644 index 3b607303ed8a18a21154f244748c06e1c0a05f6e..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/rec/ml_dataset_en.html +++ /dev/null @@ -1,344 +0,0 @@ - - - - - - - - - - - MovieLens Dataset — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • MovieLens Dataset
  • -
-
- -
-
-
-
- -
-

MovieLens Dataset

-

The MovieLens Dataset was collected by GroupLens Research. -The data set contains some user information, movie information, and many movie ratings from [1-5]. -The data sets have many version depending on the size of set. -We use MovieLens 1M Dataset as a demo dataset, which contains -1 million ratings from 6000 users on 4000 movies. Released 2/2003.

-
-

Dataset Features

-

In ml-1m Dataset, there are many features in these dataset. -The data files (which have ”.dat” extension) in ml-1m Dataset -is basically CSV file that delimiter is ”::”. The description in README we quote here.

-
-

RATINGS FILE DESCRIPTION(ratings.dat)

-

All ratings are contained in the file “ratings.dat” and are in the -following format:

-

UserID::MovieID::Rating::Timestamp

-
    -
  • UserIDs range between 1 and 6040
  • -
  • MovieIDs range between 1 and 3952
  • -
  • Ratings are made on a 5-star scale (whole-star ratings only)
  • -
  • Timestamp is represented in seconds since the epoch as returned by time(2)
  • -
  • Each user has at least 20 ratings
  • -
-
-
-

USERS FILE DESCRIPTION(users.dat)

-

User information is in the file “users.dat” and is in the following -format:

-

UserID::Gender::Age::Occupation::Zip-code

-

All demographic information is provided voluntarily by the users and is -not checked for accuracy. Only users who have provided some demographic -information are included in this data set.

-
    -
  • Gender is denoted by a “M” for male and “F” for female
  • -
  • Age is chosen from the following ranges:
      -
    • 1: “Under 18”
    • -
    • 18: “18-24”
    • -
    • 25: “25-34”
    • -
    • 35: “35-44”
    • -
    • 45: “45-49”
    • -
    • 50: “50-55”
    • -
    • 56: “56+”
    • -
    -
  • -
  • Occupation is chosen from the following choices:
      -
    • 0: “other” or not specified
    • -
    • 1: “academic/educator”
    • -
    • 2: “artist”
    • -
    • 3: “clerical/admin”
    • -
    • 4: “college/grad student”
    • -
    • 5: “customer service”
    • -
    • 6: “doctor/health care”
    • -
    • 7: “executive/managerial”
    • -
    • 8: “farmer”
    • -
    • 9: “homemaker”
    • -
    • 10: “K-12 student”
    • -
    • 11: “lawyer”
    • -
    • 12: “programmer”
    • -
    • 13: “retired”
    • -
    • 14: “sales/marketing”
    • -
    • 15: “scientist”
    • -
    • 16: “self-employed”
    • -
    • 17: “technician/engineer”
    • -
    • 18: “tradesman/craftsman”
    • -
    • 19: “unemployed”
    • -
    • 20: “writer”
    • -
    -
  • -
-
-
-

MOVIES FILE DESCRIPTION(movies.dat)

-

Movie information is in the file “movies.dat” and is in the following -format:

-

MovieID::Title::Genres

-
    -
  • Titles are identical to titles provided by the IMDB (including -year of release)
  • -
  • Genres are pipe-separated and are selected from the following genres:
      -
    • Action
    • -
    • Adventure
    • -
    • Animation
    • -
    • Children’s
    • -
    • Comedy
    • -
    • Crime
    • -
    • Documentary
    • -
    • Drama
    • -
    • Fantasy
    • -
    • Film-Noir
    • -
    • Horror
    • -
    • Musical
    • -
    • Mystery
    • -
    • Romance
    • -
    • Sci-Fi
    • -
    • Thriller
    • -
    • War
    • -
    • Western
    • -
    -
  • -
  • Some MovieIDs do not correspond to a movie due to accidental duplicate -entries and/or test entries
  • -
  • Movies are mostly entered by hand, so errors and inconsistencies may exist
  • -
-
-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/rec/ml_regression_en.html b/develop/doc/tutorials/rec/ml_regression_en.html deleted file mode 100644 index 8f2deb11c833c04ce0f1cddadc5d88652ab9d1f7..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/rec/ml_regression_en.html +++ /dev/null @@ -1,572 +0,0 @@ - - - - - - - - - - - Regression MovieLens Ratting — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • Regression MovieLens Ratting
  • -
-
- -
-
-
-
- -
-

Regression MovieLens Ratting

-

Here we demonstrate a Cosine Similarity Regression job in movie lens dataset. -This demo will show how paddle does (word) embedding job, -handles the similarity regression, -the character-level convolutional networks for text, and how does paddle handle -multiple types of inputs. -Note that the model structure is not fine-tuned and just a demo to show how paddle works.

-

YOU ARE WELCOME TO BUILD A BETTER DEMO -BY USING PADDLEPADDLE, AND LET US KNOW TO MAKE THIS DEMO BETTER.

-
-

Data Preparation

-
-

Download and extract dataset

-

We use MovieLens Dataset here. -To download and unzip the dataset, simply run the following commands.

-
cd demo/recommendation/data
-./ml_data.sh
-
-
-

And the directory structure of demo/recommendation/data/ml-1m is:

-
+--ml-1m
-     +--- movies.dat    # movie features
-     +--- ratings.dat   # ratings
-     +--- users.dat     # user features
-     +--- README        # dataset description
-
-
-
-
-

Field config file

-

Field config file is used to specify the fields of the dataset and the file format, -i.e, specific WHAT type it is in each feature file.

-

The field config file of ml-1m shows in demo/recommendation/data/config.json. -It specifics the field types and file names: 1) there are four types of field for user file: id, gender, age and occupation; -2) the filename is “users.dat”, and the delimiter of file is ”::”.

-
-
-
-

Preprocess Data

-

You need to install python 3rd party libraries. -IT IS HIGHLY RECOMMEND TO USE VIRTUALENV MAKE A CLEAN PYTHON ENVIRONMENT.

-
pip install -r requirements.txt
-
-
-

The general command for preprocessing the dataset is:

-
cd demo/recommendation
-./preprocess.sh
-
-
-

And the detail steps are introduced as follows.

-
-

Extract Movie/User features to python object

-

There are many features in movie or user in movielens 1m dataset. -Each line of rating file just provides a Movie/User id to refer each movie or user. -We process the movie/user feature file first, and pickle the feature (Meta) object as a file.

-
-

Meta config file

-

Meta config file is used to specific HOW to parse each field in dataset. -It could be translated from field config file, or written by hand. -Its file format could be either json or yaml syntax file. Parser will automatically choose the file format by extension name.

-

To convert Field config file to meta config file, just run:

-
cd demo/recommendation/data
-python config_generator.py config.json > meta_config.json
-
-
-

The meta config file shows below:

-

There are two kinds of features in meta: movie and user.

-
    -
  • -
    in movie file, whose name is movies.dat
    -
      -
    • we just split each line by ”::”
    • -
    • pos 0 is id.
    • -
    • -
      pos 1 feature:
      -
        -
      • name is title.
      • -
      • it uses regex to parse this feature.
      • -
      • it is a char based word embedding feature.
      • -
      • it is a sequence.
      • -
      -
      -
      -
    • -
    • -
      pos 2 feature:
      -
        -
      • name is genres.
      • -
      • type is one hot dense vector.
      • -
      • dictionary is auto generated by parsing, each key is split by ‘|’
      • -
      -
      -
      -
    • -
    -
    -
    -
  • -
  • -
    in user file, whose name is users.dat
    -
      -
    • we just split each line by ”::”
    • -
    • pos 0 is id.
    • -
    • -
      pos 1 feature:
      -
        -
      • name is gender
      • -
      • just simple char based embedding.
      • -
      -
      -
      -
    • -
    • -
      pos 2 feature:
      -
        -
      • name is age
      • -
      • just whole word embedding.
      • -
      • embedding id will be sort by word.
      • -
      -
      -
      -
    • -
    • -
      pos 3 feature:
      -
        -
      • name is occupation.
      • -
      • just simple whole word embedding.
      • -
      -
      -
      -
    • -
    -
    -
    -
  • -
-
-
-
-

Meta file

-

After having meta config file, we can generate Meta file, a python pickle object which stores movie/user information. -The following commands could be run to generate it.

-
python meta_generator.py ml-1m meta.bin --config=meta_config.json
-
-
-

And the structure of the meta file meta.bin is:

-
+--+ movie
-|      +--+ __meta__
-|      |       +--+ raw_meta  # each feature meta config. list
-|      |       |       +
-|      |       |       |     # ID Field, we use id as key
-|      |       |       +--+ {'count': 3883, 'max': 3952, 'is_key': True, 'type': 'id', 'min': 1}
-|      |       |       |
-|      |       |       |     # Titile field, the dictionary list of embedding.
-|      |       |       +--+ {'dict': [ ... ], 'type': 'embedding', 'name': 'title', 'seq': 'sequence'}
-|      |       |       |
-|      |       |       |     # Genres field, the genres dictionary
-|      |       |       +--+ {'dict': [ ... ], 'type': 'one_hot_dense', 'name': 'genres'}
-|      |       |
-|      |       +--+ feature_map [1, 2] # a list for raw_meta index for feature field.
-|      |                               # it means there are 2 features for each key.
-|      |                               #    * 0 offset of feature is raw_meta[1], Title.
-|      |                               #    * 1 offset of feature is raw_meta[2], Genres.
-|      |
-|      +--+ 1 # movie 1 features
-|      |    +
-|      |    +---+ [[...], [...]] # title ids, genres dense vector
-|      |
-|      +--+ 2
-|      |
-|      +--+ ...
-|
-+--- user
-       +--+ __meta__
-       |       +
-       |       +--+ raw_meta
-       |       |       +
-       |       |       +--+ id field as user
-       |       |       |
-       |       |       +--+ {'dict': ['F', 'M'], 'type': 'embedding', 'name': 'gender', 'seq': 'no_sequence'}
-       |       |       |
-       |       |       +--+ {'dict': ['1', '18', '25', '35', '45', '50', '56'], 'type': 'embedding', 'name': 'age', 'seq': 'no_sequence'}
-       |       |       |
-       |       |       +--+ {'dict': [...], 'type': 'embedding', 'name': 'occupation', 'seq': 'no_sequence'}
-       |       |
-       |       +--+ feature_map [1, 2, 3]
-       |
-       +--+ 1 # user 1 features
-       |
-       +--+ 2
-       +--+ ...
-
-
-
-
-

Split Training/Testing files

-

We split ml-1m/ratings.dat into a training and testing file. The way to split file is for each user, we split the -rating by two parts. So each user in testing file will have some rating information in training file.

-

Use separate.py to separate the training and testing file.

-
python split.py ml-1m/ratings.dat --delimiter="::" --test_ratio=0.1
-
-
-

Then two files will be generated: ml-1m/ratings.dat.train and ml-1m/rating.data.test. -Move them to workspace data, shuffle the train file, and prepare the file list for paddle train.

-
shuf ml-1m/ratings.dat.train > ratings.dat.train
-cp ml-1m/ratings.dat.test .
-echo "./data/ratings.dat.train" > train.list
-echo "./data/ratings.dat.test" > test.list
-
-
-
-
-
-

Neural Network Configuration

-
-

Trainer Config File

-

The network structure shows below.

-rec_regression_network -

The demo’s neural network config file trainer_config.py show as below.

-

In this trainer_config.py, we just map each feature type to -a feature vector, following shows how to map each feature to a vector shows below.

-
    -
  • id: Just simple embedding, and then add to fully connected layer.
  • -
  • -
    embedding:
    -
      -
    • if is_sequence, get the embedding and do a text convolutional operation, -get the average pooling result.
    • -
    • if not sequence, get the embedding and add to fully connected layer.
    • -
    -
    -
    -
  • -
  • -
    one_host_dense:
    -
      -
    • just two fully connected layer.
    • -
    -
    -
    -
  • -
-

Then we combine each features of movie into one movie feature by a -fc_layer with multiple inputs, and do the same thing to user features, -get one user feature. Then we calculate the cosine similarity of these two -features.

-

In these networks, we use several APIs in Model Config API . There are

-
    -
  • Data Layer, api_trainer_config_helpers_layers_data_layer
  • -
  • Fully Connected Layer, api_trainer_config_helpers_layers_fc_layer
  • -
  • Embedding Layer, api_trainer_config_helpers_layers_embedding_layer
  • -
  • Context Projection Layer, api_trainer_config_helpers_layers_context_projection
  • -
  • Pooling Layer, api_trainer_config_helpers_layers_pooling_layer
  • -
  • Cosine Similarity Layer, api_trainer_config_helpers_layers_cos_sim
  • -
  • Text Convolution Pooling Layer, text_conv_pool
  • -
  • Declare Python Data Sources api_trainer_config_helpers_data_sources.
  • -
-
-
-

Data Provider

-

The data provider just read the meta.bin and rating file, yield each sample for training. -In this dataprovider.py, we should set:

-
    -
  • obj.slots: The feature types and dimension.
  • -
  • use_seq: Whether this dataprovider.py in sequence mode or not.
  • -
  • process: Return each sample of data to paddle.
  • -
-

The data provider details document see PyDataProvider2.

-
-
-
-

Train

-

After prepare data, config network, writting data provider, now we can run paddle training.

-

The run.sh is shown as follow:

-

It just start a paddle training process, write the log to log.txt, -then print it on screen.

-

Each command line argument in run.sh, please refer to the Set Command-line Parameters page. The short description of these arguments is shown as follow.

-
    -
  • config: Tell paddle which file is neural network configuration.
  • -
  • save_dir: Tell paddle save model into ./output.
  • -
  • use_gpu: Use gpu or not. Default is false.
  • -
  • trainer_count: The compute thread in one machine.
  • -
  • test_all_data_in_one_period: Test All Data during one test period. Otherwise, -will test a batch_size data in one test period.
  • -
  • log_period: Print log after train log_period batches.
  • -
  • dot_period: Print a . after train dot_period batches.
  • -
  • num_passes: Train at most num_passes.
  • -
-

If training process starts successfully, the output likes follow:

-
I0601 08:07:22.832059 10549 TrainerInternal.cpp:157]  Batch=100 samples=160000 AvgCost=4.13494 CurrentCost=4.13494 Eval:  CurrentEval:
-
-I0601 08:07:50.672627 10549 TrainerInternal.cpp:157]  Batch=200 samples=320000 AvgCost=3.80957 CurrentCost=3.48421 Eval:  CurrentEval:
-
-I0601 08:08:18.877369 10549 TrainerInternal.cpp:157]  Batch=300 samples=480000 AvgCost=3.68145 CurrentCost=3.42519 Eval:  CurrentEval:
-
-I0601 08:08:46.863963 10549 TrainerInternal.cpp:157]  Batch=400 samples=640000 AvgCost=3.6007 CurrentCost=3.35847 Eval:  CurrentEval:
-
-I0601 08:09:15.413025 10549 TrainerInternal.cpp:157]  Batch=500 samples=800000 AvgCost=3.54811 CurrentCost=3.33773 Eval:  CurrentEval:
-I0601 08:09:36.058670 10549 TrainerInternal.cpp:181]  Pass=0 Batch=565 samples=902826 AvgCost=3.52368 Eval:
-I0601 08:09:46.215489 10549 Tester.cpp:101]  Test samples=97383 cost=3.32155 Eval:
-I0601 08:09:46.215966 10549 GradientMachine.cpp:132] Saving parameters to ./output/model/pass-00000
-I0601 08:09:46.233397 10549 ParamUtil.cpp:99] save dir ./output/model/pass-00000
-I0601 08:09:46.233438 10549 Util.cpp:209] copy trainer_config.py to ./output/model/pass-00000
-I0601 08:09:46.233541 10549 ParamUtil.cpp:147] fileName trainer_config.py
-
-
-

The model is saved in output/ directory. You can use Ctrl-C to stop training whenever you want.

-
-
-

Evaluate and Predict

-

After training several passes, you can evaluate them and get the best pass. Just run

-
./evaluate.sh
-
-
-

You will see messages like this:

-
Best pass is 00009,  error is 3.06949, which means predict get error as 0.875998002281
-evaluating from pass output/pass-00009
-
-
-

Then, you can predict what any user will rate a movie. Just run

-
python prediction.py 'output/pass-00009/'
-
-
-

Predictor will read user input, and predict scores. It has a command-line user interface as follows:

-
Input movie_id: 9
-Input user_id: 4
-Prediction Score is 2.56
-Input movie_id: 8
-Input user_id: 2
-Prediction Score is 3.13
-
-
-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/semantic_role_labeling/index_en.html b/develop/doc/tutorials/semantic_role_labeling/index_en.html deleted file mode 100644 index 4f532f1f19399580b805cc0beb31bc6d9b5f5fe0..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/semantic_role_labeling/index_en.html +++ /dev/null @@ -1,434 +0,0 @@ - - - - - - - - - - - Semantic Role labeling Tutorial — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • Semantic Role labeling Tutorial
  • -
-
- -
-
-
-
- -
-

Semantic Role labeling Tutorial

-

Semantic role labeling (SRL) is a form of shallow semantic parsing whose goal is to discover the predicate-argument structure of each predicate in a given input sentence. SRL is useful as an intermediate step in a wide range of natural language processing tasks, such as information extraction. automatic document categorization and question answering. An instance is as following [1]:

-

[ A0 He ] [ AM-MOD would ][ AM-NEG n’t ] [ V accept] [ A1 anything of value ] from [A2 those he was writing about ].

-
    -
  • V: verb
  • -
  • A0: acceptor
  • -
  • A1: thing accepted
  • -
  • A2: accepted-from
  • -
  • A3: Attribute
  • -
  • AM-MOD: modal
  • -
  • AM-NEG: negation
  • -
-

Given the verb “accept”, the chunks in sentence would play certain semantic roles. Here, the label scheme is from Penn Proposition Bank.

-

To this date, most of the successful SRL systems are built on top of some form of parsing results where pre-defined feature templates over the syntactic structure are used. This tutorial will present an end-to-end system using deep bidirectional long short-term memory (DB-LSTM)[2] for solving the SRL task, which largely outperforms the previous state-of-the-art systems. The system regards SRL task as the sequence labelling problem.

-
-

Data Description

-

The relevant paper[2] takes the data set in CoNLL-2005&2012 Shared Task for training and testing. Accordingto data license, the demo adopts the test data set of CoNLL-2005, which can be reached on website.

-

To download and process the original data, user just need to execute the following command:

-
cd data
-./get_data.sh
-
-
-

Several new files appear in the datadirectory as follows.

-
conll05st-release:the test data set of CoNll-2005 shared task 
-test.wsj.words:the Wall Street Journal data sentences
-test.wsj.props:  the propositional arguments
-feature: the extracted features from data set
-
-
-
-
-

Training

-
-

DB-LSTM

-

Please refer to the Sentiment Analysis demo to learn more about the long short-term memory unit.

-

Unlike Bidirectional-LSTM that used in Sentiment Analysis demo, the DB-LSTM adopts another way to stack LSTM layer. First a standard LSTM processes the sequence in forward direction. The input and output of this LSTM layer are taken by the next LSTM layer as input, processed in reversed direction. These two standard LSTM layers compose a pair of LSTM. Then we stack LSTM layers pair after pair to obtain the deep LSTM model.

-

The following figure shows a temporal expanded 2-layer DB-LSTM network. -

-pic -

-
-
-

Features

-

Two input features play an essential role in this pipeline: predicate (pred) and argument (argu). Two other features: predicate context (ctx-p) and region mark (mr) are also adopted. Because a single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the predicate context, the ambiguity can be largely eliminated. Similarly, we use region mark mr = 1 to denote the argument position if it locates in the predicate context region, or mr = 0 if does not. These four simple features are all we need for our SRL system. Features of one sample with context size set to 1 is showed as following[2]: -

-pic -

-

In this sample, the coresponding labelled sentence is:

-

[ A1 A record date ] has [ AM-NEG n’t ] been [ V set ] .

-

In the demo, we adopt the feature template as above, consists of : argument, predicate, ctx-p (p=-1,0,1), mark and use B/I/O scheme to label each argument. These features and labels are stored in feature file, and separated by \t.

-
-
-

Data Provider

-

dataprovider.py is the python file to wrap data. hook() function is to define the data slots for network. The Six features and label are all IndexSlots.

-
def hook(settings, word_dict, label_dict, **kwargs):
-    settings.word_dict = word_dict
-    settings.label_dict = label_dict
-    #all inputs are integral and sequential type
-    settings.slots = [
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(len(predicate_dict)),
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(len(word_dict)),
-        integer_value_sequence(2),
-        integer_value_sequence(len(label_dict))]
-
-
-

The corresponding data iterator is as following:

-
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
-          can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
-def process(settings, file_name):
-    with open(file_name, 'r') as fdata:
-        for line in fdata:
-            sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2,  mark, label = \
-                line.strip().split('\t')
-
-            words = sentence.split()
-            sen_len = len(words)
-            word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
-
-            predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
-            ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
-            ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
-            ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
-            ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
-            ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
-
-            marks = mark.split()
-            mark_slot = [int(w) for w in marks]
-
-            label_list = label.split()
-            label_slot = [settings.label_dict.get(w) for w in label_list]
-            yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
-                  ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
-
-
-

The processfunction yield 9 lists which are 8 features and label.

-
-
-

Neural Network Config

-

db_lstm.py is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure.

-

Nine data_layer load instances from data provider. Eight features are transformed into embedddings respectively, and mixed by mixed_layer . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.

-
-
-

Run Training

-

The script for training is train.sh, user just need to execute:

-
  ./train.sh
-
-
-

The content in train.sh:

-
paddle train \
-  --config=./db_lstm.py \
-  --use_gpu=0 \
-  --log_period=5000 \
-  --trainer_count=1 \
-  --show_parameter_stats_period=5000 \
-  --save_dir=./output \
-  --num_passes=10000 \
-  --average_test_period=10000000 \
-  --init_model_path=./data \
-  --load_missing_parameter_strategy=rand \
-  --test_all_data_in_one_period=1 \
-2>&1 | tee 'train.log'
-
-
-
    -
  • --config=./db_lstm.py : network config file.
  • -
  • --use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train, until now crf_layer do not support GPU
  • -
  • --log_period=500: print log every 20 batches.
  • -
  • --trainer_count=1: set thread number (or GPU count).
  • -
  • --show_parameter_stats_period=5000: show parameter statistic every 100 batches.
  • -
  • --save_dir=./output: output path to save models.
  • -
  • --num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
  • -
  • --average_test_period=10000000: do test on average parameter every average_test_period batches
  • -
  • --init_model_path=./data: parameter initialization path
  • -
  • --load_missing_parameter_strategy=rand: random initialization unexisted parameters
  • -
  • --test_all_data_in_one_period=1: test all data in one period
  • -
-

After training, the models will be saved in directory output. Our training curve is as following: -

-pic -

-
-
-

Run testing

-

The script for testing is test.sh, user just need to execute:

-
  ./test.sh
-
-
-

The main part in tesh.sh

-
paddle train \
-  --config=./db_lstm.py \
-  --model_list=$model_list \
-  --job=test \
-  --config_args=is_test=1 \
-
-
-
    -
  • --config=./db_lstm.py: network config file
  • -
  • --model_list=$model_list.list: model list file
  • -
  • --job=test: indicate the test job
  • -
  • --config_args=is_test=1: flag to indicate test
  • -
  • --test_all_data_in_one_period=1: test all data in 1 period
  • -
-
-
-

Run prediction

-

The script for prediction is predict.sh, user just need to execute:

-
  ./predict.sh
-  
-
-
-

In predict.sh, user should offer the network config file, model path, label file, word dictionary file, feature file

-
python predict.py 
-     -c $config_file \
-     -w $best_model_path \
-     -l $label_file \
-     -p $predicate_dict_file  \
-     -d $dict_file \
-     -i $input_file \
-     -o $output_file
-
-
-

predict.py is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix.

-

After prediction, the result is saved in predict.res.

-
-
-
-

Reference

-

[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005.

-

[2] Zhou, Jie, and Wei Xu. “End-to-end learning of semantic role labeling using recurrent neural networks.” Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/sentiment_analysis/index_en.html b/develop/doc/tutorials/sentiment_analysis/index_en.html deleted file mode 100644 index bba5cad7aa01c07e94eda11c25060225aa44670b..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/sentiment_analysis/index_en.html +++ /dev/null @@ -1,546 +0,0 @@ - - - - - - - - - - - Sentiment Analysis Tutorial — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • Sentiment Analysis Tutorial
  • -
-
- -
-
-
-
- -
-

Sentiment Analysis Tutorial

-

Sentiment analysis has many applications. A basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence or feature/aspect level. One simple example is to classify the customer reviews in a shopping website, a tourism website, and group buying websites like Amazon, TaoBao, Tmall etc.

-

Sentiment analysis is also used to monitor social media based on large amount of reviews or blogs. For example, the researchers analyzed several surveys on consumer confidence and political opinion, found they correlate to sentiment word frequencies in contemporaneous Twitter messages [1]. Another example is to forecast stock movements through analyzing the text content of a daily Twitter blog [2].

-

On the other hand, grabbing the user comments of products and analyzing their sentiment are useful to understand user preferences for companies, products, even competing products.

-

This tutorial will guide you through the process of training a Long Short Term Memory (LSTM) Network to classify the sentiment of sentences from Large Movie Review Dataset, sometimes known as the Internet Movie Database (IMDB). This dataset contains movie reviews along with their associated binary sentiment polarity labels, namely positive and negative. So randomly guessing yields 50% accuracy.

-
-

Data Preparation

-
-

IMDB Data Introduction

-

Before training models, we need to preprocess the data and build a dictionary. First, you can use following script to download IMDB dataset and Moses tool, which is a statistical machine translation system. We provide a data preprocessing script, which is capable of handling not only IMDB data, but also other user-defined data. In order to use the pre-written script, it needs to move labeled train and test samples to another path, which has been done in get_imdb.sh.

-
cd demo/sentiment/data
-./get_imdb.sh
-
-
-

If the data is obtained successfuly, you will see the following files at ./demo/sentiment/data:

-
aclImdb  get_imdb.sh  imdb  mosesdecoder-master
-
-
-
    -
  • aclImdb: raw dataset downloaded from website.
  • -
  • imdb: only contains train and test data.
  • -
  • mosesdecoder-master: Moses tool.
  • -
-

IMDB dataset contains 25,000 highly polar movie reviews for training, and 25,000 for testing. A negative review has a score ≤ 4 out of 10, and a positive review has a score ≥ 7 out of 10. After running ./get_imdb.sh, we can find the dataset has the following structure in aclImdb.

-
imdbEr.txt  imdb.vocab  README  test  train
-
-
-
    -
  • train: train sets.
  • -
  • test : test sets.
  • -
  • imdb.vocab: dictionary.
  • -
  • imdbEr.txt: expected rating for each token in imdb.vocab.
  • -
  • README: data documentation.
  • -
-

The file in train set directory is as follows. The test set also contains them except unsup and urls_unsup.txt.

-
labeledBow.feat  neg  pos  unsup  unsupBow.feat  urls_neg.txt  urls_pos.txt  urls_unsup.txt
-
-
-
    -
  • pos: positive samples, contains 12,500 txt files, each file is one movie review.
  • -
  • neg: negative samples, contains 12,500 txt files, each file is one movie review.
  • -
  • unsup: unlabeled samples, contains 50,000 txt files.
  • -
  • urls_xx.txt: urls of each reviews.
  • -
  • xxBow.feat: already-tokenized bag of words (BoW) features.
  • -
-
-
-

IMDB Data Preparation

-

In this demo, we only use labled train and test set and not use imdb.vocab as dictionary. By default, dictionary is builded on train set. Train set is shuffled and test set is not. tokenizer.perl in Moses tool is used to tokenize the words and punctuation. Simply execute the following command to preprcess data.

-
cd demo/sentiment/
-./preprocess.sh
-
-
-

preprocess.sh:

-
data_dir="./data/imdb"
-python preprocess.py -i data_dir
-
-
-
    -
  • data_dir: input data directory.
  • -
  • preprocess.py: preprocess script.
  • -
-

If running successfully, you will see demo/sentiment/data/pre-imdb directory as follows:

-
dict.txt  labels.list  test.list  test_part_000  train.list  train_part_000
-
-
-
    -
  • test_part_000 and train_part_000: all labeled test and train sets. Train sets have be shuffled.
  • -
  • train.list and test.list: train and test file lists.
  • -
  • dict.txt: dictionary generated on train sets by default.
  • -
  • labels.txt: neg 0, pos 1, means label 0 is negative review, label 1 is positive review.
  • -
-
-
-

User-defined Data Preparation

-

If you perform other sentiment classifcation task, you can prepare data as follows. We have provided the scripts to build dictionary and preprocess data. So just organize data as follows.

-
dataset
-|----train
-|    |----class1
-|    |    |----text_files
-|    |----class2
-|    |    |----text_files
-|    |    ...
-|----test
-|    |----class1
-|    |    |----text_files
-|    |----class2
-|    |    |----text_files
-|    |    ...
-
-
-
    -
  • dataset: 1st directory.
  • -
  • train, test: 2nd directory.
  • -
  • class1,class2,...: 3rd directory.
  • -
  • text_files: samples with text file format.
  • -
-

All samples with text files format under the same folder are same category. Each text file contains one or more samples and each line is one sample. In order to shuffle fully, the preprocessing is a little different for data with multiple lines in one text file, which needs to set -m True in preprocess.sh. And tokenizer.perl is used by default. If you don’t need it, only set -t False in `preprocess.sh’.

-
-
-
-

Training

-

In this task, we use Recurrent Neural Network (RNN) of LSTM architecure to train sentiment analysis model. LSTM model was introduced primarily in order to overcome the problem of vanishing gradients. LSTM network resembles a standard recurrent neural network with a hidden layer, but each ordinary node in the hidden layer is replaced by a memory cell. Each memory cell contains four main elements: an input gate, a neuron with a self-recurrent connection, a forget gate and an output gate. More details can be found in the literature [4]. The biggest advantage of the LSTM architecture is that it learns to memorize information over long time intervals without the loss of short time memory. At each time step with a new coming word, historical information stored in the memory block is updated to iteratively learn the sequence representation.

-

LSTM
-
Figure 1. LSTM [3]

-

Sentiment analysis is among the most typical problems in natural language understanding. It aims at predicting the attitude expressed in a sequence. Usually, only some key words, like adjectives and adverbs words, play a major role in predicting the sentiment of sequences or paragraphs. However, some review or comment contexts are very long, such as IMDB dataset. We use LSTM to perform this task for its improved design with the gate mechanism. First, it is able to summarize the representation from word level to context level with variable context length which is adapted by the gate values. Second, it can utilize the expanded context at the sentence level, while most methods are good at utilizing n-gram level knowledge. Third, it learns the paragraph representation directly rather than combining the context level information. This results in this end-to-end framework.

-

In this demo we provide two network, namely bidirectional-LSTM and three layers of stacked-LSTM.

-
-

Bidirectional-LSTM

-

One is a bidirectional LSTM network, connected by fully connected layer and softmax, as shown in Figure 2.

-

BiLSTM
-
Figure 2. Bidirectional-LSTM

-
-
-

Stacked-LSTM

-

Another is three-layer LSTM structure in Figure 3. The bottom of the figure is word embedding. Next, three LSTM-Hidden layers are connected and the second LSTM is reversed. Then extract the maximum hidden vectors of all time step of hidden and LSTM layer as the representation for the entire sequence. Finally, a fully connected feed forward layer with softmax activation is used to perform the classification task. This network is refered to paper [5].

-

StackedLSTM
-
Figure 3. Stacked-LSTM for sentiment analysis

-

Config

-

Switch into demo/sentiment directory, trainer_config.py file is an example of the config, containing algorithm and newtork configure. The first line imports predefined networks from sentiment_net.py.

-

trainer_config.py:

-
from sentiment_net import *
-
-data_dir  = "./data/pre-imdb"
-# whether this config is used for test
-is_test = get_config_arg('is_test', bool, False)
-# whether this config is used for prediction
-is_predict = get_config_arg('is_predict', bool, False)
-dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict)
-
-################## Algorithm Config #####################
-
-settings(
-  batch_size=128,
-  learning_rate=2e-3,
-  learning_method=AdamOptimizer(),
-  average_window=0.5,
-  regularization=L2Regularization(8e-4),
-  gradient_clipping_threshold=25
-)
-
-#################### Network Config ######################
-stacked_lstm_net(dict_dim, class_dim=class_dim,
-                 stacked_num=3, is_predict=is_predict)
-#bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict)
-
-
-
    -
  • Data Definition:
      -
    • get_config_arg(): get arguments setted by --config_args=xx in commandline argument.
    • -
    • Define data provider, here using Python interface to load data. For details, you can refer to the document of PyDataProvider2.
    • -
    -
  • -
  • Algorithm Configuration:
      -
    • set batch size of 128.
    • -
    • set global learning rate.
    • -
    • use adam optimization.
    • -
    • set average sgd window.
    • -
    • set L2 regularization.
    • -
    • set gradient clipping threshold.
    • -
    -
  • -
  • Network Configuration:
      -
    • dict_dim: dictionary dimension.
    • -
    • class_dim: category number, IMDB has two label, namely positive and negative label.
    • -
    • stacked_lstm_net: predefined network as shown in Figure 3, use this network by default.
    • -
    • bidirectional_lstm_net: predefined network as shown in Figure 2.
    • -
    -
  • -
-

Training

-

Install PaddlePaddle first if necessary. Then you can use script train.sh as follows to launch local training.

-
cd demo/sentiment/
-./train.sh
-
-
-

train.sh:

-
config=trainer_config.py
-output=./model_output
-paddle train --config=$config \
-             --save_dir=$output \
-             --job=train \
-             --use_gpu=false \
-             --trainer_count=4 \
-             --num_passes=10 \
-             --log_period=20 \
-             --dot_period=20 \
-             --show_parameter_stats_period=100 \
-             --test_all_data_in_one_period=1 \
-             2>&1 | tee 'train.log'
-
-
-
    -
  • --config=$config: set network config.
  • -
  • --save_dir=$output: set output path to save models.
  • -
  • --job=train: set job mode to train.
  • -
  • --use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train.
  • -
  • --trainer_count=4: set thread number (or GPU count).
  • -
  • --num_passes=15: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
  • -
  • --log_period=20: print log every 20 batches.
  • -
  • --show_parameter_stats_period=100: show parameter statistic every 100 batches.
  • -
  • --test_all_data_in_one_period=1: test all data every testing.
  • -
-

If the run succeeds, the output log is saved in path of demo/sentiment/train.log and model is saved in path of demo/sentiment/model_output/. The output log is explained as follows.

-
Batch=20 samples=2560 AvgCost=0.681644 CurrentCost=0.681644 Eval: classification_error_evaluator=0.36875  CurrentEval: classification_error_evaluator=0.36875
-...
-Pass=0 Batch=196 samples=25000 AvgCost=0.418964 Eval: classification_error_evaluator=0.1922
-Test samples=24999 cost=0.39297 Eval: classification_error_evaluator=0.149406
-
-
-
    -
  • Batch=xx: means passing xx batches.
  • -
  • samples=xx: means passing xx samples.
  • -
  • AvgCost=xx: averaged cost from 0-th batch to current batch.
  • -
  • CurrentCost=xx: current cost of latest log_period batches.
  • -
  • Eval: classification_error_evaluator=xx: means classfication error from 0-th batch ro current batch.
  • -
  • CurrentEval: classification_error_evaluator: current classfication error of the lates log_period batches.
  • -
  • Pass=0: Going through all training set one time is called one pass. 0 means going through training set first time.
  • -
-

By default, we use the stacked_lstm_net network, which converges at a faster rate than bidirectional_lstm_net when passing same sample number. If you want to use bidirectional LSTM, just remove comment in the last line and comment stacked_lstm_net.

-
-
-
-

Testing

-

Testing means evaluating the labeled validation set using trained model.

-
cd demo/sentiment
-./test.sh
-
-
-

test.sh:

-
function get_best_pass() {
-  cat $1  | grep -Pzo 'Test .*\n.*pass-.*' | \
-  sed  -r 'N;s/Test.* error=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \
-  sort | head -n 1
-}
-
-log=train.log
-LOG=`get_best_pass $log`
-LOG=(${LOG})
-evaluate_pass="model_output/pass-${LOG[1]}"
-
-echo 'evaluating from pass '$evaluate_pass
-
-model_list=./model.list
-touch $model_list | echo $evaluate_pass > $model_list
-net_conf=trainer_config.py
-paddle train --config=$net_conf \
-             --model_list=$model_list \
-             --job=test \
-             --use_gpu=false \
-             --trainer_count=4 \
-             --config_args=is_test=1 \
-             2>&1 | tee 'test.log'
-
-
-

The function get_best_pass gets the best model by classification error rate for testing. In this example, We use test dataset of IMDB as validation by default. Unlike training, it needs to specify --job=test and model path, namely --model_list=$model_list here. If running successfully, the log is saved in path of demo/sentiment/test.log. For example, in our test, the best model is model_output/pass-00002, the classification error is 0.115645 as follows.

-
Pass=0 samples=24999 AvgCost=0.280471 Eval: classification_error_evaluator=0.115645
-
-
-
-
-

Prediction

-

predict.py provides a predicting interface. You should install python api of PaddlePaddle before using it. One example to predict unlabeled review of IMDB is as follows. Simply running:

-
cd demo/sentiment
-./predict.sh
-
-
-

predict.sh:

-
#Note the default model is pass-00002, you shold make sure the model path
-#exists or change the mode path.
-model=model_output/pass-00002/
-config=trainer_config.py
-label=data/pre-imdb/labels.list
-cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \
-     --tconf=$config\
-     --model=$model \
-     --label=$label \
-     --dict=./data/pre-imdb/dict.txt \
-     --batch_size=1
-
-
-
    -
  • cat ./data/aclImdb/test/pos/10007_10.txt : the input sample.
  • -
  • predict.py : predicting interface.
  • -
  • --tconf=$config : set network configure.
  • -
  • --model=$model : set model path.
  • -
  • --label=$label : set dictionary about corresponding relation between integer label and string label.
  • -
  • --dict=data/pre-imdb/dict.txt : set dictionary.
  • -
  • --batch_size=1 : set batch size.
  • -
-

Note you should make sure the default model path model_output/pass-00002 -exists or change the model path.

-

Predicting result of this example:

-
Loading parameters from model_output/pass-00002/
-./data/aclImdb/test/pos/10014_7.txt: predicting label is pos
-
-
-

We sincerely appreciate your interest and welcome your contributions.

-
-
-

Reference

-

[1] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM-2010.
-[2] Johan Bollen, Huina Mao, Xiaojun Zeng. 2011. Twitter mood predicts the stock market, Journal of Computational Science.
-[3] Alex Graves, Marcus Liwicki, Santiago Fernan- dez, Roman Bertolami, Horst Bunke, and Ju ̈rgen Schmidhuber. 2009. A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine In- telligence, 31(5):855–868.
-[4] Zachary C. Lipton, A Critical Review of Recurrent Neural Networks for Sequence Learning, arXiv:1506.00019.
-[5] Jie Zhou and Wei Xu; End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks; ACL-IJCNLP 2015.

-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/text_generation/index_en.html b/develop/doc/tutorials/text_generation/index_en.html deleted file mode 100644 index 011ef4d2beb177405f6340e9dc6bd359b30df165..0000000000000000000000000000000000000000 --- a/develop/doc/tutorials/text_generation/index_en.html +++ /dev/null @@ -1,594 +0,0 @@ - - - - - - - - - - - Text generation Tutorial — PaddlePaddle documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - -
- - - - - - - - - - - -
-
    - -
  • Text generation Tutorial
  • -
-
- -
-
-
-
- -
-

Text generation Tutorial

-

Sequence to sequence has been proven to be a powerful model for language generation. It can be used for machine translation, query rewriting, image captioning, etc.

-

This tutorial guides you through training a sequence to sequence model for neural machine translation (NMT) network that translates French to English.

-

We follow the paper Neural Machine Translation by Jointly Learning to Align and Translate , which details the model architecture and training procedure for good performance on WMT-14 dataset. This tutorial reproduces this result in PaddlePaddle.

-

We thank @caoying for the pull request that defines the model architecture and solver configurations.

-
-

Data Preparation

-
-

Download and Extract

-

Download the WMT-14 dataset from http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/, extract it, and divide Develop and Test data into separate folder.

- -

To do this, simply run the following commands in linux, otherwise, you need to download, extract, divide, and rename the file suffix respectively.

-
cd demo/seqToseq/data
-./wmt14_data.sh
-
-
-

We should find that the dataset wmt14 has three folders as shown in the following table.

- ------ - - - - - - - - - - - - - - - - - - - - - - - - -
folder nameFrench-English parallel corpora filenumber of total filesize
train_dataccb2_pc30.src, ccb2_pc30.trg, etctwelve3.55G
test_datantst1213.src, ntst1213.trgtwo1636k
gen_datantst14.src, ntst14.trgtwo864k
-
    -
  • Each folder has French-English parallel corpora
  • -
  • XXX.src are source French files; XXX.trg are target English files.
  • -
  • The number of lines of XXX.src and XXX.trg should be the same.
  • -
  • Each line is a French/English sentence.
  • -
  • There is a one-to-one correspondence between the sentence at the i-th line of XXX.src and XXX.trg.
  • -
-
-
-

User Defined Dataset

-

If you need to do other sequence-to-sequence tasks, such as Paraphrasing, you only need to organize the data as follows, and place them in demo/seqToseq/data:

-
dataset
-  train
-    file1.src file1.trg
-    file2.src file2.trg
-    ......
-  test
-    file1.src file1.trg
-    file2.src file2.trg
-    ......
-  gen
-    file1.src file1.trg
-    file2.src file2.trg
-    ......
-
-
-
    -
  • 1st directory: dataset folder name
  • -
  • 2nd directory: folder of train, test, and gen. The names of these three folders are fixed.
  • -
  • 3rd file: Source-Target parallel corpora files.
      -
    • XXX.src are source files, XXX.trg are target files.
    • -
    • Each line of the file must be a sequence.
    • -
    • There should be a one-to-one correspondence between the i-th sequence of XXX.src and XXX.trg.
    • -
    -
  • -
-
-
-
-

Data Preprocess

-
-

Preprocessing Workflow

-
    -
  • Concat each Source-Target parallel corpora to be one file:
      -
    • concat each XXX.src and XXX.trg to be XXX.
    • -
    • the i-th line of XXX = the i-th line of XXX.src + ‘\t’ + the i-th line of XXX.trg
    • -
    -
  • -
  • Build source and target dictionary of train data, each dictionary has DICTSIZE words:
      -
    • the most frequent (DICTSIZE-3) words
    • -
    • 3 special token:
        -
      • <s>: the start of a sequence
      • -
      • <e>: the end of a sequence
      • -
      • <unk>: a word not included in dictionary
      • -
      -
    • -
    -
  • -
-
-
-

Preprocessing Command and Result

-

The general command for preprocessing the dataset is:

-
cd demo/seqToseq/
-python preprocess.py -i INPUT [-d DICTSIZE] [-m]
-
-
-
    -
  • -i INPUT: the path of input original dataset
  • -
  • -d DICTSIZE: the specified word count of dictionary, if not set, dictionary will contain all the words in input dataset
  • -
  • -m --mergeDict: merge source and target dictionary, thus, two dictionaries have the same context
  • -
-

And you will see messages like this:

-
concat parallel corpora for dataset
-build source dictionary for train data
-build target dictionary for train data
-dictionary size is XXX
-
-
-

Here, you can simply run the command:

-
python preprocess.py -i data/wmt14 -d 30000
-
-
-

It will take several minutes, and store the preprocessed dataset in demo/seqToseq/data/pre-wmt14, the directory has following structure.

-
train test gen train.list test.list gen.list src.dict trg.dict
-
-
-
    -
  • train, test, gen: folder contains French-English parallel corpora of train data, test data and gen data respectively. Each line of file in folder contains two parts, the former is a French sequence, and the latter is a corresponding English sequence.
  • -
  • train.list, test.list, gen.list: text contains a file list in train folder, test folder and gen folder respectively
  • -
  • src.dict, trg.dict: source (French) / target (English) dictionary, each dictionary has 30000 words: the most frequent 29997 words and 3 special token
  • -
-
-
-
-

Model Training

-
-

Introduction

-

Neural machine translation (NMT) aims at building a single neural network that can be jointly tuned to maximize translation performance. Recently proposed NMT models often belong to a family of encoder–decoder models. Encoder-Decoder models encode a source sentence into a fixed-length vector from which a decoder generates a target sentence.

-

In this task, we use an extension to the encoder–decoder model which learns to align and translate jointly. Each time the model generates a word in a translation, it searches for a set of positions in the source sentence for the most relevant information. The decoder predicts a target word based on the context vectors associated with these source positions and all the previous generated target words. For more detailed explanation, readers can refer to paper Neural Machine Translation by Jointly Learning to Align and Translate.

-

The most distinguishing feature of this model is that it doesn’t encode an input sentence into a single fixed-length vector. Instead, it encodes the input sentence into a sequence of vectors, where one vector corresponds to an input element. A subset of these vectors is chosen adaptively while decoding the translated sentence. This frees a NMT model from having to squash all the information of a source sentence, regardless of its length, into a fixed-length vector. The improvement of this model is more apparent for longer sentences, but the improvement can be observed for sentences of any length. -

-
Figure 1. Encoder-Decoder-Attention-Model

-
-
-

Training Model in PaddlePaddle

-

We need to create a model config file before training. Here is an example demo/seqToseq/translation/train.conf. The first three lines import python function for defining network, and define the job_mode and attention_mode.

-
from seqToseq_net import *
-is_generating = False
-
-### Data Definiation
-train_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14",
-                             is_generating = is_generating)
-
-### Algorithm Configuration
-settings(
-    learning_method = AdamOptimizer(),
-    batch_size = 50,
-    learning_rate = 5e-4)
-
-### Network Architecture
-gru_encoder_decoder(train_conf, is_generating)
-
-
-
    -
  1. Data Definiation: We define a SeqToSeq train and test data in our example. It returns train_conf as the configuration, following is its input arguments:
      -
    • data_dir: directory of train data and test data
    • -
    • is_generating: whether this config is used for generating, here is false
    • -
    -
  2. -
  3. Algorithm Configuration: We use the SGD training algorithm (default), ADAM learning method in our example, specify batch_size as 50, and learning rate as 5e-4.
  4. -
  5. Network Architecture: We use an attention version of GRU Encoder-Decoder network in our example. It consists a bidirectional GRU as an encoder and a decoder that emulates searching through a source sentence during decoding a translation.
  6. -
-
-
-

Training Command and Result

-

After writing the model config, we can train the model by running the command:

-
cd demo/seqToseq/translation
-./train.sh
-
-
-

The train.sh is shown as follows:

-
paddle train \
---config='translation/train.conf' \
---save_dir='translation/model' \
---use_gpu=false \
---num_passes=16 \
---show_parameter_stats_period=100 \
---trainer_count=4 \
---log_period=10 \
---dot_period=5 \
-2>&1 | tee 'translation/train.log'
-
-
-
    -
  • config: set config of neural network
  • -
  • save_dir: set output path to save models
  • -
  • use_gpu: whether to use GPU to train, here use CPU
  • -
  • num_passes: set number of passes. One pass in paddle means training all samples in dataset one time
  • -
  • show_parameter_stats_period: here show parameter statistic every 100 batches
  • -
  • trainer_count: set number of CPU threads or GPU devices
  • -
  • log_period: here print log every 10 batches
  • -
  • dot_period: here print ‘.’ every 5 batches
  • -
-

The training loss function is printed every 10 batch by default, and you will see messages like this:

-
I0719 19:16:45.952062 15563 TrainerInternal.cpp:160]  Batch=10 samples=500 AvgCost=198.475 CurrentCost=198.475 Eval: classification_error_evaluator=0.737155  CurrentEval: classification_error_evaluator=0.737155
-I0719 19:17:56.707319 15563 TrainerInternal.cpp:160]  Batch=20 samples=1000 AvgCost=157.479 CurrentCost=116.483 Eval: classification_error_evaluator=0.698392  CurrentEval: classification_error_evaluator=0.659065
-.....
-
-
-
    -
  • AvgCost: Average Cost from 0th batch to current batch
  • -
  • CurrentCost: Cost in current batch
  • -
  • classification_error_evaluator(Eval): False prediction rate for each word from 0th evaluation to current evaluation
  • -
  • classification_error_evaluator(CurrentEval): False prediction rate for each word in current evaluation
  • -
-

And when the classification_error_evaluator is less than 0.35, the model is trained sucessfully.

-
-
-
-

Text Generation

-
-

Introduction

-

Generally speaking, the NMT model is conditioned on the encodings of the source sentence, and then to predict the next target word by given the current target word. In the training process, the current word is always knowns as the ground truth, by contrast. In the generating process, the current word is the output of the decoder in last time step, which is accessed to from a memory in PaddlePaddle.

-

Besides, we use Beam Search to generate sequences. Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. However, it only stores a predetermined number of best states at each level (called the beam size).

-
-
-

Pretrained model

-

We trained the model on a cluster with 50 nodes, each node has two 6-core CPUs. We trained 16 passes in 5 days, where each pass takes 7 hours. The model_dir has 16 sub-folder, each of which contains the whole model parameters with 202MB size. And we find pass-00012 model has the highest BLEU 27.77 (see paper BLEU: a Method for Automatic Evaluation of Machine Translation). To download and extract this model, simply run the following commands in linux.

-
cd demo/seqToseq/data
-./wmt14_model.sh
-
-
-
-
-

Generating Model in PaddlePaddle

-

We need to create a model config file before translating French sequence. Here is an example demo/seqToseq/translation/gen.conf, the first three lines import python function for defining network, and define the job_mode and attention_mode.

-
from seqToseq_net import *
-is_generating = True
-
-################## Data Definiation #####################
-gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14",
-                           is_generating = is_generating,
-                           gen_result = "./translation/gen_result")
-
-############## Algorithm Configuration ##################
-settings(
-  learning_method = AdamOptimizer(),
-  batch_size = 1,
-  learning_rate = 0)
-
-################# Network configure #####################
-gru_encoder_decoder(gen_conf, is_generating)
-
-
-
    -
  1. Data Definiation: We defines an SeqToSeq gen data in our example. It returns gen_conf as the configuration, following is its input arguments:
      -
    • data_dir: directory of gen data -  - is_generating: whether this config is used for generating, here is true -  - gen_result: file to store the generation result
    • -
    -
  2. -
  3. Algorithm Configuration: We use SGD traing algorithm in generation, and specify batch_size as 1 (each time generate one sequence), and learning rate as 0.
  4. -
  5. Network Architecture: Essentially the same as the training model.
  6. -
-
-
-

Generating Command and Result

-

After writing the model config, we can do text translation from French to English by running the command:

-
cd demo/seqToseq/translation
-./gen.sh
-
-
-

The gen.sh is shown as follows, unlike training, there are some different arguments to specify:

-
paddle train \
---job=test \
---config='translation/gen.conf' \
---save_dir='data/wmt14_model' \
---use_gpu=true \
---num_passes=13 \
---test_pass=12 \
---trainer_count=1 \
-2>&1 | tee 'translation/gen.log'
-
-
-
    -
  • job: set job mode to test
  • -
  • save_dir: the path of saved models
  • -
  • num_passes and test_pass: loading model parameters from test_pass to (num_passes - 1), here only loads data/wmt14_model/pass-00012
  • -
-

You will see messages like this:

-
I0706 14:48:31.178915 31441 GradientMachine.cpp:143] Loading parameters from data/wmt14_model/pass-00012
-I0706 14:48:40.012039 31441 Tester.cpp:125]  Batch=100 samples=100 AvgCost=0
-I0706 14:48:48.898632 31441 Tester.cpp:125]  Batch=200 samples=200 AvgCost=0
-...
-
-
-

And the generating result in demo/seqToseq/translation/gen_result likes:

-
0
-0       -11.1314         The <unk> <unk> about the width of the seats while large controls are at stake <e>
-1       -11.1519         The <unk> <unk> on the width of the seats while large controls are at stake <e>
-2       -11.5988         The <unk> <unk> about the width of the seats while large controls are at stake . <e>
-
-1
-0       -24.4149         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of the Dubai <unk> . <e>
-1       -26.9524         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of Dubai &apos; s <unk> . <e>
-2       -27.9574         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of Dubai &apos; s Dubai <unk> . <e>
-...
-
-
-
    -
  • This is the beam search result, where beam size is 3
  • -
  • ‘0’ in 1st-line and ‘1’ in 6th-line mean the sequence-id in gen data
  • -
  • Other six lines list the beam search results
      -
    • The 2nd-column is the score of beam search (from large to small)
    • -
    • The 3rd-colunm is the generating English sequence
    • -
    -
  • -
  • There is 2 special tokens:
      -
    • <e>: the end of a sequence
    • -
    • <unk>: a word not included in dictionary
    • -
    -
  • -
-
-
-

Bleu Evalutaion

-

Human evaluations of machine translation are extensive but expensive. Paper BLEU: a Method for Automatic Evaluation of Machine Translation presents a method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations. Moses is a statistical machine translation system, and we use multi-bleu.perl of it to do Bleu Evalution. To download this script, simply run the following command:

-
cd demo/seqToseq/translation
-./moses_bleu.sh
-
-
-

Since the standard translation is alrealy downloaded as data/wmt14/gen/ntst14.trg, we can do Bleu Evalution by running the command:

-
cd demo/seqToseq/translation
-./eval_bleu.sh FILE BEAMSIZE
-
-
-
    -
  • FILE: the generation result file
  • -
  • BEAMSIZE: expand width in beam search
  • -
-
-
-
- - -
-
-
- - -
- -
-

- © Copyright 2016, PaddlePaddle developers. - -

-
- Built with Sphinx using a theme provided by Read the Docs. - -
- -
-
- -
- -
- - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc/tutorials/index_en.html b/develop/doc/v1_api_tutorials/README.html similarity index 83% rename from develop/doc/tutorials/index_en.html rename to develop/doc/v1_api_tutorials/README.html index 15ac3129eaa1963b7c99f1437450deb9e50f24df..e901e6807586e947c3d2961775464d8f576e7cdf 100644 --- a/develop/doc/tutorials/index_en.html +++ b/develop/doc/v1_api_tutorials/README.html @@ -8,7 +8,7 @@ - TUTORIALS — PaddlePaddle documentation + <no title> — PaddlePaddle documentation @@ -168,7 +168,7 @@
    -
  • TUTORIALS
  • +
  • <no title>
@@ -177,30 +177,10 @@
- +

The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later. +Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future.

+

Please go to PaddlePaddle/book and +PaddlePaddle/models to learn PaddlePaddle.

diff --git a/develop/doc/tutorials/embedding_model/index_en.html b/develop/doc/v1_api_tutorials/embedding_model/index_en.html similarity index 99% rename from develop/doc/tutorials/embedding_model/index_en.html rename to develop/doc/v1_api_tutorials/embedding_model/index_en.html index e35841de9fe65aa7fa878c45b90048e34045e310..217e161a6044d98eedcc91c6b4280dd46d8674c6 100644 --- a/develop/doc/tutorials/embedding_model/index_en.html +++ b/develop/doc/v1_api_tutorials/embedding_model/index_en.html @@ -285,7 +285,7 @@ python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL
  • --init_model_path: path of the initialization model, here is data/paraphrase_model
  • --load_missing_parameter_strategy: operations when model file is missing, here use a normal distibution to initialize the other parameters except for the embedding layer
  • -

    For users who want to understand the dataset format, model architecture and training procedure in detail, please refer to Text generation Tutorial.

    +

    For users who want to understand the dataset format, model architecture and training procedure in detail, please refer to Text generation Tutorial.

    diff --git a/develop/doc/tutorials/gan/index_en.html b/develop/doc/v1_api_tutorials/gan/index_en.html similarity index 100% rename from develop/doc/tutorials/gan/index_en.html rename to develop/doc/v1_api_tutorials/gan/index_en.html diff --git a/develop/doc/tutorials/imagenet_model/resnet_model_en.html b/develop/doc/v1_api_tutorials/imagenet_model/resnet_model_en.html similarity index 100% rename from develop/doc/tutorials/imagenet_model/resnet_model_en.html rename to develop/doc/v1_api_tutorials/imagenet_model/resnet_model_en.html diff --git a/develop/doc/tutorials/quick_start/index_en.html b/develop/doc/v1_api_tutorials/quick_start/index_en.html similarity index 100% rename from develop/doc/tutorials/quick_start/index_en.html rename to develop/doc/v1_api_tutorials/quick_start/index_en.html diff --git a/develop/doc_cn/_images/bi_lstm1.jpg b/develop/doc_cn/_images/bi_lstm1.jpg deleted file mode 100644 index adec1606d64d6e35ffe7e62abfa9a09309b05c84..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/bi_lstm1.jpg and /dev/null differ diff --git a/develop/doc_cn/_images/cifar.png b/develop/doc_cn/_images/cifar.png deleted file mode 100644 index f54a0c58837cb3385b32dc57d02cec92666ef0f1..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/cifar.png and /dev/null differ diff --git a/develop/doc_cn/_images/curve.jpg b/develop/doc_cn/_images/curve.jpg deleted file mode 100644 index baa35ae7f0a0b6c246f3a0d331735477ab8bcd70..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/curve.jpg and /dev/null differ diff --git a/develop/doc_cn/_images/encoder-decoder-attention-model1.png b/develop/doc_cn/_images/encoder-decoder-attention-model1.png deleted file mode 100644 index 79f911d4ba12ac0c0d1a936c9df639c302786914..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/encoder-decoder-attention-model1.png and /dev/null differ diff --git a/develop/doc_cn/_images/feature.jpg b/develop/doc_cn/_images/feature.jpg deleted file mode 100644 index 0e3310e4ace5613917e7779d3198ccbb3cdc5ada..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/feature.jpg and /dev/null differ diff --git a/develop/doc_cn/_images/image_classification.png b/develop/doc_cn/_images/image_classification.png deleted file mode 100644 index 14f255805081c1b4fab27eaf336fd389fa93ca19..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/image_classification.png and /dev/null differ diff --git a/develop/doc_cn/_images/lenet.png b/develop/doc_cn/_images/lenet.png deleted file mode 100644 index 1e6f2b32bad797f3fccb929c72a121fc935b0cbb..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/lenet.png and /dev/null differ diff --git a/develop/doc_cn/_images/lstm.png b/develop/doc_cn/_images/lstm.png deleted file mode 100644 index aaf1fc690da2ffb8418cde5ed81848ddb5263030..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/lstm.png and /dev/null differ diff --git a/develop/doc_cn/_images/network_arch.png b/develop/doc_cn/_images/network_arch.png deleted file mode 100644 index 4ae7864212f2a0a38102ee7ff600527ea99fec82..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/network_arch.png and /dev/null differ diff --git a/develop/doc_cn/_images/plot.png b/develop/doc_cn/_images/plot.png deleted file mode 100644 index a31f99791c670e18bb8c62b7604ec8cb0284ffb4..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/plot.png and /dev/null differ diff --git a/develop/doc_cn/_images/rec_regression_network.png b/develop/doc_cn/_images/rec_regression_network.png deleted file mode 100644 index 7d2b54d4fcf560cd5b667628f0012c3822efd9b2..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/rec_regression_network.png and /dev/null differ diff --git a/develop/doc_cn/_images/stacked_lstm.jpg b/develop/doc_cn/_images/stacked_lstm.jpg deleted file mode 100644 index 4239055050966e0095e188a8c81d860711bce29d..0000000000000000000000000000000000000000 Binary files a/develop/doc_cn/_images/stacked_lstm.jpg and /dev/null differ diff --git a/develop/doc_cn/_sources/howto/deep_model/rnn/rnn_config_cn.rst.txt b/develop/doc_cn/_sources/howto/deep_model/rnn/rnn_config_cn.rst.txt index 4d684cf8ad5a8082cf31fb27027119b3d3e700b6..63fa161fafed0f3a8ec8799af21304cbec62d813 100644 --- a/develop/doc_cn/_sources/howto/deep_model/rnn/rnn_config_cn.rst.txt +++ b/develop/doc_cn/_sources/howto/deep_model/rnn/rnn_config_cn.rst.txt @@ -21,7 +21,7 @@ wmt14数据的提供文件在 `python/paddle/v2/dataset/wmt14.py ![Image Classification](./image_classification.png) - -## 数据准备 -首先下载CIFAR-10数据集。下面是CIFAR-10数据集的官方网址: - - - -我们准备了一个脚本,可以用于从官方网站上下载CIFAR-10数据集,转为jpeg文件并存入特定的目录。使用这个脚本前请确认已经安装了pillow及相关依赖模块。可以参照下面的命令进行安装: - -1. 安装pillow - -```bash -sudo apt-get install libjpeg-dev -pip install pillow -``` - -2. 下载数据集 - -```bash -cd demo/image_classification/data/ -sh download_cifar.sh -``` - -CIFAR-10数据集包含60000张32x32的彩色图片。图片分为10类,每个类包含6000张。其中50000张图片作为训练集,10000张作为测试集。 - -下图展示了所有的图片类别,每个类别中随机抽取了10张图片。 -
    ![Image Classification](./cifar.png)
    - -脚本运行完成后,我们应当会得到一个名为cifar-out的文件夹,其下子文件夹的结构如下 - - -``` -train ----airplane ----automobile ----bird ----cat ----deer ----dog ----frog ----horse ----ship ----truck -test ----airplane ----automobile ----bird ----cat ----deer ----dog ----frog ----horse ----ship ----truck -``` - -cifar-out下包含`train`和`test`两个文件夹,其中分别包含了CIFAR-10中的训练集和测试集。这两个文件夹下各自有10个子文件夹,每个子文件夹下存储相应分类的图片。将图片按照上述结构存储好之后,我们就可以着手对分类模型进行训练了。 - -## 预处理 -数据下载之后,还需要进行预处理,将数据转换为Paddle的格式。我们可以通过如下命令进行预处理工作: - -``` -cd demo/image_classification/ -sh preprocess.sh -``` - -其中`preprocess.sh` 调用 `./demo/image_classification/preprocess.py` 对图片进行预处理 -```sh -export PYTHONPATH=$PYTHONPATH:../../ -data_dir=./data/cifar-out -python preprocess.py -i $data_dir -s 32 -c 1 -``` - -`./demo/image_classification/preprocess.py` 使用如下参数: - -- `-i` 或 `--input` 给出输入数据所在路径; -- `-s` 或 `--size` 给出图片尺寸; -- `-c` 或 `--color` 标示图片是彩色图或灰度图 - -## 模型训练 -在开始训练之前,我们需要先创建一个模型配置文件。下面我们给出了一个配置示例。**注意**,这里的列出的和`vgg_16_cifar.py`文件稍有差别,因为该文件可适用于预测。 - -```python -from paddle.trainer_config_helpers import * -data_dir='data/cifar-out/batches/' -meta_path=data_dir+'batches.meta' -args = {'meta':meta_path, 'mean_img_size': 32, - 'img_size': 32, 'num_classes': 10, - 'use_jpeg': 1, 'color': "color"} -define_py_data_sources2(train_list=data_dir+"train.list", - test_list=data_dir+'test.list', - module='image_provider', - obj='processData', - args=args) -settings( - batch_size = 128, - learning_rate = 0.1 / 128.0, - learning_method = MomentumOptimizer(0.9), - regularization = L2Regularization(0.0005 * 128)) - -img = data_layer(name='image', size=3*32*32) -lbl = data_layer(name="label", size=10) -# small_vgg is predined in trainer_config_helpers.network -predict = small_vgg(input_image=img, num_channels=3) -outputs(classification_cost(input=predict, label=lbl)) -``` - -在第一行中我们载入用于定义网络的函数。 -```python -from paddle.trainer_config_helpers import * -``` - -之后定义的`define_py_data_sources2`使用Python数据提供器,其中 `args`将在`image_provider.py`进行使用,该文件负责产生图片数据并传递给Paddle系统 - - `meta`: 训练集平均值。 - - `mean_img_size`: 平均特征图的高度及宽度。 - - `img_size`:输入图片的高度及宽度。 - - `num_classes`:类别个数。 - - `use_jpeg`:处理过程中数据存储格式。 - - `color`:标示是否为彩色图片。 - - `settings`用于设置训练算法。在下面的例子中,learning rate被设置为0.1除以batch size,而weight decay则为0.0005乘以batch size。 - - ```python -settings( - batch_size = 128, - learning_rate = 0.1 / 128.0, - learning_method = MomentumOptimizer(0.9), - regularization = L2Regularization(0.0005 * 128) -) -``` - -`small_vgg`定义了网络结构。这里我们使用的是一个小的VGG网络。关于VGG卷积神经网络的描述可以参考:[http://www.robots.ox.ac.uk/~vgg/research/very_deep/](http://www.robots.ox.ac.uk/~vgg/research/very_deep/)。 -```python -# small_vgg is predined in trainer_config_helpers.network -predict = small_vgg(input_image=img, num_channels=3) -``` -配置创建完毕后,可以运行脚本train.sh来训练模型。 - -```bash -config=vgg_16_cifar.py -output=./cifar_vgg_model -log=train.log - -paddle train \ ---config=$config \ ---dot_period=10 \ ---log_period=100 \ ---test_all_data_in_one_period=1 \ ---use_gpu=1 \ ---save_dir=$output \ -2>&1 | tee $log - -python -m paddle.utils.plotcurve -i $log > plot.png -``` -- 这里我们使用的是GPU模式进行训练。如果你没有GPU环境,可以设置`use_gpu=0`。 -- `./demo/image_classification/vgg_16_cifar.py`是网络和数据配置文件。各项参数的详细说明可以在命令行参数相关文档中找到。 -- 脚本`plotcurve.py`依赖于python的`matplotlib`模块。因此如果这个脚本运行失败,也许是因为需要安装`matplotlib`。 -在训练完成后,训练及测试误差曲线图会被`plotcurve.py`脚本保存在 `plot.png`中。下面是一个误差曲线图的示例: - -
    ![Training and testing curves.](./plot.png)
    - -## 预测 -在训练完成后,模型及参数会被保存在路径`./cifar_vgg_model/pass-%05d`下。例如第300个pass的模型会被保存在`./cifar_vgg_model/pass-00299`。 - -要对一个图片的进行分类预测,我们可以使用`predict.sh`,该脚本将输出预测分类的标签: - -``` -sh predict.sh -``` - -predict.sh: -``` -model=cifar_vgg_model/pass-00299/ -image=data/cifar-out/test/airplane/seaplane_s_000978.png -use_gpu=1 -python prediction.py $model $image $use_gpu -``` - -## 练习 -在CUB-200数据集上使用VGG模型训练一个鸟类图片分类模型。相关的鸟类数据集可以从如下地址下载,其中包含了200种鸟类的照片(主要来自北美洲)。 - - - - - - -## 细节探究 -### 卷积神经网络 -卷积神经网络是一种使用卷积层的前向神经网络,很适合构建用于理解图片内容的模型。一个典型的神经网络如下图所示: - -![Convolutional Neural Network](./lenet.png) - -一个卷积神经网络包含如下层: - -- 卷积层:通过卷积操作从图片或特征图中提取特征 -- 池化层:使用max-pooling对特征图下采样 -- 全连接层:使输入层到隐藏层的神经元是全部连接的。 - -卷积神经网络在图片分类上有着惊人的性能,这是因为它发掘出了图片的两类重要信息:局部关联性质和空间不变性质。通过交替使用卷积和池化处理, 卷积神经网络能够很好的表示这两类信息。 - -关于如何定义网络中的层,以及如何在层之间进行连接,请参考Layer文档。 diff --git a/develop/doc_cn/_sources/tutorials/index_cn.md.txt b/develop/doc_cn/_sources/tutorials/index_cn.md.txt deleted file mode 100644 index 6a27004d58d24cc466d930322be8cdbb2f434c74..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/index_cn.md.txt +++ /dev/null @@ -1,13 +0,0 @@ -# 完整教程 - -* [快速入门](quick_start/index_cn.rst) -* [个性化推荐](rec/ml_regression_cn.rst) -* [图像分类](image_classification/index_cn.md) -* [情感分析](sentiment_analysis/index_cn.md) -* [语义角色标注](semantic_role_labeling/index_cn.md) -* [机器翻译](text_generation/index_cn.md) - -## 常用模型 - -* [ResNet模型](imagenet_model/resnet_model_cn.md) -* [词向量模型](embedding_model/index_cn.md) diff --git a/develop/doc_cn/_sources/tutorials/rec/ml_dataset_cn.md.txt b/develop/doc_cn/_sources/tutorials/rec/ml_dataset_cn.md.txt deleted file mode 100644 index 2207a776f0774e72aba15169e59258dd04583637..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/rec/ml_dataset_cn.md.txt +++ /dev/null @@ -1,105 +0,0 @@ -```eval_rst -.. _demo_ml_dataset: - -``` - -# MovieLens数据集 - -[MovieLens 数据集](http://grouplens.org/datasets/movielens/)由GroupLens Research实验室搜集整理。 -该数据集包含一些用户信息、电影信息以及电影评分\[1-5\]。根据数据量规模,该数据及有很多不同的版本。 -我们用[MovieLens 百万数据集](http://files.grouplens.org/datasets/movielens/ml-1m.zip)作为示例数据 -集,其中包含6,000位用户对4,000部电影的1,000,000条评价。该数据集于2003年2月发布。 - -## 数据集特征 - -在[ml-1m 数据集](http://files.grouplens.org/datasets/movielens/ml-1m.zip)中有许多的特征。在[ml-1m 数据集] -(http://files.grouplens.org/datasets/movielens/ml-1m.zip)中的这些数据文件(含有".dat"的后缀)实际上是CSV文件, -分隔符为"::"。以下我们翻译数据集网站中README文件的描述: - -### 评分文件描述(ratings.dat) - - -所有的评分数据都包含在"ratings.dat"文件中,遵循如下的格式: - -用户ID::电影ID::评分::时间戳 - -- 用户ID范围从1到6040 -- 电影ID范围从1到3952 -- 评分被调整为5星的规模(只允许整数的星级) -- 时间戳表示为从1970-01-01(UTC)来的秒数,与time(2)的返回值一致 -- 每位用户至少有20条评分 - -### 用户文件描述(users.dat) - -所有的用户信息都包含在"users.dat"文件中,遵循如下的格式: - -用户ID::性别::年龄::职业::邮编 - -所有的人口统计学信息由用户自愿提供,没有进行正确性的检查。只有含有人 -口统计学信息的用户才被包含在数据集中。 - -- 性别,用"M"表示男性,"F"表示女性 -- 年龄从下列列表范围中选取: - - * 1: "18岁以下" - * 18: "18-24岁" - * 25: "25-34岁" - * 35: "35-44岁" - * 45: "45-49岁" - * 50: "50-55岁" - * 56: "56+" - -- 职业从下面所列中选择: - - * 0: "其他"或不确定 - * 1: "学术/教育工作者" - * 2: "艺术家" - * 3: "文书工作/管理员" - * 4: "大学生/研究生" - * 5: "客户服务" - * 6: "医生/医疗保健" - * 7: "行政工作/管理人员" - * 8: "农民" - * 9: "操持家务者" - * 10: "高中毕业生" - * 11: "律师" - * 12: "程序员" - * 13: "退休人员" - * 14: "销售/市场" - * 15: "科学家" - * 16: "自由职业者" - * 17: "技术员/工程师" - * 18: "推销员/手工艺者" - * 19: "无业人士" - * 20: "作家" - -### 电影文件描述(movies.dat) - -所有的电影信息都包含在"movies.dat"文件中,遵循如下的格式: - -电影ID::电影名称::电影类型 - -- 电影名称(包括发行时间)与IMDB网站提供的一致 -- 电影类型如符合多种用管道符号|分割,选自下列类型: - - * 动作片 - * 冒险片 - * 动画片 - * 儿童片 - * 喜剧片 - * 犯罪片 - * 纪录片 - * 戏剧 - * 奇幻片 - * 黑色电影 - * 恐怖片 - * 音乐剧 - * 悬疑片 - * 浪漫片 - * 科幻片 - * 惊险电影 - * 战争片 - * 西部片 - -- 由于意外的副本记录和测试记录,有些电影ID可能与实际电影不相符合 -- 电影大部分是手工输入数据,因此可能会有一些错误和不一致发生 diff --git a/develop/doc_cn/_sources/tutorials/rec/ml_regression_cn.rst.txt b/develop/doc_cn/_sources/tutorials/rec/ml_regression_cn.rst.txt deleted file mode 100644 index 9278c9f603b648099f448963bc2246b8dc014ab7..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/rec/ml_regression_cn.rst.txt +++ /dev/null @@ -1,349 +0,0 @@ -MovieLens数据集评分回归模型 -=========================== - -这里我们在MovieLens数据集描述一种 **余弦相似度回归** 任务。 -该示例将展示paddle如何进行词向量嵌入,处理相似度回归,针对文本 -的单词级别的卷积神经网络,以及paddle如何处理多种类型的输入。 -需要注意的是,该模型网络只是用于进行demo展示paddle如何工作,而 -没有进行结构的微调。 - - -**我们非常欢迎您用PADDLEPADDLE构建更好的示例,如果您有好的建议来 -让这个示例变得更好,希望能让我们知晓。** - -数据准备 -````````` -下载并解压数据集 -''''''''''''''''' -这里我们使用 :ref:`demo_ml_dataset` 。 -要下载和解压数据集,只需要简单的运行下面的命令即可。 - -.. code-block:: bash - - cd demo/recommendation/data - ./ml_data.sh - -:code:`demo/recommendation/data/ml-1m` 的目录结构为: - -.. code-block:: text - - +--ml-1m - +--- movies.dat # 电影特征 - +--- ratings.dat # 评分 - +--- users.dat # 用户特征 - +--- README # 数据集描述 - -字段配置文件 -''''''''''''' -**字段配置文件** 用来具体说明数据集的字段和文件格式, -例如,说明每个特征文件具体字段是 **什么** 类型。 - -ml-1m的字段配置文件在目录 :code:`demo/recommendation/data/config.json` 中。 -其具体说明了字段类型和文件名称: - -1) 用户文件中有四种类型的字段\: 编号,性别,年龄和职业; - -2) 文件名称为"users.dat",文件的分隔符为"::"。 - -.. include:: ../../../demo/recommendation/data/config.json - :code: json - :literal: - -准备数据 -````````` -你需要安装python的第三方库。 -**强烈推荐使用VIRTUALENV来创造一个干净的python环境。** - -.. code-block:: bash - - pip install -r requirements.txt - -预处理数据一般的命令为: - -.. code-block:: bash - - cd demo/recommendation - ./preprocess.sh - -下面介绍预处理过程具体的步骤。 - -提取电影或用户的特征并生成python对象 -''''''''''''''''''''''''''''''''''''' - -在movielens 1m数据集中,电影和用户有许多的特征。 -评分文件的每一行仅仅提供电影或用户的编号来代表相应的电影或用户。 -我们首先处理电影或用户的特征文件,然后用pickle命令将特征( **Meta** )对象存储为文件。 - -Meta配置文件 -............. - -**Meta配置文件** 用来具体描述 **如何** 解析数据集中的每一个字段。 -该文件可以从字段配置文件生成,或是手动编辑生成。文件的格式可以 -为json或yaml格式。解析器能通过文件的扩展名自动识别文件的格式。 - -要将字段配置文件转化为meta配置文件,只需要运行: - -.. code-block:: bash - - cd demo/recommendation/data - python config_generator.py config.json > meta_config.json - -生成的meta配置文件如下所示: - -.. include:: ../../../demo/recommendation/data/meta_config.json - :code: json - :literal: - -在meta文件中有两种特征\: 电影和用户。 - -* 在电影文件movies.dat中 - * 我们仅用"::"来分隔每一行 - * pos 0 代表编号 - * pos 1 特征: - * name是电影名 - * 利用正则表达式来解析该特征 - * 基于字母的词嵌入特征 - * 是序列 - * pos 2 特征: - * name是体裁 - * type是one hot稠密向量 - * dictionary由解析自动生成,每一个key由'|'分隔 -* 在用户文件users.dat中 - * 我们仅用"::"来分隔每一行 - * pos 0 代表编号 - * pos 1 特征: - * name是性别 - * 简单的基于字母的词嵌入 - * pos 2 特征: - * name是年龄 - * 是整个的词嵌入 - * 嵌入编号会根据单词排序 - * pos 3 特征: - * name是职业 - * 简单的整个词嵌入 - - -Meta文件 -'''''''' - -有了meta配置文件之后,我们可以生成 **Meta文件** ,该文件是python的pickle对象, -存储着电影或用户信息。可以运行下面的命令来生成。 - -.. code-block:: bash - - python meta_generator.py ml-1m meta.bin --config=meta_config.json - -meta文件 :code:`meta.bin` 的结构如下: - -.. code-block:: text - - +--+ movie - | +--+ __meta__ - | | +--+ raw_meta # 每个特征的meta配置。列表 - | | | + - | | | | # 编号字段,我们用编号作为key - | | | +--+ {'count': 3883, 'max': 3952, 'is_key': True, 'type': 'id', 'min': 1} - | | | | - | | | | # 电影名字段,嵌入特征字典 - | | | +--+ {'dict': [ ... ], 'type': 'embedding', 'name': 'title', 'seq': 'sequence'} - | | | | - | | | | # 体裁字段,体裁字典 - | | | +--+ {'dict': [ ... ], 'type': 'one_hot_dense', 'name': 'genres'} - | | | - | | +--+ feature_map [1, 2] # a list for raw_meta index for feature field. - | | # it means there are 2 features for each key. - | | # * 0 offset of feature is raw_meta[1], Title. - | | # * 1 offset of feature is raw_meta[2], Genres. - | | - | +--+ 1 # 电影1的特征 - | | + - | | +---+ [[...], [...]] # title ids, genres dense vector - | | - | +--+ 2 - | | - | +--+ ... - | - +--- user - +--+ __meta__ - | + - | +--+ raw_meta - | | + - | | +--+ id field as user - | | | - | | +--+ {'dict': ['F', 'M'], 'type': 'embedding', 'name': 'gender', 'seq': 'no_sequence'} - | | | - | | +--+ {'dict': ['1', '18', '25', '35', '45', '50', '56'], 'type': 'embedding', 'name': 'age', 'seq': 'no_sequence'} - | | | - | | +--+ {'dict': [...], 'type': 'embedding', 'name': 'occupation', 'seq': 'no_sequence'} - | | - | +--+ feature_map [1, 2, 3] - | - +--+ 1 # 用户1的特征 - | - +--+ 2 - +--+ ... - - -分割训练/测试文件 -'''''''''''''''''' - -我们将 :code:`ml-1m/ratings.dat` 文件分割为训练和测试文件。分割文件的方法是:对于每位用户,我们将评分分成两部分。 -这样的话每位用户在测试文件中将与训练文件含有同样的信息。 - -用 :code:`separate.py` 来分离训练和测试文件。 - -.. code-block:: bash - - python split.py ml-1m/ratings.dat --delimiter="::" --test_ratio=0.1 - -这样就会生成两个文件::code:`ml-1m/ratings.dat.train` 和 :code:`ml-1m/ratings.data.test` 。 -将他们移动到目录 :code:`data` ,然后进行随机打乱,再为paddle的训练过程提供文件列表。 - -.. code-block:: bash - - shuf ml-1m/ratings.dat.train > ratings.dat.train - cp ml-1m/ratings.dat.test . - echo "./data/ratings.dat.train" > train.list - echo "./data/ratings.dat.test" > test.list - - -神经网络结构配置 -````````````````` - -训练器配置文件 -''''''''''''''' - -网络结构如下图所示: - -.. image:: rec_regression_network.png - :align: center - :alt: rec_regression_network - -该示例的神经网络配置文件 :code:`trainer_config.py` 如下所示: - -.. literalinclude:: ../../../demo/recommendation/trainer_config.py - :language: python - :lines: 15- - -在文件 :code:`trainer_config.py` 中,我们仅仅是将每个特征种类映射到一个特征向量中,以下 -展示了如何将每个特征映射到一个向量。 - -* :code:`id` \: 仅仅是简单的嵌入,然后添加一个全连接层。 -* :code:`embedding` \: - - 如果是序列,则先做嵌入,然后再做一次文本卷积网络操作, - 然后得到平均采样的结果。 - - 如果不是序列,则先做嵌入,然后添加一个全连接层。 -* :code:`one_host_dense` \: - - 仅仅是两个全连接层。 - -然后我们利用多输入的:code:`fc_layer` 全连接层将电影的每个特征结合成一个电影特征, -并且对用户的特征做同样的操作,也得到一个用户特征。然后我们求这两个特征的余弦相似度。 - -在这些网络中,我们用以下的一些:ref:`api_trainer_config` 中的接口。 - -* 数据层, :ref:`api_trainer_config_helpers_layers_data_layer` -* 全连接层, :ref:`api_trainer_config_helpers_layers_fc_layer` -* 嵌入层, :ref:`api_trainer_config_helpers_layers_embedding_layer` -* 文本投影层, :ref:`api_trainer_config_helpers_layers_context_projection` -* 采样层, :ref:`api_trainer_config_helpers_layers_pooling_layer` -* 余弦相似度层, :ref:`api_trainer_config_helpers_layers_cos_sim` -* 文本卷积采样层, :ref:`api_trainer_config_helpers_network_text_conv_pool` -* 声明Python数据源, :ref:`api_trainer_config_helpers_data_sources` - -数据提供脚本 -''''''''''''' - -.. literalinclude:: ../../../demo/recommendation/dataprovider.py - :language: python - :lines: 15- - -数据提供脚本仅仅是读取meta.bin和评分文件,生成训练需要的样本。 -在脚本 :code:`dataprovider.py` 中,我们需要设置: - -* obj.slots\: 特征的类型和维度。 -* use_seq\: :code:`dataprovider.py` 中的数据是否为序列模式。 -* process\: 返回数据的每一条样本给 :code:`paddle` 。 - -数据提供脚本的细节文档可以参考 :ref:`api_pydataprovider2` 。 - -训练 -```` - -准备好数据,配置了网络,编写好数据提供脚本后,现在我们可以开始paddle训练了。 - -代码 :code:`run.sh` 如下: - -.. literalinclude:: ../../../demo/recommendation/run.sh - :language: bash - :lines: 16- - -该脚本仅仅是开始一个paddle训练过程,将日志写入文件 :code:`log.txt` ,然后 -打印在屏幕上。 - -脚本 :code:`run.sh` 中的每一行命令,请参考页面 :ref:`cmd_line_index` 。 -这些参数的简短介绍如下: - -* config\: 告诉paddle哪个文件是神经网络的配置文件。 -* save_dir\: 告诉paddle将模型保存在: code:`./output` 中。 -* use_gpu\: 是否使用GPU,默认为不使用。 -* trainer_count\: 一台机器上面的线程数量。 -* test_all_data_in_one_period\: 每一个测试周期测试一次所有数据。否则, - 每个测试周期测试: code:`batch_size` 批次的数据。 -* log_period\: 在训练了: code:`log_period` 批次后打印日志。 -* dot_period\: 在每训练: code:`dot_period` 个批次后打印一个 :code:`.` 。 -* num_passes\: 训练至多: code:`num_passes` 轮。 - -如果训练过程启动成功的话,输出应该类似如下: - -.. code-block:: text - - I0601 08:07:22.832059 10549 TrainerInternal.cpp:157] Batch=100 samples=160000 AvgCost=4.13494 CurrentCost=4.13494 Eval: CurrentEval: - - I0601 08:07:50.672627 10549 TrainerInternal.cpp:157] Batch=200 samples=320000 AvgCost=3.80957 CurrentCost=3.48421 Eval: CurrentEval: - - I0601 08:08:18.877369 10549 TrainerInternal.cpp:157] Batch=300 samples=480000 AvgCost=3.68145 CurrentCost=3.42519 Eval: CurrentEval: - - I0601 08:08:46.863963 10549 TrainerInternal.cpp:157] Batch=400 samples=640000 AvgCost=3.6007 CurrentCost=3.35847 Eval: CurrentEval: - - I0601 08:09:15.413025 10549 TrainerInternal.cpp:157] Batch=500 samples=800000 AvgCost=3.54811 CurrentCost=3.33773 Eval: CurrentEval: - I0601 08:09:36.058670 10549 TrainerInternal.cpp:181] Pass=0 Batch=565 samples=902826 AvgCost=3.52368 Eval: - I0601 08:09:46.215489 10549 Tester.cpp:101] Test samples=97383 cost=3.32155 Eval: - I0601 08:09:46.215966 10549 GradientMachine.cpp:132] Saving parameters to ./output/model/pass-00000 - I0601 08:09:46.233397 10549 ParamUtil.cpp:99] save dir ./output/model/pass-00000 - I0601 08:09:46.233438 10549 Util.cpp:209] copy trainer_config.py to ./output/model/pass-00000 - I0601 08:09:46.233541 10549 ParamUtil.cpp:147] fileName trainer_config.py - -模型被保存在 :code:`output/` 目录中。你可以在任何时候用 :code:`Ctrl-C` 来停止训练。 - -模型评估和预测 -``````````````` - -在训练了几个轮次以后,你可以对模型进行评估,得到最好轮次下的模型。运行下面命令即可: - -.. code-block:: bash - - ./evaluate.sh - -你将看到如下的信息: - -.. code-block:: text - - Best pass is 00009, error is 3.06949, which means predict get error as 0.875998002281 - evaluating from pass output/pass-00009 - -然后,你可以预测任何用户对于任何一部电影的评价,运行下面命令即可: - -.. code-block:: bash - - python prediction.py 'output/pass-00009/' - -预测程序将读取用户的输入,然后输出预测分数。用户预测的命令行界面如下: - -.. code-block:: text - - Input movie_id: 9 - Input user_id: 4 - Prediction Score is 2.56 - Input movie_id: 8 - Input user_id: 2 - Prediction Score is 3.13 diff --git a/develop/doc_cn/_sources/tutorials/semantic_role_labeling/index_cn.md.txt b/develop/doc_cn/_sources/tutorials/semantic_role_labeling/index_cn.md.txt deleted file mode 100644 index f6061766c038a7bb6e4ae376685a10cd5669d2ed..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/semantic_role_labeling/index_cn.md.txt +++ /dev/null @@ -1,201 +0,0 @@ -# 语义角色标注教程 # - -语义角色标注(Semantic role labeling, SRL)是浅层语义解析的一种形式,其目的是在给定的输入句子中发现每个谓词的谓词论元结构。 SRL作为很多自然语言处理任务中的中间步骤是很有用的,如信息提取、文档自动分类和问答。 实例如下 [1]: - - [ A0 He ] [ AM-MOD would ][ AM-NEG n’t ] [ V accept] [ A1 anything of value ] from [A2 those he was writing about ]. - -- V: 动词 -- A0: 接受者 -- A1: 接受的东西 -- A2: 从……接受 -- A3: 属性 -- AM-MOD: 情态动词 -- AM-NEG: 否定 - -给定动词“accept”,句子中的组块将会扮演某些语义角色。这里,标签方案来自 Penn Proposition Bank。 - -到目前为止,大多数成功的SRL系统是建立在某种形式的句法分析结果之上的,使用了基于句法结构的预定义特征模板。 本教程将介绍使用深度双向长短期记忆(DB-LSTM)模型[2]的端到端系统来解决SRL任务,这在很大程度上优于先前的最先进的系统。 这个系统将SRL任务视为序列标注问题。 - -## 数据描述 -相关论文[2]采用 CoNLL-2005&2012 共享任务中设置的数据进行训练和测试。由于数据许可的原因,演示采用 CoNLL-2005 的测试数据集,可以在网站上找到。 - -用户只需执行以下命令就可以下载并处理原始数据: - -```bash -cd data -./get_data.sh -``` -`data `目录会出现如下几个新的文件: -```bash -conll05st-release:the test data set of CoNll-2005 shared task -test.wsj.words:the Wall Street Journal data sentences -test.wsj.props: the propositional arguments -feature: the extracted features from data set -``` - -## 训练 -### DB-LSTM -请参阅情感分析的演示以了解有关长期短期记忆单元的更多信息。 - -与在 Sentiment Analysis 演示中使用的 Bidirectional-LSTM 不同,DB-LSTM 采用另一种方法来堆叠LSTM层。首先,标准LSTM以正向处理该序列。该 LSTM 层的输入和输出作为下一个 LSTM 层的输入,并被反向处理。这两个标准 LSTM 层组成一对 LSTM。然后我们堆叠一对对的 LSTM 层后得到深度 LSTM 模型。 - -下图展示了时间扩展的2层 DB-LSTM 网络。 -
    -![pic](./network_arch.png) -
    - -### 特征 -两个输入特征在这个流程中起着至关重要的作用:predicate(pred)和argument(arguments)。 还采用了两个其他特征:谓词上下文(ctx-p)和区域标记(mr)。 因为单个谓词不能精确地描述谓词信息,特别是当相同的词在句子中出现多于一次时。 使用谓词上下文,可以在很大程度上消除歧义。类似地,如果它位于谓词上下文区域中,则使用区域标记 mr = 1 来表示参数位置,反之则 mr = 0。这四个简单的特征是我们的SRL系统所需要的。上下文大小设置为1的一个样本的特征如下[2]所示: -
    -![pic](./feature.jpg) -
    - -在这个示例中,相应的标记句子是: - -[ A1 A record date ] has [ AM-NEG n't ] been [ V set ] . - -在演示中, 我们采用上面的特征模板, 包括: `argument`, `predicate`, `ctx-p (p=-1,0,1)`, `mark` 并使用 `B/I/O` 方案来标记每个参数。这些特征和标签存储在 `feature` 文件中, 用`\t`分割。 - -### 数据提供 - -`dataprovider.py` 是一个包装数据的 Python 文件。 函数 `hook()` 定义了网络的数据槽。六个特征和标签都是索引槽。 -``` -def hook(settings, word_dict, label_dict, **kwargs): - settings.word_dict = word_dict - settings.label_dict = label_dict - #all inputs are integral and sequential type - settings.slots = [ - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(predicate_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(2), - integer_value_sequence(len(label_dict))] -``` -相应的数据迭代器如下: -``` -@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size, - can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \ - line.strip().split('\t') - - words = sentence.split() - sen_len = len(words) - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words] - - predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len - ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - label_list = label.split() - label_slot = [settings.label_dict.get(w) for w in label_list] - yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot -``` -函数 `process` 返回8个特征list和1个标签list。 - -### 神经网络配置 - -`db_lstm.py` 是在训练过程中加载字典并定义数据提供程序模块和网络架构的神经网络配置文件。 - -九个 `data_layer` 从数据提供程序加载实例。八个特征分别转换为向量,并由`mixed_layer`混合。 深度双向LSTM层提取softmax层的特征。目标函数是标签的交叉熵。 - -### 训练 -训练的脚本是 `train.sh`,用户只需执行: -```bash - ./train.sh -``` -`train.sh` 中的内容: -``` -paddle train \ - --config=./db_lstm.py \ - --use_gpu=0 \ - --log_period=5000 \ - --trainer_count=1 \ - --show_parameter_stats_period=5000 \ - --save_dir=./output \ - --num_passes=10000 \ - --average_test_period=10000000 \ - --init_model_path=./data \ - --load_missing_parameter_strategy=rand \ - --test_all_data_in_one_period=1 \ -2>&1 | tee 'train.log' -``` - -- \--config=./db_lstm.py : 网络配置文件 -- \--use_gpu=false: 使用 CPU 训练(如果已安装 PaddlePaddle GPU版本并想使用 GPU 训练可以设置为true,目前 crf_layer 不支持 GPU) -- \--log_period=500: 每20个batch输出日志 -- \--trainer_count=1: 设置线程数(或 GPU 数) -- \--show_parameter_stats_period=5000: 每100个batch显示参数统计 -- \--save_dir=./output: 模型输出路径 -- \--num_passes=10000: 设置数据遍历次数,一个pass意味着PaddlePaddle训练数据集中的所有样本被遍历一次 -- \--average_test_period=10000000: 每个 average_test_period 批次对平均参数进行测试 -- \--init_model_path=./data: 参数初始化路径 -- \--load_missing_parameter_strategy=rand: 随机初始不存在的参数 -- \--test_all_data_in_one_period=1: 在一个周期内测试所有数据 - - -训练后,模型将保存在目录`output`中。 我们的训练曲线如下: -
    -![pic](./src/curve.jpg) -
    - -### 测试 -测试脚本是 `test.sh`, 执行: -```bash - ./test.sh -``` -`tesh.sh` 的主要部分: -``` -paddle train \ - --config=./db_lstm.py \ - --model_list=$model_list \ - --job=test \ - --config_args=is_test=1 \ -``` - - - \--config=./db_lstm.py: 网络配置文件 - - \--model_list=$model_list.list: 模型列表文件 - - \--job=test: 指示测试任务 - - \--config_args=is_test=1: 指示测试任务的标记 - - \--test_all_data_in_one_period=1: 在一个周期内测试所有数据 - - -### 预测 -预测脚本是 `predict.sh`,用户只需执行: -```bash - ./predict.sh - -``` -在`predict.sh`中,用户应该提供网络配置文件,模型路径,标签文件,字典文件,特征文件。 -``` -python predict.py - -c $config_file \ - -w $best_model_path \ - -l $label_file \ - -p $predicate_dict_file \ - -d $dict_file \ - -i $input_file \ - -o $output_file -``` - -`predict.py` 是主要的可执行python脚本,其中包括函数:加载模型,加载数据,数据预测。网络模型将输出标签的概率分布。 在演示中,我们使用最大概率的标签作为结果。用户还可以根据概率分布矩阵实现柱搜索或维特比解码。 - -预测后,结果保存在 `predict.res` 中。 - -## 引用 -[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005. - -[2] Zhou, Jie, and Wei Xu. "End-to-end learning of semantic role labeling using recurrent neural networks." Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015. diff --git a/develop/doc_cn/_sources/tutorials/sentiment_analysis/index_cn.md.txt b/develop/doc_cn/_sources/tutorials/sentiment_analysis/index_cn.md.txt deleted file mode 100644 index 1323ec1a6abb2e7b5eeb2fbfff9cce5fe78a2c06..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/sentiment_analysis/index_cn.md.txt +++ /dev/null @@ -1,325 +0,0 @@ -# 情感分析教程 - -情感分析有许多应用场景。 一个基本的应用场景是区分给定文本的褒贬两极性,给定的文本可以是一个文档、句子、或者是一个小的文本片段。 一个简单的例子如:把用户在购物网站、旅游网站、团购网站(亚马逊、天猫、淘宝等)上发表的评论分成正面评论和负面评论两类。 - -情感分析也常用于基于大量评论和个人博客来监控社会媒体。 例如,研究人员分析了几个关于消费者信心和政治观点的调查,结果发现它们与同时期的Twitter消息中的情绪词频率相关 [1]。 另一个例子是通过分析每日Twitter博客的文本内容来预测股票变动 [2]。 - -另一方面,抓取产品的用户评论并分析他们的情感,有助于理解用户对不同公司,不同产品,甚至不同竞争对手产品的偏好。 - -本教程将指导您完成长期短期记忆(LSTM)网络的训练过程,以分类来自[大型电影评论数据集](http://ai.stanford.edu/~amaas/data/sentiment/)(有时称为[互联网电影数据库 (IMDB)](http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf))的句子的情感 。 此数据集包含电影评论及其相关联的类别标签,即正面和负面。 - -## 数椐准备 - -### IMDB 数椐介绍 - -训练模型之前, 我们需要预处理数椐并构建一个字典。 首先, 你可以使用下面的脚本下载 IMDB 数椐集和[Moses](http://www.statmt.org/moses/)工具, 这是一个基于统计的机器翻译系统. 我们提供了一个数据预处理脚本,它不仅能够处理IMDB数据,还能处理其他用户自定义的数据。 为了使用提前编写的脚本,需要将标记的训练和测试样本移动到另一个路径,这已经在`get_imdb.sh`中完成。 - -``` -cd demo/sentiment/data -./get_imdb.sh -``` -如果数椐获取成功,你将在目录```./demo/sentiment/data```中看到下面的文件: - -``` -aclImdb get_imdb.sh imdb mosesdecoder-master -``` - -* aclImdb: 从外部网站上下载的原始数椐集。 -* imdb: 仅包含训练和测试数椐集。 -* mosesdecoder-master: Moses 工具。 - -IMDB数据集包含25,000个已标注过的高极性电影评论用于训练,25,000个用于测试。负面的评论的得分小于等于4,正面的评论的得大于等于7,总评分10分。 运行完脚本 `./get_imdb.sh`后, 我们可以看到在目录 `aclImdb`中的数椐集的结构如下: - -``` -imdbEr.txt imdb.vocab README test train -``` -* train: 训练数椐集。 -* test : 测试数椐集。 -* imdb.vocab: 字典文件。 -* imdbEr.txt: 字典imdb.vocab中每个切分单词的预期评级。 -* README: 数椐说明文档。 - -测试集和训练集目录包含下面的文件: - -``` -labeledBow.feat neg pos unsup unsupBow.feat urls_neg.txt urls_pos.txt urls_unsup.txt -``` - -* pos: 正面评价样本,包含12,500个txt文件,每个文件是一个电影评论。 -* neg: 负面评价样本,包含12,500个txt文件,每个文件是一个电影评论。 -* unsup: 未标记的评价样本,包含50,000个txt文件。 -* urls_xx.txt: 每个评论的网址。 -* xxBow.feat: 用于统计词频的Bow模型特征。 - -### IMDB 数椐准备 - -在这个例子中,我们只使用已经标注过的训练集和测试集,且默认在训练集上构建字典,而不使用IMDB数椐集中的imdb.vocab做为字典。训练集已经做了随机打乱排序而测试集没有。 Moses 工具中的脚本`tokenizer.perl` 用于切分单单词和标点符号。执行下面的命令就可以预处理数椐。 - -``` -cd demo/sentiment/ -./preprocess.sh -``` -preprocess.sh: - -``` -data_dir="./data/imdb" -python preprocess.py -i data_dir -``` - -* data_dir: 输入数椐所在目录。 -* preprocess.py: 预处理脚本。 - -运行成功后目录`demo/sentiment/data/pre-imdb` 结构如下: - -``` -dict.txt labels.list test.list test_part_000 train.list train_part_000 -``` -* test\_part\_000 and train\_part\_000: 所有标记的测试集和训练集, 训练集已经随机打乱。 -* train.list and test.list: 训练集和测试集文件列表。 -* dict.txt: 利用训练集生成的字典。 -* labels.txt: neg 0, pos 1, 含义:标签0表示负面的评论,标签1表示正面的评论。 - -### 用户自定义数椐预处理 - -如果你执行其它的用情感分析来分类文本的任务,可以按如下的结构来准备数椐. 我们提供了脚本来构建字典和预处理数椐。所以你只用按下面的结构来组织数椐就行了。 - -``` -dataset -|----train -| |----class1 -| | |----text_files -| |----class2 -| | |----text_files -| | ... -|----test -| |----class1 -| | |----text_files -| |----class2 -| | |----text_files -| | ... -``` -* dataset: 一级目录。 -* train, test: 二级目录。 -* class1,class2,...: 三级目录。 -* text_files: 文本格式的实例文件。 - -所有同目录下的文本实例文件都是同级别的。 每个文本文件包含一个或者多个实例,每一行表示一个实例。 为了充分的随机打乱训练集, 在预处理含有多行数椐的文本文件时参数设置稍有不同, 执行`preprocess.sh`脚本时需要加上`-m True`参数。 tokenizer.perl 默认用来切分单记和标点符号,如果你不需要这个操作,在运行`preprocess.sh`时加上`-t False`参数即可。 - -## 训练模型 - -在这步任务中,我们使用了循环神经网络(RNN)的 LSTM 架构来训练情感分析模型。 引入LSTM模型主要是为了克服消失梯度的问题。 LSTM网络类似于具有隐藏层的标准循环神经网络, 但是隐藏层中的每个普通节点被一个记忆单元替换。 每个记忆单元包含四个主要的元素: 输入门, 具有自循环连接的神经元,忘记门和输出门。 更多的细节可以在文献中找到[4]。 LSTM架构的最大优点是它可以在长时间间隔内记忆信息,而没有短时记忆的损失。在有新的单词来临的每一个时间步骤内,存储在记忆单元区块的历史信息被更新用来迭代的学习单词以合理的序列程现。 - -
    ![LSTM](src/lstm.png)
    -
    图表 1. LSTM [3]
    - -情感分析是自然语言理解中最典型的问题之一。 它的目的是预测在一个序列中表达的情感态度。 通常, ,仅仅是一些关键词,如形容词和副词,在预测序列或段落的情感中起主要作用。然而有些评论上下文非常长,例如 IMDB的数椐集。 我们只所以使用LSTM来执行这个任务是因为其改进的设计并且具有门机制。 首先,它能够从词级到具有可变上下文长度的上下文级别来总结表示。 第二,它可以在句子级别利用可扩展的上下文, 而大多数方法只是利用n-gram级别的知识。第三,它直接学习段落表示,而不是组合上下文级别信息。 - -在本演示中,我们提供两个网络,即双向LSTM和三层堆叠LSTM。 - -#### 双向LSTM - -图2是双向LSTM网络,后面连全连接层和softmax层。 - -
    ![BiLSTM](src/bi_lstm.jpg)
    -
    图 2. Bidirectional-LSTM
    - -#### Stacked-LSTM -图3是三层LSTM结构。图的底部是word embedding(对文档处理后形成的单词向量)。 接下来,连接三个LSTM隐藏层,并且第二个是反向LSTM。然后提取隐藏LSTM层的所有时间步长的最大词向量作为整个序列的表示。 最后,使用具有softmax激活的全连接前馈层来执行分类任务。 更多内容可查看参考文献 [5]。 - -
    ![StackedLSTM](src/stacked_lstm.jpg)
    -
    图 3. Stacked-LSTM for sentiment analysis
    - -**配置** - -进入`demo/sentiment` 目录 , `trainer_config.py` 是一个配置文件的例子, 其中包含算法和网络配置。第一行从`sentiment_net.py`中导出预定义的网络。 - -trainer_config.py: - -```python -from sentiment_net import * - -data_dir = "./data/pre-imdb" -# whether this config is used for test -is_test = get_config_arg('is_test', bool, False) -# whether this config is used for prediction -is_predict = get_config_arg('is_predict', bool, False) -dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict) - -################## Algorithm Config ##################### - -settings( - batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25 -) - -#################### Network Config ###################### -stacked_lstm_net(dict_dim, class_dim=class_dim, - stacked_num=3, is_predict=is_predict) -#bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict) -``` - -* **数椐定义**: - * get\_config\_arg(): 获取通过 `--config_args=xx` 设置的命令行参数。 - * 定义训练数椐和测试数椐提供者, 这里使用了PaddlePaddle的Python接口来加载数椐。想了解更多细节可以参考PyDataProvider部分的文档 - -* **算法配置**: - * 使用随机梯度下降(sgd)算法。 - * 使用 adam 优化。 - * 设置batch size大小为128。 - * 设置平均sgd窗口。 - * 设置全局学习率。 -* **网络配置**: - * dict_dim: 获取字典维度。 - * class_dim: 设置类别数,IMDB有两个标签,即正面评价标签和负面评价标签。 - * `stacked_lstm_net`: 预定义网络如图3所示,默认情况下使用此网络 - * `bidirectional_lstm_net`: 预定义网络,如图2所示。 - -**训练** - -首先安装PaddlePaddle。 然后使用下面的脚本 `train.sh` 来开启本地的训练。 - -``` -cd demo/sentiment/ -./train.sh -``` - -train.sh: - -``` -config=trainer_config.py -output=./model_output -paddle train --config=$config \ - --save_dir=$output \ - --job=train \ - --use_gpu=false \ - --trainer_count=4 \ - --num_passes=10 \ - --log_period=20 \ - --dot_period=20 \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -``` - -* \--config=$config: 设置网络配置。 -* \--save\_dir=$output: 设置输出路径以保存训练完成的模型。 -* \--job=train: 设置工作模式为训练。 -* \--use\_gpu=false: 使用CPU训练,如果你安装GPU版本的PaddlePaddle,并想使用GPU来训练设置为true。 -* \--trainer\_count=4:设置线程数(或GPU个数)。 -* \--num\_passes=15: 设置pass,PaddlePaddle中的一个pass意味着对数据集中的所有样本进行一次训练。 -* \--log\_period=20: 每20个batch打印一次日志。 -* \--show\_parameter\_stats\_period=100: 每100个batch打印一次统计信息。 -* \--test\_all_data\_in\_one\_period=1: 每次测试都测试所有数据。 - -如果运行成功,输出日志保存在路径 `demo/sentiment/train.log`中,模型保存在目录`demo/sentiment/model_output/`中。 输出日志说明如下: - -``` -Batch=20 samples=2560 AvgCost=0.681644 CurrentCost=0.681644 Eval: classification_error_evaluator=0.36875 CurrentEval: classification_error_evaluator=0.36875 -... -Pass=0 Batch=196 samples=25000 AvgCost=0.418964 Eval: classification_error_evaluator=0.1922 -Test samples=24999 cost=0.39297 Eval: classification_error_evaluator=0.149406 -``` -- Batch=xx: 表示训练了xx个Batch。 -- samples=xx: 表示训练了xx个样本。。 -- AvgCost=xx: 从第0个batch到当前batch的平均损失。 -- CurrentCost=xx: 最新log_period个batch处理的当前损失。 -- Eval: classification\_error\_evaluator=xx: 表示第0个batch到当前batch的分类错误。 -- CurrentEval: classification\_error\_evaluator: 最新log_period个batch的分类错误。 -- Pass=0: 通过所有训练集一次称为一遍。 0表示第一次经过训练集。 - -默认情况下,我们使用`stacked_lstm_net`网络,当传递相同的样本数时,它的收敛速度比`bidirectional_lstm_net`快。如果要使用双向LSTM,只需删除最后一行中的注释并把“stacked_lstm_net”注释掉。 - -## 测试模型 - -测试模型是指使用训练出的模型评估已标记的验证集。 - -``` -cd demo/sentiment -./test.sh -``` - -test.sh: - -```bash -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* error=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \ - sort | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="model_output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass - -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list -net_conf=trainer_config.py -paddle train --config=$net_conf \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --trainer_count=4 \ - --config_args=is_test=1 \ - 2>&1 | tee 'test.log' -``` - -函数`get_best_pass`依据分类错误率获得最佳模型进行测试。 在本示例中,我们默认使用IMDB的测试数据集作为验证。 与训练不同,它需要在这里指定`--job = test`和模型路径,即`--model_list = $model_list`。如果运行成功,日志将保存在“demo / sentiment / test.log”的路径中。例如,在我们的测试中,最好的模型是`model_output / pass-00002`,分类误差是0.115645,如下: - -``` -Pass=0 samples=24999 AvgCost=0.280471 Eval: classification_error_evaluator=0.115645 -``` - -## 预测 - -`predict.py`脚本提供了一个预测接口。在使用它之前请安装PaddlePaddle的python api。 预测IMDB的未标记评论的一个实例如下: - -``` -cd demo/sentiment -./predict.sh -``` -predict.sh: - -``` -#Note the default model is pass-00002, you shold make sure the model path -#exists or change the mode path. -model=model_output/pass-00002/ -config=trainer_config.py -label=data/pre-imdb/labels.list -cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \ - --tconf=$config\ - --model=$model \ - --label=$label \ - --dict=./data/pre-imdb/dict.txt \ - --batch_size=1 -``` - -* `cat ./data/aclImdb/test/pos/10007_10.txt` : 输入预测样本。 -* `predict.py` : 预测接口脚本。 -* `--tconf=$config` : 设置网络配置。 -* `--model=$model` : 设置模型路径。 -* `--label=$label` : 设置标签类别字典,这个字典是整数标签和字符串标签的一个对应。 -* `--dict=data/pre-imdb/dict.txt` : 设置字典文件。 -* `--batch_size=1` : 设置batch size。 - -注意应该确保默认模型路径`model_output / pass-00002`存在或更改为其它模型路径。 - -本示例的预测结果: - -``` -Loading parameters from model_output/pass-00002/ -./data/aclImdb/test/pos/10014_7.txt: predicting label is pos -``` -我们真诚地感谢您的关注,并欢迎您来参与贡献。 - -## 参考文档 -[1] Brendan O'Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. [From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series](http://homes.cs.washington.edu/~nasmith/papers/oconnor+balasubramanyan+routledge+smith.icwsm10.pdf). In ICWSM-2010.
    -[2] Johan Bollen, Huina Mao, Xiaojun Zeng. 2011. [Twitter mood predicts the stock market](http://arxiv.org/abs/1010.3003), Journal of Computational Science.
    -[3] Alex Graves, Marcus Liwicki, Santiago Fernan- dez, Roman Bertolami, Horst Bunke, and Ju ̈rgen Schmidhuber. 2009. [A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine In- telligence](http://www.cs.toronto.edu/~graves/tpami_2009.pdf), 31(5):855–868.
    -[4] Zachary C. Lipton, [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/abs/1506.00019v1), arXiv:1506.00019.
    -[5] Jie Zhou and Wei Xu; [End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf); ACL-IJCNLP 2015.
    diff --git a/develop/doc_cn/_sources/tutorials/text_generation/index_cn.md.txt b/develop/doc_cn/_sources/tutorials/text_generation/index_cn.md.txt deleted file mode 100644 index 41a87b926db399d692d677e5278e7d5a0b7b5594..0000000000000000000000000000000000000000 --- a/develop/doc_cn/_sources/tutorials/text_generation/index_cn.md.txt +++ /dev/null @@ -1,339 +0,0 @@ -# 文本生成教程 # - -在语言生成领域中,“序列到序列”(sequence to sequence)的方法已被证明是一种强大的模型。它可以被应用于进行机器翻译(machine translation)、query改写(query rewriting)、图像描述(image captioning)等等。 - -本篇教程将会指导你通过训练一个“序列到序列”的神经网络机器翻译(NMT)模型来将法语翻译成英语。 - -我们遵循 [Neural Machine Translation by Jointly Learning to Align and Translate](http://arxiv.org/abs/1409.0473) 这篇文章,其中详细说明了模型架构,以及在WMT-14数据集上得到良好表现的训练过程。本篇教程在PaddlePaddle中重现了这一良好的训练结果。 - -我们感谢@caoying的pull request,其中定义了模型架构和solver配置。 - -## 数据准备 ## -### 下载与解压缩 ### -从该链接 [http://www-lium.univ-lemans.fr/~schwenk/cslm\_joint\_paper/](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/) 下载WMT-14数据集,然后解压,并将Develop和Test数据分别放入不同的文件夹。 - -- **Train data**: [bitexts (选择过后的)](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz) -- **Develop and Test data**: [dev 与 test 数据](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz) - -在Linux下,只需要简单地运行以下命令。否则你需要自己下载、解压、拆分到不同文件夹、并且分别重命名文件后缀。 - -```bash -cd demo/seqToseq/data -./wmt14_data.sh -``` - -我们会发现数据集 `wmt14` 中包含如下表所示的3个文件夹。 - ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    folder nameFrench-English parallel corpora filenumber of total filesize
    train_dataccb2_pc30.src, ccb2_pc30.trg, etc123.55G
    test_datantst1213.src, ntst1213.trg21636k
    gen_datantst14.src, ntst14.trg2864k
    -
    - -- 每个文件夹都包含法语到英语的平行语料库 -- **XXX.src** 是原始法语文件;**XXX.trg** 是目标英语文件 -- **XXX.src** 和 **XXX.trg** 的行数应该一致 -- 每行都是一个法语或者英语的句子 -- **XXX.src** 和 **XXX.trg** 中任意第i行的句子之间都有着一一对应的关系 - -### 用户自定义数据集 ### - -如果你想进行诸如语义转述(Paraphrasing)等其他“序列到序列”的任务,你只需要按照如下方式组织数据,并将它们放在`demo/seqToseq/data`目录下: - - dataset - train - file1.src file1.trg - file2.src file2.trg - ...... - test - file1.src file1.trg - file2.src file2.trg - ...... - gen - file1.src file1.trg - file2.src file2.trg - ...... - -- 一级目录:数据集文件夹名称 -- 二级目录:train、test和gen这三个文件夹是固定的 -- 三级目录:源语言到目标语言的平行语料库文件 - - **XXX.src** 是源语言的文件,**XXX.trg** 时目标语言的文件 - - 文件中的每行都必须是一个句子 - - **XXX.src** 和 **XXX.trg** 中任意第i行的句子之间都必须有着一一对应的关系 - -## 数据预处理 ## -### 预处理工作流程 ### -- 将每个源语言到目标语言的平行语料库文件合并为一个文件: - - 合并每个 **XXX.src** 和 **XXX.trg** 文件为 **XXX** - - **XXX** 中的第i行 = **XXX.src** 中的第i行 + '\t' + **XXX.trg**中的第i行 -- 创建训练数据的“源字典”和“目标字典”,每个字典都有DICTSIZE个单词,包括: - - 词频最高的(DICTSIZE - 3)个单词 - - 3个特殊符号 - - ``:序列的开始 - - ``:序列的结束 - - ``:未包含在字典中的单词 - -### 预处理命令和结果 -对数据集进行预处理的基本命令是: - -```python -cd demo/seqToseq/ -python preprocess.py -i INPUT [-d DICTSIZE] [-m] -``` - -- `-i INPUT`:输入的原始数据集路径 -- `-d DICTSIZE`:指定的字典单词数,如果没有设置,字典会包含输入数据集中的所有单词 -- `-m --mergeDict`:合并 “源字典”和“目标字典”,使得两个字典有相同的上下文 - -你将会看到如下消息: - - concat parallel corpora for dataset - build source dictionary for train data - build target dictionary for train data - dictionary size is XXX - -然后你只需要运行以下命令: - -```python -python preprocess.py -i data/wmt14 -d 30000 -``` - -这将花费数分钟的时间,并且将预处理好的数据集存放在`demo/seqToseq/data/pre-wmt14`目录下。目录结构如下: - - train test gen train.list test.list gen.list src.dict trg.dict# Text generation Tutorial # - -- **train, test, gen**:分别包含了法语到英语的平行语料库的训练数据、测试数据和生成数据。文件夹中的每个文件的每一行包含两部分,首先是法语序列,然后是对应的英语序列。 -- **train.list, test.list, gen.list**:分别为train,test,gen文件夹中的文件列表 -- **src.dict, trg.dict**:源(法语)/目标(英语)字典,每个字典包含总共30000个单词:29997个最高频单词和3个特殊符号 - -## 模型训练 ## -### 简介### - -神经网络机器翻译(NMT)旨在建立一个可以被协同调至最优翻译效果的单神经元网络。近期提出的NMT模型通常都属于编解码模型(encoder–decoder models)的一种。编解码模型将一个源语句编码为一个定长的向量,然后解码器通过这个向量生成一个目标语句。 - -在这个任务中,我们使用了一个编解码模型的扩展,它同时学习排列(align)与翻译。每当模型在翻译过程中生成了一个单词,它就会在源语句中搜索出最相关信息的位置的集合。解码器根据上下文向量预测出一个目标单词,这个向量与源中搜索出的位置和所有之前生成的目标单词有关。如想了解更多详细的解释,可以参考 [Neural Machine Translation by Jointly Learning to Align and Translate](http://arxiv.org/abs/1409.0473)。 - -这个模型对于编解码模型来说,最不同的特色是它并没有将输入语句编码为一个单独的定长向量。相反,它将输入语句编码为向量的序列,其中每个向量对应输入语句中的一个元素。然后在解码被翻译的语句时,会自适应地从这些向量中选择一个子集出来。这使得NMT模型得以解放出来,不必再将任意长度源语句中的所有信息压缩至一个定长的向量中。该模型在长语句翻译的场景下效果提升更加明显,在任意长度语句翻译的场景下都可以观察到其效果的提升。 -
    ![](./encoder-decoder-attention-model.png)
    -
    Figure 1. Encoder-Decoder-Attention-Model
    - -### 使用PaddlePaddle训练模型 ### -我们在训练之前需要常见一个模型配置文件,这里是一个例子`demo/seqToseq/translation/train.conf`。前三行import了定义network,job_mode和attention_mode的python函数。 - -```python -from seqToseq_net import * -is_generating = False - -### Data Definiation -train_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating) -``` - -1. **Data Definiation**:在示例中我们定义了一个序列到序列的训练和测试数据。它返回train_conf作为配置,其输入参数如下: - - data_dir:训练数据和测试数据的目录 - - is_generating:这个配置是否用来生成,这里设置为False -2. **Algorithm Configuration**:在示例中我们使用SGD训练算法(默认),和ADAM学习方法,指定batch_size为50,learning_rate为5e-4 -3. **Network Architecture**:在示例中我们使用attention版本的GRU编解码网络。它包括了一个双向的GRU作为编码器和解码器,它模拟了解码翻译过程中在源语句中的搜索。 - -### 训练模型的命令与结果### -写完模型配置之后,我们可以通过以下命令来训练模型: - -```bash -cd demo/seqToseq/translation -./train.sh -``` - -`train.sh` 的内容如下所示: - -```bash -paddle train \ ---config='translation/train.conf' \ ---save_dir='translation/model' \ ---use_gpu=false \ ---num_passes=16 \ ---show_parameter_stats_period=100 \ ---trainer_count=4 \ ---log_period=10 \ ---dot_period=5 \ -2>&1 | tee 'translation/train.log' -``` -- config: 设置神经网络的配置文件 -- save_dir: 设置保存模型的输出路径 -- use_gpu: 是否使用GPU训练,这里设置为使用CPU -- num_passes: 设置passes的数量。paddle中的一条pass表示训练数据集中所有的样本一次 -- show_parameter_stats_period: 这里每隔100个batch显示一次参数统计信息 -- trainer_count: 设置CPU线程数或者GPU设备数 -- log_period: 这里每隔10个batch打印一次日志 -- dot_period: 这里每个5个batch打印一个点"." - -训练的损失函数默认每隔10个batch打印一次,你将会看到如下消息: - - I0719 19:16:45.952062 15563 TrainerInternal.cpp:160] Batch=10 samples=500 AvgCost=198.475 CurrentCost=198.475 Eval: classification_error_evaluator=0.737155 CurrentEval: classification_error_evaluator=0.737155 - I0719 19:17:56.707319 15563 TrainerInternal.cpp:160] Batch=20 samples=1000 AvgCost=157.479 CurrentCost=116.483 Eval: classification_error_evaluator=0.698392 CurrentEval: classification_error_evaluator=0.659065 - ..... -- AvgCost:从第0个batch到当前batch的平均cost -- CurrentCost::当前batch的cost -- classification\_error\_evaluator(Eval):从第0个评估到当前评估中,每个单词的预测错误率 -- classification\_error\_evaluator(CurrentEval):当前评估中,每个单词的预测错误率 - -当classification\_error\_evaluator的值低于0.35时,模型就训练成功了。 - -## 文本生成 ## -### 简介### - -一般而言,NMT模型受制于源语句的编码,并且通过给出当前目标单词来预测下一个目标单词。在训练过程中,当前单词在相比之下总是被当作真值(ground truth)。在生成过程中,当前单词是解码器最后一步的输出,这来自于PaddlePaddle的内存中。 - -而且,我们使用集束搜索(Beam Search)来生成序列。集束搜索使用广度优先搜索来构建搜索树。对于树的每一层,生成当前层的所有后继状态,并将它们按照启发代价(heuristic cost)升序排列。但是这种方法在每层只保存预设数量的最优状态(这个数量称为beam size)。 - -### 预训练的模型 ### -我们在拥有50个节点的集群中训练模型,每个节点有两个6核CPU。我们在5天里训练了16个pass,其中每条pass花费了7个小时。model_dir中有16个子目录,每个里面都包含202MB的全部的模型参数。然后我们发现pass-00012的模型有着最高的BLEU值27.77(参考文献[BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf))。要下载解压这个模型,只需在linux下运行如下命令: - -```bash -cd demo/seqToseq/data -./wmt14_model.sh -``` - -### 使用PaddlePaddle生成模型 ### -在翻译法语句子之前,我们需要创建模型配置文件。这里是一个例子`demo/seqToseq/translation/gen.conf`。前三行import了定义network,job_mode和attention_mode的python函数。 - -```python -from seqToseq_net import * -is_generating = True - -################## Data Definiation ##################### -gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating, - gen_result = "./translation/gen_result") - -############## Algorithm Configuration ################## -settings( - learning_method = AdamOptimizer(), - batch_size = 1, - learning_rate = 0) - -################# Network configure ##################### -gru_encoder_decoder(gen_conf, is_generating) -``` - -1. **Data Definiation**:在示例中我们定义了一个序列到序列的生成数据。它返回gen_conf作为配置,其输入参数如下: - - data_dir:生成数据的目录 -  - is_generating:这个配置是否用来生成,这里设置为True -  - gen_result:保存生成结果的文件 -2. **Algorithm Configuration**:在生成过程中我们使用SGD训练算法,并指定batch_size为1(每次生成1个序列),learning_rate为0 -3. **Network Architecture**:本质上与训练模型一样 - -### 生成模型的命令与结果 ### -写完模型配置之后,我们可以通过以下命令来进行从法语到英语的文本翻译: - -```bash -cd demo/seqToseq/translation -./gen.sh -``` - - `gen.sh` 的内容如下所示。与训练模型不同的是,这里有一些不同的参数需要指定: - -```bash -paddle train \ ---job=test \ ---config='translation/gen.conf' \ ---save_dir='data/wmt14_model' \ ---use_gpu=true \ ---num_passes=13 \ ---test_pass=12 \ ---trainer_count=1 \ -2>&1 | tee 'translation/gen.log' -``` -- job:设置任务的模式为测试 -- save_dir:存储模型的路径 -- num_passes and test_pass:从test_pass到(num_passes - 1)加载模型参数,这里只加载 `data/wmt14_model/pass-00012` - -你将会看到这样的消息: - - I0706 14:48:31.178915 31441 GradientMachine.cpp:143] Loading parameters from data/wmt14_model/pass-00012 - I0706 14:48:40.012039 31441 Tester.cpp:125] Batch=100 samples=100 AvgCost=0 - I0706 14:48:48.898632 31441 Tester.cpp:125] Batch=200 samples=200 AvgCost=0 - ... - -然后在`demo/seqToseq/translation/gen_result`中的生成结果如下所示: - - 0 - 0 -11.1314 The about the width of the seats while large controls are at stake - 1 -11.1519 The on the width of the seats while large controls are at stake - 2 -11.5988 The about the width of the seats while large controls are at stake . - - 1 - 0 -24.4149 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of the Dubai . - 1 -26.9524 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of Dubai ' s . - 2 -27.9574 The dispute is between the major aircraft manufacturers about the width of the tourist seats on the flights , paving the way for a confrontation during the month of Dubai ' s Dubai . - ... - -- 这是集束搜索的结果,其中beam size是3 -- 第一行的“0”和第6行的“1”表示生成数据的序列id -- 其他六行列出了集束搜索的结果 - - 第二列是集束搜索的得分(从大到小) - - 第三列是生成的英语序列 -- 有两个特殊标识: - - ``:序列的结尾 - - ``:不包含在字典中的单词 - -### BLEU评估 ### -对机器翻译的人工评估工作很广泛但也很昂贵。一篇论文 [BLEU: a Method for Automatic Evaluation of Machine Translation](http://www.aclweb.org/anthology/P02-1040.pdf) 展示了一种方法,当需要快速或者频繁的评估时,使用自动的替补来替代经验丰富的人工评判。[Moses](http://www.statmt.org/moses/) 是一个统计学的机器翻译系统,我们使用其中的 [multi-bleu.perl](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) 来做BLEU评估。运行以下命令来下载这个脚本: - -```bash -cd demo/seqToseq/translation -./moses_bleu.sh -``` - -由于标准的翻译结果已经下载到这里`data/wmt14/gen/ntst14.trg`,我们可以运行以下命令来做BLEU评估。 - -```bash -cd demo/seqToseq/translation -./eval_bleu.sh FILE BEAMSIZE -``` - -- FILE:生成的结果文件 -- BEAMSIZE:集束搜索中的扩展广度 diff --git a/develop/doc_cn/_sources/v1_api_tutorials/README.md.txt b/develop/doc_cn/_sources/v1_api_tutorials/README.md.txt new file mode 100644 index 0000000000000000000000000000000000000000..071b8da61fbcab3e88819273008b4526546202ad --- /dev/null +++ b/develop/doc_cn/_sources/v1_api_tutorials/README.md.txt @@ -0,0 +1,5 @@ +The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later. +Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future. + +Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and +[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/develop/doc_cn/_sources/tutorials/embedding_model/index_cn.md.txt b/develop/doc_cn/_sources/v1_api_tutorials/embedding_model/index_cn.md.txt similarity index 100% rename from develop/doc_cn/_sources/tutorials/embedding_model/index_cn.md.txt rename to develop/doc_cn/_sources/v1_api_tutorials/embedding_model/index_cn.md.txt diff --git a/develop/doc_cn/_sources/tutorials/imagenet_model/resnet_model_cn.md.txt b/develop/doc_cn/_sources/v1_api_tutorials/imagenet_model/resnet_model_cn.md.txt similarity index 100% rename from develop/doc_cn/_sources/tutorials/imagenet_model/resnet_model_cn.md.txt rename to develop/doc_cn/_sources/v1_api_tutorials/imagenet_model/resnet_model_cn.md.txt diff --git a/develop/doc_cn/_sources/tutorials/quick_start/index_cn.rst.txt b/develop/doc_cn/_sources/v1_api_tutorials/quick_start/index_cn.rst.txt similarity index 100% rename from develop/doc_cn/_sources/tutorials/quick_start/index_cn.rst.txt rename to develop/doc_cn/_sources/v1_api_tutorials/quick_start/index_cn.rst.txt diff --git a/develop/doc_cn/objects.inv b/develop/doc_cn/objects.inv index 1f3ddc6a3206c0981802497552586f9fbc47fd0e..fe52ba70944bd7a7346ab72518b08b6a599aacac 100644 Binary files a/develop/doc_cn/objects.inv and b/develop/doc_cn/objects.inv differ diff --git a/develop/doc_cn/searchindex.js b/develop/doc_cn/searchindex.js index b85e0eb96446bdb809976cd7c69f80a49ff60069..6bf1e90e5c55b7d8d18291f3e39ee9cf523f82fa 100644 --- a/develop/doc_cn/searchindex.js +++ b/develop/doc_cn/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api/index_cn","api/v1/data_provider/dataprovider_cn","api/v1/data_provider/pydataprovider2_cn","api/v1/index_cn","api/v1/predict/swig_py_paddle_cn","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/file_manager/README","design/file_manager/pfs/pfsclient","design/functions_operators_layers","design/gan_api","design/graph","design/if_else_op","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/ops/rnn","design/optimizer","design/parameters_in_cpp","design/program","design/python_api","design/reader/README","design/refactor/distributed_architecture","design/refactor/parameter_server","design/refactor/session","design/refactorization","design/register_grad_op","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/tensor_array","design/var_desc","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/basic_usage/index_cn","getstarted/build_and_install/cmake/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","howto/cross_compiling/cross_compiling_for_android_cn","howto/cross_compiling/cross_compiling_for_raspberry_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/build_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/new_op_cn","howto/dev/use_eigen_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/gpu_profiling_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","howto/usage/k8s/k8s_basis_cn","howto/usage/k8s/k8s_cn","howto/usage/k8s/k8s_distributed_cn","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_cn","survey/cluster_bootstrapping_tools","tutorials/embedding_model/index_cn","tutorials/image_classification/index_cn","tutorials/imagenet_model/resnet_model_cn","tutorials/index_cn","tutorials/quick_start/index_cn","tutorials/rec/ml_dataset_cn","tutorials/rec/ml_regression_cn","tutorials/semantic_role_labeling/index_cn","tutorials/sentiment_analysis/index_cn","tutorials/text_generation/index_cn"],envversion:50,filenames:["api/index_cn.rst","api/v1/data_provider/dataprovider_cn.rst","api/v1/data_provider/pydataprovider2_cn.rst","api/v1/index_cn.rst","api/v1/predict/swig_py_paddle_cn.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/if_else_op.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/ops/rnn.md","design/optimizer.md","design/parameters_in_cpp.md","design/program.md","design/python_api.md","design/reader/README.md","design/refactor/distributed_architecture.md","design/refactor/parameter_server.md","design/refactor/session.md","design/refactorization.md","design/register_grad_op.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/tensor_array.md","design/var_desc.md","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/basic_usage/index_cn.rst","getstarted/build_and_install/cmake/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","howto/cross_compiling/cross_compiling_for_android_cn.md","howto/cross_compiling/cross_compiling_for_raspberry_cn.md","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/build_cn.md","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/new_op_cn.md","howto/dev/use_eigen_cn.md","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/gpu_profiling_cn.rst","howto/usage/cluster/cluster_train_cn.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","howto/usage/k8s/k8s_basis_cn.md","howto/usage/k8s/k8s_cn.md","howto/usage/k8s/k8s_distributed_cn.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_cn.rst","survey/cluster_bootstrapping_tools.md","tutorials/embedding_model/index_cn.md","tutorials/image_classification/index_cn.md","tutorials/imagenet_model/resnet_model_cn.md","tutorials/index_cn.md","tutorials/quick_start/index_cn.rst","tutorials/rec/ml_dataset_cn.md","tutorials/rec/ml_regression_cn.rst","tutorials/semantic_role_labeling/index_cn.md","tutorials/sentiment_analysis/index_cn.md","tutorials/text_generation/index_cn.md"],objects:{},objnames:{},objtypes:{},terms:{"00012\u7684\u6a21\u578b\u6709\u7740\u6700\u9ad8\u7684bleu\u503c27":101,"0005\u4e58\u4ee5batch":93,"000\u4e2a\u5df2\u6807\u6ce8\u8fc7\u7684\u9ad8\u6781\u6027\u7535\u5f71\u8bc4\u8bba\u7528\u4e8e\u8bad\u7ec3":100,"000\u4e2a\u7528\u4e8e\u6d4b\u8bd5":100,"000\u4e2atxt\u6587\u4ef6":100,"000\u4f4d\u7528\u6237\u5bf94":97,"000\u5e45\u56fe\u50cf\u4e0a\u6d4b\u8bd5\u4e86\u6a21\u578b\u7684\u5206\u7c7b\u9519\u8bef\u7387":94,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":2,"000\u6761\u8bc4\u4ef7":97,"000\u90e8\u7535\u5f71\u76841":97,"00186201e":4,"00m":79,"01852v1":8,"03m":79,"0424m":79,"0473v3":9,"05d":93,"0630u":79,"06u":79,"0810u":79,"08823112e":4,"0957m":79,"0\u4e4b\u540e\u7684\u7248\u672c":61,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":82,"0\u5c42\u5e8f\u5217":67,"0\u8868\u793a\u7b2c\u4e00\u6b21\u7ecf\u8fc7\u8bad\u7ec3\u96c6":100,"0ab":8,"0rc1":47,"0rc2":47,"10000\u5f20\u4f5c\u4e3a\u6d4b\u8bd5\u96c6":93,"10007_10":100,"10014_7":100,"100m":56,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d":94,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u53ef\u53c2\u7167":94,"101\u5c42\u7f51\u7edc\u6a21\u578b":94,"10\u4e2d\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":93,"10\u6570\u636e\u96c6":93,"10\u6570\u636e\u96c6\u5305\u542b60000\u5f2032x32\u7684\u5f69\u8272\u56fe\u7247":93,"10\u6570\u636e\u96c6\u7684\u5b98\u65b9\u7f51\u5740":93,"10\u6570\u636e\u96c6\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":93,"10g":27,"1150u":79,"11\u5b9e\u73b0\u4e86c":35,"11e6":86,"12194102e":4,"124n":79,"128\u7ef4\u548c256\u7ef4":92,"12\u64cd\u4f5c\u7cfb\u7edf":53,"13m":86,"1490u":79,"14\u4ee5\u4e0a":66,"14\u6570\u636e\u96c6":101,"14\u6570\u636e\u96c6\u4e0a\u5f97\u5230\u826f\u597d\u8868\u73b0\u7684\u8bad\u7ec3\u8fc7\u7a0b":101,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":84,"152\u5c42\u7f51\u7edc\u6a21\u578b":94,"15501715e":4,"1550u":79,"15\u884c":68,"1636k":101,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":58,"16u":79,"173m":94,"173n":79,"1770u":79,"18\u5c81\u4ee5\u4e0b":97,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":86,"197u":79,"1\u7684\u5c42\u4e4b\u5916":84,"1\u7a00\u758f\u6570\u636e":74,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":84,"1\u9664\u4ee5batch":93,"1m\u6570\u636e\u96c6\u4e2d":98,"1m\u7684\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u5728\u76ee\u5f55":98,"200\u6570\u636e\u96c6\u4e0a\u4f7f\u7528vgg\u6a21\u578b\u8bad\u7ec3\u4e00\u4e2a\u9e1f\u7c7b\u56fe\u7247\u5206\u7c7b\u6a21\u578b":93,"210u":79,"211839e770f7b538e2d8":9,"215n":79,"228u":79,"234m":94,"24\u5c81":97,"2520u":79,"25639710e":4,"25k":96,"2680u":79,"26\u884c":68,"27787406e":4,"279n":79,"27m":79,"285m":79,"2863m":79,"28\u7684\u56fe\u7247\u50cf\u7d20\u7070\u5ea6\u503c":2,"28\u7ef4\u7684\u7a20\u5bc6\u6d6e\u70b9\u6570\u5411\u91cf\u548c\u4e00\u4e2a":2,"28m":79,"2977m":79,"29997\u4e2a\u6700\u9ad8\u9891\u5355\u8bcd\u548c3\u4e2a\u7279\u6b8a\u7b26\u53f7":101,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":58,"2\u4e2a\u6d6e\u70b9\u6570":59,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":87,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":84,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":87,"2nd":8,"302n":79,"30u":79,"3206326\u4e2a\u8bcd\u548c4\u4e2a\u7279\u6b8a\u6807\u8bb0":92,"32777140e":4,"328n":79,"32\u7ef4":92,"32u":79,"32x32":12,"331n":79,"3320u":79,"34\u5c81":97,"35\u65f6":101,"36540484e":4,"36u":79,"3710m":79,"3768m":79,"387u":79,"38u":79,"3920u":79,"39u":79,"3\u4e2a\u7279\u6b8a\u7b26\u53f7":101,"3\u53f7gpu":56,"4035m":79,"4090u":79,"4096mb":82,"4279m":79,"43630644e":4,"43u":79,"448a5b355b84":86,"44\u5c81":97,"4560u":79,"4563m":79,"45u":79,"4650u":79,"4726m":79,"473m":86,"48565123e":4,"48684503e":4,"49316648e":4,"49\u5c81":97,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":58,"4gb":82,"4yf":8,"500\u4e2atxt\u6587\u4ef6":100,"500m":56,"50\u5c42":94,"50\u5c42\u7f51\u7edc\u6a21\u578b":94,"51111044e":4,"514u":79,"525n":79,"526u":79,"53018653e":4,"536u":79,"5460u":79,"5470u":79,"54u":79,"55\u5c81":97,"55g":101,"5690m":79,"573u":79,"578n":79,"5798m":79,"586u":79,"58s":86,"5969m":79,"5\u4e2a\u6d4b\u8bd5\u6837\u4f8b\u548c2\u4e2a\u751f\u6210\u5f0f\u6837\u4f8b":92,"5delta":8,"6080u":79,"6082v4":8,"6140u":79,"6305m":79,"639u":79,"64\u5e73\u53f0\u4e3a\u4f8b":[65,66],"64\u73af\u5883":66,"64\u7ef4":92,"655u":79,"6780u":79,"6810u":79,"682u":79,"6970u":79,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":79,"6\u4e2a\u8282\u70b9":80,"6\u5143\u4e0a\u4e0b\u6587\u4f5c\u4e3a\u8f93\u5165\u5c42":92,"704u":79,"70634608e":4,"7090u":79,"72296313e":4,"72u":79,"73u":79,"75u":79,"760u":79,"767u":79,"783n":79,"784u":79,"78m":79,"7\u548cpip":53,"7\u7248\u672c\u5f00\u59cb":65,"7eamaa":12,"7kb":86,"8250u":79,"8300u":79,"830n":79,"849m":79,"85625684e":4,"861u":79,"864k":101,"8661m":79,"877\u4e2a\u88ab\u5411\u91cf\u5316\u7684\u8bcd":92,"877\u884c":92,"892m":79,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":58,"901n":79,"90u":79,"918u":79,"9247m":79,"924n":79,"9261m":79,"93137714e":4,"9330m":79,"94u":79,"9530m":79,"96644767e":4,"983m":79,"988u":79,"997u":79,"99982715e":4,"99m":94,"99u":79,"9\u4e2d\u7684\u4e00\u4e2a\u6570\u5b57":2,"9f18":86,"\u0233":59,"\u03b5":59,"\u4e00":68,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":75,"\u4e00\u4e2a\u4f8b\u5b50\u662f\u623f\u4ea7\u4f30\u503c":59,"\u4e00\u4e2a\u5178\u578b\u7684\u795e\u7ecf\u7f51\u7edc\u5982\u4e0b\u56fe\u6240\u793a":93,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u7cfb\u7edf":85,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":86,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":70,"\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5305\u542b\u5982\u4e0b\u5c42":93,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":70,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":70,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":70,"\u4e00\u4e2a\u57fa\u672c\u7684\u5e94\u7528\u573a\u666f\u662f\u533a\u5206\u7ed9\u5b9a\u6587\u672c\u7684\u8912\u8d2c\u4e24\u6781\u6027":100,"\u4e00\u4e2a\u5bb9\u5668\u5c31\u662f\u4e00\u4e2a\u64cd\u4f5c\u7cfb\u7edf\u7684\u8fdb\u7a0b":61,"\u4e00\u4e2a\u6216\u591a\u4e2a":85,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":56,"\u4e00\u4e2a\u6587\u4ef6":2,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":79,"\u4e00\u4e2a\u662f\u76f4\u63a5\u628a\u4e00\u4e2a\u5bb9\u5668\u8f6c\u6362\u6210\u955c\u50cf":61,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":67,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":67,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":20,"\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5982":100,"\u4e00\u4e2a\u7ec8\u7aef\u8fd0\u884cvi":61,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":74,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":75,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":58,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2adocker\u955c\u50cf\u662f\u4e00\u4e2a\u6253\u5305\u597d\u7684\u8f6f\u4ef6":61,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":82,"\u4e00\u4e2alabel":68,"\u4e00\u4e2alogging\u5bf9\u8c61":2,"\u4e00\u4e2amemory\u5305\u542b":71,"\u4e00\u4e2apass\u610f\u5473\u7740paddlepaddle\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u88ab\u904d\u5386\u4e00\u6b21":99,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":96,"\u4e00\u4e2apod\u4e2d\u7684\u6240\u6709\u5bb9\u5668\u4f1a\u88ab\u8c03\u5ea6\u5230\u540c\u4e00\u4e2anode\u4e0a":85,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u4eba":68,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":70,"\u4e00\u53f0\u673a\u5668\u4e0a\u9762\u7684\u7ebf\u7a0b\u6570\u91cf":98,"\u4e00\u53f0\u7535\u8111":72,"\u4e00\u65e9":68,"\u4e00\u662fbatch":56,"\u4e00\u6761\u6837\u672c":2,"\u4e00\u6837\u7684\u65b9\u5f0f":72,"\u4e00\u6837\u8bbe\u7f6e":80,"\u4e00\u6b21\u4f5c\u4e1a\u79f0\u4e3a\u4e00\u4e2ajob":85,"\u4e00\u6b21\u6027\u676f\u5b50":68,"\u4e00\u6b21yield\u8c03\u7528":2,"\u4e00\u79cd\u5e38\u7528\u7684\u505a\u6cd5\u662f\u7528\u5b66\u4e60\u7684\u6a21\u578b\u5bf9\u53e6\u5916\u4e00\u7ec4\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b":59,"\u4e00\u79cd\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":65,"\u4e00\u7bc7\u8bba\u6587":101,"\u4e00\u7ea7\u76ee\u5f55":[100,101],"\u4e00\u81f4":[67,68],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":47,"\u4e00\u822c\u4ece":73,"\u4e00\u822c\u5728paddlepaddle\u4e2d":68,"\u4e00\u822c\u60c5\u51b5\u4e0b":[1,59],"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":2,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":58,"\u4e00\u822c\u6765\u8bf4":71,"\u4e00\u822c\u800c\u8a00":101,"\u4e00\u822c\u8868\u793a":68,"\u4e00\u822c\u8bbe\u7f6e":58,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":96,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":[2,63],"\u4e09\u7ea7\u76ee\u5f55":[100,101],"\u4e0a":73,"\u4e0a\u4e0b\u6587\u5927\u5c0f\u8bbe\u7f6e\u4e3a1\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u5982\u4e0b":99,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":47,"\u4e0a\u53d1\u8868\u7684\u8bc4\u8bba\u5206\u6210\u6b63\u9762\u8bc4\u8bba\u548c\u8d1f\u9762\u8bc4\u8bba\u4e24\u7c7b":100,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":68,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":87,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0a\u7f16\u8bd1\u5f88\u6162":72,"\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":65,"\u4e0a\u7f51":68,"\u4e0a\u8fd0\u884c":61,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":58,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":72,"\u4e0a\u8ff0\u7684":57,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":79,"\u4e0a\u8ff0\u811a\u672c\u4f7f\u7528":80,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":75,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":75,"\u4e0b":[75,93],"\u4e0b\u540c":58,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":79,"\u4e0b\u56fe\u5c55\u793a\u4e86\u6240\u6709\u7684\u56fe\u7247\u7c7b\u522b":93,"\u4e0b\u56fe\u5c55\u793a\u4e86\u65f6\u95f4\u6269\u5c55\u76842\u5c42":99,"\u4e0b\u56fe\u5c55\u793a\u7684\u662f\u57fa\u4e8e\u6b8b\u5dee\u7684\u8fde\u63a5\u65b9\u5f0f":94,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":74,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":21,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":70,"\u4e0b\u6587\u4f7f\u7528":87,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":86,"\u4e0b\u6b21":68,"\u4e0b\u7684":87,"\u4e0b\u7684\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":66,"\u4e0b\u8868\u5c55\u793a\u4e86batch":94,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":86,"\u4e0b\u8f7d\u6570\u636e\u96c6":93,"\u4e0b\u8f7draspberri":66,"\u4e0b\u8f7dwmt":101,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":79,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":75,"\u4e0b\u9762\u4ecb\u7ecd\u9884\u5904\u7406\u8fc7\u7a0b\u5177\u4f53\u7684\u6b65\u9aa4":98,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":75,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":76,"\u4e0b\u9762\u5148\u7b80\u8981\u4ecb\u7ecd\u4e00\u4e0b\u672c\u6587\u7528\u5230\u7684\u51e0\u4e2akubernetes\u6982\u5ff5":85,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":35,"\u4e0b\u9762\u5217\u51fa\u4e86":71,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":87,"\u4e0b\u9762\u6211\u4eec\u7ed9\u51fa\u4e86\u4e00\u4e2a\u914d\u7f6e\u793a\u4f8b":93,"\u4e0b\u9762\u662f":75,"\u4e0b\u9762\u662f\u4e00\u4e2a\u8bef\u5dee\u66f2\u7ebf\u56fe\u7684\u793a\u4f8b":93,"\u4e0b\u9762\u662f\u5bf9":75,"\u4e0b\u9762\u662fcifar":93,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":58,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":74,"\u4e0b\u9762\u7684\u4f8b\u5b50\u4f7f\u7528\u4e86":94,"\u4e0b\u9762\u7684\u4f8b\u5b50\u540c\u6837\u4f7f\u7528\u4e86":94,"\u4e0b\u9762\u7684\u547d\u4ee4\u628a\u5f53\u524d\u76ee\u5f55\u6302\u8f7d\u5230\u4e86\u5bb9\u5668\u4e2d\u7684":61,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":75,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":74,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":63,"\u4e0b\u9762\u811a\u672c\u7b26\u5408paddlepaddle\u671f\u5f85\u7684\u8bfb\u53d6\u6570\u636e\u7684python\u7a0b\u5e8f\u7684\u6a21\u5f0f":59,"\u4e0b\u9762\u89e3\u91ca\u4ee3\u7801\u4e2d\u4e00\u4e9b\u5173\u952e\u7684\u5730\u65b9":75,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":67,"\u4e0d":68,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":2,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":72,"\u4e0d\u4f1a\u518d\u4ece":56,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":72,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":34,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":74,"\u4e0d\u4f7f\u7528c":34,"\u4e0d\u4f7f\u7528swig":34,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":75,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":75,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":75,"\u4e0d\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":101,"\u4e0d\u540c":99,"\u4e0d\u540c\u4e3b\u673a":85,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":57,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":75,"\u4e0d\u540c\u4ea7\u54c1":100,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":82,"\u4e0d\u540c\u5c42\u7684\u7279\u5f81\u7531\u5206\u53f7":94,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":71,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":34,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":56,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":87,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":[2,63],"\u4e0d\u540c\u7a7a\u95f4\u7684\u8d44\u6e90\u540d\u53ef\u4ee5\u91cd\u590d":85,"\u4e0d\u540c\u8bbe\u5907":75,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":34,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":70,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":70,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":68,"\u4e0d\u540cpod\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7ip\u5730\u5740\u8bbf\u95ee":85,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":76,"\u4e0d\u5728":35,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5c11":68,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":34,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":70,"\u4e0d\u5fc5\u518d\u5c06\u4efb\u610f\u957f\u5ea6\u6e90\u8bed\u53e5\u4e2d\u7684\u6240\u6709\u4fe1\u606f\u538b\u7f29\u81f3\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf\u4e2d":101,"\u4e0d\u6307\u5b9a\u65f6":70,"\u4e0d\u63d0\u4f9b\u5206\u5e03\u5f0f\u5b58\u50a8":85,"\u4e0d\u652f\u6301":99,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":[2,63],"\u4e0d\u662f\u771f\u6b63\u7684layer":57,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":57,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":34,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":73,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":21,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":2,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":75,"\u4e0d\u80fd\u592a\u968f\u610f":73,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":73,"\u4e0d\u8fc7":68,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":72,"\u4e0d\u8fdc":68,"\u4e0d\u9519":68,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":72,"\u4e0e":[75,87,92,101],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":47,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":68,"\u4e0e\u53ef\u80fd\u6709\u7684":47,"\u4e0e\u5728":99,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":58,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":80,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":87,"\u4e0e\u7ffb\u8bd1":101,"\u4e0e\u8bad\u7ec3\u4e0d\u540c":100,"\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e0d\u540c\u7684\u662f":101,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":56,"\u4e0eimdb\u7f51\u7ad9\u63d0\u4f9b\u7684\u4e00\u81f4":97,"\u4e0ejob":87,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":75,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":75,"\u4e0etime":97,"\u4e14":68,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":73,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":[2,63],"\u4e14\u652f\u6301\u90e8\u7f72\u5230":85,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":68,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":35,"\u4e14\u9ed8\u8ba4\u5728\u8bad\u7ec3\u96c6\u4e0a\u6784\u5efa\u5b57\u5178":100,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":34,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":34,"\u4e24":68,"\u4e24\u4e2a\u5217\u8868\u6587\u4ef6":80,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":77,"\u4e24\u4e2a\u5d4c\u5957\u7684":70,"\u4e24\u4e2a\u64cd\u4f5c":79,"\u4e24\u4e2a\u6587\u4ef6\u5939":93,"\u4e24\u4e2a\u8f93\u5165\u7279\u5f81\u5728\u8fd9\u4e2a\u6d41\u7a0b\u4e2d\u8d77\u7740\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528":99,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":68,"\u4e24\u4e2a\u90e8\u5206":77,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":56,"\u4e24\u79cd\u7c7b\u522b":96,"\u4e24\u8005\u5747\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":1,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":56,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":47,"\u4e2a":96,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":56,"\u4e2a\u5355\u8bcd":101,"\u4e2a\u6027\u5316\u63a8\u8350":[47,95],"\u4e2a\u6279\u6b21\u540e\u6253\u5370\u4e00\u4e2a":98,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":82,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":82,"\u4e2d":[34,35,56,74,75,76,87,93,96,98,99,100],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":73,"\u4e2d\u4ecb\u7ecd\u7684\u65b9\u6cd5":92,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u5fc5\u987b\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":101,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":101,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":56,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":68,"\u4e2d\u5199\u5165json\u5185\u5bb9":20,"\u4e2d\u5305\u542b\u4e00\u4e2aandroid\u7248\u672c\u7684\u5e93":65,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":66,"\u4e2d\u5305\u542b\u4e86\u8bad\u7ec3\u6a21\u578b\u7684\u57fa\u672c\u547d\u4ee4":96,"\u4e2d\u5305\u542b\u5982\u4e0b\u8868\u6240\u793a\u76843\u4e2a\u6587\u4ef6\u5939":101,"\u4e2d\u5305\u542bc":[65,66],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":73,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":73,"\u4e2d\u5b89\u88c5":80,"\u4e2d\u5b8c\u5168\u4e00\u81f4":34,"\u4e2d\u5b8c\u6210":100,"\u4e2d\u5b9a\u4e49":71,"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovid":1,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":70,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":35,"\u4e2d\u5bfc\u51fa\u9884\u5b9a\u4e49\u7684\u7f51\u7edc":100,"\u4e2d\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528python\u6765\u63d0\u53d6\u7279\u5f81":94,"\u4e2d\u6307\u5b9a":82,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":84,"\u4e2d\u6307\u5b9a\u7684\u5c42\u987a\u5e8f\u4e00\u81f4":94,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":76,"\u4e2d\u63d0\u51fa\u7684resnet\u7f51\u7edc\u7ed3\u6784\u57282015\u5e74imagenet\u5927\u89c4\u6a21\u89c6\u89c9\u8bc6\u522b\u7ade\u8d5b":94,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":60,"\u4e2d\u6587\u6587\u6863":77,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":77,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":68,"\u4e2d\u6709\u8bb8\u591a\u7684\u7279\u5f81":97,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":56,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":87,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":82,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":75,"\u4e2d\u7684":[76,94],"\u4e2d\u7684\u4e00\u884c":[2,73],"\u4e2d\u7684\u5185\u5bb9":99,"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":73,"\u4e2d\u7684\u63a5\u53e3":98,"\u4e2d\u7684\u6570\u636e":94,"\u4e2d\u7684\u6570\u636e\u662f\u5426\u4e3a\u5e8f\u5217\u6a21\u5f0f":98,"\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b":94,"\u4e2d\u7684\u6570\u6910\u96c6\u7684\u7ed3\u6784\u5982\u4e0b":100,"\u4e2d\u7684\u6bcf\u4e00\u884c\u547d\u4ee4":98,"\u4e2d\u7684\u751f\u6210\u7ed3\u679c\u5982\u4e0b\u6240\u793a":101,"\u4e2d\u7684\u7528\u6237\u8bc1\u4e66":85,"\u4e2d\u7684\u7b2ci\u884c":101,"\u4e2d\u7684\u8bf4\u660e":2,"\u4e2d\u7684\u8fd9\u4e9b\u6570\u636e\u6587\u4ef6":97,"\u4e2d\u770b\u5230\u4e0b\u9762\u7684\u6587\u4ef6":100,"\u4e2d\u83b7\u53d6":87,"\u4e2d\u8ba4\u771f\u8bbe\u7f6e":80,"\u4e2d\u8bbe\u7f6e":80,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":80,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":74,"\u4e2d\u8bfb\u53d6":2,"\u4e2d\u8c03\u7528":75,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":21,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u4e2d\u914d\u7f6e\u7684\u6548\u679c\u4e00\u81f4":2,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":56,"\u4e3a":[2,65,66,71,75],"\u4e3a0":2,"\u4e3a\u4e86\u4f7f":75,"\u4e3a\u4e86\u4f7f\u7528\u63d0\u524d\u7f16\u5199\u7684\u811a\u672c":100,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":73,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":74,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":61,"\u4e3a\u4e86\u5145\u5206\u7684\u968f\u673a\u6253\u4e71\u8bad\u7ec3\u96c6":100,"\u4e3a\u4e86\u5b8c\u6210\u5206\u5e03\u5f0f\u673a\u5668\u5b66\u4e60\u8bad\u7ec3\u4efb\u52a1":85,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":74,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":72,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":70,"\u4e3a\u4e86\u65b9\u4fbf\u5728\u56fd\u5185\u7684\u5f00\u53d1\u8005\u4e0b\u8f7ddocker\u955c\u50cf":61,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":73,"\u4e3a\u4e86\u65b9\u4fbf\u8d77\u89c1":80,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":35,"\u4e3a\u4e86\u6ee1\u8db3\u8bad\u7ec3":80,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":[65,66],"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":79,"\u4e3a\u4e86\u8fd8\u539f":59,"\u4e3a\u4ec0\u4e48\u7528":72,"\u4e3a\u4f8b":[57,75,96],"\u4e3a\u4f8b\u521b\u5efa\u5206\u5e03\u5f0f\u7684\u5355\u8fdb\u7a0b\u8bad\u7ec3":80,"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":75,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":96,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":58,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":79,"\u4e3a\u60f3\u4fee\u6b63\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u4e8c\u8fdb\u5236\u6a21\u578b\u7684\u547d\u4ee4":92,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":80,"\u4e3a\u6b64":86,"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":75,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":74,"\u4e3a\u96c6\u7fa4\u4f5c\u4e1a\u8bbe\u7f6e\u989d\u5916\u7684":80,"\u4e3aconst\u51fd\u6570":75,"\u4e3ajson\u6216yaml\u683c\u5f0f":98,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":74,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":82,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u4e94\u4e2a\u6b65\u9aa4":4,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":63,"\u4e3b\u8981\u539f\u56e0":68,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":56,"\u4e3b\u8981\u539f\u56e0\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":2,"\u4e3b\u8981\u6765\u81ea\u5317\u7f8e\u6d32":93,"\u4e3b\u8981\u7528\u4e8epython":75,"\u4e3b\u8981\u804c\u8d23\u5728\u4e8e\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":96,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":58,"\u4e3e\u4f8b":56,"\u4e3e\u4f8b\u8bf4\u660e":68,"\u4e4b\u524d":73,"\u4e4b\u524d\u914d\u7f6e\u6587\u4ef6\u4e2d":96,"\u4e4b\u540e":[59,63,74],"\u4e4b\u540e\u4f60\u4f1a\u5f97\u5230\u8bad\u7ec3":80,"\u4e4b\u540e\u4f7f\u7528":74,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":74,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":74,"\u4e4b\u540e\u5b9a\u4e49\u7684":93,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":35,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":72,"\u4e4b\u95f4\u7684\u8ddd\u79bb":59,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":70,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u4e58\u9664\u7b49\u65f6\u5019":56,"\u4e5d\u4e2a":99,"\u4e5f":68,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":70,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":35,"\u4e5f\u4e0d\u751f\u6210":35,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":57,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":72,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":73,"\u4e5f\u53ef\u4ee5\u53bb\u6389\u8fd9\u4e9b\u8bc1\u4e66\u7684\u914d\u7f6e":85,"\u4e5f\u53ef\u4ee5\u5728\u5f00\u53d1\u955c\u50cf\u4e2d\u542f\u52a8\u4e00\u4e2asshd\u670d\u52a1":61,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":70,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":79,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":87,"\u4e5f\u53ef\u4ee5\u901a\u8fc7saving_period_by_batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":96,"\u4e5f\u53ef\u4ee5\u914d\u7f6e\u4e0d\u540c\u7684\u91cd\u8bd5\u673a\u5236":85,"\u4e5f\u53ef\u5199\u6210":75,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":[65,66],"\u4e5f\u5c31\u662f":73,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u8fdb\u4e00\u6b65\u6f14\u5316\u4e3a\u4e09\u4e2a\u65b0\u6b65\u9aa4":96,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":72,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":73,"\u4e5f\u5c31\u662f\u8bf4":[82,84,92],"\u4e5f\u5f97\u5230\u4e00\u4e2a\u7528\u6237\u7279\u5f81":98,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":87,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":79,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u4e5f\u662f\u5bb9\u5668\u4e0enode\u4e4b\u95f4\u5171\u4eab\u6587\u4ef6\u7684\u65b9\u5f0f":85,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":70,"\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":2,"\u4e5f\u6ca1\u7528":53,"\u4e5f\u79f0\u4e3arnn\u6a21\u578b":96,"\u4e5f\u8bb8\u662f\u56e0\u4e3a\u9700\u8981\u5b89\u88c5":93,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u76f8\u540cgenerator\u7684\u65f6\u5019":2,"\u4e66\u5199":34,"\u4e7e":68,"\u4e86":[68,72],"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":79,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":71,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":71,"\u4e8c\u7ea7\u76ee\u5f55":[100,101],"\u4e8c\u7ef4\u77e9\u9635":94,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":68,"\u4e8c\u8fdb\u5236":92,"\u4e92\u76f8\u901a\u4fe1":85,"\u4e92\u8054\u7f51\u7535\u5f71\u6570\u636e\u5e93":100,"\u4e94\u661f\u7ea7":68,"\u4e9a\u9a6c\u900a":100,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe":66,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":65,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":65,"\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":65,"\u4ea4\u901a":68,"\u4ea4\u901a\u4fbf\u5229":68,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[65,66],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":61,"\u4eba\u8138\u8bc6\u522b":21,"\u4ec0\u4e48":98,"\u4ec0\u4e48\u662f":72,"\u4ec5\u4ec5\u4f7f\u7528":34,"\u4ec5\u4ec5\u662f\u4e00\u4e9b\u5173\u952e\u8bcd":100,"\u4ec5\u4ec5\u662f\u4e24\u4e2a\u5168\u8fde\u63a5\u5c42":98,"\u4ec5\u4ec5\u662f\u7b80\u5355\u7684\u5d4c\u5165":98,"\u4ec5\u5305\u542b\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u6910\u96c6":100,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":74,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":74,"\u4ec5\u9700\u8981\u77e5\u9053\u5982\u4f55\u4ece":2,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":87,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":65,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"\u4ecb\u7ecd\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e4b\u524d":85,"\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5":96,"\u4ece":[47,54,79,99],"\u4ece0\u5230num":82,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":70,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":79,"\u4ece\u56fe\u4e2d\u53ef\u4ee5\u770b\u5230":59,"\u4ece\u5916\u90e8\u7f51\u7ad9\u4e0a\u4e0b\u8f7d\u7684\u539f\u59cb\u6570\u6910\u96c6":100,"\u4ece\u5927\u5230\u5c0f":101,"\u4ece\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u52a0\u8f7d\u5b9e\u4f8b":99,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":58,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":68,"\u4ece\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u4e24\u7aef\u5206\u522b\u83b7\u53d6k\u4e2a\u76f8\u90bb\u7684\u5355\u8bcd":96,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":[65,66],"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":20,"\u4ece\u7b2c0\u4e2a\u8bc4\u4f30\u5230\u5f53\u524d\u8bc4\u4f30\u4e2d":101,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747\u635f\u5931":100,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747cost":101,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":74,"\u4ece\u800c\u53ef\u4ee5\u62df\u5408\u4efb\u610f\u7684\u51fd\u6570\u6765\u5b66\u4e60\u590d\u6742\u7684\u6570\u636e\u5173\u7cfb":59,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":54,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":2,"\u4ece\u800c\u80fd\u591f\u88abpaddlepaddl":96,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":1,"\u4ece\u8be5\u94fe\u63a5":101,"\u4ece\u8bed\u4e49\u4e0a\u770b":70,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":68,"\u4ece\u8f93\u51fa\u65e5\u5fd7\u53ef\u4ee5\u770b\u5230":59,"\u4ece\u9884\u8bad\u7ec3\u6a21\u578b\u4e2d":92,"\u4ececmake":65,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":20,"\u4ecestart":82,"\u4ecetest":101,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":73,"\u4ed4\u7ec6\u89c2\u5bdf":94,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":35,"\u4ed6\u4eec\u5206\u522b\u662f":68,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":72,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":68,"\u4ed6\u4eec\u63d0\u51fa\u6b8b\u5dee\u5b66\u4e60\u7684\u6846\u67b6\u6765\u7b80\u5316\u7f51\u7edc\u7684\u8bad\u7ec3":94,"\u4ed6\u662f\u5c06":35,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":34,"\u4ee3\u66ff":87,"\u4ee3\u7801":98,"\u4ee3\u7801\u4e2d9":68,"\u4ee3\u7801\u5982\u4e0b":[56,57,58,71],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":73,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":34,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":75,"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":87,"\u4ee3\u8868\u7f16\u53f7":98,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":21,"\u4ee3\u8868shard\u7684index":21,"\u4ee5":57,"\u4ee5\u4e0a":73,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u6309\u7167\u751f\u6210\u7684dockerfile\u628a\u751f\u6210\u7684\u7a0b\u5e8f\u62f7\u8d1d\u5230\u751f\u4ea7\u955c\u50cf\u4e2d\u5e76\u505a\u76f8\u5e94\u7684\u914d\u7f6e":61,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u7f16\u8bd1paddlepaddl":61,"\u4ee5\u4e0a\u65b9\u6cd5\u5728gpu\u955c\u50cf\u91cc\u4e5f\u80fd\u7528":61,"\u4ee5\u4e0b":[21,98],"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":71,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":72,"\u4ee5\u4e0b\u6211\u4eec\u7ffb\u8bd1\u6570\u636e\u96c6\u7f51\u7ad9\u4e2dreadme\u6587\u4ef6\u7684\u63cf\u8ff0":97,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":61,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":73,"\u4ee5\u4e0b\u662f\u5bf9\u4e0a\u8ff0\u6570\u636e\u52a0\u8f7d\u7684\u89e3\u91ca":96,"\u4ee5\u4e0b\u6b65\u9aa4\u57fa\u4e8e":80,"\u4ee5\u4e0b\u793a\u8303\u5982\u4f55\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u4e2d\u6587\u5b57\u5178\u548c\u8bcd\u5411\u91cf\u8fdb\u884c\u77ed\u8bed\u6539\u5199":92,"\u4ee5\u4e0b\u9009\u9879\u5fc5\u987b\u5728":80,"\u4ee5\u4ea4\u4e92\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u5f00\u53d1\u955c\u50cf":61,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":58,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u4fbf\u7528\u6237":80,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":74,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":74,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":72,"\u4ee5\u5206\u7c7b\u6765\u81ea":100,"\u4ee5\u53ca":[72,74],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":72,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":67,"\u4ee5\u53ca\u5728wmt":101,"\u4ee5\u53ca\u5982\u4f55\u5728\u5c42\u4e4b\u95f4\u8fdb\u884c\u8fde\u63a5":93,"\u4ee5\u53ca\u751f\u6210\u521b\u5efa\u751f\u4ea7\u955c\u50cf\u7684dockerfil":61,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":66,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":75,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":70,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":74,"\u4ee5\u53caandroid":65,"\u4ee5\u53caandroid\u6240\u9700":65,"\u4ee5\u53canumpi":21,"\u4ee5\u53capaddle\u5982\u4f55\u5904\u7406\u591a\u79cd\u7c7b\u578b\u7684\u8f93\u5165":98,"\u4ee5\u53carelu":74,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":[65,66],"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":1,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[65,66],"\u4ee5\u83b7\u5f97\u66f4\u597d\u7684\u7f51\u7edc\u6027\u80fd":80,"\u4ee5\u8f93\u51fa":56,"\u4ee5\u9017\u53f7":92,"\u4ee5\u9017\u53f7\u95f4\u9694":82,"\u4ee5eigentensor\u4e3a\u4f8b":76,"\u4ee5embedding\u5c42\u4e3a\u4f8b":58,"\u4ee5lstm\u4e3a\u4f8b":57,"\u4ef7\u683c":68,"\u4efb\u52a1":98,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":80,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":20,"\u4f18\u5316":100,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":74,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":87,"\u4f1a\u5171\u4eab\u53c2\u6570":58,"\u4f1a\u5173\u8054\u53c2\u6570":57,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":82,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":68,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":87,"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":77,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":56,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":70,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":34,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":70,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":56,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":70,"\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":2,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":56,"\u4f1a\u62a5\u9519":70,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":1,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":2,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":34,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":73,"\u4f1a\u81ea\u9002\u5e94\u5730\u4ece\u8fd9\u4e9b\u5411\u91cf\u4e2d\u9009\u62e9\u4e00\u4e2a\u5b50\u96c6\u51fa\u6765":101,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":87,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":70,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":21,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":73,"\u4f20\u5165":[2,21],"\u4f20\u5165\u4e0a\u4e00\u6b65\u89e3\u6790\u51fa\u6765\u7684\u6a21\u578b\u914d\u7f6e\u5c31\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":4,"\u4f20\u5165\u9884\u6d4b\u6570\u636e":4,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":58,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":82,"\u4f46":35,"\u4f46\u4e0d\u66b4\u9732":35,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":74,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":82,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":68,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":68,"\u4f46\u5728\u8d77\u521d\u7684\u51e0\u8f6e\u8bad\u7ec3\u4e2d\u5b83\u4eec\u90fd\u5728\u5feb\u901f\u903c\u8fd1\u771f\u5b9e\u503c":59,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":70,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":60,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":47,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":68,"\u4f46\u5f53\u8c03\u7528\u8fc7\u4e00\u6b21\u540e":2,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":56,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":47,"\u4f46\u662f":[56,68],"\u4f46\u662f2008\u5e74\u4e4b\u524d\u751f\u4ea7\u7684\u65e7\u7535\u8111\u4e0d\u652f\u6301avx":61,"\u4f46\u662f\u4e5f\u6ca1\u6709\u5fc5\u8981\u5220\u9664\u65e0\u7528\u7684\u6587\u4ef6":80,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":35,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":81,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":68,"\u4f46\u662f\u6211\u4eec\u5e76\u4e0d\u63a8\u8350\u8fd9\u79cd\u65b9\u6cd5":61,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":73,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548c\u6d4bbenchmark":60,"\u4f46\u662f\u662f\u8fd0\u884c\u5728\u72ec\u7acb\u7684\u8fdb\u7a0b\u7a7a\u95f4":61,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":84,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":56,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":72,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":34,"\u4f46\u662f\u8fd9\u79cd\u65b9\u6cd5\u5728\u6bcf\u5c42\u53ea\u4fdd\u5b58\u9884\u8bbe\u6570\u91cf\u7684\u6700\u4f18\u72b6\u6001":101,"\u4f46\u662f\u9690\u85cf\u5c42\u4e2d\u7684\u6bcf\u4e2a\u666e\u901a\u8282\u70b9\u88ab\u4e00\u4e2a\u8bb0\u5fc6\u5355\u5143\u66ff\u6362":100,"\u4f46\u662fbatch":56,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":[2,63],"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":[2,63],"\u4f46\u8fd9\u4e2a\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":2,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":75,"\u4f46eigen":76,"\u4f4d\u7f6e":68,"\u4f4f":68,"\u4f53\u88c1\u5b57\u5178":98,"\u4f53\u88c1\u5b57\u6bb5":98,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u56de\u5f52":98,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u5c42":98,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":68,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":71,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":75,"\u4f5c\u4e3a\u53c2\u6570\u7684id":58,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":21,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":70,"\u4f5c\u4e3a\u793a\u4f8b\u6570\u636e":97,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":34,"\u4f5c\u4e3a\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165":59,"\u4f5c\u4e3a\u8f93\u51fa":71,"\u4f5c\u4e3a\u96c6\u7fa4\u8bad\u7ec3\u7684\u5de5\u4f5c\u7a7a\u95f4":80,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":68,"\u4f5c\u5bb6":97,"\u4f5c\u7528":67,"\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u4e2a\u503c":94,"\u4f60\u4e5f\u53ef\u4ee5\u5148\u8df3\u8fc7\u672c\u6587\u7684\u89e3\u91ca\u73af\u8282":96,"\u4f60\u4e5f\u53ef\u4ee5\u7b80\u5355\u7684\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4":92,"\u4f60\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5728\u547d\u4ee4\u884c\u53c2\u6570\u4e2d\u589e\u52a0\u4e00\u4e2a\u53c2\u6570\u5982":94,"\u4f60\u4e5f\u8bb8\u53ef\u4ee5\u5c1d\u8bd5\u66f4\u8001\u7684\u65b9\u6cd5":61,"\u4f60\u53ea\u9700\u5b8c\u6210":80,"\u4f60\u53ea\u9700\u8981\u5728\u547d\u4ee4\u884c\u8f93\u5165\u4ee5\u4e0b\u547d\u4ee4":96,"\u4f60\u53ea\u9700\u8981\u6309\u7167\u5982\u4e0b\u65b9\u5f0f\u7ec4\u7ec7\u6570\u636e":101,"\u4f60\u53ef\u4ee5\u4f7f\u7528":94,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c\u4e0b\u8f7d":100,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8bbe\u7f6e":80,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u4e2d\u7684\u76f8\u540c\u6a21\u578b\u6587\u4ef6\u8fdb\u884c\u96c6\u7fa4\u8bad\u7ec3":80,"\u4f60\u53ef\u4ee5\u5728\u4efb\u4f55\u65f6\u5019\u7528":98,"\u4f60\u53ef\u4ee5\u5bf9\u6a21\u578b\u8fdb\u884c\u8bc4\u4f30":98,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":84,"\u4f60\u53ef\u4ee5\u6267\u884c\u4e0a\u8ff0\u547d\u4ee4\u6765\u4e0b\u8f7d\u6240\u6709\u7684\u6a21\u578b\u548c\u5747\u503c\u6587\u4ef6":94,"\u4f60\u53ef\u4ee5\u901a\u8fc7\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u5f97\u5230resnet\u7f51\u7edc\u7684\u7ed3\u6784\u53ef\u89c6\u5316\u56fe":94,"\u4f60\u53ef\u4ee5\u9884\u6d4b\u4efb\u4f55\u7528\u6237\u5bf9\u4e8e\u4efb\u4f55\u4e00\u90e8\u7535\u5f71\u7684\u8bc4\u4ef7":98,"\u4f60\u5c06\u4f1a\u770b\u5230\u4ee5\u4e0b\u7684\u6a21\u578b\u7ed3\u6784":92,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u6d88\u606f":101,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u7ed3\u679c":94,"\u4f60\u5c06\u4f1a\u770b\u5230\u7279\u5f81\u5b58\u50a8\u5728":94,"\u4f60\u5c06\u4f1a\u770b\u5230\u8fd9\u6837\u7684\u6d88\u606f":101,"\u4f60\u5c06\u5728\u76ee\u5f55":100,"\u4f60\u5c06\u770b\u5230\u5982\u4e0b\u7684\u4fe1\u606f":98,"\u4f60\u7684\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":80,"\u4f60\u8fd8\u53ef\u4ee5\u5c06\u7528\u6237\u548c":80,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":74,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":84,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":74,"\u4f60\u9700\u8981\u5b89\u88c5python\u7684\u7b2c\u4e09\u65b9\u5e93":98,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":74,"\u4f7f\u5176\u8f6c\u53d8\u4e3a\u7ef4\u5ea6\u4e3ahidden_dim\u7684\u65b0\u5411\u91cf":96,"\u4f7f\u5f97":59,"\u4f7f\u5f97\u4e24\u4e2a\u5b57\u5178\u6709\u76f8\u540c\u7684\u4e0a\u4e0b\u6587":101,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":53,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":74,"\u4f7f\u5f97\u6700\u7ec8\u5f97\u5230\u7684\u6a21\u578b\u51e0\u4e4e\u4e0e\u771f\u5b9e\u6a21\u578b\u4e00\u81f4":59,"\u4f7f\u7528":[35,47,56,57,58,61,68,70,71,74,79,82,96,99,100],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":84,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":84,"\u4f7f\u752810\u4e2a\u88c1\u526a\u56fe\u50cf\u5757":94,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":84,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":84,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":74,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":56,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":86,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":21,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":58,"\u4f7f\u7528\u4e86\u57fa\u4e8e\u53e5\u6cd5\u7ed3\u6784\u7684\u9884\u5b9a\u4e49\u7279\u5f81\u6a21\u677f":99,"\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u8fdb\u884c\u6a21\u578b\u8bad\u7ec3":92,"\u4f7f\u7528\u5177\u6709softmax\u6fc0\u6d3b\u7684\u5168\u8fde\u63a5\u524d\u9988\u5c42\u6765\u6267\u884c\u5206\u7c7b\u4efb\u52a1":100,"\u4f7f\u7528\u52a8\u6001\u5e93":34,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":20,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":56,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":56,"\u4f7f\u7528\u5982\u4e0b\u53c2\u6570":93,"\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4":92,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":71,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":87,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":86,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":75,"\u4f7f\u7528\u6587\u6863":75,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":56,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":35,"\u4f7f\u7528\u6848\u4f8b":83,"\u4f7f\u7528\u7684\u7f16\u8bd1\u5668\u4e3aarm":65,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":35,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":82,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u4f7f\u7528\u8005\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684python\u811a\u672c\u6765\u8bfb\u53d6\u53c2\u6570\u503c":94,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":82,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":82,"\u4f7f\u7528\u81ea\u52a8\u7684\u66ff\u8865\u6765\u66ff\u4ee3\u7ecf\u9a8c\u4e30\u5bcc\u7684\u4eba\u5de5\u8bc4\u5224":101,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":58,"\u4f7f\u7528\u8c13\u8bcd\u4e0a\u4e0b\u6587":99,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":20,"\u4f7f\u7528\u8fd9\u4e2a\u811a\u672c\u524d\u8bf7\u786e\u8ba4\u5df2\u7ecf\u5b89\u88c5\u4e86pillow\u53ca\u76f8\u5173\u4f9d\u8d56\u6a21\u5757":93,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":68,"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":74,"\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d":100,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":34,"\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u6807\u51c6\u683c\u5f0f\u8bcd\u5411\u91cf\u6a21\u578b":92,"\u4f7f\u7528args\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u8bbe\u7f6e":2,"\u4f7f\u7528c":35,"\u4f7f\u7528c99\u505a\u63a5\u53e3":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":34,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":82,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":84,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":84,"\u4f7f\u7528cpu\u8bad\u7ec3":100,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":72,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":77,"\u4f7f\u7528init":84,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":68,"\u4f7f\u7528max":93,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":68,"\u4f7f\u7528model":84,"\u4f7f\u7528paddlepaddl":96,"\u4f7f\u7528python\u6570\u636e\u63d0\u4f9b\u5668":93,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":82,"\u4f7f\u7528regress":47,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":34,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":34,"\u4f7f\u7528void":34,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":58,"\u4f7f\u8f93\u5165\u5c42\u5230\u9690\u85cf\u5c42\u7684\u795e\u7ecf\u5143\u662f\u5168\u90e8\u8fde\u63a5\u7684":93,"\u4f86":68,"\u4f8b\u5982":[2,21,34,35,47,56,57,60,63,68,71,74,79,80,81,82,84,87,94,96,98,100],"\u4f8b\u5982\u4e0a\u6587\u7684pod":85,"\u4f8b\u5982\u4e0a\u9762\u7684":59,"\u4f8b\u5982\u4ee5\u592a\u7f51\u7684":80,"\u4f8b\u5982\u4f7f\u7528":56,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":34,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":34,"\u4f8b\u5982\u5bf9\u4e8epython":34,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":68,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":68,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":68,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":56,"\u4f8b\u5982\u7b2c300\u4e2apass\u7684\u6a21\u578b\u4f1a\u88ab\u4fdd\u5b58\u5728":93,"\u4f8b\u5982c":34,"\u4f8b\u5982hostpath":85,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":34,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":87,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":34,"\u4f8b\u5982python\u7684":34,"\u4f8b\u5982sigmoid":74,"\u4f8b\u5982sigmoid\u53d8\u6362":96,"\u4f8b\u5b50\u4e2d\u662f":74,"\u4f8b\u5b50\u4e2d\u662f0":74,"\u4f8b\u5b50\u4e2d\u662f100":74,"\u4f8b\u5b50\u4e2d\u662f4096":74,"\u4f8b\u5b50\u4e2d\u662f8192":74,"\u4f8b\u5b50\u4e2d\u662ffc":74,"\u4f8b\u5b50\u4e2d\u662fsoftmax":74,"\u4f8b\u5b50\u4f7f\u7528":85,"\u4f9bpaddlepaddle\u52a0\u8f7d":82,"\u4f9d\u636e\u5206\u7c7b\u9519\u8bef\u7387\u83b7\u5f97\u6700\u4f73\u6a21\u578b\u8fdb\u884c\u6d4b\u8bd5":100,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":75,"\u4f9d\u6b21\u7c7b\u63a8":47,"\u4f9d\u8d56\u4e8epython\u7684":93,"\u4fbf\u4e8e\u5b58\u50a8\u8d44\u6e90\u7ba1\u7406\u548cpod\u5f15\u7528":85,"\u4fbf\u4e8e\u672c\u5730\u9a8c\u8bc1\u548c\u6d4b\u8bd5":85,"\u4fbf\u4e8e\u7528\u6237\u6d4f\u89c8c":61,"\u4fbf\u5229":68,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":68,"\u4fbf\u5b9c":68,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":34,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":82,"\u4fdd\u5b58\u751f\u6210\u7ed3\u679c\u7684\u6587\u4ef6":101,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":58,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":82,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":82,"\u4fdd\u6301\u5bbd\u9ad8\u6bd4\u7f29\u653e\u5230\u77ed\u8fb9\u4e3a256":94,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":73,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":80,"\u4fee\u590d\u6240\u6709bug\u540e":47,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":47,"\u4fee\u590dubuntu":47,"\u4fee\u6539":[85,86],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":86,"\u4fee\u6539\u6210":47,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":79,"\u4fee\u6539\u6587\u6863":78,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[68,73],"\u503c\u5f97\u6df1\u5165\u5206\u6790":79,"\u503c\u7c7b\u578b":84,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":58,"\u5047\u8bbe":74,"\u5047\u8bbe\u53d8\u91cf":59,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5b8c\u6210\u4e86\u4e00\u4e2aai\u8bad\u7ec3\u7684python\u7a0b\u5e8f":61,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":74,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":56,"\u5047\u8bbe\u8bcd\u5411\u91cf\u7ef4\u5ea6\u4e3a32":92,"\u504f\u7f6e\u53c2\u6570":94,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":74,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":76,"\u505a\u53ea\u8bfb\u6302\u8f7d":21,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":47,"\u505a\u63a5\u53e3":34,"\u505a\u68af\u5ea6\u68c0\u6d4b":75,"\u505a\u68c0\u67e5":75,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":82,"\u505c\u7535":68,"\u50cf":61,"\u513f\u7ae5\u7247":97,"\u5143\u7d20":67,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":67,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":35,"\u5148\u627e\u51fa\u53c2\u6570":57,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":53,"\u5148\u8c03\u7528initializer\u51fd\u6570":96,"\u5168\u5bb6":68,"\u5168\u8fde\u63a5\u5c42":[59,92,93,98],"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u5168\u8fde\u63a5\u5c42\u5c06\u7535\u5f71\u7684\u6bcf\u4e2a\u7279\u5f81\u7ed3\u5408\u6210\u4e00\u4e2a\u7535\u5f71\u7279\u5f81":98,"\u5168\u8fde\u63a5\u5c42\u6743\u91cd":94,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":74,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":74,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":74,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":74,"\u516b\u4e2a\u7279\u5f81\u5206\u522b\u8f6c\u6362\u4e3a\u5411\u91cf":99,"\u516c\u5f0f":61,"\u516c\u94a5\u5199\u5165":80,"\u516d\u4e2a\u7279\u5f81\u548c\u6807\u7b7e\u90fd\u662f\u7d22\u5f15\u69fd":99,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":75,"\u5171\u4eab\u4efb\u52a1\u4e2d\u8bbe\u7f6e\u7684\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u548c\u6d4b\u8bd5":99,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":75,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":87,"\u5171\u670932":92,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":75,"\u5173\u4e8e\u5982\u4f55\u5b9a\u4e49\u7f51\u7edc\u4e2d\u7684\u5c42":93,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":68,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":73,"\u5173\u4e8eeigen":76,"\u5173\u4e8elstm":57,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":63,"\u5173\u4e8eunbound":70,"\u5173\u4e8evgg\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7684\u63cf\u8ff0\u53ef\u4ee5\u53c2\u8003":93,"\u5173\u952e\u8bcd\u5305\u62ec":73,"\u5176\u4e0b\u5b50\u6587\u4ef6\u5939\u7684\u7ed3\u6784\u5982\u4e0b":93,"\u5176\u4e2d":[2,34,47,56,58,59,63,65,66,71,74,92,93,94],"\u5176\u4e2d156\u548c285\u662f\u8fd9\u4e9b\u56fe\u50cf\u7684\u5206\u7c7b\u6807\u7b7e":94,"\u5176\u4e2d50000\u5f20\u56fe\u7247\u4f5c\u4e3a\u8bad\u7ec3\u96c6":93,"\u5176\u4e2d\u5206\u522b\u5305\u542b\u4e86cifar":93,"\u5176\u4e2d\u5305\u542b6":97,"\u5176\u4e2d\u5305\u542b\u4e86200\u79cd\u9e1f\u7c7b\u7684\u7167\u7247":93,"\u5176\u4e2d\u5305\u542b\u7b97\u6cd5\u548c\u7f51\u7edc\u914d\u7f6e":100,"\u5176\u4e2d\u5305\u62ec\u51fd\u6570":99,"\u5176\u4e2d\u5b9a\u4e49\u4e86\u6a21\u578b\u67b6\u6784\u548csolver\u914d\u7f6e":101,"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteger_value_sequ":96,"\u5176\u4e2d\u6bcf\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u5730\u5740":1,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":67,"\u5176\u4e2d\u6bcf\u4e2a\u5411\u91cf\u5bf9\u5e94\u8f93\u5165\u8bed\u53e5\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":101,"\u5176\u4e2d\u6bcf\u6761pass\u82b1\u8d39\u4e867\u4e2a\u5c0f\u65f6":101,"\u5176\u4e2d\u6bcf\u884c\u6570\u636e\u4ee3\u8868\u4e00\u5f20\u56fe\u7247":2,"\u5176\u4e2d\u8be6\u7ec6\u8bf4\u660e\u4e86\u6a21\u578b\u67b6\u6784":101,"\u5176\u4e2d\u8f93\u5165\u56fe\u50cf\u7684\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":94,"\u5176\u4e2dbeam":101,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":82,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":82,"\u5176\u4e2dvalue\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":4,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":63,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":76,"\u5176\u4ed6":97,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":72,"\u5176\u4ed6\u4eba\u5f88\u5bb9\u6613\u770b\u61c2\u955c\u50cf\u751f\u6210\u8fc7\u7a0b":61,"\u5176\u4ed6\u516d\u884c\u5217\u51fa\u4e86\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":101,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":56,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":56,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":35,"\u5176\u4ed6\u53c2\u6570\u4f7f\u7528":2,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":96,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":84,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":47,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[65,66],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":71,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":74,"\u5176\u4f59\u884c\u662f":92,"\u5176\u4f5c\u7528\u662f\u5c06\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u663e\u5b58":1,"\u5176\u5177\u4f53\u8bf4\u660e\u4e86\u5b57\u6bb5\u7c7b\u578b\u548c\u6587\u4ef6\u540d\u79f0":98,"\u5176\u5185\u90e8\u7684\u6587\u4ef6\u4e5f\u4f1a\u968f\u4e4b\u6d88\u5931":85,"\u5176\u5305\u62ec\u4e24\u4e2a\u51fd\u6570":96,"\u5176\u53c2\u6570\u5982\u4e0b":2,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":96,"\u5176\u5b83layer\u7684\u8f93\u51fa":70,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":56,"\u5176\u63d0\u4f9b\u5e94\u7528\u90e8\u7f72":85,"\u5176\u6b21":[2,68,96],"\u5176\u76ee\u7684\u662f\u5728\u7ed9\u5b9a\u7684\u8f93\u5165\u53e5\u5b50\u4e2d\u53d1\u73b0\u6bcf\u4e2a\u8c13\u8bcd\u7684\u8c13\u8bcd\u8bba\u5143\u7ed3\u6784":99,"\u5176\u8bf4\u660e\u5982\u4e0b":68,"\u5176\u8f93\u5165\u53c2\u6570\u5982\u4e0b":101,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":71,"\u5176name\u7531\u53c2\u6570":57,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[35,56],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":72,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":35,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[2,56,74],"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":70,"\u5177\u4f53\u5982\u4e0b":61,"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":79,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":53,"\u5177\u4f53\u6d41\u7a0b\u5982\u4e0b":96,"\u5177\u4f53\u7684\u683c\u5f0f\u8bf4\u660e":2,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":53,"\u5177\u4f53\u8bf7\u53c2\u7167\u793a\u4f8b":94,"\u5177\u4f53\u8bf7\u53c2\u8003":[2,35,73],"\u5177\u4f53\u8bf7\u89c1":73,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":68,"\u5177\u6709\u81ea\u5faa\u73af\u8fde\u63a5\u7684\u795e\u7ecf\u5143":100,"\u5185":71,"\u5185\u5b58":79,"\u5185\u5b58\u4e0d\u8db3":54,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":82,"\u5185\u5bb9":[75,96],"\u5185\u5bb9\u5982\u4e0b":86,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":68,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":87,"\u5185\u90e8":87,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":34,"\u518d\u4e3apaddle\u7684\u8bad\u7ec3\u8fc7\u7a0b\u63d0\u4f9b\u6587\u4ef6\u5217\u8868":98,"\u518d\u4ee5":75,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":58,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":34,"\u518d\u57fa\u4e8e":47,"\u518d\u5b89\u88c5":53,"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":68,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":68,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":68,"\u518d\u6307\u5b9a":60,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":74,"\u518d\u901a\u8fc7\u51fd\u6570":87,"\u5192\u9669\u7247":97,"\u5197\u4f59\u7b49\u529f\u80fd":85,"\u5199\u4ee3\u7801":34,"\u5199\u5165\u5feb\u7167\u6570\u636e":20,"\u5199\u5b8c\u6a21\u578b\u914d\u7f6e\u4e4b\u540e":101,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":74,"\u519c\u6c11":97,"\u51c6\u5907":68,"\u51c6\u5907\u597d\u6570\u636e":98,"\u51c6\u5907\u9884\u6d4b\u6570\u636e":4,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":56,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":56,"\u51cf\u5c0fbatch":56,"\u51e0\u4e2a\u57fa\u7840\u7684\u6982\u5ff5\u5e2e\u52a9\u7406\u89e3\u548c\u4f7f\u7528docker":61,"\u51fa\u53bb\u73a9":68,"\u51fa\u5dee":68,"\u51fa\u6765":68,"\u51fa\u73b0":53,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":58,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":57,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":53,"\u51fd\u6570":[2,59,71,74,79,99,100],"\u51fd\u6570\u4e2d\u4f7f\u7528":2,"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":75,"\u51fd\u6570\u4e2d\u8bbe\u7f6e\u7684":80,"\u51fd\u6570\u5047\u8bbe":71,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":79,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":21,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":70,"\u51fd\u6570\u540d\u4e3a":35,"\u51fd\u6570\u547d\u540d":34,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":75,"\u51fd\u6570\u5c31\u662f\u6839\u636e\u8be5\u673a\u5236\u914d\u7f6e\u7684":2,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":74,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":74,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":70,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":74,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":79,"\u51fd\u6570\u67e5\u8be2\u8f6f\u4ef6\u5305\u76f8\u5173api\u8bf4\u660e":4,"\u51fd\u6570\u7684":2,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":74,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":74,"\u51fd\u6570\u91cc\u5b9e\u73b0":75,"\u5206\u4e3a\u597d\u8bc4":96,"\u5206\u522b\u4e3a":92,"\u5206\u522b\u4e3atrain":101,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":70,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":68,"\u5206\u522b\u5305\u542b\u4e86\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93\u7684\u8bad\u7ec3\u6570\u636e":101,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":70,"\u5206\u522b\u5bf9\u5e94\u4e8e\u53d8\u91cf":59,"\u5206\u522b\u662f":67,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":71,"\u5206\u522b\u662fsentences\u548clabel":68,"\u5206\u522b\u662fwords\u548clabel":68,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":74,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":68,"\u5206\u5272":[97,99],"\u5206\u5272\u6587\u4ef6\u7684\u65b9\u6cd5\u662f":98,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":20,"\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":85,"\u5206\u6210\u4e24\u90e8\u5206":2,"\u5206\u652f":[47,73],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":47,"\u5206\u652f\u4e0a":73,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":73,"\u5206\u652f\u4e2d":47,"\u5206\u652f\u4e3a\u5f00\u53d1":47,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":47,"\u5206\u652f\u4e3a\u7a33\u5b9a":47,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":47,"\u5206\u652f\u5408\u5165":47,"\u5206\u652f\u5408\u5165master\u5206\u652f":47,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":47,"\u5206\u652f\u540d":73,"\u5206\u652f\u540d\u4e3a":47,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":47,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":47,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":75,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":47,"\u5206\u652f\u7684\u76ee\u6807\u673a\u7248openblas\u5e93":65,"\u5206\u652f\u89c4\u8303":73,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":79,"\u5206\u7247":20,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":2,"\u5206\u7c7b\u8bef\u5dee\u662f0":100,"\u5206\u7c7b\u9519\u8bef\u7387\u548c\u6a21\u578b\u5927\u5c0f\u7531\u4e0b\u8868\u7ed9\u51fa":94,"\u5206\u8bcd\u5e8f\u5217\u7684\u5f00\u59cb":92,"\u5206\u8bcd\u5e8f\u5217\u7684\u7ed3\u675f":92,"\u5206\u8bcd\u98ce\u683c\u5982\u4e0b":92,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":82,"\u5206\u9694":[92,98],"\u5206\u9694\u7b26\u4e3a":97,"\u5207\u6362\u5230":73,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":73,"\u5217\u8868":98,"\u5217\u8868\u5982\u4e0b":[2,63],"\u5219\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":2,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u5219\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":2,"\u5219\u4f7f\u7528\u533a\u57df\u6807\u8bb0":99,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":82,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":20,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":82,"\u5219\u5148\u505a\u5d4c\u5165":98,"\u5219\u53ef\u4ee5\u50cf":80,"\u5219\u53ef\u8bbe\u7f6e":[65,66],"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":96,"\u5219\u5ffd\u7565":20,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":82,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":20,"\u5219\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u65f6batch":2,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":79,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":82,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5219\u8bbe\u7f6e\u6210":[65,66],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":56,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":20,"\u5219\u9700\u8981\u914d\u7f6e":85,"\u5219\u9700\u9009\u7528":66,"\u521b\u5efa\u4e00\u4e2akubernet":87,"\u521b\u5efa\u53cd\u5411op\u5bf9\u5e94\u7684\u524d\u5411op":75,"\u521b\u5efa\u548c\u53d1\u5e03\u81ea\u5df1\u7684ai\u7a0b\u5e8f\u955c\u50cf":61,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":73,"\u521b\u5efa\u6210\u529f\u540e":87,"\u521b\u5efa\u8bad\u7ec3\u6570\u636e\u7684":101,"\u521b\u5efagener":2,"\u521d\u59cb\u5316\u4e4b\u540e":4,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":74,"\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":2,"\u521d\u59cb\u5316\u6743\u91cd\u8868":74,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":82,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84\u914d\u7f6e\u4e3a":92,"\u521d\u59cb\u5316\u7236\u7c7b":74,"\u521d\u59cb\u5316biases_":74,"\u521d\u59cb\u5316paddlepaddle\u73af\u5883":4,"\u521d\u59cb\u72b6\u6001":70,"\u5220\u9664":73,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":20,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":56,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u8be5\u5355\u8bcd\u5bf9\u5e94\u7684\u8fde\u7eed\u5411\u91cf":96,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4e00\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":56,"\u5229\u7528\u6b63\u5219\u8868\u8fbe\u5f0f\u6765\u89e3\u6790\u8be5\u7279\u5f81":98,"\u5229\u7528\u8bad\u7ec3\u96c6\u751f\u6210\u7684\u5b57\u5178":100,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":70,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":96,"\u5229\u7528kubernetes\u80fd\u65b9\u4fbf\u5730\u7ba1\u7406\u8de8\u673a\u5668\u8fd0\u884c\u5bb9\u5668\u5316\u7684\u5e94\u7528":85,"\u5229\u843d":68,"\u522b\u4eba\u5e2e\u4e86\u5fd9":73,"\u522b\u5fd8\u4e86":72,"\u5230":[20,53,71],"\u5230\u6240\u6709\u8282\u70b9\u800c\u4e0d\u7528\u5bc6\u7801":80,"\u5230\u672c\u5730":73,"\u5230\u6b64":[61,75],"\u5230\u76ee\u524d\u4e3a\u6b62":99,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":87,"\u5236\u4f5cpaddlepaddle\u5f00\u53d1\u955c\u50cf":61,"\u5236\u4f5cpaddlepaddle\u751f\u4ea7\u955c\u50cf":61,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":87,"\u5237\u7259":68,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":87,"\u524d\u4e09\u884cimport\u4e86\u5b9a\u4e49network":101,"\u524d\u53f0":68,"\u524d\u5411\u4f20\u64ad":74,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":74,"\u524d\u5411\u548c\u540e\u5411":74,"\u524d\u5411op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":75,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":75,"\u524d\u5411operator\u5355\u6d4b":75,"\u524d\u8005\u5728":56,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":75,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":56,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":75,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":73,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":2,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":47,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":74,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":96,"\u52a0\u5165":79,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":71,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":71,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":58,"\u52a0\u8f7d\u6570\u636e":99,"\u52a0\u8f7d\u6a21\u578b":99,"\u52a0\u8f7d\u6a21\u578b\u53c2\u6570":101,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":58,"\u52a0\u8f7dtest":82,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":56,"\u52a8\u4f5c\u7247":97,"\u52a8\u6001\u5e93":34,"\u52a8\u753b\u7247":97,"\u52a8\u8bcd":99,"\u52a9\u624b":74,"\u5305\u542b12":100,"\u5305\u542b20\u4e2a\u8bad\u7ec3\u6837\u4f8b":92,"\u5305\u542b3\u4e2a\u5c5e\u6027":92,"\u5305\u542b50":100,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":35,"\u5305\u542b\u6240\u6709\u548c\u524d\u7aef\u7f51\u9875\u8bbe\u8ba1\u76f8\u5173\u7684\u6587\u4ef6":77,"\u5305\u542b\u7684\u6240\u6709\u4f9d\u8d56\u5047\u8bbe\u90fd\u53ef\u4ee5\u5728paddle\u7684\u8fd0\u884c\u5bb9\u5668\u4e2d":61,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":75,"\u5305\u62ec":[21,82,96,99,101],"\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd":2,"\u5305\u62ec\u53d1\u884c\u65f6\u95f4":97,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":56,"\u5305\u62ec\u6570\u636e\u8f93\u5165":59,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":20,"\u5305\u62ec\u751f\u6210cpu":60,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":63,"\u5305\u62ec\u7b80\u5355\u7684":96,"\u5305\u62ecbool":84,"\u5305\u62eclinux":61,"\u5305\u7684\u65b9\u6cd5\u662f":53,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":68,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":68,"\u533b\u751f":97,"\u533b\u7597\u4fdd\u5065":97,"\u5341\u4e00":68,"\u5347\u5e8f\u6392\u5217":101,"\u534e\u6da6\u4e07\u5bb6":68,"\u534f\u540c\u5b8c\u6210releas":47,"\u5355\u4e2a\u503c":21,"\u5355\u4f4d\u662fmb":82,"\u5355\u5143\u6d4b\u8bd5":[72,76],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":53,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":75,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":72,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":81,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":68,"\u5355\u53cc\u5c42rnn":69,"\u5355\u53d8\u91cf\u7684\u7ebf\u6027\u56de\u5f52":59,"\u5355\u5c42":70,"\u5355\u5c42\u4e0d\u7b49\u957frnn":68,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":68,"\u5355\u5c42\u5e8f\u5217":67,"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":67,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":67,"\u5355\u5c42\u6216\u53cc\u5c42":67,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u5355\u5c42rnn":[68,70],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":68,"\u5355\u673acpu\u8bad\u7ec3":56,"\u5355\u673agpu\u8bad\u7ec3":56,"\u5355\u6b65\u51fd\u6570":71,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":71,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":71,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":71,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5355\u70b9\u6545\u969c":20,"\u5355\u8fdb\u5355\u51fa":70,"\u5360\u4f4d\u7b26":92,"\u536b\u751f":68,"\u5373":[35,56,57,59,75,77,87,96,100],"\u5373\u4e00\u4e2a\u5c06\u5355\u8bcd\u5b57\u7b26\u4e32\u6620\u5c04\u5230\u5355\u8bcdid\u7684\u5b57\u5178":2,"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":68,"\u5373\u4e0d\u5141\u8bb8\u5728":75,"\u5373\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":2,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":68,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":68,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":68,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":68,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":68,"\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6\u7684\u540d\u5b57":2,"\u5373\u4e8c\u7ef4\u6570\u7ec4":68,"\u5373\u4f7f\u7528":[35,57],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":82,"\u5373\u4f7fc":35,"\u5373\u4f7fprocess\u51fd\u6570\u91cc\u9762\u53ea\u6709\u4e00\u4e2ayield":2,"\u5373\u4f8b\u5982":35,"\u5373\u4fbf\u662f":72,"\u5373\u4fbf\u8bbe\u7f6e":53,"\u5373\u4fbfpaddl":35,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":70,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":2,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":71,"\u5373\u53cc\u5411lstm\u548c\u4e09\u5c42\u5806\u53e0lstm":100,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":70,"\u5373\u53ef":[59,73],"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":56,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":68,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":56,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":[2,63],"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":35,"\u5373\u5bf9\u7b2c\u4e09\u6b65\u8fdb\u884c\u66ff\u6362":96,"\u5373\u5c06\u4e00\u6bb5\u82f1\u6587\u6587\u672c\u6570\u636e":2,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":68,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":68,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":76,"\u5373\u6211\u4eec\u7684\u8bad\u7ec3\u76ee\u6807":59,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":70,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":67,"\u5373\u6574\u6570\u6570\u7ec4":68,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":68,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":68,"\u5373\u66b4\u9732":35,"\u5373\u6b63\u9762\u548c\u8d1f\u9762":100,"\u5373\u6b63\u9762\u8bc4\u4ef7\u6807\u7b7e\u548c\u8d1f\u9762\u8bc4\u4ef7\u6807\u7b7e":100,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":68,"\u5373\u7f51\u5361\u540d":87,"\u5373\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a":2,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":56,"\u5373\u8bbe\u7f6e":56,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":34,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":58,"\u5373input":70,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":68,"\u5377\u79ef\u5c42":93,"\u5377\u79ef\u5c42\u6743\u91cd":94,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fa8\u8bc6\u56fe\u7247\u4e2d\u7684\u4e3b\u4f53":93,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5728\u56fe\u7247\u5206\u7c7b\u4e0a\u6709\u7740\u60ca\u4eba\u7684\u6027\u80fd":93,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u662f\u4e00\u79cd\u4f7f\u7528\u5377\u79ef\u5c42\u7684\u524d\u5411\u795e\u7ecf\u7f51\u7edc":93,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5f88\u597d\u7684\u8868\u793a\u8fd9\u4e24\u7c7b\u4fe1\u606f":93,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":96,"\u5378\u8f7dpaddlepaddle\u5305":53,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":68,"\u539f\u56e0":73,"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":53,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":73,"\u53bb\u8fc7":68,"\u53c2\u6570":[2,6,7,8,9,10,11,12,14,34,56,72,74,81,87,92,94,100],"\u53c2\u6570\u4e3a":75,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":58,"\u53c2\u6570\u521d\u59cb\u5316\u8def\u5f84":99,"\u53c2\u6570\u5373\u53ef":100,"\u53c2\u6570\u540d":94,"\u53c2\u6570\u6570\u91cf":96,"\u53c2\u6570\u670d\u52a1\u5668":81,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":82,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":82,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":56,"\u53c2\u6570\u6982\u8ff0":83,"\u53c2\u6570\u7684\u89e3\u6790":87,"\u53c2\u6570\u7ef4\u5ea6":92,"\u53c2\u6570\u884c":92,"\u53c2\u6570\u8bbe\u7f6e":55,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":68,"\u53c2\u6570\u8f93\u5165":56,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":71,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":73,"\u53c2\u8003":[28,34,85],"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":79,"\u53c2\u8003\u6587\u732e":101,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":68,"\u53c2\u8003\u955c\u50cf\u7684":87,"\u53c8":68,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":67,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":56,"\u53ca":74,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":71,"\u53cc\u5411\u9a8c\u8bc1":28,"\u53cc\u5c42":70,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":68,"\u53cc\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":68,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":70,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":67,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":67,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":68,"\u53cc\u5c42rnn":70,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":68,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":68,"\u53cc\u8fdb\u5355\u51fa":70,"\u53cc\u8fdb\u53cc\u51fa":70,"\u53cd\u4e4b\u5219":99,"\u53cd\u5411\u4f20\u64ad":74,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u53cd\u5411\u5355\u5143\u6d4b\u8bd5\u51fd\u6570\u9700\u8981\u4ee5":75,"\u53cd\u5411op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":75,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":75,"\u53cd\u5411op\u7c7b":75,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":75,"\u53cd\u5411operator\u5355\u6d4b":75,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":75,"\u53d1\u5e03":61,"\u53d1\u5e03\u5230dockerhub":47,"\u53d1\u5e03\u5230github":47,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":56,"\u53d1\u884c\u548c\u7ef4\u62a4":73,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":82,"\u53d6\u503c\u76f8\u540c\u7684layer":57,"\u53d6\u51b3\u4e8e":75,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":60,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":60,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230swig":60,"\u53d8\u6362\u77e9\u9635":74,"\u53d8\u91cf\u6765\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761":2,"\u53e3\u5934":68,"\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7684\u7528\u6237\u624d\u88ab\u5305\u542b\u5728\u6570\u636e\u96c6\u4e2d":97,"\u53e5\u5b50":100,"\u53e5\u5b50\u4e2d\u7684\u7ec4\u5757\u5c06\u4f1a\u626e\u6f14\u67d0\u4e9b\u8bed\u4e49\u89d2\u8272":99,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a\u4e24\u6b65":96,"\u53e6\u4e00\u4e2a\u4f8b\u5b50\u662f\u901a\u8fc7\u5206\u6790\u6bcf\u65e5twitter\u535a\u5ba2\u7684\u6587\u672c\u5185\u5bb9\u6765\u9884\u6d4b\u80a1\u7968\u53d8\u52a8":100,"\u53e6\u4e00\u4e2a\u597d\u5904\u662f\u6211\u4eec\u53ef\u4ee5\u628apaddlepaddle\u5bb9\u5668\u8fd0\u884c\u5728\u8fdc\u7a0b\u670d\u52a1\u5668\u4e0a":61,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":79,"\u53e6\u4e00\u4e2a\u662f\u521b\u5efadockerfile\u5e76\u8fd0\u884cdock":61,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":56,"\u53e6\u4e00\u4e2a\u7ec8\u7aef\u8fd0\u884cpython":61,"\u53e6\u4e00\u65b9\u9762":100,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":84,"\u53e6\u5916":[68,72],"\u53e6\u5916\u4e24\u4e2a\u5206\u522b\u662f\u6ed1\u52a8\u5747\u503c\u548c\u65b9\u5dee":94,"\u53ea\u4f5c\u4e3aread":70,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":82,"\u53ea\u5141\u8bb8\u6574\u6570\u7684\u661f\u7ea7":97,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":60,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":20,"\u53ea\u622a\u53d6\u4e2d\u5fc3\u65b9\u5f62\u7684\u56fe\u50cf\u533a\u57df":94,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":68,"\u53ea\u662f\u5c06\u53e5\u5b50\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u4e3a\u7528\u7a00\u758f\u5411\u91cf\u8868\u793a":96,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":2,"\u53ea\u662f\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":61,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":35,"\u53ea\u6709":68,"\u53ea\u67092\u4e2a\u914d\u7f6e\u4e0d\u4e00\u6837":92,"\u53ea\u6709\u542b\u6709\u4eba":97,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":82,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":70,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":57,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":84,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":57,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":34,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":68,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":56,"\u53ea\u8981\u5728docker\u91cc\u542f\u52a8paddlepaddle\u7684\u65f6\u5019\u7ed9\u5b83\u4e00\u4e2a\u540d\u5b57":61,"\u53ea\u8bfbmemory\u8f93\u5165":70,"\u53ea\u9488\u5bf9\u5185\u5b58":56,"\u53ea\u9700\u4e2d\u65ad":80,"\u53ea\u9700\u4f7f\u7528":80,"\u53ea\u9700\u5220\u9664\u6700\u540e\u4e00\u884c\u4e2d\u7684\u6ce8\u91ca\u5e76\u628a":100,"\u53ea\u9700\u5728linux\u4e0b\u8fd0\u884c\u5982\u4e0b\u547d\u4ee4":101,"\u53ea\u9700\u7528\u4f60\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":80,"\u53ea\u9700\u77e5\u9053\u8fd9\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":2,"\u53ea\u9700\u8981":71,"\u53ea\u9700\u8981\u4e00\u884c\u4ee3\u7801\u5c31\u53ef\u4ee5\u8c03\u7528\u8fd9\u4e2apydataprovider2":2,"\u53ea\u9700\u8981\u5728\u51fd\u6570\u4e2d\u8c03\u7528\u591a\u6b21yield\u5373\u53ef":2,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":20,"\u53ea\u9700\u8981\u7b80\u5355\u5730\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":101,"\u53ea\u9700\u8981\u7b80\u5355\u7684\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef":98,"\u53ea\u9700\u8981\u8fd0\u884c":98,"\u53ef\u4ee5":[68,73,80],"\u53ef\u4ee5\u4ee5\u540e\u53f0\u8fdb\u7a0b\u65b9\u5f0f\u8fd0\u884c\u5bb9\u5668":61,"\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":2,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":58,"\u53ef\u4ee5\u4f7f\u7528":58,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":58,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":58,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":82,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":87,"\u53ef\u4ee5\u4f7f\u7528python\u7684":4,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":20,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":56,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":86,"\u53ef\u4ee5\u521b\u5efa\u975e":75,"\u53ef\u4ee5\u53c2\u7167\u4e0b\u9762\u7684\u547d\u4ee4\u8fdb\u884c\u5b89\u88c5":93,"\u53ef\u4ee5\u53c2\u8003":[68,71,72,73,85,87,101],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":54,"\u53ef\u4ee5\u53c2\u8003\u4fdd\u5b58\u5728":92,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":63,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":76,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":79,"\u53ef\u4ee5\u5728":61,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":34,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":87,"\u53ef\u4ee5\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u6d88\u9664\u6b67\u4e49":99,"\u53ef\u4ee5\u5728\u7f51\u7ad9\u4e0a\u627e\u5230":99,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":73,"\u53ef\u4ee5\u5728kubernetes\u4e2d\u6309\u7167":85,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":76,"\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":2,"\u53ef\u4ee5\u5c06\u78c1\u76d8\u4e0a\u67d0\u4e2a\u76ee\u5f55\u5171\u4eab\u7ed9\u7f51\u7edc\u4e2d\u5176\u4ed6\u673a\u5668\u8bbf\u95ee":85,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":70,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":75,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":79,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":72,"\u53ef\u4ee5\u5feb\u901f\u8fed\u4ee3":61,"\u53ef\u4ee5\u6267\u884c":[53,61],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":77,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":72,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":21,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":68,"\u53ef\u4ee5\u6309\u5982\u4e0b\u7684\u7ed3\u6784\u6765\u51c6\u5907\u6570\u6910":100,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[67,70],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":70,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":74,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":70,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":70,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":82,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":20,"\u53ef\u4ee5\u67e5\u770b":87,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":86,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":84,"\u53ef\u4ee5\u7528":[28,72],"\u53ef\u4ee5\u7528\u4e8e\u4ece\u5b98\u65b9\u7f51\u7ad9\u4e0a\u4e0b\u8f7dcifar":93,"\u53ef\u4ee5\u7528\u4e8e\u5c0f\u91cf\u6570\u636e\u7684\u9a8c\u8bc1":85,"\u53ef\u4ee5\u7528\u4e8e\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e\u5e76\u8f6c\u6362\u6210\u9884\u6d4b\u63a5\u53e3\u6240\u9700\u7684\u6570\u636e\u7c7b\u578b":4,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":21,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":73,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":79,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":67,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":79,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":47,"\u53ef\u4ee5\u7f16\u5199":61,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":56,"\u53ef\u4ee5\u8054\u7cfbop":54,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":54,"\u53ef\u4ee5\u88c5\u7684\u662f":72,"\u53ef\u4ee5\u8bbe\u7f6e":[65,66,93],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":57,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":76,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":63,"\u53ef\u4ee5\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u751f\u6210":98,"\u53ef\u4ee5\u8fd0\u884c\u811a\u672ctrain":93,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":84,"\u53ef\u4ee5\u901a\u8fc7":[61,73,85],"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":71,"\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528":4,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":20,"\u53ef\u4ee5\u901a\u8fc7show_parameter_stats_period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":96,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":53,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":84,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":96,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":87,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":20,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":56,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":58,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":79,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":72,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":75,"\u53ef\u8bbe\u7f6e":65,"\u53ef\u9009":[2,74],"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":57,"\u53f3\u8fb9\u662f":94,"\u5403":68,"\u5403\u996d":68,"\u5404\u65b9\u9762":68,"\u5404\u9879\u53c2\u6570\u7684\u8be6\u7ec6\u8bf4\u660e\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u53c2\u6570\u76f8\u5173\u6587\u6863\u4e2d\u627e\u5230":93,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":75,"\u5408":68,"\u5408\u5e76":101,"\u5408\u5e76\u6bcf\u4e2a":101,"\u5408\u7406":68,"\u540c\u65f6":[53,56,79],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":60,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":56,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":73,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":70,"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":96,"\u540c\u65f6\u4f60\u53ef\u4ee5\u4f7f\u7528":94,"\u540c\u65f6\u4f7f\u7528\u4e86l2\u6b63\u5219":96,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":79,"\u540c\u65f6\u518d\u5c06":47,"\u540c\u65f6\u53ef\u4ee5\u4f7f\u7528\u6237\u53ea\u5173\u6ce8\u5982\u4f55\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":2,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":56,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":58,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":72,"\u540c\u65f6\u63d0\u8d77":47,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":84,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":56,"\u540c\u65f6\u8bbe\u7f6e\u5b83\u7684input_types\u5c5e\u6027":2,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":56,"\u540c\u65f6\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u7f51\u7edc\u4e00\u6837\u518d\u63a5\u4e00\u5c42cost":4,"\u540c\u6837":63,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":82,"\u540c\u6837\u53ef\u4ee5\u6267\u884c":61,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":70,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":75,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":82,"\u540c\u7406":75,"\u540d\u5b57\u4fee\u9970":34,"\u540d\u79f0":96,"\u540e":[58,60,65,66,73,87,100],"\u540e\u5411\u4f20\u64ad":74,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":56,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":56,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":75,"\u540e\u8005\u7ee7\u627f\u81ea":75,"\u540e\u9762\u8fde\u5168\u8fde\u63a5\u5c42\u548csoftmax\u5c42":100,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":20,"\u5411\u91cfenable_parallel_vector":81,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":47,"\u5417":72,"\u5426":60,"\u5426\u5219":[1,65,66,75,80,98],"\u5426\u5219\u4f1a\u628a":73,"\u5426\u5219\u4f60\u9700\u8981\u81ea\u5df1\u4e0b\u8f7d":101,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":82,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":82,"\u5426\u5219\u4f7f\u7528gpu":84,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":71,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":34,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":80,"\u5426\u5b9a":99,"\u542b\u4e49":[94,100],"\u542b\u6709":97,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":20,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":87,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":82,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":82,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":82,"\u5440":68,"\u544a\u8bc9paddle\u54ea\u4e2a\u6587\u4ef6\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":98,"\u544a\u8bc9paddle\u5c06\u6a21\u578b\u4fdd\u5b58\u5728":98,"\u5468\u56f4":68,"\u547d\u4ee4":80,"\u547d\u4ee4\u4e3a":[53,86],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":86,"\u547d\u4ee4\u5220\u9664":[65,66],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":60,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":96,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":72,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":72,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":72,"\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":96,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":60,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":80,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":72,"\u547d\u540d\u4e3a":73,"\u547d\u540d\u7a7a\u95f4":85,"\u547d\u540d\u7a7a\u95f4\u4e3b\u8981\u4e3a\u4e86\u5bf9\u8c61\u8fdb\u884c\u903b\u8f91\u4e0a\u7684\u5206\u7ec4\u4fbf\u4e8e\u7ba1\u7406":85,"\u547d\u540d\u89c4\u8303":75,"\u547d\u540d\u8bf7\u9075\u5b88":75,"\u548c":[21,34,35,47,56,57,58,59,60,65,66,68,71,72,73,74,75,76,77,79,80,84,85,92,93,96,98,101],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":68,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":[2,63],"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":75,"\u548c\u4e2d\u6587\u6587\u6863":77,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":56,"\u548c\u504f\u7f6e\u5411\u91cf":74,"\u548c\u5185\u5b58":72,"\u548c\u533a\u57df\u6807\u8bb0":99,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":67,"\u548c\u56fd\u5185\u955c\u50cf":61,"\u548c\u5728":2,"\u548c\u5bf9\u8c61\u5b58\u50a8api":85,"\u548c\u5dee\u8bc4":96,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":67,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":71,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":72,"\u548c\u68af\u5ea6\u622a\u65ad":96,"\u548c\u6a21\u578b\u8def\u5f84":100,"\u548c\u771f\u5b9e":59,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":68,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":21,"\u548c\u7b2c6\u884c\u7684":101,"\u548c\u90e8\u5206layer":70,"\u548cadam\u5b66\u4e60\u65b9\u6cd5":101,"\u548cargument":99,"\u548cpool":67,"\u548cpython\u63a5\u53e3\u6765\u63d0\u53d6\u7279\u5f81":94,"\u54c1\u8d28":68,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":20,"\u54ea\u4e9b\u4e0d\u662f":68,"\u5546\u52a1":68,"\u554a":68,"\u559c\u5267\u7247":97,"\u5668":96,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":[2,63],"\u56de\u5f52\u8bef\u5dee\u4ee3\u4ef7\u5c42":59,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":74,"\u56e0\u4e3a\u5355\u4e2a\u8c13\u8bcd\u4e0d\u80fd\u7cbe\u786e\u5730\u63cf\u8ff0\u8c13\u8bcd\u4fe1\u606f":99,"\u56e0\u4e3a\u53c2\u6570":84,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":71,"\u56e0\u4e3a\u5b83\u6bd4":71,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":87,"\u56e0\u4e3a\u5bb9\u5668\u5185\u7684\u6587\u4ef6\u90fd\u662f\u6682\u65f6\u5b58\u5728\u7684":85,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":72,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":72,"\u56e0\u4e3a\u8be5\u6587\u4ef6\u53ef\u9002\u7528\u4e8e\u9884\u6d4b":93,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":20,"\u56e0\u4e3adocker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":61,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":53,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":34,"\u56e0\u6b64":[1,2,68,70,74,75],"\u56e0\u6b64\u4f7f\u7528":2,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":68,"\u56e0\u6b64\u53ef\u4ee5\u4f7f\u7528\u8be5\u9009\u9879":92,"\u56e0\u6b64\u53ef\u80fd\u4f1a\u6709\u4e00\u4e9b\u9519\u8bef\u548c\u4e0d\u4e00\u81f4\u53d1\u751f":97,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":76,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":76,"\u56e0\u6b64\u5982\u679c\u8fd9\u4e2a\u811a\u672c\u8fd0\u884c\u5931\u8d25":93,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":68,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":74,"\u56e0\u6b64\u6709\u4e24\u79cd\u89e3\u51b3\u65b9\u6848":2,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":81,"\u56e0\u6b64\u8be5\u5c42\u4e2d\u6ca1\u6709\u504f\u7f6e":94,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":53,"\u56e0\u6b64init_hook\u5c3d\u91cf\u4f7f\u7528":2,"\u56e2\u8d2d\u7f51\u7ad9":100,"\u56fe":[94,100],"\u56fe2\u662f\u53cc\u5411lstm\u7f51\u7edc":100,"\u56fe3\u662f\u4e09\u5c42lstm\u7ed3\u6784":100,"\u56fe\u50cf\u5206\u7c7b":[47,95],"\u56fe\u50cf\u5927\u5c0f\u4e3a3":94,"\u56fe\u50cf\u63cf\u8ff0":101,"\u56fe\u7247\u5206\u4e3a10\u7c7b":93,"\u56fe\u7684\u5e95\u90e8\u662fword":100,"\u56fe\u8868":[61,100],"\u5728":[2,35,47,67,68,71,72,73,75,80,94,96,97,99],"\u57280":61,"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":20,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":86,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":74,"\u5728\u4e00\u4e2a\u5468\u671f\u5185\u6d4b\u8bd5\u6240\u6709\u6570\u636e":99,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":82,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":21,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":68,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":75,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":86,"\u5728\u4e0b\u9762\u4f8b\u5b50\u91cc":96,"\u5728\u4e0b\u9762\u7684\u4f8b\u5b50\u4e2d":93,"\u5728\u4e0d\u540c\u64cd\u4f5c\u7cfb\u7edf":85,"\u5728\u4e4b\u540e\u7684":56,"\u5728\u4efb\u610f\u957f\u5ea6\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u90fd\u53ef\u4ee5\u89c2\u5bdf\u5230\u5176\u6548\u679c\u7684\u63d0\u5347":101,"\u5728\u4f7f\u7528\u5b83\u4e4b\u524d\u8bf7\u5b89\u88c5paddlepaddle\u7684python":100,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":63,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":47,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":74,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":76,"\u5728\u51c6\u5907\u53d1\u8d77":73,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":20,"\u5728\u51fd\u6570":87,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":82,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":82,"\u5728\u521b\u5efaparameters\u540e":58,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":68,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":82,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":82,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":68,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":56,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":68,"\u5728\u540c\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4\u4e2d":85,"\u5728\u542f\u52a8job\u4e4b\u524d":87,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":73,"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165dictionary\u4f5c\u4e3a\u53c2\u6570":2,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":82,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":63,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":63,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":35,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":57,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":87,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":87,"\u5728\u5c42\u4e2d\u6307\u5b9a":84,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":70,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":[21,93],"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":20,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":35,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5728\u5f97\u5230":87,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":20,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":20,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":71,"\u5728\u6211\u4eec\u7684\u6d4b\u8bd5\u4e2d":100,"\u5728\u6267\u884c\u65f6":76,"\u5728\u63d0\u4ea4":73,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":63,"\u5728\u6570\u636e\u52a0\u8f7d\u548c\u7f51\u7edc\u914d\u7f6e\u5b8c\u6210\u4e4b\u540e":96,"\u5728\u6587\u4ef6":98,"\u5728\u6709\u65b0\u7684\u5355\u8bcd\u6765\u4e34\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u9aa4\u5185":100,"\u5728\u672c\u4f8b\u4e2d":[68,73,84],"\u5728\u672c\u4f8b\u4e2d\u6ca1\u6709\u4f7f\u7528":2,"\u5728\u672c\u6559\u7a0b\u4e2d":[71,93],"\u5728\u672c\u6587\u4e2d":80,"\u5728\u672c\u6587\u4e2d\u4f7f\u7528\u7684":80,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u672c\u6f14\u793a\u4e2d":100,"\u5728\u672c\u793a\u4f8b\u4e2d":[68,100],"\u5728\u672c\u8282\u4e2d":71,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":21,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":82,"\u5728\u6837\u4f8b\u4e2d":35,"\u5728\u6a21\u578b\u6587\u4ef6\u7684":80,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u901a\u8fc7":96,"\u5728\u6b64":[81,84],"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":96,"\u5728\u6b64\u611f\u8c22":92,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":71,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":68,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":71,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":87,"\u5728\u6bcf\u8bad\u7ec3":98,"\u5728\u6d4b\u8bd5\u9636\u6bb5":82,"\u5728\u6d4b\u8bd5\u9636\u6bb5\u5b83\u4eec\u5c06\u4f1a\u88ab\u52a0\u8f7d\u5230\u6a21\u578b\u4e2d":94,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":73,"\u5728\u6f14\u793a\u4e2d":99,"\u5728\u7269\u7406\u673a\u4e0a\u624b\u52a8\u90e8\u7f72":85,"\u5728\u751f\u6210\u65f6":71,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d":101,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":101,"\u5728\u7528\u6237\u4f7f\u7528c":35,"\u5728\u7528\u6237\u6587\u4ef6user":98,"\u5728\u7528\u6237\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0":65,"\u5728\u7535\u5f71\u6587\u4ef6movi":98,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":58,"\u5728\u76f8\u5e94layer\u7684":57,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528attention\u7248\u672c\u7684gru\u7f16\u89e3\u7801\u7f51\u7edc":101,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":101,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u751f\u6210\u6570\u636e":101,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e":101,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":4,"\u5728\u7b2c\u4e00\u884c\u4e2d\u6211\u4eec\u8f7d\u5165\u7528\u4e8e\u5b9a\u4e49\u7f51\u7edc\u7684\u51fd\u6570":93,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":21,"\u5728\u7ec4\u5408\u65f6":63,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[65,66],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":74,"\u5728\u7f51\u7edc\u914d\u7f6e\u91cc":2,"\u5728\u7ffb\u8bd1\u6cd5\u8bed\u53e5\u5b50\u4e4b\u524d":101,"\u5728\u811a\u672c":98,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":67,"\u5728\u8bad\u7ec3\u4e2d":71,"\u5728\u8bad\u7ec3\u4e4b\u524d":87,"\u5728\u8bad\u7ec3\u4e86":98,"\u5728\u8bad\u7ec3\u4e86\u51e0\u4e2a\u8f6e\u6b21\u4ee5\u540e":98,"\u5728\u8bad\u7ec3\u5b8c\u6210\u540e":93,"\u5728\u8bad\u7ec3\u6570\u96c6\u4e0a\u8bad\u7ec3\u751f\u6210\u8bcd\u5411\u91cf\u5b57\u5178":92,"\u5728\u8bad\u7ec3\u65f6":86,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":[87,101],"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":82,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":1,"\u5728\u8bbe\u7f6e":[65,66],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":47,"\u5728\u8be5\u793a\u4f8b\u4e2d":58,"\u5728\u8be5\u914d\u7f6e\u76847":68,"\u5728\u8bed\u8a00\u751f\u6210\u9886\u57df\u4e2d":101,"\u5728\u8d2d\u7269\u7f51\u7ad9\u4e0a":96,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":79,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":70,"\u5728\u8fd0\u884c":100,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":76,"\u5728\u8fd9\u4e2a":47,"\u5728\u8fd9\u4e2a\u4efb\u52a1\u4e2d":101,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d":[59,100],"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[74,86],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":68,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":79,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":71,"\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d":99,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":47,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9b\u7f51\u7edc\u4e2d":98,"\u5728\u8fd9\u4e9blayer\u4e2d":68,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":76,"\u5728\u8fd9\u6b65\u4efb\u52a1\u4e2d":100,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":76,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[71,74],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":70,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":86,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":87,"\u5728\u8fd9\u91cc":70,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":74,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":76,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":76,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":63,"\u5728\u914d\u7f6e\u4e2d\u9700\u8981\u8bfb\u53d6\u5916\u90e8\u5b57\u5178":2,"\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u7684":94,"\u5728\u91c7\u7528sgd":58,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":84,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":56,"\u5728\u9884\u5904\u7406\u542b\u6709\u591a\u884c\u6570\u6910\u7684\u6587\u672c\u6587\u4ef6\u65f6\u53c2\u6570\u8bbe\u7f6e\u7a0d\u6709\u4e0d\u540c":100,"\u5728\u9884\u6d4b\u5e8f\u5217\u6216\u6bb5\u843d\u7684\u60c5\u611f\u4e2d\u8d77\u4e3b\u8981\u4f5c\u7528":100,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":65,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":65,"\u5728aws\u4e0a\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":85,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":53,"\u5728c":34,"\u5728c\u7684\u5934\u6587\u4ef6":34,"\u5728cub":93,"\u5728eigen\u4e2d":76,"\u5728generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":2,"\u5728kubernetes\u4e2d\u521b\u5efa\u7684\u6240\u6709\u8d44\u6e90\u5bf9\u8c61":85,"\u5728linux\u4e0b":101,"\u5728meta\u6587\u4ef6\u4e2d\u6709\u4e24\u79cd\u7279\u5f81":98,"\u5728movielen":98,"\u5728paddl":87,"\u5728paddle\u4e2d":84,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":21,"\u5728paddlepaddle\u4e2d":[63,70],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":57,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":57,"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":68,"\u5728paddlepaddle\u91cc":59,"\u5728paramet":20,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":70,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":70,"\u5728trainer":84,"\u5730\u5740\u4e5f\u53ef\u4ee5\u4e3ahdfs\u6587\u4ef6\u8def\u5f84":1,"\u5730\u6bb5":68,"\u5730\u7406\u4f4d\u7f6e":68,"\u5730\u94c1\u7ad9":68,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":35,"\u5747\u503c\u56fe\u50cf\u6587\u4ef6":94,"\u5747\u5300\u5206\u5e03":58,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":82,"\u5747\u662f\u5728":35,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":68,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":68,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":70,"\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165\u7279\u5f81":98,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u57fa\u4e8epython\u7684\u6a21\u578b\u9884\u6d4b":4,"\u57fa\u4e8epython\u7684\u9884\u6d4b":[3,96],"\u57fa\u672c\u4e0a\u548cmnist\u6837\u4f8b\u4e00\u81f4":2,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":64,"\u57fa\u672c\u76f8\u540c":92,"\u57fa\u7c7b":75,"\u586b\u5199":73,"\u589e\u52a0":75,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":86,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":75,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":84,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":74,"\u58f0\u660epython\u6570\u636e\u6e90":98,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":79,"\u5904\u7406\u6570\u636e\u7684python\u811a\u672c\u6587\u4ef6":96,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":70,"\u5904\u7406\u76f8\u4f3c\u5ea6\u56de\u5f52":98,"\u5904\u7406\u8fc7\u7a0b\u4e2d\u6570\u636e\u5b58\u50a8\u683c\u5f0f":93,"\u5907\u6ce8":79,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":79,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":68,"\u5916\u5c42outer_step\u4e2d":68,"\u591a\u4e2a\u503c":21,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":56,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":56,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":96,"\u591a\u4e2aparamet":20,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":70,"\u591a\u673a\u8bad\u7ec3":56,"\u591a\u7ebf\u7a0b\u7684\u6570\u636e\u8bfb\u53d6":2,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":70,"\u5927\u578b\u7535\u5f71\u8bc4\u8bba\u6570\u636e\u96c6":100,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":74,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":74,"\u5927\u591a\u6570\u6210\u529f\u7684srl\u7cfb\u7edf\u662f\u5efa\u7acb\u5728\u67d0\u79cd\u5f62\u5f0f\u7684\u53e5\u6cd5\u5206\u6790\u7ed3\u679c\u4e4b\u4e0a\u7684":99,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":34,"\u5927\u5b66\u751f":97,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":72,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":61,"\u5927\u5c0f":80,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":56,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":72,"\u5929":68,"\u5929\u4e00\u5e7f\u573a":68,"\u5929\u4e00\u9601":68,"\u5929\u732b":100,"\u5934\u4fe1\u606f\u4e2d":58,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":74,"\u5934\u6587\u4ef6\u5982\u4e0b":74,"\u5947\u5e7b\u7247":97,"\u597d":68,"\u597d\u5403":68,"\u597d\u8bc4":96,"\u5982":[2,71,73,75,80,84],"\u59822":80,"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":76,"\u5982\u4e0b":[2,98,100],"\u5982\u4e0b\u56fe\u6240\u793a":[68,79,93],"\u5982\u4e0b\u6240\u793a":[84,94,98],"\u5982\u4e0b\u662f\u4e00\u6bb5\u4f7f\u7528mnist":4,"\u5982\u4e0b\u8868\u683c":96,"\u5982\u4f55":98,"\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":2,"\u5982\u4f55\u89e3\u6790\u8be5\u5730\u5740\u4e5f\u662f\u7528\u6237\u81ea\u5b9a\u4e49dataprovider\u65f6\u9700\u8981\u8003\u8651\u7684\u5730\u65b9":1,"\u5982\u4f55\u8d21\u732e":78,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":78,"\u5982\u4f55\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":96,"\u5982\u4fe1\u606f\u63d0\u53d6":99,"\u5982\u56fe2\u6240\u793a":100,"\u5982\u56fe\u4e2dtrainer":20,"\u5982\u5f62\u5bb9\u8bcd\u548c\u526f\u8bcd":100,"\u5982\u60f3\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u7684\u89e3\u91ca":101,"\u5982\u6709":75,"\u5982\u672c\u4f8b\u4e2d":2,"\u5982\u672c\u4f8b\u7684":2,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":74,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":20,"\u5982\u679c\u4e0b\u8f7d\u6210\u529f":94,"\u5982\u679c\u4e0d\u4e3a0":82,"\u5982\u679c\u4e0d\u4e86\u89e3":2,"\u5982\u679c\u4e0d\u5207\u8bcd":96,"\u5982\u679c\u4e0d\u6536\u655b":58,"\u5982\u679c\u4e0d\u662f\u5e8f\u5217":98,"\u5982\u679c\u4e3a":2,"\u5982\u679c\u4e3a0":82,"\u5982\u679c\u4e3afals":82,"\u5982\u679c\u4e3atrue":[2,82],"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":60,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":73,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":82,"\u5982\u679c\u4f60\u4e0d\u9700\u8981\u8fd9\u4e2a\u64cd\u4f5c":100,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":71,"\u5982\u679c\u4f60\u5b89\u88c5gpu\u7248\u672c\u7684paddlepaddl":100,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":84,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":82,"\u5982\u679c\u4f60\u60f3\u8fdb\u884c\u8bf8\u5982\u8bed\u4e49\u8f6c\u8ff0":101,"\u5982\u679c\u4f60\u6267\u884c\u5176\u5b83\u7684\u7528\u60c5\u611f\u5206\u6790\u6765\u5206\u7c7b\u6587\u672c\u7684\u4efb\u52a1":100,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[65,66],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":71,"\u5982\u679c\u4f60\u6ca1\u6709gpu\u73af\u5883":93,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":74,"\u5982\u679c\u4f7f\u7528":[80,92],"\u5982\u679c\u4f7f\u7528nvidia":61,"\u5982\u679c\u4f7f\u7528ssl\u8ba4\u8bc1":85,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":34,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":53,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":56,"\u5982\u679c\u53c2\u6570\u6a21\u578b\u6587\u4ef6\u7f3a\u5931":92,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":54,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":82,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":82,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":82,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":58,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":75,"\u5982\u679c\u5931\u8d25":47,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":20,"\u5982\u679c\u5b83\u4f4d\u4e8e\u8c13\u8bcd\u4e0a\u4e0b\u6587\u533a\u57df\u4e2d":99,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":56,"\u5982\u679c\u5df2\u5b89\u88c5":99,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":87,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5982\u679c\u5f00\u542f\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":60,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":54,"\u5982\u679c\u60a8\u5728\u56fd\u5185":61,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":61,"\u5982\u679c\u60a8\u6709\u597d\u7684\u5efa\u8bae\u6765":98,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":72,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":79,"\u5982\u679c\u60f3\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u6837\u672c":2,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":79,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":79,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":68,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":79,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":72,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":79,"\u5982\u679c\u6267\u884c\u5931\u8d25":85,"\u5982\u679c\u6267\u884c\u6210\u529f":94,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":56,"\u5982\u679c\u63d0\u793a\u6b63\u786e":77,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":54,"\u5982\u679c\u6570\u636e\u6587\u4ef6\u5b58\u4e8e\u672c\u5730\u78c1\u76d8":1,"\u5982\u679c\u6570\u6910\u83b7\u53d6\u6210\u529f":100,"\u5982\u679c\u662f\u4f7f\u7528\u975essl\u65b9\u5f0f\u8bbf\u95ee":85,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":21,"\u5982\u679c\u662f\u5e8f\u5217":98,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":70,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":70,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":1,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":73,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":47,"\u5982\u679c\u672a\u8bbe\u7f6e":82,"\u5982\u679c\u672a\u8bbe\u7f6egpu":84,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":35,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":79,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":82,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":70,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6e":101,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6etest":1,"\u5982\u679c\u6ca1\u8fc7":73,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":82,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":20,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":72,"\u5982\u679c\u7528\u6237\u4e0d\u663e\u793a\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":2,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":57,"\u5982\u679c\u7528\u6237\u60f3\u8981\u4e86\u89e3\u8be6\u7ec6\u7684\u6570\u636e\u96c6\u7684\u683c\u5f0f":92,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":58,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":34,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":72,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":79,"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":80,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":53,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":53,"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":53,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":72,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":71,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":47,"\u5982\u679c\u8981\u4f7f\u7528\u53cc\u5411lstm":100,"\u5982\u679c\u8981\u4f7f\u7528gpu":61,"\u5982\u679c\u8981\u542f\u7528gpu":80,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":73,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":73,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":58,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u542f\u52a8\u6210\u529f\u7684\u8bdd":98,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":58,"\u5982\u679c\u8bbe\u7f6e":2,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":82,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":73,"\u5982\u679c\u8bf4\u4e00\u4e2adocker\u955c\u50cf\u5c31\u662f\u4e00\u4e2a\u7a0b\u5e8f":61,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":34,"\u5982\u679c\u8f93\u51fa\u662fno":61,"\u5982\u679c\u8fd0\u884c":53,"\u5982\u679c\u8fd0\u884c\u6210\u529f":[94,100],"\u5982\u679c\u8fd8\u4e0d\u884c":53,"\u5982\u679c\u96c6\u7fa4\u8282\u70b9\u6570\u91cf\u5c11":80,"\u5982\u679c\u9700\u8981\u5305\u542b\u66f4\u591a\u7684\u4f9d\u8d56":61,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":74,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":74,"\u5982\u679cgpu":75,"\u5982\u679clearning_rate\u592a\u5927":58,"\u5982\u679clearning_rate\u592a\u5c0f":58,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0gpu":75,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":75,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":53,"\u5982\u679cparamet":20,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":73,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":56,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":73,"\u5982\u9ad8\u4eae\u90e8\u5206":79,"\u5b50":68,"\u5b50\u53e5":70,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":70,"\u5b50\u76ee\u5f55":72,"\u5b57\u5178":101,"\u5b57\u5178\u4f1a\u5305\u542b\u8f93\u5165\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u5355\u8bcd":101,"\u5b57\u5178\u5171\u5305\u542b":92,"\u5b57\u5178\u6587\u4ef6":[99,100],"\u5b57\u5178\u91c7\u7528utf8\u7f16\u7801":92,"\u5b57\u5178imdb":100,"\u5b57\u6bb5\u4e2d":87,"\u5b57\u6bb5\u4e3a\u4f8b":56,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":87,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":87,"\u5b57\u7b26\u4e32":21,"\u5b58\u50a8":21,"\u5b58\u50a8\u5377":85,"\u5b58\u50a8\u5728\u8bb0\u5fc6\u5355\u5143\u533a\u5757\u7684\u5386\u53f2\u4fe1\u606f\u88ab\u66f4\u65b0\u7528\u6765\u8fed\u4ee3\u7684\u5b66\u4e60\u5355\u8bcd\u4ee5\u5408\u7406\u7684\u5e8f\u5217\u7a0b\u73b0":100,"\u5b58\u50a8\u6a21\u578b\u7684\u8def\u5f84":101,"\u5b58\u50a8\u7740\u7535\u5f71\u6216\u7528\u6237\u4fe1\u606f":98,"\u5b58\u5165settings\u5bf9\u8c61":2,"\u5b58\u5728\u6216\u66f4\u6539\u4e3a\u5176\u5b83\u6a21\u578b\u8def\u5f84":100,"\u5b66\u4e60":72,"\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u5b66\u4e60\u7387\u4e3a":58,"\u5b66\u4e60\u7b97\u6cd5":59,"\u5b66\u672f":97,"\u5b81\u6ce2":68,"\u5b83\u4e0d\u4ec5\u80fd\u591f\u5904\u7406imdb\u6570\u636e":100,"\u5b83\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4f5c\u4e3a\u7f51\u7edc\u7684\u51fa\u53e3":59,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":21,"\u5b83\u4eec\u8fd8\u53ef\u4ee5\u4f9b\u90a3\u4e9b\u8fd0\u884c\u66f4\u590d\u6742\u7684\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":80,"\u5b83\u4f1a\u5728dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":2,"\u5b83\u4f7f\u752850\u5c42\u7684resnet\u6a21\u578b\u6765\u5bf9":94,"\u5b83\u5305\u542b\u4e86\u8fd9\u4e2a\u8f6f\u4ef6\u672c\u8eab\u548c\u5b83\u6240\u4f9d\u8d56\u7684\u8fd0\u884c\u73af\u5883":61,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":74,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":74,"\u5b83\u5305\u542b\u7684\u5c5e\u6027\u53c2\u6570\u5982\u4e0b":2,"\u5b83\u5305\u62ec\u4e86\u4e00\u4e2a\u53cc\u5411\u7684gru\u4f5c\u4e3a\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668":101,"\u5b83\u53eb\u505a":71,"\u5b83\u53ef\u4ee5\u5728\u53e5\u5b50\u7ea7\u522b\u5229\u7528\u53ef\u6269\u5c55\u7684\u4e0a\u4e0b\u6587":100,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":80,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":73,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":79,"\u5b83\u53ef\u4ee5\u88ab\u5e94\u7528\u4e8e\u8fdb\u884c\u673a\u5668\u7ffb\u8bd1":101,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":74,"\u5b83\u540c\u65f6\u5b66\u4e60\u6392\u5217":101,"\u5b83\u548c\u6570\u636e\u4f20\u5165\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":2,"\u5b83\u5b58\u50a8\u5f53\u524d\u8282\u70b9\u6240\u6709\u8bad\u7ec3":80,"\u5b83\u5b9a\u4e49\u4e86":71,"\u5b83\u5b9a\u4e49\u4e86\u6a21\u578b\u53c2\u6570\u6539\u53d8\u7684\u89c4\u5219":59,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":71,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":80,"\u5b83\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u5411\u91cf\u7684\u5e8f\u5217":101,"\u5b83\u5c06\u8fd4\u56de\u5982\u4e0b\u7684\u5b57\u5178":94,"\u5b83\u5c31\u4f1a\u5728\u6e90\u8bed\u53e5\u4e2d\u641c\u7d22\u51fa\u6700\u76f8\u5173\u4fe1\u606f\u7684\u4f4d\u7f6e\u7684\u96c6\u5408":101,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":57,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":74,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":68,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":68,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":80,"\u5b83\u6a21\u62df\u4e86\u89e3\u7801\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u5728\u6e90\u8bed\u53e5\u4e2d\u7684\u641c\u7d22":101,"\u5b83\u7684":71,"\u5b83\u7684\u529f\u80fd\u662f":75,"\u5b83\u7684\u6536\u655b\u901f\u5ea6\u6bd4":100,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":67,"\u5b83\u7684\u76ee\u7684\u662f\u9884\u6d4b\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\u8868\u8fbe\u7684\u60c5\u611f\u6001\u5ea6":100,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":74,"\u5b83\u76f4\u63a5\u5b66\u4e60\u6bb5\u843d\u8868\u793a":100,"\u5b83\u80fd\u591f\u4ece\u8bcd\u7ea7\u5230\u5177\u6709\u53ef\u53d8\u4e0a\u4e0b\u6587\u957f\u5ea6\u7684\u4e0a\u4e0b\u6587\u7ea7\u522b\u6765\u603b\u7ed3\u8868\u793a":100,"\u5b83\u8868\u793a":72,"\u5b83\u8bfb\u5165\u6570\u636e\u5e76\u5c06\u5b83\u4eec\u4f20\u8f93\u5230\u63a5\u4e0b\u6765\u7684\u7f51\u7edc\u5c42":59,"\u5b83\u8fd4\u56degen":101,"\u5b83\u8fd4\u56detrain":101,"\u5b83\u9700\u8981\u5728\u8fd9\u91cc\u6307\u5b9a":100,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":74,"\u5b89\u6392":68,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":64,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":35,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":77,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":72,"\u5b89\u88c5\u6587\u6863":63,"\u5b89\u88c5\u6d41\u7a0b":96,"\u5b89\u88c5\u8be5\u8f6f\u4ef6\u5305\u5c31\u53ef\u4ee5\u5728python\u73af\u5883\u4e0b\u5b9e\u73b0\u6a21\u578b\u9884\u6d4b":4,"\u5b89\u88c5paddlepaddl":96,"\u5b89\u88c5pillow":93,"\u5b89\u9759":68,"\u5b8c\u6210":73,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":70,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":87,"\u5b8c\u6210\u5f00\u53d1":61,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":21,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":67,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":63,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":56,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":58,"\u5b8c\u6574\u7684\u4ee3\u7801\u89c1":4,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":74,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":71,"\u5b98\u65b9\u6587\u6863":60,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u5b9a\u4e49\u4e00\u4e2apython\u7684":2,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":70,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u6570\u636e\u69fd":99,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784":93,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784\u5e76\u4fdd\u5b58\u4e3a":59,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":57,"\u5b9a\u4e49\u4f4d\u7f6e":75,"\u5b9a\u4e49\u5728\u5916\u5c42":70,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":82,"\u5b9a\u4e49\u6570\u636e\u6765\u6e90":59,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":71,"\u5b9a\u4e49\u7c7b\u578b":75,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":71,"\u5b9a\u4e49\u8bad\u7ec3\u6570\u6910\u548c\u6d4b\u8bd5\u6570\u6910\u63d0\u4f9b\u8005":100,"\u5b9a\u4e49\u8f93\u5165":75,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b":59,"\u5b9a\u4e49\u8f93\u51fa":75,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":71,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":71,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":63,"\u5b9e\u4f8b\u5982\u4e0b":99,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":68,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":71,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5728":75,"\u5b9e\u73b0\u5bf9":76,"\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u51fd\u6570":2,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":75,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":74,"\u5b9e\u73b0\u7684":57,"\u5b9e\u73b0\u7b80\u5355":34,"\u5b9e\u73b0\u7ec6\u8282":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":70,"\u5b9e\u73b0\u8be5\u5c42\u7684c":74,"\u5b9e\u9645\u4e0a":61,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":57,"\u5b9e\u9645\u4e0a\u53ea\u6709":94,"\u5b9e\u9645\u4e0a\u662fcsv\u6587\u4ef6":97,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":56,"\u5ba2\u6237":68,"\u5ba2\u6237\u670d\u52a1":97,"\u5bb6":68,"\u5bb9\u5668":[61,85],"\u5bb9\u5668\u4e0d\u4f1a\u4fdd\u7559\u5728\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e":85,"\u5bb9\u5668\u4f7f\u7528":61,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":87,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":56,"\u5bbf\u4e3b\u673a\u662flinux":66,"\u5bbf\u4e3b\u673a\u7684c":[65,66],"\u5bbf\u4e3b\u673a\u76ee\u5f55":85,"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":79,"\u5bf9":68,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":[2,63],"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":[2,63],"\u5bf9\u4e8e":71,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":34,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":68,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":72,"\u5bf9\u4e8e\u5185\u5b58\u8f83\u5c0f\u7684\u673a\u5668":2,"\u5bf9\u4e8e\u5355\u5c42rnn":68,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":68,"\u5bf9\u4e8e\u53cc\u5c42rnn":68,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":34,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":68,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":34,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":34,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":74,"\u5bf9\u4e8e\u6811\u7684\u6bcf\u4e00\u5c42":101,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":68,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":68,"\u5bf9\u4e8e\u6bcf\u4f4d\u7528\u6237":98,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":35,"\u5bf9\u4e8e\u6bcf\u79cdc":35,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":96,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":71,"\u5bf9\u4e8eamazon":96,"\u5bf9\u4e8erasspberri":66,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":74,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":58,"\u5bf9\u56fe\u7247\u8fdb\u884c\u9884\u5904\u7406":93,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":73,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":70,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":70,"\u5bf9\u5e94\u4e8e\u5b57\u5178":92,"\u5bf9\u5e94\u7684":2,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":75,"\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u9884\u5904\u7406\u7684\u57fa\u672c\u547d\u4ee4\u662f":101,"\u5bf9\u6574\u4e2a\u65b0\u5411\u91cf\u96c6\u5408\u7684\u6bcf\u4e00\u4e2a\u7ef4\u5ea6\u53d6\u6700\u5927\u503c\u6765\u8868\u793a\u6700\u540e\u7684\u53e5\u5b50":96,"\u5bf9\u6587\u6863\u5904\u7406\u540e\u5f62\u6210\u7684\u5355\u8bcd\u5411\u91cf":100,"\u5bf9\u673a\u5668\u7ffb\u8bd1\u7684\u4eba\u5de5\u8bc4\u4f30\u5de5\u4f5c\u5f88\u5e7f\u6cdb\u4f46\u4e5f\u5f88\u6602\u8d35":101,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":74,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":74,"\u5bf9\u6bd4":34,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":74,"\u5bf9\u7528\u6237\u6765\u8bf4":2,"\u5bf9\u8bad\u7ec3\u6570\u636e\u8fdb\u884cshuffl":2,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":73,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":73,"\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":96,"\u5bf9\u8c61":58,"\u5bf9\u8c61\u5b58\u50a8\u4e3a\u6587\u4ef6":98,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":35,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":70,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":47,"\u5bf9\u9762":68,"\u5bf9check":2,"\u5bf9sparse_binary_vector\u548csparse_float_vector":[2,63],"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":35,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":56,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":56,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":53,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":58,"\u5c01\u88c5\u4e86":79,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":74,"\u5c06":[2,47,58,79,96],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":20,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":71,"\u5c06\u4e3b\u673a\u4e0a\u7684\u6587\u4ef6\u6216\u76ee\u5f55\u6302\u8f7d\u5230":61,"\u5c06\u4ed6\u4eec\u79fb\u52a8\u5230\u76ee\u5f55":98,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":65,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":82,"\u5c06\u5176\u8bbe\u7f6e\u6210":56,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":68,"\u5c06\u542b\u6709\u5b50\u53e5":70,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u5c06\u56fe\u7247\u6309\u7167\u4e0a\u8ff0\u7ed3\u6784\u5b58\u50a8\u597d\u4e4b\u540e":93,"\u5c06\u5728":93,"\u5c06\u5728\u8fd0\u884c\u65f6\u62a5\u9519":80,"\u5c06\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u5728kubernetes\u4e2d\u63cf\u8ff0\u6210\u4e3a\u7edf\u4e00\u7684\u8d44\u6e90\u5f62\u5f0f":85,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":68,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":82,"\u5c06\u5927\u91cf\u7684":34,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":58,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":71,"\u5c06\u6570\u636e\u5904\u7406\u6210\u89c4\u8303\u683c\u5f0f":92,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8fdb\u884c\u8bad\u7ec3":2,"\u5c06\u6570\u636e\u8f6c\u6362\u4e3apaddle\u7684\u683c\u5f0f":93,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":47,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":74,"\u5c06\u65e5\u5fd7\u5199\u5165\u6587\u4ef6":98,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":58,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":73,"\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c\u6587\u4ef6":2,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":87,"\u5c06\u6bcf\u4e2a\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6\u5408\u5e76\u4e3a\u4e00\u4e2a\u6587\u4ef6":101,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":87,"\u5c06\u7528\u4e8epython":75,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":87,"\u5c06\u884c\u4e2d\u7684\u6570\u636e\u8f6c\u6362\u6210\u4e0einput_types\u4e00\u81f4\u7684\u683c\u5f0f":2,"\u5c06\u88ab\u5206\u4e3a":92,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":87,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747":96,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":80,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":68,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":73,"\u5c06\u900f\u660e":80,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":56,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":87,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":47,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":58,"\u5c06recurr":57,"\u5c11\u4e8e5":80,"\u5c1a\u53ef":68,"\u5c31":68,"\u5c31\u4f1a\u751f\u6210\u975e\u5e38\u591a\u7684gener":2,"\u5c31\u53ef\u4ee5\u518d\u8fd0\u884c\u53e6\u4e00\u4e2anginx":61,"\u5c31\u53ef\u4ee5\u5c06\u6570\u636e\u4f20\u9001\u7ed9paddlepaddle\u4e86":2,"\u5c31\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u6587\u4ef6\u6301\u4e45\u5316\u5b58\u50a8":85,"\u5c31\u53ef\u4ee5\u6309":72,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":56,"\u5c31\u662f":68,"\u5c31\u662f\u6a21\u578b\u7684\u53c2\u6570":59,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":79,"\u5c31\u80fd\u591f\u5f88\u65b9\u4fbf\u7684\u5b8c\u6210\u6570\u636e\u4e0b\u8f7d\u548c\u76f8\u5e94\u7684\u9884\u5904\u7406\u5de5\u4f5c":96,"\u5c31\u8fd9\u4e48\u7b80\u5355":61,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":79,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":34,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":61,"\u5c3a\u5bf8":94,"\u5c3d\u65e9\u62a5\u9519":75,"\u5c40\u90e8\u5173\u8054\u6027\u8d28\u548c\u7a7a\u95f4\u4e0d\u53d8\u6027\u8d28":93,"\u5c42\u540e\u5f97\u5230\u6df1\u5ea6":99,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":74,"\u5c42\u6743\u91cd":94,"\u5c42\u6b21\u5316\u7684rnn":70,"\u5c42\u7279\u5f81":94,"\u5c42\u7684\u540d\u79f0\u4e0e":71,"\u5c42\u7684\u5927\u5c0f":74,"\u5c42\u7684\u7279\u5f81":94,"\u5c42\u7684\u7c7b\u578b":74,"\u5c42\u7684\u8f93\u5165":99,"\u5c42\u7684\u8f93\u5165\u548c\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u4e2a":99,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":71,"\u5c42\u7ec4\u6210\u4e00\u5bf9":99,"\u5c45\u7136":68,"\u5c55\u793a\u4e86\u4e00\u79cd\u65b9\u6cd5":101,"\u5c55\u793a\u4e86\u4e0a\u8ff0\u7f51\u7edc\u6a21\u578b\u7684\u8bad\u7ec3\u6548\u679c":96,"\u5c55\u793a\u4e86\u5982\u4f55\u5c06\u6bcf\u4e2a\u7279\u5f81\u6620\u5c04\u5230\u4e00\u4e2a\u5411\u91cf":98,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":57,"\u5c5e\u6027":[75,99],"\u5d4c\u5165\u5c42":98,"\u5d4c\u5165\u7279\u5f81\u5b57\u5178":98,"\u5d4c\u5165\u7f16\u53f7\u4f1a\u6839\u636e\u5355\u8bcd\u6392\u5e8f":98,"\u5de5\u4f5c\u6a21\u5f0f":82,"\u5de5\u4f5c\u7a7a\u95f4":80,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":80,"\u5de5\u4f5c\u7a7a\u95f4\u6839\u76ee\u5f55":80,"\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55\u7684\u5de5\u4f5c\u7a7a\u95f4":80,"\u5de5\u4f5c\u7a7a\u95f4\u914d\u7f6e":80,"\u5de5\u5177":100,"\u5de5\u5177\u4e2d\u7684\u811a\u672c":100,"\u5de5\u5177\u6765\u7ba1\u7406":73,"\u5de5\u5177\u94fe\u7684android":65,"\u5de5\u7a0b\u5e08":97,"\u5de6\u56fe\u6784\u9020\u7f51\u7edc\u6a21\u5757\u7684\u65b9\u5f0f\u88ab\u7528\u4e8e34\u5c42\u7684\u7f51\u7edc\u4e2d":94,"\u5de6\u8fb9\u662f":94,"\u5dee\u8bc4":96,"\u5df2\u6253\u5f00":73,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":82,"\u5df2\u7ecf\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u8fd9\u4e24\u4e2a\u6587\u4ef6":80,"\u5e02\u573a":97,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":79,"\u5e0c\u671b\u80fd\u8ba9\u6211\u4eec\u77e5\u6653":98,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":75,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":70,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":70,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":67,"\u5e38\u5e38\u51fa\u73b0":53,"\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u5305\u62ecmomentum":96,"\u5e38\u89c1\u7684\u53ef\u9009\u5b58\u50a8\u670d\u52a1\u5305\u62ec":85,"\u5e72\u51c0":68,"\u5e73\u53f0\u4e3a\u60f3\u89c2\u6d4b\u8bcd\u5411\u91cf\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u6587\u672c\u6a21\u578b\u7684\u529f\u80fd":92,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":20,"\u5e73\u5747\u6545\u969c\u7387":20,"\u5e73\u5747\u7279\u5f81\u56fe\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":93,"\u5e74\u9f84":97,"\u5e74\u9f84\u4ece\u4e0b\u5217\u5217\u8868\u8303\u56f4\u4e2d\u9009\u53d6":97,"\u5e74\u9f84\u548c\u804c\u4e1a":98,"\u5e76\u4e0d\u4fdd\u8bc1":74,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":68,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":87,"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":68,"\u5e76\u4e0d\u96be":72,"\u5e76\u4e14":[2,71],"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":76,"\u5e76\u4e14\u4f7f\u7528":35,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":68,"\u5e76\u4e14\u5206\u522b\u91cd\u547d\u540d\u6587\u4ef6\u540e\u7f00":101,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":84,"\u5e76\u4e14\u5305\u62ecunit":73,"\u5e76\u4e14\u53ea\u6709\u4e00\u4e2a\u6743\u91cd":94,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":56,"\u5e76\u4e14\u540e\u7eed\u4ecd\u5728\u4e0d\u65ad\u6539\u8fdb":59,"\u5e76\u4e14\u542f\u52a8\u540e\u6267\u884c":61,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":87,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":2,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":34,"\u5e76\u4e14\u5728\u968f\u540e\u7684\u8bfb\u53d6\u6570\u636e\u8fc7\u7a0b\u4e2d\u586b\u5145\u8bcd\u8868":96,"\u5e76\u4e14\u5728dataprovider\u4e2d\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":1,"\u5e76\u4e14\u5b83\u4eec\u7684\u987a\u5e8f\u4e0e":94,"\u5e76\u4e14\u5bf9\u7528\u6237\u7684\u7279\u5f81\u505a\u540c\u6837\u7684\u64cd\u4f5c":98,"\u5e76\u4e14\u5c06\u9884\u5904\u7406\u597d\u7684\u6570\u636e\u96c6\u5b58\u653e\u5728":101,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":63,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":72,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":53,"\u5e76\u4e14\u7b2c\u4e8c\u4e2a\u662f\u53cd\u5411lstm":100,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":75,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":73,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":34,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":75,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":73,"\u5e76\u4e14\u8fd0\u884c":72,"\u5e76\u4e14\u901a\u8fc7\u7ed9\u51fa\u5f53\u524d\u76ee\u6807\u5355\u8bcd\u6765\u9884\u6d4b\u4e0b\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":101,"\u5e76\u4e14\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u7684\u6240\u6709\u8282\u70b9\u5c06\u5728\u6b63\u5e38\u60c5\u51b5\u4e0b\u5904\u7406\u5177\u6709\u76f8\u540c\u903b\u8f91\u4ee3\u7801\u7684\u6587\u4ef6":80,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":74,"\u5e76\u4e14cpu":75,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":58,"\u5e76\u4f20\u5165\u76f8\u5e94\u7684\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316paddlepaddl":4,"\u5e76\u4f7f\u7528":99,"\u5e76\u4f7f\u7528\u4e86dropout":96,"\u5e76\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u6765\u5bf9\u56fe\u7247\u8fdb\u884c\u5206\u7c7b":93,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":73,"\u5e76\u521b\u5efaoptim":63,"\u5e76\u521d\u59cb\u5316":75,"\u5e76\u5220\u9664":47,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":20,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":20,"\u5e76\u53d1\u5e03\u5230pypi":47,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":74,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":71,"\u5e76\u5728\u7b14\u8bb0\u672c\u4e0a\u901a\u8fc7ssh\u4e0e\u5176\u8fde\u63a5":61,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":74,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":57,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":21,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5e76\u5b89\u88c5\u4e86python":53,"\u5e76\u5b9a\u4e49\u5143\u7c7b":75,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":53,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":74,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":71,"\u5e76\u5c06\u5b83\u4eec\u6309\u7167\u542f\u53d1\u4ee3\u4ef7":101,"\u5e76\u5c06\u5b83\u4eec\u653e\u5728":101,"\u5e76\u5c06\u6bcf\u8f6e\u7684\u6a21\u578b\u7ed3\u679c\u5b58\u653e\u5728":59,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":57,"\u5e76\u5c06c":35,"\u5e76\u5c06develop\u548ctest\u6570\u636e\u5206\u522b\u653e\u5165\u4e0d\u540c\u7684\u6587\u4ef6\u5939":101,"\u5e76\u60f3\u4f7f\u7528gpu\u6765\u8bad\u7ec3\u8bbe\u7f6e\u4e3atru":100,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":20,"\u5e76\u6307\u5b9abatch":101,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":2,"\u5e76\u66f4\u6362job":54,"\u5e76\u6b22\u8fce\u60a8\u6765\u53c2\u4e0e\u8d21\u732e":100,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":34,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":75,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":75,"\u5e76\u7531":99,"\u5e76\u7ed9\u51fa\u5206\u7c7b\u7ed3\u679c":93,"\u5e76\u7ed9\u51fa\u7684\u76f8\u5173\u6a21\u578b\u683c\u5f0f\u7684\u5b9a\u4e49":92,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":[65,66],"\u5e76\u88ab\u53cd\u5411\u5904\u7406":99,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":21,"\u5e76\u89c2\u5bdf\u7ed3\u679c":79,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":75,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":73,"\u5e76\u8bbe\u7f6e":80,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":63,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":47,"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":96,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":47,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":75,"\u5e8a\u4e0a\u7528\u54c1":68,"\u5e8a\u57ab":68,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":67,"\u5e8f\u5217\u5230\u5e8f\u5217":101,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":70,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":67,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":70,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":70,"\u5e8f\u5217\u7684\u5f00\u59cb":101,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":67,"\u5e8f\u5217\u7684\u7ed3\u5c3e":101,"\u5e8f\u5217\u7684\u7ed3\u675f":101,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":56,"\u5e93":80,"\u5e93\u7684\u8def\u5f84":80,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":71,"\u5e94\u7528\u6a21\u578b":96,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":73,"\u5e94\u8be5":68,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":71,"\u5e94\u8be5\u8bf4\u8c22\u8c22":73,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":72,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":58,"\u5e95\u5c42\u8fdb\u7a0b":80,"\u5efa\u7acb\u4e00\u4e2a":73,"\u5efa\u8bae":[47,73],"\u5efa\u8bae\u5c06\u5176\u8bbe\u7f6e\u4e3a\u8f83\u5927":80,"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":82,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":35,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":73,"\u5f00\u53d1\u4eba\u5458\u53ef\u4ee5\u5728docker\u5f00\u53d1\u955c\u50cf\u4e2d\u5f00\u53d1paddlepaddl":61,"\u5f00\u53d1\u8005\u4f7f\u7528":72,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":47,"\u5f00\u53d1\u955c\u50cf":[61,73],"\u5f00\u53d1\u955c\u50cf\u5305\u542b\u4e86\u4ee5\u4e0b\u5de5\u5177":61,"\u5f00\u5934":75,"\u5f00\u59cb":59,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":20,"\u5f00\u59cb\u6807\u8bb0":71,"\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b":96,"\u5f00\u59cb\u9636\u6bb5":79,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":81,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5f15\u5165lstm\u6a21\u578b\u4e3b\u8981\u662f\u4e3a\u4e86\u514b\u670d\u6d88\u5931\u68af\u5ea6\u7684\u95ee\u9898":100,"\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":2,"\u5f15\u53d1":12,"\u5f15\u5bfc\u5c42":71,"\u5f15\u7528":80,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":70,"\u5f3a\u70c8\u63a8\u8350":68,"\u5f3a\u70c8\u63a8\u8350\u4f7f\u7528virtualenv\u6765\u521b\u9020\u4e00\u4e2a\u5e72\u51c0\u7684python\u73af\u5883":98,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":71,"\u5f53":84,"\u5f53\u4f20\u9012\u76f8\u540c\u7684\u6837\u672c\u6570\u65f6":100,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":74,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":58,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":2,"\u5f53\u524d\u5355\u8bcd\u5728\u76f8\u6bd4\u4e4b\u4e0b\u603b\u662f\u88ab\u5f53\u4f5c\u771f\u503c":101,"\u5f53\u524d\u5355\u8bcd\u662f\u89e3\u7801\u5668\u6700\u540e\u4e00\u6b65\u7684\u8f93\u51fa":101,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":71,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":58,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":68,"\u5f53\u524d\u8bc4\u4f30\u4e2d":101,"\u5f53\u524dbatch\u7684cost":101,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":96,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":96,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":47,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":82,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":82,"\u5f53\u5bb9\u5668\u56e0\u4e3a\u5404\u79cd\u539f\u56e0\u88ab\u9500\u6bc1\u65f6":85,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":58,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":87,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":82,"\u5f53\u6a21\u578b\u8bad\u7ec3\u597d\u4e86\u4e4b\u540e":96,"\u5f53\u6a21\u5f0f\u4e3a":82,"\u5f53\u7136":79,"\u5f53\u7136\u53ef\u4ee5":72,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":35,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":57,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":74,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":71,"\u5f53\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u65f6":2,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":82,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":84,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":76,"\u5f53\u9700\u8981\u5feb\u901f\u6216\u8005\u9891\u7e41\u7684\u8bc4\u4f30\u65f6":101,"\u5f53classif":101,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f53n1":56,"\u5f62\u6210recurr":70,"\u5f62\u6210recurrent\u8fde\u63a5":70,"\u5f62\u72b6":94,"\u5f88":[68,96],"\u5f88\u591a":[68,72],"\u5f88\u591a\u5f00\u53d1\u8005\u4f1a\u4f7f\u7528\u8fdc\u7a0b\u7684\u5b89\u88c5\u6709gpu\u7684\u670d\u52a1\u5668\u5de5\u4f5c":61,"\u5f88\u5b89\u9759":68,"\u5f88\u5e72\u51c0":68,"\u5f88\u65b9\u4fbf":68,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":79,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":54,"\u5f88\u9002\u5408\u6784\u5efa\u7528\u4e8e\u7406\u89e3\u56fe\u7247\u5185\u5bb9\u7684\u6a21\u578b":93,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"\u5f88\u96be\u6574\u4f53\u4fee\u6b63":2,"\u5f8b\u5e08":97,"\u5f97":68,"\u5f97\u4f7f\u7528":34,"\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":96,"\u5f97\u5230\u6700\u597d\u8f6e\u6b21\u4e0b\u7684\u6a21\u578b":98,"\u5f97\u5230\u8f93\u51fa\u503c":75,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":70,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":71,"\u5faa\u73af\u7f51\u7edc\u4ece":71,"\u5fc5\u8981":35,"\u5fc5\u987b":74,"\u5fc5\u987b\u4e00\u81f4":2,"\u5fc5\u987b\u4f7f\u7528python\u5173\u952e\u8bcd":2,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":68,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":70,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":71,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":65,"\u5fc5\u987b\u914d\u7f6e\u4e3a":66,"\u5fd8\u8bb0\u95e8\u548c\u8f93\u51fa\u95e8":100,"\u5feb":[68,100],"\u5feb\u901f\u5165\u95e8":95,"\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u7684kubernetes\u670d\u52a1\u5668":85,"\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":85,"\u6027\u4ef7\u6bd4":68,"\u6027\u522b":[97,98],"\u6027\u80fd\u5206\u6790":79,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":79,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":79,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":72,"\u6027\u80fd\u8c03\u4f18":81,"\u603b\u4f53\u6765\u8bf4":68,"\u603b\u8ba1\u7684\u53c2\u6570\u4e2a\u6570":92,"\u603b\u8bc4\u520610\u5206":100,"\u6050\u6016\u7247":97,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":79,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":79,"\u60a8\u53ef\u4ee5\u5bfc\u5165":79,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":79,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":71,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":79,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":79,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":79,"\u60a8\u9700\u8981\u66f4\u6539":61,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":79,"\u60ac\u7591\u7247":97,"\u60c5\u6001\u52a8\u8bcd":99,"\u60c5\u611f\u5206\u6790":[47,95],"\u60c5\u611f\u5206\u6790\u4e5f\u5e38\u7528\u4e8e\u57fa\u4e8e\u5927\u91cf\u8bc4\u8bba\u548c\u4e2a\u4eba\u535a\u5ba2\u6765\u76d1\u63a7\u793e\u4f1a\u5a92\u4f53":100,"\u60c5\u611f\u5206\u6790\u662f\u81ea\u7136\u8bed\u8a00\u7406\u89e3\u4e2d\u6700\u5178\u578b\u7684\u95ee\u9898\u4e4b\u4e00":100,"\u60c5\u611f\u5206\u6790\u6709\u8bb8\u591a\u5e94\u7528\u573a\u666f":100,"\u60ca\u9669\u7535\u5f71":97,"\u60f3\u4e86\u89e3\u66f4\u591a\u7ec6\u8282\u53ef\u4ee5\u53c2\u8003pydataprovider\u90e8\u5206\u7684\u6587\u6863":100,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":71,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":82,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":82,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":82,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":82,"\u611f\u89c9":68,"\u620f\u5267":97,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":87,"\u6210\u5458":75,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":79,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":35,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":63,"\u6211\u4eec\u4ec5\u4ec5\u662f\u5c06\u6bcf\u4e2a\u7279\u5f81\u79cd\u7c7b\u6620\u5c04\u5230\u4e00\u4e2a\u7279\u5f81\u5411\u91cf\u4e2d":98,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":74,"\u6211\u4eec\u4ec5\u7528":98,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":86,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":87,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b\u522b":96,"\u6211\u4eec\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":2,"\u6211\u4eec\u4f1a\u53d1\u73b0\u6570\u636e\u96c6":101,"\u6211\u4eec\u4f1a\u5728":61,"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":74,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":74,"\u6211\u4eec\u4f7f\u7528":[74,80,100],"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":63,"\u6211\u4eec\u4f7f\u7528\u4e86":68,"\u6211\u4eec\u4f7f\u7528\u4e86\u4e00\u4e2a\u7f16\u89e3\u7801\u6a21\u578b\u7684\u6269\u5c55":101,"\u6211\u4eec\u4f7f\u7528\u4e86\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":100,"\u6211\u4eec\u4f7f\u7528\u5176\u4e2d\u7684":101,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u6211\u4eec\u4f7f\u7528\u6700\u5927\u6982\u7387\u7684\u6807\u7b7e\u4f5c\u4e3a\u7ed3\u679c":99,"\u6211\u4eec\u4f7f\u7528\u96c6\u675f\u641c\u7d22":101,"\u6211\u4eec\u4f7f\u7528paddlepaddle\u5728ilsvrc\u7684\u9a8c\u8bc1\u96c6\u517150":94,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":84,"\u6211\u4eec\u5047\u8bbe\u623f\u4ea7\u7684\u4ef7\u683c":59,"\u6211\u4eec\u5148\u4ece\u4e00\u6761\u968f\u673a\u7684\u76f4\u7ebf":59,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":76,"\u6211\u4eec\u51c6\u5907\u4e86\u4e00\u4e2a\u811a\u672c":93,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":63,"\u6211\u4eec\u53ea\u4f7f\u7528\u5df2\u7ecf\u6807\u6ce8\u8fc7\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":100,"\u6211\u4eec\u53ea\u6240\u4ee5\u4f7f\u7528lstm\u6765\u6267\u884c\u8fd9\u4e2a\u4efb\u52a1\u662f\u56e0\u4e3a\u5176\u6539\u8fdb\u7684\u8bbe\u8ba1\u5e76\u4e14\u5177\u6709\u95e8\u673a\u5236":100,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":86,"\u6211\u4eec\u53ea\u9700\u8981":72,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":68,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c":96,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":73,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":72,"\u6211\u4eec\u53ef\u4ee5":72,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":93,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":63,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":71,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":63,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":76,"\u6211\u4eec\u53ef\u4ee5\u5728":73,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":63,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":63,"\u6211\u4eec\u53ef\u4ee5\u5c06":80,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":67,"\u6211\u4eec\u53ef\u4ee5\u751f\u6210":98,"\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u89c2\u5bdf\u6a21\u578b\u7684\u53c2\u6570\u662f\u5426\u7b26\u5408\u9884\u671f\u6765\u8fdb\u884c\u68c0\u9a8c":59,"\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5728\u76ee\u5f55":100,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":70,"\u6211\u4eec\u53ef\u4ee5\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u505ableu\u8bc4\u4f30":101,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8bad\u7ec3\u6a21\u578b":101,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8fdb\u884c\u4ece\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u6587\u672c\u7ffb\u8bd1":101,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5982\u4e0b\u547d\u4ee4\u8fdb\u884c\u9884\u5904\u7406\u5de5\u4f5c":93,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":87,"\u6211\u4eec\u5728":76,"\u6211\u4eec\u57285\u5929\u91cc\u8bad\u7ec3\u4e8616\u4e2apass":101,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":71,"\u6211\u4eec\u5728\u62e5\u670950\u4e2a\u8282\u70b9\u7684\u96c6\u7fa4\u4e2d\u8bad\u7ec3\u6a21\u578b":101,"\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u9700\u8981\u5e38\u89c1\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":101,"\u6211\u4eec\u5728initialzier\u51fd\u6570\u91cc\u521d\u59cb\u5316\u8bcd\u8868":96,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":71,"\u6211\u4eec\u5c06":[87,98],"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":68,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":86,"\u6211\u4eec\u5c06\u4ee5":[80,96],"\u6211\u4eec\u5c06\u4ee5\u6700\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":96,"\u6211\u4eec\u5c06\u4f7f\u7528":71,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":71,"\u6211\u4eec\u5c06\u4f7f\u7528cifar":93,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":68,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u6d41\u7a0b\u7684\u811a\u672c":96,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":81,"\u6211\u4eec\u5c06\u5bf9\u8fd9\u4e24\u4e2a\u6b65\u9aa4\u7ed9\u51fa\u4e86\u8be6\u7ec6\u7684\u89e3\u91ca":96,"\u6211\u4eec\u5c06\u653e\u7f6e\u4f9d\u8d56\u5e93":80,"\u6211\u4eec\u5c06\u8bc4\u5206\u5206\u6210\u4e24\u90e8\u5206":98,"\u6211\u4eec\u5c06\u9610\u91ca\u5982\u4f55\u5728\u96c6\u7fa4\u4e0a\u8fd0\u884c\u5206\u5e03\u5f0f":80,"\u6211\u4eec\u5c31\u53ef\u4ee5\u7740\u624b\u5bf9\u5206\u7c7b\u6a21\u578b\u8fdb\u884c\u8bad\u7ec3\u4e86":93,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8bad\u7ec3\u6a21\u578b\u4e86":96,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8fdb\u884c\u9884\u6d4b\u4e86":96,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":73,"\u6211\u4eec\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u89e3\u51b3":59,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u68c0\u9a8c\u6a21\u578b\u7684\u597d\u574f":59,"\u6211\u4eec\u5e94\u5f53\u4f1a\u5f97\u5230\u4e00\u4e2a\u540d\u4e3acifar":93,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":74,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":74,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":57,"\u6211\u4eec\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":96,"\u6211\u4eec\u611f\u8c22":101,"\u6211\u4eec\u628apaddlepaddle\u7684\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":61,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":61,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":60,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u7f51\u7edc":100,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":21,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u6570\u636e\u9884\u5904\u7406\u811a\u672c":100,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u793a\u4f8b\u811a\u672c":94,"\u6211\u4eec\u63d0\u4f9b\u4e86\u56fd\u5185\u7684\u955c\u50cf\u670d\u52a1\u5668\u4f9b\u5927\u5bb6\u4f7f\u7528":61,"\u6211\u4eec\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u6784\u5efa\u5b57\u5178\u548c\u9884\u5904\u7406\u6570\u6910":100,"\u6211\u4eec\u63d0\u4f9b\u4e86c":94,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":61,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u65e0\u6cd5\u5728docker\u5bb9\u5668\u4e2d":61,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":68,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":71,"\u6211\u4eec\u7528":97,"\u6211\u4eec\u7528\u4ee5\u4e0b\u7684\u4e00\u4e9b":98,"\u6211\u4eec\u7528\u7f16\u53f7\u4f5c\u4e3akei":98,"\u6211\u4eec\u7528paddlepaddle\u89e3\u51b3\u4e86\u5355\u53d8\u91cf\u7ebf\u6027\u56de\u5f52\u95ee\u9898":59,"\u6211\u4eec\u7684":72,"\u6211\u4eec\u7684\u5b57\u5178\u4f7f\u7528\u5185\u90e8\u7684\u5206\u8bcd\u5de5\u5177\u5bf9\u767e\u5ea6\u77e5\u9053\u548c\u767e\u5ea6\u767e\u79d1\u7684\u8bed\u6599\u8fdb\u884c\u5206\u8bcd\u540e\u4ea7\u751f":92,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":73,"\u6211\u4eec\u7684\u8bad\u7ec3\u66f2\u7ebf\u5982\u4e0b":99,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":68,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":68,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u5173\u6ce8":100,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":73,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":67,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":76,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":86,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":71,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":68,"\u6211\u4eec\u9009\u62e9":21,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":75,"\u6211\u4eec\u901a\u5e38\u5728\u6240\u6709\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a":80,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":87,"\u6211\u4eec\u9075\u5faa":101,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":21,"\u6211\u4eec\u91c7\u7528\u4e0a\u9762\u7684\u7279\u5f81\u6a21\u677f":99,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":96,"\u6211\u4eec\u91c7\u7528\u7b2c\u4e8c\u4e2a\u65b9\u6cd5":61,"\u6211\u4eec\u9700\u8981":72,"\u6211\u4eec\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":93,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":76,"\u6211\u4eec\u9700\u8981\u521b\u5efa\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":101,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddle\u955c\u50cf":86,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":80,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":76,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":74,"\u6211\u4eec\u9700\u8981\u8bbe\u7f6e":98,"\u6211\u4eec\u9700\u8981\u9884\u5904\u7406\u6570\u6910\u5e76\u6784\u5efa\u4e00\u4e2a\u5b57\u5178":100,"\u6211\u4eec\u975e\u5e38\u6b22\u8fce\u60a8\u7528paddlepaddle\u6784\u5efa\u66f4\u597d\u7684\u793a\u4f8b":98,"\u6211\u4eec\u9884\u8bad\u7ec3\u5f97\u52304\u79cd\u4e0d\u540c\u7ef4\u5ea6\u7684\u8bcd\u5411\u91cf":92,"\u6211\u4eec\u9996\u5148\u5904\u7406\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u6587\u4ef6":98,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":63,"\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528imdb\u7684\u6d4b\u8bd5\u6570\u636e\u96c6\u4f5c\u4e3a\u9a8c\u8bc1":100,"\u6211\u5220\u9664\u4e86":73,"\u6211\u53ef\u4ee5\u7528":72,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":72,"\u6216":[2,79,93,99],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6216\u4e00\u4e2a\u5411\u91cf":70,"\u6216\u4e0d\u786e\u5b9a":97,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6216\u662f\u624b\u52a8\u7f16\u8f91\u751f\u6210":98,"\u6216\u6700\u5927\u503c":67,"\u6216\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":1,"\u6216\u7b2c\u4e00\u4e2a":67,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":67,"\u6216\u8005":[34,35,56,61,67,68,72,75,79],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[67,70],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":79,"\u6216\u8005\u53cd\u5411\u5730\u4ece":71,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":82,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":20,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":81,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u8def\u5f84\u7b49":1,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":68,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u6216\u8005\u662f\u4e00\u4e2a\u5c0f\u7684\u6587\u672c\u7247\u6bb5":100,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":79,"\u6216\u8005\u66f4\u65e9":58,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":68,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":21,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":21,"\u6216\u8005\u76f4\u63a5\u4f7f\u7528\u4e0b\u9762\u7684shell\u547d\u4ee4":94,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":56,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[65,66],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":56,"\u6216\u8005\u8fd0\u884c":53,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":84,"\u6216\u8005\u9700\u8981\u53d1\u5e03\u60a8\u7684\u5e94\u7528\u7684\u955c\u50cf":61,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":1,"\u6216\u8bbe\u7f6e\u4e3anone":1,"\u6216gpu":82,"\u6216gpu\u4e2a\u6570":100,"\u6218\u4e89\u7247":97,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":56,"\u623f":68,"\u623f\u95f4":68,"\u6240\u4ee5":[2,56],"\u6240\u4ee5\u4e00\u822c\u9700\u8981\u5bf9\u8bad\u7ec3\u7528\u7684\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u7a0d\u4f5c\u76f8\u5e94\u4fee\u6539\u624d\u80fd\u5728\u9884\u6d4b\u65f6\u4f7f\u7528":4,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":57,"\u6240\u4ee5\u4f60\u53ea\u7528\u6309\u4e0b\u9762\u7684\u7ed3\u6784\u6765\u7ec4\u7ec7\u6570\u6910\u5c31\u884c\u4e86":100,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":56,"\u6240\u4ee5\u53ef\u4ee5\u5229\u7528\u5982\u4e0b\u65b9\u6cd5\u8bfb\u53d6\u6a21\u578b\u7684\u53c2\u6570":59,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":86,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":20,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":68,"\u6240\u4ee5\u5982\u679c\u9700\u8981\u81ea\u884c\u914d\u7f6e\u5f00\u53d1\u73af\u5883\u9700\u8981\u8003\u8651\u7248\u672c\u7684\u56e0\u7d20":61,"\u6240\u4ee5\u5b83\u4eec\u4f7f\u7528\u540c\u4e00\u4e2aip\u5730\u5740":85,"\u6240\u4ee5\u5bf9":68,"\u6240\u4ee5\u5f88\u591a\u65f6\u5019\u4f60\u9700\u8981\u505a\u7684\u53ea\u662f\u5b9a\u4e49\u6b63\u786e\u7684\u7f51\u7edc\u5c42\u5e76\u628a\u5b83\u4eec\u8fde\u63a5\u8d77\u6765":59,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":79,"\u6240\u4ee5\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u5230docker":86,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":87,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":68,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6einput_typ":2,"\u6240\u4ee5\u653e\u4e00\u4e2a\u7a7a\u5217\u8868":59,"\u6240\u4ee5\u65e0\u9700\u5224\u65adavx\u5373\u53ef\u4f7f\u7528":61,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":57,"\u6240\u4ee5\u8bad\u7ec3":80,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":4,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":74,"\u6240\u4f7f\u7528\u7684\u7f16\u8bd1\u5668\u4e3aarm":66,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":68,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":35,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":73,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":82,"\u6240\u6709\u540c\u76ee\u5f55\u4e0b\u7684\u6587\u672c\u5b9e\u4f8b\u6587\u4ef6\u90fd\u662f\u540c\u7ea7\u522b\u7684":100,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":80,"\u6240\u6709\u6587\u4ef6\u5217\u8868":2,"\u6240\u6709\u672c\u5730\u8bad\u7ec3":80,"\u6240\u6709\u67b6\u6784":65,"\u6240\u6709\u6807\u8bb0\u7684\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6":100,"\u6240\u6709\u751f\u6210\u7684\u7684\u6587\u4ef6\u90fd\u5728build\u76ee\u5f55\u4e0b":61,"\u6240\u6709\u7684":[73,74],"\u6240\u6709\u7684\u4eba\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7531\u7528\u6237\u81ea\u613f\u63d0\u4f9b":97,"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":74,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":35,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":68,"\u6240\u6709\u7684\u7528\u6237\u4fe1\u606f\u90fd\u5305\u542b\u5728":97,"\u6240\u6709\u7684\u7535\u5f71\u4fe1\u606f\u90fd\u5305\u542b\u5728":97,"\u6240\u6709\u7684\u8bc4\u5206\u6570\u636e\u90fd\u5305\u542b\u5728":97,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":74,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":74,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":35,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":74,"\u6240\u6709\u8282\u70b9\u8fd0\u884c\u96c6\u7fa4\u4f5c\u4e1a\u7684\u4e3b\u673a\u540d\u6216":80,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":71,"\u6240\u6709\u914d\u7f6e\u90fd\u80fd\u5728":96,"\u6240\u6784\u5efa\u7f51\u7edc\u7ed3\u6784\u7684\u7684\u6df1\u5ea6\u6bd4\u4e4b\u524d\u4f7f\u7528\u7684\u7f51\u7edc\u6709\u5927\u5e45\u5ea6\u7684\u63d0\u9ad8":94,"\u6240\u793a":99,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":2,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":65,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u624b\u5de5\u827a\u8005":97,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":2,"\u624d\u4f1astop":2,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":68,"\u624d\u80fd\u5145\u5206\u5229\u7528mac":61,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":79,"\u6253\u5370\u5728\u5c4f\u5e55\u4e0a":98,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":60,"\u6253\u5f00":79,"\u6253\u5f00\u6587\u672c\u6587\u4ef6":2,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":77,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":35,"\u6267\u884c":[99,100],"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5c31\u53ef\u4ee5\u9884\u5904\u7406\u6570\u6910":100,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":75,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[65,66],"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":71,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[65,66],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":79,"\u6267\u884c\u7684\u547d\u4ee4\u5982\u4e0b":94,"\u6269\u5c55\u673a\u5236\u7b49\u529f\u80fd":85,"\u6279\u6b21\u540e\u6253\u5370\u65e5\u5fd7":98,"\u6279\u6b21\u5bf9\u5e73\u5747\u53c2\u6570\u8fdb\u884c\u6d4b\u8bd5":99,"\u6279\u6b21\u7684\u6570\u636e":98,"\u627e\u5230":71,"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":54,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":79,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":79,"\u6280\u672f\u5458":97,"\u628a":[21,74],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":21,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":76,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":72,"\u628a\u7528\u6237\u5728\u8d2d\u7269\u7f51\u7ad9":100,"\u628a\u7f16\u8bd1\u51fa\u6765\u7684paddlepaddle\u4e5f\u6253\u5305\u6210\u4e00\u4e2a\u955c":61,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":86,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":72,"\u6293\u53d6\u4ea7\u54c1\u7684\u7528\u6237\u8bc4\u8bba\u5e76\u5206\u6790\u4ed6\u4eec\u7684\u60c5\u611f":100,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":71,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":71,"\u62bd\u53d6\u51fa\u7684\u65b0\u8bcd\u8868\u7684\u4fdd\u5b58\u8def\u5f84":92,"\u62bd\u53d6\u5bf9\u5e94\u7684\u8bcd\u5411\u91cf\u6784\u6210\u65b0\u7684\u8bcd\u8868":92,"\u62c6\u5206\u5230\u4e0d\u540c\u6587\u4ef6\u5939":101,"\u62c6\u89e3":70,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":68,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":87,"\u62fc\u63a5":56,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf":96,"\u6301\u7eed\u96c6\u6210\u7cfb\u7edf\u4e5f\u53ef\u4ee5\u7b80\u5355\u5730\u590d\u73b0\u8fd9\u4e2a\u8fc7\u7a0b":61,"\u6302\u8f7dvolum":61,"\u6307\u5411\u4e00\u4e2alayer":70,"\u6307\u5b9a":[56,57,70,71],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":82,"\u6307\u5b9a\u4f7f\u75282":56,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":96,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":75,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":82,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":75,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":94,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u5f0f\u6765\u63d0\u53d6\u7279\u5f81":94,"\u6307\u5b9a\u63d0\u53d6\u7279\u5f81\u7684\u5c42":94,"\u6307\u5b9a\u662f\u5426\u4f7f\u7528gpu":94,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":75,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":96,"\u6307\u5b9a\u7684\u5b57\u5178\u5355\u8bcd\u6570":101,"\u6307\u5b9a\u7684\u6570\u636e\u5c06\u4f1a\u88ab\u6d4b\u8bd5":96,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":70,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":56,"\u6307\u5b9a\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e":96,"\u6307\u5b9abatch":101,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":82,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":68,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":20,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":82,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":82,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":82,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":82,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":82,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":82,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":82,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1":99,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1\u7684\u6807\u8bb0":99,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":82,"\u6309\u7167":66,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":87,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":72,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":57,"\u6309\u94ae":73,"\u633a":68,"\u633a\u597d":68,"\u6355\u83b7":96,"\u6362":68,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":67,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":63,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":63,"\u63a5\u4e0b\u6765":[75,96,100],"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":79,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":79,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":73,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":73,"\u63a5\u4e0b\u6765\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u8bad\u7ec3\u4e00\u4e2a\u6587\u672c\u5206\u7c7b\u6a21\u578b":96,"\u63a5\u4e0b\u6765\u7b49\u5f85":73,"\u63a5\u53d7":99,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":75,"\u63a5\u53d7\u7684\u4e1c\u897f":99,"\u63a5\u53d7\u8005":99,"\u63a5\u53e3":[34,35,75,76],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":76,"\u63a5\u53e3\u540d\u79f0":80,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":35,"\u63a5\u53e3\u63d0\u53d6\u7684\u7ed3\u679c\u662f\u4e00\u81f4\u7684":94,"\u63a5\u53e3\u662f":21,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":76,"\u63a5\u53e3\u6709\u4e00\u4e2a":56,"\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u636e":96,"\u63a5\u53e3\u6765\u52a0\u8f7d\u8be5\u6587\u4ef6":94,"\u63a5\u53e3\u6765\u6253\u5f00\u8be5\u6587\u4ef6":94,"\u63a5\u53e3\u7684":56,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a5\u7740\u6211\u4eec\u5c31\u80fd\u591f\u6253\u5f00\u6d4f\u89c8\u5668\u5728":61,"\u63a7\u5236":82,"\u63a7\u5236\u5982\u4f55\u6539\u53d8\u6a21\u578b\u53c2\u6570":59,"\u63a7\u5236\u662f\u5426\u751f\u6210\u5355\u5143\u6d4b\u8bd5":61,"\u63a7\u5236\u751f\u6210\u7684\u751f\u4ea7\u955c\u50cf\u662f\u5426\u652f\u6301avx":61,"\u63a7\u5236\u751f\u6210\u7684\u751f\u4ea7\u955c\u50cf\u662f\u5426\u652f\u6301gpu":61,"\u63a7\u5236\u7528\u6237\u6743\u9650":21,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":74,"\u63a8\u8350":68,"\u63a8\u8350\u4f7f\u7528":2,"\u63a8\u8350\u56fd\u5185\u7528\u6237\u4f7f\u7528docker":61,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":60,"\u63a8\u8350\u76f4\u63a5\u5b58\u653e\u5230\u8bad\u7ec3\u76ee\u5f55":1,"\u63a8\u8350\u7cfb\u7edf":80,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":73,"\u63a8\u9500\u5458":97,"\u63cf\u8ff0":60,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":72,"\u63cf\u8ff0\u7f51\u7edc\u7ed3\u6784\u548c\u4f18\u5316\u7b97\u6cd5":96,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u63cf\u8ff0\u95ee\u9898":73,"\u63cf\u8ff0kubernetes\u4e0a\u8fd0\u884c\u7684\u4f5c\u4e1a":85,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":77,"\u63d0\u4ea4pull":73,"\u63d0\u4f9b":80,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":87,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":80,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":80,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":80,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":67,"\u63d0\u4f9b\u6700\u65b0":61,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":21,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":80,"\u63d0\u51fa\u7684\u4ee3\u7801\u9700\u6c42":92,"\u63d0\u793a":53,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":63,"\u64cd\u4f5c":68,"\u64cd\u4f5c\u7cfb\u7edf":72,"\u64cd\u6301\u5bb6\u52a1\u8005":97,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[69,70],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":65,"\u652f\u6301rbd":85,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":87,"\u653e\u5fc3":68,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u6548\u679c\u603b\u7ed3":96,"\u6559\u7a0b\u6587\u6863\u5230":80,"\u6559\u80b2\u5de5\u4f5c\u8005":97,"\u6570":[70,99],"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":70,"\u6570\u636e":[28,101],"\u6570\u636e\u4e0b\u8f7d\u4e4b\u540e":93,"\u6570\u636e\u4e2d0":58,"\u6570\u636e\u5217\u8868":94,"\u6570\u636e\u5c06\u4fdd\u5b58\u5728":92,"\u6570\u636e\u5c42":[59,98],"\u6570\u636e\u5e94\u8be5\u5728\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a\u4e4b\u524d\u51c6\u5907\u597d":80,"\u6570\u636e\u63d0\u4f9b\u5668":81,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u4ec5\u4ec5\u662f\u8bfb\u53d6meta":98,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u7684\u7ec6\u8282\u6587\u6863\u53ef\u4ee5\u53c2\u8003":98,"\u6570\u636e\u76ee\u5f55\u4e2d\u7684\u6240\u6709\u6587\u4ef6\u88ab":80,"\u6570\u636e\u7c7b\u578b":4,"\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":2,"\u6570\u636e\u8bbf\u95ee":0,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":34,"\u6570\u636e\u8f93\u5165":70,"\u6570\u636e\u8f93\u5165\u683c\u5f0f":2,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6":97,"\u6570\u636e\u96c6\u63cf\u8ff0":98,"\u6570\u636e\u96c6\u6587\u4ef6\u5939\u540d\u79f0":101,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":21,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":21,"\u6570\u636e\u9884\u5904\u7406\u5b8c\u6210\u4e4b\u540e":96,"\u6570\u636e\u9884\u6d4b":99,"\u6570\u6910\u5b9a\u4e49":100,"\u6570\u6910\u8bf4\u660e\u6587\u6863":100,"\u6570\u6910\u96c6\u548c":100,"\u6570\u76ee":84,"\u6574\u4f53":68,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":68,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":87,"\u6574\u6570":74,"\u6574\u6570\u6807\u7b7e":[2,63],"\u6574\u6d01":68,"\u6587\u4e66\u5de5\u4f5c":97,"\u6587\u4ef6":[34,72,73,75,86,99],"\u6587\u4ef6\u4e2d":[75,87,94,97,99],"\u6587\u4ef6\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84\u548c\u8f93\u51fa\u7684\u76ee\u5f55":94,"\u6587\u4ef6\u4e2d\u6307\u5b9a\u8981\u63d0\u53d6\u7279\u5f81\u7684\u7f51\u7edc\u5c42\u7684\u540d\u5b57":94,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":75,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":75,"\u6587\u4ef6\u4e2d\u6ce8\u518cgpu":75,"\u6587\u4ef6\u4e2d\u7684":94,"\u6587\u4ef6\u4e2d\u7684\u6bcf\u884c\u90fd\u5fc5\u987b\u662f\u4e00\u4e2a\u53e5\u5b50":101,"\u6587\u4ef6\u4e3a":[56,101],"\u6587\u4ef6\u4e4b\u5916":73,"\u6587\u4ef6\u4e5f\u53ef\u4ee5\u7528\u4e8e\u5bf9\u6837\u672c\u8fdb\u884c\u9884\u6d4b":94,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":34,"\u6587\u4ef6\u5206\u5272\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":98,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":20,"\u6587\u4ef6\u540d\u79f0\u4e3a":98,"\u6587\u4ef6\u547d\u540d\u4ee5":75,"\u6587\u4ef6\u59390":87,"\u6587\u4ef6\u5939\u4e0b":77,"\u6587\u4ef6\u5939\u4e2d\u7684\u6bcf\u4e2a\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u5305\u542b\u4e24\u90e8\u5206":101,"\u6587\u4ef6\u5bf9\u5e94\u7684data":21,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u6587\u4ef6\u7684\u5206\u9694\u7b26\u4e3a":98,"\u6587\u4ef6\u7684\u6539\u53d8":73,"\u6587\u4ef6\u7684\u683c\u5f0f\u53ef\u4ee5":98,"\u6587\u4ef6\u7a0d\u6709\u5dee\u522b":93,"\u6587\u4ef6\u7cfb\u7edf\u4ee5\u53ca\u7f51\u7edc\u4e4b\u4e0a":61,"\u6587\u4ef6\u7d22\u5f15":80,"\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":96,"\u6587\u4ef6model":84,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":61,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":96,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217\u6570\u636e":2,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":96,"\u6587\u672c\u5377\u79ef\u5206\u53ef\u4e3a\u4e09\u4e2a\u6b65\u9aa4":96,"\u6587\u672c\u5377\u79ef\u91c7\u6837\u5c42":98,"\u6587\u672c\u6295\u5f71\u5c42":98,"\u6587\u672c\u683c\u5f0f\u7684\u5b9e\u4f8b\u6587\u4ef6":100,"\u6587\u6863":53,"\u6587\u68631":76,"\u6587\u68632":76,"\u6587\u6863\u7f16\u5199\u7b49\u5de5\u4f5c":61,"\u6587\u6863\u81ea\u52a8\u5206\u7c7b\u548c\u95ee\u7b54":99,"\u6587\u6863\u8f83\u5c11":76,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":77,"\u6587\u7ae0":87,"\u65b0":68,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":74,"\u65b0\u624b\u5165\u95e8":90,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":47,"\u65b9\u4fbf":68,"\u65b9\u4fbf\u4eca\u540e\u7684\u5d4c\u5165\u5f0f\u79fb\u690d\u5de5\u4f5c":60,"\u65b9\u4fbf\u5f00\u53d1\u8005\u76f4\u63a5\u767b\u5f55\u5230\u955c\u50cf\u4e2d\u8fdb\u884c\u5f00\u53d1":61,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":47,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65b9\u5f0f1":56,"\u65b9\u5f0f2":56,"\u65b9\u6848\u6765\u6807\u8bb0\u6bcf\u4e2a\u53c2\u6570":99,"\u65b9\u6cd5\u4e00":84,"\u65b9\u6cd5\u4e09":84,"\u65b9\u6cd5\u4e8c":84,"\u65c1\u8fb9":68,"\u65c5\u6e38\u7f51\u7ad9":100,"\u65e0":68,"\u65e0\u4e1a\u4eba\u58eb":97,"\u65e0\u5ef6\u8fdf":82,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":34,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":21,"\u65e0\u8bba\u662f\u4ece":21,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":21,"\u65e0\u9ed8\u8ba4\u503c":[65,66],"\u65e5\u5fd7\u5c06\u4fdd\u5b58\u5728":100,"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":54,"\u65e8\u5728\u5efa\u7acb\u4e00\u4e2a\u53ef\u4ee5\u88ab\u534f\u540c\u8c03\u81f3\u6700\u4f18\u7ffb\u8bd1\u6548\u679c\u7684\u5355\u795e\u7ecf\u5143\u7f51\u7edc":101,"\u65e9\u9910":68,"\u65f6":[20,56,58,67,71,74,82,87],"\u65f6\u5019":68,"\u65f6\u52a0\u4e0a":100,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":96,"\u65f6\u5e8f\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":2,"\u65f6\u76ee\u6807\u8bed\u8a00\u7684\u6587\u4ef6":101,"\u65f6\u88ab\u8bad\u7ec3\u7684":74,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":84,"\u65f6\u95f4":68,"\u65f6\u95f4\u6233":97,"\u65f6\u95f4\u6233\u8868\u793a\u4e3a\u4ece1970":97,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":68,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":58,"\u6620\u5c04\u4e3a":72,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u662f":[28,53,60,68],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":74,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":79,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":79,"\u662f\u4e00\u4e2a\u5305\u88c5\u6570\u636e\u7684":99,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":67,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":34,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":79,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":84,"\u662f\u4e00\u4e2a\u7b26\u5408\u9ad8\u65af\u5206\u5e03\u7684\u968f\u673a\u53d8\u91cf":59,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":35,"\u662f\u4e00\u4e2a\u7edf\u8ba1\u5b66\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":101,"\u662f\u4e00\u4e2a\u914d\u7f6e\u6587\u4ef6\u7684\u4f8b\u5b50":100,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":74,"\u662f\u4e00\u4e2apython\u7684":2,"\u662f\u4e00\u4e2aunbound":70,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":[2,63],"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":70,"\u662f\u4e00\u7ec4":85,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":86,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":34,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":2,"\u662f\u4e0d\u662f\u8981\u5bf9\u6570\u636e\u505ashuffl":2,"\u662f\u4e3b\u8981\u7684\u53ef\u6267\u884cpython\u811a\u672c":99,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":2,"\u662f\u4f17\u591a\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u5c42\u7684\u4e00\u79cd":59,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":58,"\u662f\u504f\u5dee":71,"\u662f\u5176\u5927\u5c0f":59,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":2,"\u662f\u539f\u59cb\u6cd5\u8bed\u6587\u4ef6":101,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":35,"\u662f\u5411\u91cf":74,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":70,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":60,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":82,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":74,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":65,"\u662f\u5426\u4f7f\u7528gpu":98,"\u662f\u5426\u4f7f\u7528gpu\u8bad\u7ec3":101,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[65,66],"\u662f\u5426\u5141\u8bb8\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":2,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":60,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":75,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":82,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":60,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd":60,"\u662f\u5426\u5f00\u542frdma":60,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":82,"\u662f\u5426\u652f\u6301gpu":60,"\u662f\u5426\u663e\u793a":82,"\u662f\u5426\u7a00\u758f":74,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":60,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":60,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":60,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":60,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":60,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":82,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":72,"\u662f\u56e0\u4e3ac99\u652f\u6301":34,"\u662f\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u52a0\u8f7d\u5b57\u5178\u5e76\u5b9a\u4e49\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u6a21\u5757\u548c\u7f51\u7edc\u67b6\u6784\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":99,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":71,"\u662f\u57fa\u7840\u7684\u8ba1\u7b97\u5355\u5143":59,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":74,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":74,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u5e8f\u5217":98,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":67,"\u662f\u6211\u4eec":73,"\u662f\u6307":35,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":68,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":68,"\u662f\u6570\u636e\u8f93\u5165":71,"\u662f\u6574\u4e2a\u7684\u8bcd\u5d4c\u5165":98,"\u662f\u6709\u610f\u4e49\u7684":68,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":71,"\u662f\u6a21\u578b\u53c2\u6570\u4f18\u5316\u7684\u76ee\u6807\u51fd\u6570":59,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":72,"\u662f\u6d45\u5c42\u8bed\u4e49\u89e3\u6790\u7684\u4e00\u79cd\u5f62\u5f0f":99,"\u662f\u6e90\u8bed\u8a00\u7684\u6587\u4ef6":101,"\u662f\u7528\u6237\u4f7f\u7528c":35,"\u662f\u7684":72,"\u662f\u76ee\u6807\u82f1\u8bed\u6587\u4ef6":101,"\u662f\u77e9\u9635":74,"\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u5165\u53e3":59,"\u662f\u7f51\u7edc\u548c\u6570\u636e\u914d\u7f6e\u6587\u4ef6":93,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":74,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":74,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u662f\u8f93\u5165":71,"\u662f\u8fd9\u4e00\u7c7b\u7684":57,"\u662f\u901a\u7528\u7269\u4f53\u5206\u7c7b\u9886\u57df\u4e00\u4e2a\u4f17\u6240\u5468\u77e5\u7684\u6570\u636e\u5e93":94,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":79,"\u662fc":35,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":70,"\u662fgoogle\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":85,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":79,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":70,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":96,"\u662fpod\u5185\u7684\u5bb9\u5668\u90fd\u53ef\u4ee5\u8bbf\u95ee\u7684\u5171\u4eab\u76ee\u5f55":85,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":74,"\u662frnn\u72b6\u6001":71,"\u663e":96,"\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u662f\u4e00\u4e2a28":2,"\u665a":68,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":62,"\u6682\u4e0d\u8003\u8651\u5728\u5185":56,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":20,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":35,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":72,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":53,"\u66f4\u591a\u5185\u5bb9\u53ef\u67e5\u770b\u53c2\u8003\u6587\u732e":100,"\u66f4\u591a\u7684\u7ec6\u8282\u53ef\u4ee5\u5728\u6587\u732e\u4e2d\u627e\u5230":100,"\u66f4\u591a\u7684\u7f16\u8bd1\u914d\u7f6e\u89c1":66,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":76,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":70,"\u66f4\u5feb":71,"\u66f4\u65b0":53,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":72,"\u66f4\u65b0\u6a21\u5f0f":56,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":77,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":56,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":58,"\u66f4\u8be6\u7ec6\u6570\u636e\u683c\u5f0f\u548c\u7528\u4f8b\u8bf7\u53c2\u8003":96,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e\u8fde\u63a5\u8bf7\u53c2\u8003":96,"\u66f4\u8be6\u7ec6\u7684\u8bf4\u660e":96,"\u66f4\u8fdb\u4e00\u6b65":70,"\u66f4\u9ad8":71,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":70,"\u6700":68,"\u6700\u4e0d\u540c\u7684\u7279\u8272\u662f\u5b83\u5e76\u6ca1\u6709\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5355\u72ec\u7684\u5b9a\u957f\u5411\u91cf":101,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":87,"\u6700\u4f73\u63a8\u8350":2,"\u6700\u540e":[2,73,74,80,96,100],"\u6700\u540e\u4e00\u4e2a":67,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":63,"\u6700\u540e\u4e00\u90e8\u5206\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e":59,"\u6700\u540e\u518d\u8c03\u7528mutabl":76,"\u6700\u540e\u5220\u9664":47,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":74,"\u6700\u597d\u7684\u6a21\u578b\u662f":100,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":82,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":34,"\u6700\u65b0\u7684\u4ee3\u7801":73,"\u6700\u65b0\u7684paddlepaddl":53,"\u6700\u65b0log":100,"\u6700\u7ec8":74,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":70,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":63,"\u6700\u7ec8\u751f\u6210\u540d\u4e3apaddl":61,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":70,"\u6700\u7ec8\u8d8b\u4e8e\u63a5\u8fd1":59,"\u6708\u6e56":68,"\u6709":68,"\u6709\u4e00\u4e2a\u57fa\u672c\u7684\u8ba4\u8bc6":85,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[65,66],"\u6709\u4e24\u4e2a\u7279\u6b8a\u6807\u8bc6":101,"\u6709\u4e86meta\u914d\u7f6e\u6587\u4ef6\u4e4b\u540e":98,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":74,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":74,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":56,"\u6709\u4e9b\u7535\u5f71id\u53ef\u80fd\u4e0e\u5b9e\u9645\u7535\u5f71\u4e0d\u76f8\u7b26\u5408":97,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":72,"\u6709\u5173":68,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":65,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":63,"\u6709\u5173kubernetes\u76f8\u5173\u6982\u5ff5\u4ee5\u53ca\u5982\u4f55\u642d\u5efa\u548c\u914d\u7f6ekubernetes\u96c6\u7fa4":87,"\u6709\u52a9\u4e8e\u7406\u89e3\u7528\u6237\u5bf9\u4e0d\u540c\u516c\u53f8":100,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":80,"\u6709\u591a\u96be":72,"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":72,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":72,"\u6709\u65f6\u79f0\u4e3a":100,"\u6709\u6807\u51c6\u7684":34,"\u6709\u7684\u65f6\u5019":34,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":79,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":53,"\u670d\u52a1":68,"\u670d\u52a1\u5458":68,"\u672a\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":101,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":58,"\u672a\u6807\u8bb0\u7684\u8bc4\u4ef7\u6837\u672c":100,"\u672a\u77e5\u8bcd":92,"\u672c\u4f8b\u4e2d\u4e3a0":92,"\u672c\u4f8b\u4e2d\u4e3a32":92,"\u672c\u4f8b\u4e2d\u4e3a4":92,"\u672c\u4f8b\u4e2d\u4f7f\u7528for\u5faa\u73af\u8fdb\u884c\u591a\u6b21\u8c03\u7528":2,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":68,"\u672c\u4f8b\u4e2d\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":2,"\u672c\u4f8b\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d":2,"\u672c\u4f8b\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":96,"\u672c\u4f8b\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u6587\u672c\u5206\u7c7b\u7f51\u7edc\u914d\u7f6e":96,"\u672c\u4f8b\u7684":2,"\u672c\u4f8b\u7684\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":96,"\u672c\u4f8b\u91c7\u7528\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":2,"\u672c\u4f8b\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":96,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":47,"\u672c\u5730":53,"\u672c\u5730\u6d4b\u8bd5":81,"\u672c\u5730\u8bad\u7ec3":81,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":55,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":84,"\u672c\u5b9e\u4f8b\u4e2d":92,"\u672c\u5c0f\u8282\u6211\u4eec\u5c06\u4ecb\u7ecd\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":96,"\u672c\u5c42\u5c3a\u5bf8":94,"\u672c\u5c42\u6709\u56db\u4e2a\u53c2\u6570":94,"\u672c\u6559\u7a0b\u4e2d\u6211\u4eec\u7ed9\u51fa\u4e86\u4e09\u4e2aresnet\u6a21\u578b":94,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":75,"\u672c\u6559\u7a0b\u5c06\u4ecb\u7ecd\u4f7f\u7528\u6df1\u5ea6\u53cc\u5411\u957f\u77ed\u671f\u8bb0\u5fc6":99,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":71,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u5b8c\u6210\u957f\u671f\u77ed\u671f\u8bb0\u5fc6":100,"\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7528\u4e8eimagenet\u4e0a\u7684\u5377\u79ef\u5206\u7c7b\u7f51\u7edc\u6a21\u578b":94,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":68,"\u672c\u6587\u4e2d\u7531\u4e8e\u8f93\u5165\u6570\u636e\u662f\u968f\u673a\u751f\u6210\u7684\u4e0d\u9700\u8981\u8bfb\u8f93\u5165\u6587\u4ef6":59,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":72,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":68,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":68,"\u672c\u6587\u53ea\u4f7f\u7528\u4e86\u9ed8\u8ba4\u547d\u540d\u7a7a\u95f4":85,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":87,"\u672c\u6587\u6863\u4ecb\u7ecd\u5982\u4f55\u5728paddlepaddle\u5e73\u53f0\u4e0a":92,"\u672c\u6587\u6863\u5185\u4e0d\u91cd\u590d\u4ecb\u7ecd":85,"\u672c\u6587\u6863\u5c06\u4ee5linux":65,"\u672c\u6587\u6863\u63cf\u8ff0paddl":35,"\u672c\u6765":68,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":87,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":87,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":87,"\u672c\u6b21\u8bd5\u9a8c":96,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":68,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":68,"\u672c\u793a\u4f8b\u7684\u9884\u6d4b\u7ed3\u679c":100,"\u672c\u7bc7\u6559\u7a0b\u5728paddlepaddle\u4e2d\u91cd\u73b0\u4e86\u8fd9\u4e00\u826f\u597d\u7684\u8bad\u7ec3\u7ed3\u679c":101,"\u672c\u7bc7\u6559\u7a0b\u5c06\u4f1a\u6307\u5bfc\u4f60\u901a\u8fc7\u8bad\u7ec3\u4e00\u4e2a":101,"\u672c\u8d28\u4e0a\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e00\u6837":101,"\u673a\u5668\u7684\u8bbe\u5907":84,"\u673a\u5668\u7ffb\u8bd1":[47,95],"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":82,"\u6761\u4ef6\u4e0b":85,"\u6765":68,"\u6765\u4e0b\u8f7ddocker\u955c\u50cf":61,"\u6765\u4ee3\u66ff":73,"\u6765\u4f7f\u7528\u4e00\u4e2a\u955c\u50cf\u542f\u52a8\u4e00\u4e2a\u5bb9\u5668":61,"\u6765\u4f7f\u7528dropout":57,"\u6765\u4f7f\u7528dropout\u7684":57,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":20,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":74,"\u6765\u505ableu\u8bc4\u4f30":101,"\u6765\u505c\u6b62\u8bad\u7ec3":98,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":79,"\u6765\u5206\u79bb\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":98,"\u6765\u5206\u9694\u6bcf\u4e00\u884c":98,"\u6765\u5217\u51fa\u5f53\u524d\u7cfb\u7edf\u4e2d\u7684\u6240\u6709\u955c\u50cf":61,"\u6765\u521d\u59cb\u5316\u53c2\u6570":58,"\u6765\u542f\u52a8\u548c":72,"\u6765\u5b89\u88c5":80,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":63,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":68,"\u6765\u5e2e\u52a9\u4f60\u7406\u89e3paddlepaddle\u7684\u5185\u90e8\u8fd0\u884c\u673a\u5236":96,"\u6765\u5f00\u542f\u672c\u5730\u7684\u8bad\u7ec3":100,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[65,66],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":74,"\u6765\u6267\u884c":72,"\u6765\u6307\u5b9a\u7f51\u7edc\u5c42\u7684\u6570\u76ee":94,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684\u51fd\u6570\u4ee5\u4fdd\u8bc1\u517c\u5bb9\u6027":2,"\u6765\u63cf\u8ff0\u7684":76,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":63,"\u6765\u6ce8\u518c\u8be5\u5c42":74,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":84,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":72,"\u6765\u751f\u6210\u5e8f\u5217":101,"\u6765\u7684\u79d2\u6570":97,"\u6765\u786e\u4fdd\u628a":34,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":2,"\u6765\u7f16\u8bd1":72,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":1,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u6765\u8868\u793a":71,"\u6765\u8868\u793a\u53c2\u6570\u4f4d\u7f6e":99,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":34,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":56,"\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":68,"\u6765\u8bbe\u7f6e":58,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":21,"\u6765\u8bf4\u660epydataprovider2\u7684\u7b80\u5355\u4f7f\u7528\u573a\u666f":2,"\u6765\u8c03\u6574":73,"\u6765\u8c03\u7528":72,"\u6765\u8fd0\u884c":80,"\u6765\u8fd0\u884c\u5305\u62ec":72,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":72,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":79,"\u6765\u8fd0\u884c\u955c\u50cf":61,"\u6765\u8fdb\u884c\u8ba8\u8bba":35,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":56,"\u676f\u5b50":68,"\u6784\u5efa":65,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":67,"\u6784\u9020":87,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":75,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":75,"\u6784\u9020paddl":4,"\u67b6\u6784\u6765\u8bad\u7ec3\u60c5\u611f\u5206\u6790\u6a21\u578b":100,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":68,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":81,"\u67e5\u770b":[73,96],"\u67e5\u770b\u5f53\u524d\u72b6\u6001":73,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":73,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":73,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":54,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":86,"\u6807\u51c6\u5dee\u4e3a":58,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":47,"\u6807\u51c6lstm\u4ee5\u6b63\u5411\u5904\u7406\u8be5\u5e8f\u5217":99,"\u6807\u793a\u56fe\u7247\u662f\u5f69\u8272\u56fe\u6216\u7070\u5ea6\u56fe":93,"\u6807\u793a\u662f\u5426\u4e3a\u5f69\u8272\u56fe\u7247":93,"\u6807\u7b7e0\u8868\u793a\u8d1f\u9762\u7684\u8bc4\u8bba":100,"\u6807\u7b7e1\u8868\u793a\u6b63\u9762\u7684\u8bc4\u8bba":100,"\u6807\u7b7e\u4e0b\u627e\u5230\u6700\u65b0\u7684paddle\u955c\u50cf\u7248\u672c":61,"\u6807\u7b7e\u6587\u4ef6":99,"\u6807\u7b7e\u65b9\u6848\u6765\u81ea":99,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":82,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":72,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":84,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":87,"\u6839\u636e\u5728\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u7684\u540d\u4e3a":80,"\u6839\u636e\u6570\u636e\u91cf\u89c4\u6a21":97,"\u6839\u636e\u7528\u6237\u6307\u5b9a\u7684\u5b57\u5178":92,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":82,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":76,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":81,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":82,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":82,"\u6839\u636ecpu":61,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":86,"\u683c\u5f0f":82,"\u683c\u5f0f\u5982\u4e0b":96,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":75,"\u683c\u5f0f\u8bf4\u660e":92,"\u68af\u5ea6\u4f1a\u5c31\u5730":74,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":82,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":74,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":82,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":74,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":74,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":20,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":75,"\u68d2":96,"\u697c\u5c42":68,"\u6a21\u5757":93,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":76,"\u6a21\u5757\u4e2d\u7684":2,"\u6a21\u578b":99,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":56,"\u6a21\u578b\u4fdd\u5b58\u5728\u76ee\u5f55":100,"\u6a21\u578b\u5171\u5305\u542b1":92,"\u6a21\u578b\u5217\u8868\u6587\u4ef6":99,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":20,"\u6a21\u578b\u53ca\u53c2\u6570\u4f1a\u88ab\u4fdd\u5b58\u5728\u8def\u5f84":93,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":96,"\u6a21\u578b\u5c06\u4fdd\u5b58\u5728\u76ee\u5f55":99,"\u6a21\u578b\u5c31\u8bad\u7ec3\u6210\u529f\u4e86":101,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":20,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":80,"\u6a21\u578b\u6765\u5c06\u6cd5\u8bed\u7ffb\u8bd1\u6210\u82f1\u8bed":101,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":71,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":71,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":71,"\u6a21\u578b\u7684\u7ed3\u6784\u548c\u8bad\u7ec3\u8fc7\u7a0b":92,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":71,"\u6a21\u578b\u88ab\u4fdd\u5b58\u5728":98,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u7c7b\u4f3c\u4e0a\u9762\u8fd9\u6837\u7684\u65e5\u5fd7\u4fe1\u606f":96,"\u6a21\u578b\u8bad\u7ec3\u548c\u6700\u540e\u7684\u7ed3\u679c\u9a8c\u8bc1":59,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":63,"\u6a21\u578b\u8def\u5f84":[94,99],"\u6a21\u578b\u8f93\u51fa\u8def\u5f84":99,"\u6a21\u578b\u914d\u7f6e":[0,55],"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":34,"\u6a21\u578b\u91c7\u7528":92,"\u6a21\u578b\u9884\u6d4b":4,"\u6a2a\u5411\u62fc\u63a5":56,"\u6b21":68,"\u6b22\u8fce\u901a\u8fc7":73,"\u6b63\u6837\u672c":96,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":53,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":81,"\u6b63\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5927\u4e8e\u7b49\u4e8e7":100,"\u6b63\u9762\u8bc4\u4ef7\u6837\u672c":100,"\u6b64\u547d\u4ee4\u5c06\u5728your":65,"\u6b64\u5904":92,"\u6b64\u5904\u90fd\u4e3a2":68,"\u6b64\u5916":[57,65,72,73],"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":79,"\u6b64\u6570\u636e\u96c6\u5305\u542b\u7535\u5f71\u8bc4\u8bba\u53ca\u5176\u76f8\u5173\u8054\u7684\u7c7b\u522b\u6807\u7b7e":100,"\u6b64\u65f6\u53ea\u9700\u8981":72,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":56,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":58,"\u6b64\u65f6\u60a8\u53ef\u4ee5\u8fd0\u884c\u8fd9\u4e2a\u547d\u4ee4\u5728\u5f00\u53d1\u673a\u4e0a\u8fdb\u884c\u6d4b\u8bd5\u8fd0\u884c":61,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":20,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":54,"\u6b65\u9aa4":56,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":70,"\u6bcf100\u4e2abatch\u6253\u5370\u4e00\u6b21\u7edf\u8ba1\u4fe1\u606f":100,"\u6bcf100\u4e2abatch\u663e\u793a\u53c2\u6570\u7edf\u8ba1":99,"\u6bcf20\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":100,"\u6bcf20\u4e2abatch\u8f93\u51fa\u65e5\u5fd7":99,"\u6bcf\u4e00\u4e2a":47,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u5982\u4e0b\u4e94\u4e2a\u6b65\u9aa4":96,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":21,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":68,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":68,"\u6bcf\u4e00\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5\u4e00\u6b21\u6240\u6709\u6570\u636e":98,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":80,"\u6bcf\u4e00\u4e2akey\u7531":98,"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":56,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":68,"\u6bcf\u4e00\u884c\u8868\u793a\u4e00\u4e2a\u5b9e\u4f8b":100,"\u6bcf\u4e2a":[80,99],"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":21,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u6bcf\u4e2a\u5355\u5c42rnn":70,"\u6bcf\u4e2a\u5355\u8bcd\u7684\u9884\u6d4b\u9519\u8bef\u7387":101,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":68,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":71,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":71,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":68,"\u6bcf\u4e2a\u5b50\u6587\u4ef6\u5939\u4e0b\u5b58\u50a8\u76f8\u5e94\u5206\u7c7b\u7684\u56fe\u7247":93,"\u6bcf\u4e2a\u5b57\u5178\u5305\u542b\u603b\u517130000\u4e2a\u5355\u8bcd":101,"\u6bcf\u4e2a\u5b57\u5178\u90fd\u6709dictsize\u4e2a\u5355\u8bcd":101,"\u6bcf\u4e2a\u5c42\u5728\u5176":74,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":96,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":82,"\u6bcf\u4e2a\u6587\u4ef6\u5939\u90fd\u5305\u542b\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93":101,"\u6bcf\u4e2a\u6587\u4ef6\u662f\u4e00\u4e2a\u7535\u5f71\u8bc4\u8bba":100,"\u6bcf\u4e2a\u6587\u672c\u6587\u4ef6\u5305\u542b\u4e00\u4e2a\u6216\u8005\u591a\u4e2a\u5b9e\u4f8b":100,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":70,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":68,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":74,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":68,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":68,"\u6bcf\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5":98,"\u6bcf\u4e2a\u7279\u5f81\u7684meta\u914d\u7f6e":98,"\u6bcf\u4e2a\u72b6\u6001":70,"\u6bcf\u4e2a\u7c7b\u522b\u4e2d\u968f\u673a\u62bd\u53d6\u4e8610\u5f20\u56fe\u7247":93,"\u6bcf\u4e2a\u7c7b\u5305\u542b6000\u5f20":93,"\u6bcf\u4e2a\u7ebf\u7a0b":82,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":82,"\u6bcf\u4e2a\u8282\u70b9\u6709\u4e24\u4e2a6\u6838cpu":101,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":82,"\u6bcf\u4e2a\u8bb0\u5fc6\u5355\u5143\u5305\u542b\u56db\u4e2a\u4e3b\u8981\u7684\u5143\u7d20":100,"\u6bcf\u4e2a\u8bc4\u8bba\u7684\u7f51\u5740":100,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":74,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":74,"\u6bcf\u4e2a\u91cc\u9762\u90fd\u5305\u542b202mb\u7684\u5168\u90e8\u7684\u6a21\u578b\u53c2\u6570":101,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":73,"\u6bcf\u4e2adata":21,"\u6bcf\u4e2aparamet":20,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":96,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":96,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":87,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":20,"\u6bcf\u4f4d\u7528\u6237\u81f3\u5c11\u670920\u6761\u8bc4\u5206":97,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":82,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":84,"\u6bcf\u5f53\u6a21\u578b\u5728\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u751f\u6210\u4e86\u4e00\u4e2a\u5355\u8bcd":101,"\u6bcf\u6279\u6b21":82,"\u6bcf\u6b21":61,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":73,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":73,"\u6bcf\u6b21\u6d4b\u8bd5\u90fd\u6d4b\u8bd5\u6240\u6709\u6570\u636e":100,"\u6bcf\u6b21\u751f\u62101\u4e2a\u5e8f\u5217":101,"\u6bcf\u6b21\u8bfb\u53d6\u4e00\u6761\u6570\u636e\u540e":96,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":21,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":2,"\u6bcf\u884c\u5b58\u50a8\u4e00\u4e2a\u8bcd":92,"\u6bcf\u884c\u5b58\u50a8\u7684\u662f\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81":94,"\u6bcf\u884c\u6253\u537032\u4e2a\u53c2\u6570\u4ee5":92,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":74,"\u6bcf\u884c\u90fd\u662f\u4e00\u4e2a\u6cd5\u8bed\u6216\u8005\u82f1\u8bed\u7684\u53e5\u5b50":101,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":82,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":82,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":82,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":82,"\u6bcf\u969410\u5206\u949f":20,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":96,"\u6bcfdot":82,"\u6bcflog":82,"\u6bcfsave":82,"\u6bcftest":82,"\u6bd4\u5982":[21,54,56,61,65,72,73,96],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":68,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":73,"\u6bd4\u5982\u5c06":47,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[65,66],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":20,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":21,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":58,"\u6bd4\u5982\u901a\u8fc78080\u7aef\u53e3":85,"\u6bd4\u5982fpe":54,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":73,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":21,"\u6c34\u6e29":68,"\u6c49\u5ead":68,"\u6c60\u5316\u5c42":93,"\u6ca1":68,"\u6ca1\u6709\u4f5c\u7528":2,"\u6ca1\u6709\u5b9e\u9645\u610f\u4e49":92,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":53,"\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":2,"\u6ca1\u6709\u8bbe\u7f6e":[65,66],"\u6ca1\u6709\u8fdb\u884c\u6b63\u786e\u6027\u7684\u68c0\u67e5":97,"\u6ca1\u6709\u8fdb\u884c\u7ed3\u6784\u7684\u5fae\u8c03":98,"\u6cd5\u8bed":101,"\u6ce8":[20,61],"\u6ce8\u518c":75,"\u6ce8\u518ccpu":75,"\u6ce8\u518cop":75,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":75,"\u6ce8\u610f":[2,60,61,63,65,66,71,74,87,93],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":87,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":84,"\u6ce8\u610f\u5e94\u8be5\u786e\u4fdd\u9ed8\u8ba4\u6a21\u578b\u8def\u5f84":100,"\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38\u4e0d\u5305\u542blabel":4,"\u6ce8\u610fnode":87,"\u6ce8\u91ca":75,"\u6ce8\u91ca\u6389":100,"\u6cf3\u6c60":68,"\u6d41":68,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":73,"\u6d44":68,"\u6d4b\u8bd5":73,"\u6d4b\u8bd5\u524d\u5411oper":75,"\u6d4b\u8bd5\u6570\u636e":80,"\u6d4b\u8bd5\u6570\u636e\u4e5f\u5305\u542b":80,"\u6d4b\u8bd5\u6570\u636e\u548c\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":80,"\u6d4b\u8bd5\u6570\u636e\u548c\u751f\u6210\u6570\u636e":101,"\u6d4b\u8bd5\u6570\u636e\u653e\u7f6e\u5728\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u4e0d\u540c\u76ee\u5f55\u7684\u8981\u6c42":80,"\u6d4b\u8bd5\u6570\u636e\u7684\u6240\u6709\u76f8\u5bf9\u6216\u7edd\u5bf9\u6587\u4ef6\u8def\u5f84":80,"\u6d4b\u8bd5\u6570\u6910\u96c6":100,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":82,"\u6d4b\u8bd5\u65f6\u9ed8\u8ba4\u4e0dshuffl":2,"\u6d4b\u8bd5\u662f":73,"\u6d4b\u8bd5\u6837\u672c":80,"\u6d4b\u8bd5\u6a21\u578b\u662f\u6307\u4f7f\u7528\u8bad\u7ec3\u51fa\u7684\u6a21\u578b\u8bc4\u4f30\u5df2\u6807\u8bb0\u7684\u9a8c\u8bc1\u96c6":100,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":84,"\u6d4b\u8bd5\u811a\u672c\u662f":99,"\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6\u76ee\u5f55\u5305\u542b\u4e0b\u9762\u7684\u6587\u4ef6":100,"\u6d4b\u8bd5docker\u955c\u50cf":47,"\u6d4b\u8bd5model_list":81,"\u6d4b\u8bd5save_dir":81,"\u6d4f\u89c8\u4ee3\u7801":61,"\u6d6a\u6f2b\u7247":97,"\u6d6e\u70b9\u578b\u6570\u636e":21,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u6d6e\u70b9\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":92,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":74,"\u6dd8\u5b9d\u7b49":100,"\u6df1\u5ea6\u53cc\u5411lstm\u5c42\u63d0\u53d6softmax\u5c42\u7684\u7279\u5f81":99,"\u6df1\u5ea6\u5b66\u4e60\u5165\u95e8\u8bfe\u7a0b":64,"\u6df7\u5408":99,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":71,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":75,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":87,"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":75,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":75,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":75,"\u6e05\u7406":72,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":53,"\u6e29\u99a8":68,"\u6e90":101,"\u6e90\u4ee3\u7801":[61,96],"\u6e90\u4ee3\u7801\u683c\u5f0f":73,"\u6e90\u5b57\u5178":101,"\u6e90\u5e8f\u5217":71,"\u6e90\u7801":61,"\u6e90\u7801\u4e0edemo":86,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":72,"\u6e90\u7801\u7f16\u8bd1paddlepaddl":66,"\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6":101,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u5171\u4eab\u76f8\u540c\u7684\u7f16\u7801\u5b57\u5178":92,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u90fd\u662f\u76f8\u540c\u7684\u8bed\u8a00":92,"\u6e90\u8bed\u8a00\u77ed\u8bed\u548c\u76ee\u6807\u8bed\u8a00\u77ed\u8bed\u7684\u5b57\u5178\u5c06\u88ab\u5408\u5e76":92,"\u6ee4\u6ce2\u5668\u6838\u5728\u5782\u76f4\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":94,"\u6ee4\u6ce2\u5668\u6838\u5728\u6c34\u5e73\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":94,"\u6f14\u793a\u4e2d\u4f7f\u7528\u7684":99,"\u6f14\u793a\u91c7\u7528":99,"\u6fc0\u6d3b":74,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":96,"\u6fc0\u6d3b\u65b9\u7a0b":74,"\u6fc0\u6d3b\u7684\u7c7b\u578b":74,"\u70ed\u60c5":68,"\u7136\u540e":[79,80,92,98],"\u7136\u540e\u4ea4\u7ed9\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u51fd\u6570":59,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":70,"\u7136\u540e\u4f60\u53ea\u9700\u8981\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":101,"\u7136\u540e\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c":100,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":76,"\u7136\u540e\u518d\u505a\u4e00\u6b21\u6587\u672c\u5377\u79ef\u7f51\u7edc\u64cd\u4f5c":98,"\u7136\u540e\u5229\u7528\u89c2\u6d4b\u6570\u636e\u8c03\u6574":59,"\u7136\u540e\u5355\u51fb":73,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":87,"\u7136\u540e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u56fe\u7247":94,"\u7136\u540e\u5728":101,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":68,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":61,"\u7136\u540e\u5728\u89e3\u7801\u88ab\u7ffb\u8bd1\u7684\u8bed\u53e5\u65f6":101,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":58,"\u7136\u540e\u5728etcd\u7684":20,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":53,"\u7136\u540e\u5b9a\u4e49":71,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":87,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":57,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u5f97\u5230\u5e73\u5747\u91c7\u6837\u7684\u7ed3\u679c":98,"\u7136\u540e\u6211\u4eec\u5229\u7528\u591a\u8f93\u5165\u7684":98,"\u7136\u540e\u6211\u4eec\u53d1\u73b0pass":101,"\u7136\u540e\u6211\u4eec\u5806\u53e0\u4e00\u5bf9\u5bf9\u7684":99,"\u7136\u540e\u6211\u4eec\u6c42\u8fd9\u4e24\u4e2a\u7279\u5f81\u7684\u4f59\u5f26\u76f8\u4f3c\u5ea6":98,"\u7136\u540e\u6240\u6709\u7528":73,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7136\u540e\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":94,"\u7136\u540e\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":86,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":73,"\u7136\u540e\u63d0\u53d6\u9690\u85cflstm\u5c42\u7684\u6240\u6709\u65f6\u95f4\u6b65\u957f\u7684\u6700\u5927\u8bcd\u5411\u91cf\u4f5c\u4e3a\u6574\u4e2a\u5e8f\u5217\u7684\u8868\u793a":100,"\u7136\u540e\u662f\u5bf9\u5e94\u7684\u82f1\u8bed\u5e8f\u5217":101,"\u7136\u540e\u6dfb\u52a0\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":98,"\u7136\u540e\u70b9\u51fb":73,"\u7136\u540e\u7528\u5bc6\u7801":61,"\u7136\u540e\u7528pickle\u547d\u4ee4\u5c06\u7279\u5f81":98,"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":87,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":74,"\u7136\u540e\u89e3\u538b":101,"\u7136\u540e\u89e3\u7801\u5668\u901a\u8fc7\u8fd9\u4e2a\u5411\u91cf\u751f\u6210\u4e00\u4e2a\u76ee\u6807\u8bed\u53e5":101,"\u7136\u540e\u8f93\u51fa\u9884\u6d4b\u5206\u6570":98,"\u7136\u540e\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":2,"\u7136\u540e\u8fdb\u884c\u968f\u673a\u6253\u4e71":98,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":87,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":87,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":53,"\u7136\u800c":[71,82],"\u7136\u800c\u6709\u4e9b\u8bc4\u8bba\u4e0a\u4e0b\u6587\u975e\u5e38\u957f":100,"\u7248\u672c":72,"\u7248\u672c\u5206\u652f":47,"\u7248\u672c\u53f7":47,"\u7248\u672c\u53f7rc":47,"\u7248\u672c\u5728":73,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":47,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":56,"\u7279\u522b\u662f\u5f53\u76f8\u540c\u7684\u8bcd\u5728\u53e5\u5b50\u4e2d\u51fa\u73b0\u591a\u4e8e\u4e00\u6b21\u65f6":99,"\u7279\u5f81":98,"\u7279\u5f81\u56fe\u5747\u503c":94,"\u7279\u5f81\u56fe\u65b9\u5dee":94,"\u7279\u5f81\u5c06\u4f1a\u5b58\u5230":94,"\u7279\u5f81\u6587\u4ef6":99,"\u7279\u5f81\u7684\u7c7b\u578b\u548c\u7ef4\u5ea6":98,"\u72af\u7f6a\u7247":97,"\u72ec\u7acb\u5de5\u5177\u94fe":65,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":65,"\u73af\u5883\u53d8\u91cf":87,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":56,"\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5f00\u59cbpaddle\u8bad\u7ec3\u4e86":98,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":34,"\u7406\u89e3":72,"\u751a\u81f3\u4e0d\u540c\u7ade\u4e89\u5bf9\u624b\u4ea7\u54c1\u7684\u504f\u597d":100,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":79,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":21,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":21,"\u751f\u4ea7\u955c\u50cf":[61,73],"\u751f\u4ea7\u955c\u50cf\u7684\u751f\u6210\u5206\u4e3a\u4e24\u6b65":61,"\u751f\u6210":87,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":34,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":77,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":71,"\u751f\u6210\u5f53\u524d\u5c42\u7684\u6240\u6709\u540e\u7ee7\u72b6\u6001":101,"\u751f\u6210\u6570\u636e\u7684\u76ee\u5f55":101,"\u751f\u6210\u6587\u6863":34,"\u751f\u6210\u751f\u4ea7\u955c\u50cf\u53ea\u9700\u8981\u8fd0\u884c":61,"\u751f\u6210\u7684":21,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":87,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":56,"\u751f\u6210\u7684\u7ed3\u679c\u6587\u4ef6":101,"\u751f\u6210\u7684html\u7248\u672c\u7684c":61,"\u751f\u6210\u7684meta\u914d\u7f6e\u6587\u4ef6\u5982\u4e0b\u6240\u793a":98,"\u751f\u6210\u7ed9\u5b9a":21,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":74,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":73,"\u751f\u6210\u8bad\u7ec3\u9700\u8981\u7684\u6837\u672c":98,"\u751f\u6210\u8fd0\u884c\u7a0b\u5e8f":61,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":75,"\u751f\u6210api\u6587\u6863":34,"\u751f\u6210docker\u955c\u50cf\u7684\u65b9\u5f0f\u6709\u4e24\u4e2a":61,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u7528":[28,97,98,99],"\u75280\u548c1\u8868\u793a":2,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":96,"\u7528\u4e8e":80,"\u7528\u4e8e\u5207\u5206\u5355\u5355\u8bcd\u548c\u6807\u70b9\u7b26\u53f7":100,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":74,"\u7528\u4e8e\u5c06\u4e0b\u4e00\u884c\u7684\u6570\u636e\u8f93\u5165\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":2,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":84,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":57,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":82,"\u7528\u4e8e\u653e\u7f6e":80,"\u7528\u4e8e\u6784\u6210\u65b0\u7684\u8bcd\u8868":92,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":75,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":82,"\u7528\u4e8e\u7edf\u8ba1\u8bcd\u9891\u7684bow\u6a21\u578b\u7279\u5f81":100,"\u7528\u4e8e\u81ea\u5b9a\u4e49\u6bcf\u6761\u6570\u636e\u7684batch":2,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":57,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":71,"\u7528\u4e8e\u8bbe\u7f6e\u8bad\u7ec3\u7b97\u6cd5":93,"\u7528\u4e8e\u8bfb\u53d6\u8bad\u7ec3":80,"\u7528\u4e8e\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u6570":80,"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":71,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":68,"\u7528\u6237":80,"\u7528\u62371\u7684\u7279\u5f81":98,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a":66,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":1,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u7528\u6237\u53ea\u9700\u6267\u884c":99,"\u7528\u6237\u53ea\u9700\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u5c31\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u5904\u7406\u539f\u59cb\u6570\u636e":99,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u4ee3\u66ff\u914d\u7f6e\u672c\u5730\u73af\u5883":61,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528ssh\u767b\u5f55\u5230\u8fd9\u53f0\u670d\u52a1\u5668\u4e0a\u5e76\u6267\u884c":61,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":77,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":77,"\u7528\u6237\u53ef\u4ee5\u5728\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u4e2d\u770b\u5230":92,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":35,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":21,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3\u65e5\u5fd7":96,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":35,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":82,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":84,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u4f7f\u7528python\u63a5\u53e3":1,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8\u6587\u6863":61,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":60,"\u7528\u6237\u53ef\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":60,"\u7528\u6237\u53ef\u5c06":65,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":65,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80":66,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":65,"\u7528\u6237\u53ef\u901a\u8fc7\u4ea4\u53c9\u7f16\u8bd1\u7684\u65b9\u5f0f":65,"\u7528\u6237\u53ef\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":66,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":57,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":53,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":21,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570":2,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":58,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":87,"\u7528\u6237\u5e94\u8be5\u63d0\u4f9b\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":99,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":53,"\u7528\u6237\u6307\u5b9a\u65b0\u7684\u5b57\u5178\u7684\u8def\u5f84":92,"\u7528\u6237\u6587\u4ef6\u4e2d\u6709\u56db\u79cd\u7c7b\u578b\u7684\u5b57\u6bb5":98,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u7279\u5f81":98,"\u7528\u6237\u8fd8\u53ef\u4ee5\u6839\u636e\u6982\u7387\u5206\u5e03\u77e9\u9635\u5b9e\u73b0\u67f1\u641c\u7d22\u6216\u7ef4\u7279\u6bd4\u89e3\u7801":99,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[65,66],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[57,58],"\u7528\u6237\u901a\u8fc7c":35,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":84,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[65,66],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":53,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[65,66],"\u7528\u6237\u9884\u6d4b\u7684\u547d\u4ee4\u884c\u754c\u9762\u5982\u4e0b":98,"\u7528\u6237id":97,"\u7528\u6237id\u8303\u56f4\u4ece1\u52306040":97,"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":72,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":74,"\u7528\u6765\u4f30\u8ba1\u7ebf\u6027\u51fd\u6570\u7684\u53c2\u6570w":59,"\u7528\u6765\u5177\u4f53\u63cf\u8ff0":98,"\u7528\u6765\u5177\u4f53\u8bf4\u660e\u6570\u636e\u96c6\u7684\u5b57\u6bb5\u548c\u6587\u4ef6\u683c\u5f0f":98,"\u7528\u6765\u8ba1\u7b97\u6a21\u578b\u7684\u8bef\u5dee":59,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":87,"\u7531":[57,70],"\u7531\u4e8e\u4e0a\u4e00\u6b65cmake\u914d\u7f6e\u4e2d":66,"\u7531\u4e8e\u4e0d\u540c\u7684paddle\u7684\u7248\u672c\u53ef\u80fd\u9700\u8981\u4e0d\u540c\u7684\u4f9d\u8d56\u548c\u5de5\u5177":61,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":68,"\u7531\u4e8e\u5bb9\u5668\u4e4b\u95f4\u5171\u4eabnet":85,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"\u7531\u4e8e\u5df2\u7ecf\u77e5\u9053\u4e86\u771f\u5b9e\u7b54\u6848":59,"\u7531\u4e8e\u610f\u5916\u7684\u526f\u672c\u8bb0\u5f55\u548c\u6d4b\u8bd5\u8bb0\u5f55":97,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":74,"\u7531\u4e8e\u6570\u636e\u8bb8\u53ef\u7684\u539f\u56e0":99,"\u7531\u4e8e\u6807\u51c6\u7684\u7ffb\u8bd1\u7ed3\u679c\u5df2\u7ecf\u4e0b\u8f7d\u5230\u8fd9\u91cc":101,"\u7531\u4e8e\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8fde\u63a5\u7684\u662fbatch":94,"\u7531\u4e8e\u8fd9\u4e2a\u5730\u5740\u4f1a\u88abdataprovider\u4f7f\u7528":1,"\u7531\u4e8e\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":2,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":20,"\u7531\u4e8e\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u4e0d\u4f1a\u51fa\u73b0\u4e0a\u8ff0\u95ee\u9898":2,"\u7531\u4e8ec":34,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8eeigen":76,"\u7531\u4e8epaddlepaddle\u5df2\u7ecf\u5b9e\u73b0\u4e86\u4e30\u5bcc\u7684\u7f51\u7edc\u5c42":59,"\u7531\u4e8epypi":47,"\u7531\u4e8estep":70,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":76,"\u7531\u4e8etest_data\u5305\u542b\u4e24\u6761\u9884\u6d4b\u6570\u636e":4,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":67,"\u7531grouplen":97,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u7535\u5f711\u7684\u7279\u5f81":98,"\u7535\u5f71\u4fe1\u606f\u4ee5\u53ca\u7535\u5f71\u8bc4\u5206":97,"\u7535\u5f71\u540d\u5b57\u6bb5":98,"\u7535\u5f71\u540d\u79f0":97,"\u7535\u5f71\u548c\u7528\u6237":98,"\u7535\u5f71\u548c\u7528\u6237\u6709\u8bb8\u591a\u7684\u7279\u5f81":98,"\u7535\u5f71\u5927\u90e8\u5206\u662f\u624b\u5de5\u8f93\u5165\u6570\u636e":97,"\u7535\u5f71\u7279\u5f81":98,"\u7535\u5f71\u7c7b\u578b":97,"\u7535\u5f71\u7c7b\u578b\u5982\u7b26\u5408\u591a\u79cd\u7528\u7ba1\u9053\u7b26\u53f7":97,"\u7535\u5f71id":97,"\u7535\u5f71id\u8303\u56f4\u4ece1\u52303952":97,"\u7535\u8111":68,"\u767e\u4e07\u6570\u636e\u96c6":97,"\u7684":[68,72,73,76,80,86,87,96,100],"\u768410\u7ef4\u6574\u6570\u6807\u7b7e":2,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":70,"\u7684\u4e00\u4e2a\u7ebf\u6027\u51fd\u6570":59,"\u7684\u4e00\u79cd":101,"\u7684\u4e3a0":82,"\u7684\u4e3b\u8981\u90e8\u5206":99,"\u7684\u4efb\u4e00\u4e00\u79cd":56,"\u7684\u4efb\u52a1":101,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":76,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":67,"\u7684\u503c":[65,66],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":65,"\u7684\u504f\u7f6e\u5411\u91cf":74,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":75,"\u7684\u5185\u5b58":56,"\u7684\u5185\u5bb9\u5982\u4e0b\u6240\u793a":101,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":87,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":79,"\u7684\u5206\u7c7b\u4efb\u52a1\u4e2d\u8d62\u5f97\u4e86\u7b2c\u4e00\u540d":94,"\u7684\u522b\u540d":[5,6,8],"\u7684\u5355\u5143\u6d4b\u8bd5":75,"\u7684\u5355\u8bcd\u7ea7\u522b\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":98,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":82,"\u7684\u53d8\u6362\u77e9\u9635":74,"\u7684\u53e5\u5b50\u7684\u60c5\u611f":100,"\u7684\u540d\u5b57":2,"\u7684\u540d\u79f0\u76f8\u540c":71,"\u7684\u540e\u7f00":97,"\u7684\u5411\u91cf":74,"\u7684\u542f\u52a8\u53c2\u6570":87,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":87,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u7684\u5730\u5740":85,"\u7684\u5730\u65b9":73,"\u7684\u5747\u5300\u5206\u5e03":58,"\u7684\u5934\u6587\u4ef6":34,"\u7684\u5b9e\u73b0":75,"\u7684\u5dee\u8ddd\u4e0d\u65ad\u51cf\u5c0f":59,"\u7684\u5e73\u5747\u503c":67,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":68,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":73,"\u7684\u5f00\u53d1\u6d41\u7a0b":72,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":75,"\u7684\u603b":80,"\u7684\u63a5\u53e3\u6837\u5f0f":34,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":73,"\u7684\u64cd\u4f5c":76,"\u7684\u6570\u636e\u6d41\u56fe":21,"\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u7c7b\u4f3c\u4e8e":96,"\u7684\u6570\u76ee\u4e00\u81f4":67,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":73,"\u7684\u65b9\u5f0f":61,"\u7684\u65b9\u6cd5\u5df2\u88ab\u8bc1\u660e\u662f\u4e00\u79cd\u5f3a\u5927\u7684\u6a21\u578b":101,"\u7684\u65b9\u7a0b":74,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":56,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":68,"\u7684\u6700\u5c0f\u503c":82,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":73,"\u7684\u6784\u9020\u51fd\u6570":75,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":71,"\u7684\u6837\u5f0f":73,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":70,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":70,"\u7684\u6d4b\u8bd5\u6570\u636e\u96c6":99,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":73,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":34,"\u7684\u7248\u672c":72,"\u7684\u7248\u672c\u53f7":92,"\u7684\u7279\u5f81":94,"\u7684\u72b6\u6001":70,"\u7684\u7528\u6237\u53c2\u8003":80,"\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":98,"\u7684\u771f\u5b9e\u5173\u7cfb\u4e3a":59,"\u7684\u77e9\u9635":[56,74],"\u7684\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":101,"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":74,"\u7684\u7aef\u5230\u7aef\u7cfb\u7edf\u6765\u89e3\u51b3srl\u4efb\u52a1":99,"\u7684\u7b2ci\u4e2a\u503c":74,"\u7684\u7b2cj\u4e2a\u503c":74,"\u7684\u7cfb\u7edf":72,"\u7684\u7d22\u5f15\u6587\u4ef6\u5f15\u7528\u8bad\u7ec3":80,"\u7684\u7ed3\u6784\u5982\u4e0b":98,"\u7684\u7ef4\u5ea6":92,"\u7684\u7f29\u5199":28,"\u7684\u884c\u6570\u5e94\u8be5\u4e00\u81f4":101,"\u7684\u89c4\u8303":34,"\u7684\u89d2\u5ea6":21,"\u7684\u8ba1\u7b97\u4ee3\u7801":76,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":75,"\u7684\u8bad\u7ec3\u6a21\u578b\u811a\u672c":96,"\u7684\u8bdd":56,"\u7684\u8def\u5f84\u4e2d":100,"\u7684\u8f93\u5165":70,"\u7684\u8f93\u51fa":79,"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":79,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":71,"\u7684\u8f93\u51fa\u683c\u5f0f":68,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":71,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":56,"\u7684\u8fd0\u884c\u73af\u5883":72,"\u7684\u8fd4\u56de\u503c\u4e00\u81f4":97,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":73,"\u7684\u90e8\u5206":80,"\u7684\u914d\u7f6e":92,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":21,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":72,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":73,"\u7684cpu":75,"\u7684docker\u955c\u50cf":61,"\u76ee\u524d":[70,99],"\u76ee\u524d\u4f7f\u7528":73,"\u76ee\u524d\u53ea\u652f\u6301":65,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":20,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":[65,66],"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":67,"\u76ee\u524d\u652f\u6301fail":82,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":82,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":70,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":34,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":77,"\u76ee\u5f55":[65,66,72,80,86,87,100],"\u76ee\u5f55\u4e0b":[35,61,74,96,101],"\u76ee\u5f55\u4e0b\u627e\u5230":96,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":75,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":65,"\u76ee\u5f55\u4e0b\u7684demo\u8bad\u7ec3\u51fa\u6765":4,"\u76ee\u5f55\u4e0b\u7684python\u5305":53,"\u76ee\u5f55\u4e2d":[80,98],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[65,66],"\u76ee\u5f55\u4e2d\u7684":[79,80],"\u76ee\u5f55\u4e2dpaddl":87,"\u76ee\u5f55\u4f1a\u51fa\u73b0\u5982\u4e0b\u51e0\u4e2a\u65b0\u7684\u6587\u4ef6":99,"\u76ee\u5f55\u548c":[65,66],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":87,"\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":101,"\u76ee\u5f55\u91cc\u63d0\u4f9b\u4e86\u8be5\u6570\u636e\u7684\u4e0b\u8f7d\u811a\u672c\u548c\u9884\u5904\u7406\u811a\u672c":96,"\u76ee\u6807":101,"\u76ee\u6807\u51fd\u6570\u662f\u6807\u7b7e\u7684\u4ea4\u53c9\u71b5":99,"\u76ee\u6807\u5411\u91cf":71,"\u76ee\u6807\u5b57\u5178":101,"\u76ee\u6807\u673a\u7248protobuf\u5e93":[65,66],"\u76ee\u6807\u67b6\u6784abi":65,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":58,"\u76f4\u5230\u903c\u8fd1\u771f\u5b9e\u89e3":59,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":34,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":35,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":34,"\u76f4\u63a5\u7f16\u8bd1raspberri":66,"\u76f4\u63a5\u8fd0\u884c":61,"\u76f4\u63a5\u8fd4\u56de\u8ba1\u7b97\u7ed3\u679c":4,"\u76f4\u63a5\u8fdb\u5165\u8bad\u7ec3\u6a21\u578b\u7ae0\u8282":96,"\u76f8\u5173\u6587\u6863":66,"\u76f8\u5173\u6587\u6863\u6240\u8ff0":66,"\u76f8\u5173\u6982\u5ff5\u662f":2,"\u76f8\u5173\u7684\u9e1f\u7c7b\u6570\u636e\u96c6\u53ef\u4ee5\u4ece\u5982\u4e0b\u5730\u5740\u4e0b\u8f7d":93,"\u76f8\u5173\u8bba\u6587":99,"\u76f8\u53cd":101,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":58,"\u76f8\u5bf9":68,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":1,"\u76f8\u5bf9mnist\u800c\u8a00":2,"\u76f8\u5e94\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u8bad\u7ec3\u6a21\u578b\u811a\u672c":96,"\u76f8\u5e94\u7684\u6570\u636e\u8fed\u4ee3\u5668\u5982\u4e0b":99,"\u76f8\u5e94\u7684\u6807\u8bb0\u53e5\u5b50\u662f":99,"\u76f8\u5f53":68,"\u76f8\u6bd4":75,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":54,"\u77e9\u9635":81,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":75,"\u7814\u7a76\u4eba\u5458\u5206\u6790\u4e86\u51e0\u4e2a\u5173\u4e8e\u6d88\u8d39\u8005\u4fe1\u5fc3\u548c\u653f\u6cbb\u89c2\u70b9\u7684\u8c03\u67e5":100,"\u7814\u7a76\u751f":97,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":73,"\u78c1\u76d8\u4e0d\u591f":72,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":54,"\u793a":96,"\u793a\u4f8b":[56,58,94],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":68,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":68,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":68,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":56,"\u793a\u4f8b\u5982\u4e0b":58,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":34,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":20,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":63,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":63,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":56,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":76,"\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":101,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":68,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":56,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":59,"\u79bb":68,"\u79bb\u7ebf\u6279\u5904\u7406":21,"\u79d1\u5b66\u5bb6":97,"\u79d1\u5e7b\u7247":97,"\u79f0\u4e3a":[71,73],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":61,"\u79f0\u4e3a\u751f\u4ea7\u955c\u50cf":61,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":67,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":82,"\u79f0\u4f5c\u6709kernel":75,"\u79f0\u4f5ckernel":75,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":74,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":87,"\u7a00\u758f\u768401\u5411\u91cf":[2,63],"\u7a00\u758f\u7684\u5411\u91cf":[2,63],"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":84,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":87,"\u7a0b\u5e8f\u505c\u6b62":82,"\u7a0b\u5e8f\u5458":97,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":82,"\u7a20\u5bc6\u5411\u91cf":74,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":87,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":[2,63],"\u7a97\u6237":68,"\u7acb\u523b\u9000\u51fa":56,"\u7aef\u53e3":[54,80],"\u7aef\u53e3\u6570":80,"\u7aef\u53e3\u9644\u52a0\u5230\u4e3b\u673a\u540d\u4e0a":80,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":1,"\u7aef\u8bfb\u53d6\u6570\u636e":56,"\u7b2c":68,"\u7b2c\u4e00\u4e2a":73,"\u7b2c\u4e00\u4e2a\u53c2\u6570":75,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662fsettings\u5bf9\u8c61":2,"\u7b2c\u4e00\u4e2a\u65b9\u6cd5\u7684\u597d\u5904\u662f\u7b80\u5355\u5feb\u6377":61,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":68,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":2,"\u7b2c\u4e00\u4e2atag\u4e3a":47,"\u7b2c\u4e00\u5929":68,"\u7b2c\u4e00\u6b65\u662f\u8fd0\u884c":61,"\u7b2c\u4e00\u7ae0\u8282":63,"\u7b2c\u4e00\u884c\u4ece":100,"\u7b2c\u4e00\u884c\u5b58\u7684\u662f\u56fe\u50cf":94,"\u7b2c\u4e00\u884c\u662f":92,"\u7b2c\u4e00\u884c\u7684":101,"\u7b2c\u4e00\u90e8\u5206\u5b9a\u4e49\u4e86\u6570\u636e\u8f93\u5165":59,"\u7b2c\u4e00\u90e8\u5206\u662f\u56fe\u7247\u7684\u6807\u7b7e":2,"\u7b2c\u4e09":100,"\u7b2c\u4e09\u4e2a\u53c2\u6570":75,"\u7b2c\u4e09\u5217\u662f\u751f\u6210\u7684\u82f1\u8bed\u5e8f\u5217":101,"\u7b2c\u4e09\u6b65":94,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":47,"\u7b2c\u4e8c":100,"\u7b2c\u4e8c\u4e2a":56,"\u7b2c\u4e8c\u4e2a\u4e3a":47,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":75,"\u7b2c\u4e8c\u4e2a\u65b9\u6cd5\u7684\u597d\u5904\u662fdockerfile\u53ef\u4ee5\u628a\u6574\u4e2a\u751f\u6210\u6d41\u7a0b\u63cf\u8ff0\u5f88\u6e05\u695a":61,"\u7b2c\u4e8c\u5217\u662f\u96c6\u675f\u641c\u7d22\u7684\u5f97\u5206":101,"\u7b2c\u4e8c\u6b65":[92,94],"\u7b2c\u4e8c\u6b65\u662f\u8fd0\u884c":61,"\u7b2c\u4e8c\u7c7b":57,"\u7b2c\u4e8c\u884c\u5b58\u7684\u662f\u56fe\u50cf":94,"\u7b2c\u4e8c\u90e8\u5206\u4e3b\u8981\u662f\u9009\u62e9\u5b66\u4e60\u7b97\u6cd5":59,"\u7b2c\u4e8c\u90e8\u5206\u662f28":2,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":74,"\u7b49":[35,54,75],"\u7b49\u4e8e\u6837\u672c\u6570":56,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":35,"\u7b49\u5176\u4ed6":101,"\u7b49\u53c2\u6570":87,"\u7b49\u591a\u79cd\u516c\u6709\u4e91\u73af\u5883":85,"\u7b49\u5f85\u8fd9\u4e2a\u7a0b\u5e8f\u6267\u884c\u6210\u529f\u5e76\u8fd4\u56de0\u5219\u6210\u529f\u9000\u51fa":85,"\u7b49\u6587\u4ef6":35,"\u7b49\u7b49":[96,101],"\u7b49\u90fd\u5c5e\u4e8e\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4":85,"\u7b80\u4ecb":78,"\u7b80\u5199":75,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":75,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":75,"\u7b80\u5355\u6765\u8bf4":79,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":58,"\u7b80\u5355\u7684\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165":98,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":79,"\u7b80\u5355\u7684\u6574\u4e2a\u8bcd\u5d4c\u5165":98,"\u7b80\u5355\u7684pydataprovider2\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":2,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":86,"\u7b80\u76f4":68,"\u7b97\u6cd5":[56,59,71,100],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":71,"\u7b97\u6cd5\u914d\u7f6e":100,"\u7ba1\u7406\u4eba\u5458":97,"\u7ba1\u7406\u5458":97,"\u7c7b\u4f3c":[35,67],"\u7c7b\u4f3c\u5730":99,"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":74,"\u7c7b\u522b\u4e2a\u6570":93,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":81,"\u7c7b\u522bid":96,"\u7c7b\u522bid\u548c\u6587\u672c\u4fe1\u606f\u7528":96,"\u7c7b\u540d\u548cc":34,"\u7c7b\u578b":[34,75,82,98],"\u7c7b\u578b\u4e3a":75,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":76,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":67,"\u7c7b\u578b\u540d\u4e3a":75,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":56,"\u7c7b\u578b\u662fsparse_binary_vector":[2,63],"\u7c7b\u578b\u662fsparse_float_vector":[2,63],"\u7c7b\u578b\u6765\u8bbe\u7f6e":2,"\u7c7b\u578b\u7684":68,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":75,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":75,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":74,"\u7c7b\u91cd\u5199":75,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":74,"\u7cfb\u6570":75,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":75,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":75,"\u7ea2\u697c\u68a6":92,"\u7eaa\u5f55\u7247":97,"\u7eafcpu\u955c\u50cf\u4ee5\u53cagpu\u955c\u50cf\u90fd\u4f1a\u7528\u5230avx\u6307\u4ee4\u96c6":61,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165\u662f\u4e00\u6279\u70b9":59,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u51fa\u662f\u4ece\u8fd9\u6279\u70b9\u4f30\u8ba1\u51fa\u6765\u7684\u53c2\u6570":59,"\u7ebf\u6027\u8ba1\u7b97\u7f51\u7edc\u5c42":59,"\u7ebf\u7a0bid\u53f7":84,"\u7ec6\u8282\u63cf\u8ff0":83,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":56,"\u7ed3\u5408":85,"\u7ed3\u5c3e":75,"\u7ed3\u675f\u6807\u8bb0":71,"\u7ed3\u6784\u5982\u4e0b":100,"\u7ed3\u6784\u5982\u4e0b\u56fe":92,"\u7ed3\u679c\u4fdd\u5b58\u5728":99,"\u7ed3\u679c\u53d1\u73b0\u5b83\u4eec\u4e0e\u540c\u65f6\u671f\u7684twitter\u6d88\u606f\u4e2d\u7684\u60c5\u7eea\u8bcd\u9891\u7387\u76f8\u5173":100,"\u7ed3\u679c\u8f93\u51fa\u5230":72,"\u7ed3\u8bba":34,"\u7ed9":68,"\u7ed9\u4e2a\u7b80\u5355\u7684":73,"\u7ed9\u51fa\u56fe\u7247\u5c3a\u5bf8":93,"\u7ed9\u51fa\u8f93\u5165\u6570\u636e\u6240\u5728\u8def\u5f84":93,"\u7ed9\u5b9a\u52a8\u8bcd":99,"\u7ed9\u5b9a\u7684\u6587\u672c\u53ef\u4ee5\u662f\u4e00\u4e2a\u6587\u6863":100,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":70,"\u7edf\u4e00\u7528":21,"\u7ee7\u627f\u81ea":75,"\u7ee7\u627f\u81eaoperatorbas":75,"\u7ee7\u7eed\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":68,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":68,"\u7ef4\u5ea6\u4e3aword_dim":96,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":96,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":96,"\u7ef4\u62a4":85,"\u7ef4\u7a7a\u95f4":71,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":71,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":56,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":2,"\u7f16\u5199\u597d\u6570\u636e\u63d0\u4f9b\u811a\u672c\u540e":98,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":87,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":87,"\u7f16\u53f7":98,"\u7f16\u53f7\u4ece0\u5f00\u59cb":56,"\u7f16\u53f7\u5b57\u6bb5":98,"\u7f16\u7801\u5411\u91cf":71,"\u7f16\u7801\u5668\u8f93\u51fa":71,"\u7f16\u7801\u6e90\u5e8f\u5217":71,"\u7f16\u89e3\u7801\u6a21\u578b\u5c06\u4e00\u4e2a\u6e90\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf":101,"\u7f16\u8bd1":[61,72,73],"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":66,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":65,"\u7f16\u8bd1\u548c\u6267\u884c":75,"\u7f16\u8bd1\u5668":[65,66],"\u7f16\u8bd1\u5668\u6ca1\u6709":34,"\u7f16\u8bd1\u578b\u8bed\u8a00":34,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":55,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":77,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":66,"\u7f16\u8bd1\u6210\u529f\u540e":75,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":82,"\u7f16\u8bd1\u6d41\u7a0b\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":62,"\u7f16\u8bd1\u751f\u6210":77,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684ubuntu":47,"\u7f16\u8bd1\u9009\u9879":60,"\u7f16\u8bd1c":35,"\u7f16\u8bd1master\u5206\u652f\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1paddlepaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":78,"\u7f16\u8bd1ubuntu\u7684deb\u5305":47,"\u7f16\u8f91":85,"\u7f29\u653e\u53c2\u6570":94,"\u7f51\u7edc":[99,100],"\u7f51\u7edc\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":85,"\u7f51\u7edc\u540d\u79f0":96,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":74,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":74,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":74,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":82,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":74,"\u7f51\u7edc\u63a5\u53e3\u5361":80,"\u7f51\u7edc\u6a21\u5757":94,"\u7f51\u7edc\u6a21\u578b\u5c06\u8f93\u51fa\u6807\u7b7e\u7684\u6982\u7387\u5206\u5e03":99,"\u7f51\u7edc\u7684\u8bad\u7ec3\u8fc7\u7a0b":100,"\u7f51\u7edc\u7ed3\u6784\u5982\u4e0b\u56fe\u6240\u793a":98,"\u7f51\u7edc\u901a\u4fe1":74,"\u7f51\u7edc\u914d\u7f6e":[80,96,100],"\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":[94,99],"\u800c":[57,59,71,75,86,98],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u800c\u4e0d\u4f7f\u7528imdb\u6570\u6910\u96c6\u4e2d\u7684imdb":100,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":35,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":34,"\u800c\u4e0d\u662f\u4f7f\u7528\u540c\u6b65":80,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":57,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":53,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":68,"\u800c\u4e0d\u662f\u7ec4\u5408\u4e0a\u4e0b\u6587\u7ea7\u522b\u4fe1\u606f":100,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":35,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93":2,"\u800c\u4e14":101,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":82,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":79,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":79,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":84,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":20,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":68,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":57,"\u800c\u53f3\u56fe\u7684\u74f6\u9888\u8fde\u63a5\u6a21\u5757\u7528\u4e8e50\u5c42":94,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":76,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":34,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":34,"\u800c\u5927\u591a\u6570\u65b9\u6cd5\u53ea\u662f\u5229\u7528n":100,"\u800c\u5b89\u88c5\u5305":53,"\u800c\u5b89\u88c5\u5305\u662f":53,"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":68,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":68,"\u800c\u5bf9\u4e8egolang":34,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":34,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":68,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":79,"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":56,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":35,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":21,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":79,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":81,"\u800c\u6ca1\u6709\u77ed\u65f6\u8bb0\u5fc6\u7684\u635f\u5931":100,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":71,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":63,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":84,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":76,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":68,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38\u5927":2,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":68,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":73,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":60,"\u800ceigenvector":76,"\u800cpaddlepaddle\u5219\u4f1a\u5e2e\u7528\u6237\u505a\u4ee5\u4e0b\u5de5\u4f5c":2,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":70,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":34,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":63,"\u800cweight":93,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":63,"\u804c\u4e1a":97,"\u804c\u4e1a\u4ece\u4e0b\u9762\u6240\u5217\u4e2d\u9009\u62e9":97,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":70,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":70,"\u80fd\u591f\u627e\u5230\u8fd9\u91cc\u4f7f\u7528\u7684\u6240\u6709\u6570\u636e":96,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":70,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":57,"\u80fd\u83b7\u53d6":80,"\u811a\u672c":[72,80,93,98],"\u811a\u672c\u4fdd\u5b58\u5728":93,"\u811a\u672c\u5f00\u59cb\u65f6":87,"\u811a\u672c\u63d0\u4f9b\u4e86\u4e00\u4e2a\u9884\u6d4b\u63a5\u53e3":100,"\u811a\u672c\u65f6\u9700\u8981\u52a0\u4e0a":100,"\u811a\u672c\u8fd0\u884c\u5b8c\u6210\u540e":93,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":73,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":80,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":70,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":20,"\u81ea\u52a8\u751f\u6210":77,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":71,"\u81ea\u5e95\u5411\u4e0a\u6cd5":96,"\u81ea\u6b64":65,"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":72,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":84,"\u81ea\u7531\u804c\u4e1a\u8005":97,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":35,"\u81f3\u6b64":[2,68,73],"\u8212\u9002":68,"\u826f\u597d\u7684\u6587\u6863":34,"\u827a\u672f\u5bb6":97,"\u8282\u70b9\u4e2d\u7684":80,"\u82e5":74,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":58,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[65,66],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":67,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":79,"\u82e5\u6709\u5fc5\u8981":74,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":65,"\u82e5\u73af\u5883\u53d8\u91cf":[65,66],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":57,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":67,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":67,"\u82f1\u6587\u6587\u6863":77,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":77,"\u82f1\u8bed":101,"\u8303\u56f4":84,"\u83b7\u53d6":73,"\u83b7\u53d6\u5229\u7528":96,"\u83b7\u53d6\u5b57\u5178\u7ef4\u5ea6":100,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":53,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":20,"\u83b7\u53d6\u6e90\u7801":72,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":96,"\u83b7\u53d6\u901a\u8fc7":100,"\u83b7\u53d6trainer":87,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":74,"\u865a\u62df\u673a\u4e0a":72,"\u867d\u7136":59,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":35,"\u867d\u7136\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":2,"\u867d\u7136\u8fd9\u4e9b\u6587\u4ef6\u5e76\u975e\u90fd\u9700\u8981\u96c6\u7fa4\u8bad\u7ec3":80,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":81,"\u884c":92,"\u884c\u4f18\u5148\u6b21\u5e8f\u5b58\u50a8":94,"\u884c\u5185\u4f7f\u7528":2,"\u884c\u653f\u5de5\u4f5c":97,"\u884c\u955c\u50cf\u5305\u62ec\u7eafcpu\u7248\u672c\u548cgpu\u7248\u672c\u4ee5\u53ca\u5176\u5bf9\u5e94\u7684\u975eavx\u7248\u672c":61,"\u8865\u5145\u4e0a\u6b21\u7684commit":73,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":74,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":74,"\u8868\u793a":75,"\u8868\u793a\u4e00\u4e2akubernetes\u96c6\u7fa4\u4e2d\u7684\u4e00\u4e2a\u5de5\u4f5c\u8282\u70b9":85,"\u8868\u793a\u4e3adeviceid":84,"\u8868\u793a\u5728\u96c6\u7fa4\u4f5c\u4e1a":80,"\u8868\u793a\u5973\u6027":97,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":68,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":80,"\u8868\u793a\u6570\u636e\u7c7b\u578b":75,"\u8868\u793a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":80,"\u8868\u793a\u751f\u6210\u6570\u636e\u7684\u5e8f\u5217id":101,"\u8868\u793a\u7528\u4e8e\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u8868\u793a\u7537\u6027":97,"\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":96,"\u8868\u793a\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5206\u7c7b\u9519\u8bef":100,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2a\u6837\u672c":100,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2abatch":100,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":75,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":87,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":96,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":96,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":87,"\u88ab":73,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u88ab\u653e\u5728":74,"\u88ab\u79f0\u4e3a":71,"\u897f\u90e8\u7247":97,"\u8981\u4e0b\u8f7d\u548c\u89e3\u538b\u6570\u636e\u96c6":98,"\u8981\u4e0b\u8f7d\u89e3\u538b\u8fd9\u4e2a\u6a21\u578b":101,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":79,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u8981\u5728\u6240\u6709\u8282\u70b9\u4e0a\u5b58\u5728":80,"\u8981\u5bf9\u4e00\u4e2a\u56fe\u7247\u7684\u8fdb\u884c\u5206\u7c7b\u9884\u6d4b":93,"\u8981\u5c06\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u8f6c\u5316\u4e3ameta\u914d\u7f6e\u6587\u4ef6":98,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":67,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":70,"\u8981\u8c03\u7528":74,"\u89e3\u51b3\u529e\u6cd5\u662f":53,"\u89e3\u51b3\u65b9\u6848\u662f":58,"\u89e3\u538b":101,"\u89e3\u6790\u5668\u80fd\u901a\u8fc7\u6587\u4ef6\u7684\u6269\u5c55\u540d\u81ea\u52a8\u8bc6\u522b\u6587\u4ef6\u7684\u683c\u5f0f":98,"\u89e3\u6790\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5b57\u6bb5":98,"\u89e3\u6790\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":4,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":87,"\u89e3\u6790\u8bad\u7ec3\u6a21\u578b\u65f6\u7528\u7684\u914d\u7f6e\u6587\u4ef6":4,"\u89e3\u7801\u5668\u4f7f\u7528":71,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":71,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u89e3\u7801\u5668\u6839\u636e\u4e0a\u4e0b\u6587\u5411\u91cf\u9884\u6d4b\u51fa\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":101,"\u89e3\u91ca":96,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":34,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":34,"\u8ba1\u7b97":71,"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u5355\u5143\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u6838\u5fc3":59,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":71,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":74,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":57,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":71,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":74,"\u8ba1\u7b97\u8bef\u5dee\u51fd\u6570":59,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":74,"\u8ba1\u7b97\u8f93\u51fa":74,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":20,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":76,"\u8ba9\u6a21\u578b\u80fd\u591f\u5f97\u5230\u8bad\u7ec3\u66f4\u65b0":96,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3\u6216\u9884\u6d4b":1,"\u8ba9\u8fd9\u4e2a\u793a\u4f8b\u53d8\u5f97\u66f4\u597d":98,"\u8ba9paddle\u6838\u5fc3\u4e2d":35,"\u8bad\u7ec3":[81,100],"\u8bad\u7ec3\u4e0e\u5e94\u7528":0,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":20,"\u8bad\u7ec3\u4f5c\u4e1a":80,"\u8bad\u7ec3\u53ca\u6d4b\u8bd5\u8bef\u5dee\u66f2\u7ebf\u56fe\u4f1a\u88ab":93,"\u8bad\u7ec3\u53ef\u4ee5\u8bbe\u7f6e\u4e3atrue":99,"\u8bad\u7ec3\u540e":99,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":47,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":80,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":79,"\u8bad\u7ec3\u5b8c\u6210\u540e":59,"\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e\u7684\u76ee\u5f55":101,"\u8bad\u7ec3\u6570\u636e\u662f":2,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":56,"\u8bad\u7ec3\u6570\u6910\u96c6":100,"\u8bad\u7ec3\u65f6":87,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":96,"\u8bad\u7ec3\u65f6\u9ed8\u8ba4shuffl":2,"\u8bad\u7ec3\u6a21\u578b\u4e4b\u524d":100,"\u8bad\u7ec3\u6a21\u578b\u540e":71,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":47,"\u8bad\u7ec3\u7684\u635f\u5931\u51fd\u6570\u9ed8\u8ba4\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21":101,"\u8bad\u7ec3\u7684\u811a\u672c\u662f":99,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":87,"\u8bad\u7ec3\u811a\u672c":96,"\u8bad\u7ec3\u811a\u672c\u7b49\u7b49":96,"\u8bad\u7ec3\u81f3\u591a":98,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":87,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":56,"\u8bad\u7ec3\u8f6e\u6b21":96,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":56,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":81,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":82,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":82,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":82,"\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u6587\u4ef6\u5217\u8868":100,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u505a\u4e86\u968f\u673a\u6253\u4e71\u6392\u5e8f\u800c\u6d4b\u8bd5\u96c6\u6ca1\u6709":100,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u968f\u673a\u6253\u4e71":100,"\u8bad\u7ec3\u96c6\u5e73\u5747\u503c":93,"\u8bad\u7ec3dot_period":81,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":47,"\u8bb0\u5fc6\u6a21\u5757":71,"\u8bba\u6587":94,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":80,"\u8bbe\u4e3a\u672c\u5730":80,"\u8bbe\u5b9a":57,"\u8bbe\u7f6e":[35,56,57],"\u8bbe\u7f6e\u4e3a":[66,74],"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":57,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":82,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":82,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":57,"\u8bbe\u7f6e\u4efb\u52a1\u7684\u6a21\u5f0f\u4e3a\u6d4b\u8bd5":101,"\u8bbe\u7f6e\u4fdd\u5b58\u6a21\u578b\u7684\u8f93\u51fa\u8def\u5f84":101,"\u8bbe\u7f6e\u5168\u5c40\u5b66\u4e60\u7387":100,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":58,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":2,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":2,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":58,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[56,78,98],"\u8bbe\u7f6e\u5b57\u5178\u6587\u4ef6":100,"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":58,"\u8bbe\u7f6e\u5de5\u4f5c\u6a21\u5f0f\u4e3a\u8bad\u7ec3":100,"\u8bbe\u7f6e\u5e73\u5747sgd\u7a97\u53e3":100,"\u8bbe\u7f6e\u6210":58,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":56,"\u8bbe\u7f6e\u6570\u636e\u904d\u5386\u6b21\u6570":99,"\u8bbe\u7f6e\u6807\u7b7e\u7c7b\u522b\u5b57\u5178":100,"\u8bbe\u7f6e\u6a21\u578b\u8def\u5f84":100,"\u8bbe\u7f6e\u7684\u547d\u4ee4\u884c\u53c2\u6570":100,"\u8bbe\u7f6e\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":101,"\u8bbe\u7f6e\u7c7b\u522b\u6570":100,"\u8bbe\u7f6e\u7ebf\u7a0b\u6570":[99,100],"\u8bbe\u7f6e\u7f51\u7edc\u914d\u7f6e":100,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u8bbe\u7f6e\u8f93\u51fa\u8def\u5f84\u4ee5\u4fdd\u5b58\u8bad\u7ec3\u5b8c\u6210\u7684\u6a21\u578b":100,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":75,"\u8bbe\u7f6e\u8fd9\u4e2apydataprovider2\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":2,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":84,"\u8bbe\u7f6ebatch":100,"\u8bbe\u7f6ecpu\u7ebf\u7a0b\u6570\u6216\u8005gpu\u8bbe\u5907\u6570":101,"\u8bbe\u7f6egpu":82,"\u8bbe\u7f6epass":100,"\u8bbe\u7f6epasses\u7684\u6570\u91cf":101,"\u8bbf\u95ee\u5230\u4e3b\u673a\u4e0a\u7684\u6587\u4ef6":61,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":87,"\u8bc4\u4ef7\u9884\u6d4b\u7684\u6548\u679c":59,"\u8bc4\u4f30\u8be5\u4ea7\u54c1\u7684\u8d28\u91cf":96,"\u8bc4\u5206":[97,98],"\u8bc4\u5206\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u4ec5\u4ec5\u63d0\u4f9b\u7535\u5f71\u6216\u7528\u6237\u7684\u7f16\u53f7\u6765\u4ee3\u8868\u76f8\u5e94\u7684\u7535\u5f71\u6216\u7528\u6237":98,"\u8bc4\u5206\u88ab\u8c03\u6574\u4e3a5\u661f\u7684\u89c4\u6a21":97,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":73,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":73,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":73,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":73,"\u8bc6\u522b\u6570\u5b57":47,"\u8bcd\u5411\u91cf":[47,92],"\u8bcd\u5411\u91cf\u6a21\u578b":95,"\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":92,"\u8bcd\u672c\u8eab\u548c\u8bcd\u9891":92,"\u8bcd\u9891\u6700\u9ad8\u7684":101,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":79,"\u8be5":[80,99],"\u8be5\u51fd\u6570\u5177\u6709\u4e24\u4e2a\u53c2\u6570":2,"\u8be5\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":2,"\u8be5\u51fd\u6570\u7684\u529f\u80fd\u662f":2,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":82,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":82,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":82,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":82,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":82,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":82,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":82,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":82,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":82,"\u8be5\u5bf9\u8c61\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u5c5e\u6027":2,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":74,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":96,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":82,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":74,"\u8be5\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":2,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":60,"\u8be5\u6570\u636e\u53ca\u6709\u5f88\u591a\u4e0d\u540c\u7684\u7248\u672c":97,"\u8be5\u6570\u636e\u96c6":92,"\u8be5\u6570\u636e\u96c6\u4e8e2003\u5e742\u6708\u53d1\u5e03":97,"\u8be5\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e9b\u7528\u6237\u4fe1\u606f":97,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":82,"\u8be5\u6587\u4ef6\u53ef\u4ee5\u4ece\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u751f\u6210":98,"\u8be5\u6587\u4ef6\u662f\u7531cpickle\u4ea7\u751f\u7684":94,"\u8be5\u6587\u4ef6\u662fpython\u7684pickle\u5bf9\u8c61":98,"\u8be5\u6587\u4ef6\u8d1f\u8d23\u4ea7\u751f\u56fe\u7247\u6570\u636e\u5e76\u4f20\u9012\u7ed9paddle\u7cfb\u7edf":93,"\u8be5\u6a21\u578b\u4f9d\u7136\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":96,"\u8be5\u6a21\u578b\u5728\u957f\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u6548\u679c\u63d0\u5347\u66f4\u52a0\u660e\u663e":101,"\u8be5\u6a21\u578b\u7684\u7f51\u7edc\u914d\u7f6e\u5982\u4e0b":59,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":71,"\u8be5\u6a21\u578b\u7f51\u7edc\u53ea\u662f\u7528\u4e8e\u8fdb\u884cdemo\u5c55\u793apaddle\u5982\u4f55\u5de5\u4f5c":98,"\u8be5\u793a\u4f8b\u5c06\u5c55\u793apaddle\u5982\u4f55\u8fdb\u884c\u8bcd\u5411\u91cf\u5d4c\u5165":98,"\u8be5\u793a\u4f8b\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":98,"\u8be5\u7b97\u6cd5\u6bcf\u6279\u91cf":59,"\u8be5\u7c7b\u7684":75,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":74,"\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u7cfb\u7edfglibc\u652f\u63012":66,"\u8be5\u811a\u672c\u4ec5\u4ec5\u662f\u5f00\u59cb\u4e00\u4e2apaddle\u8bad\u7ec3\u8fc7\u7a0b":98,"\u8be5\u811a\u672c\u4f1a\u751f\u6210\u4e00\u4e2adot\u6587\u4ef6":94,"\u8be5\u811a\u672c\u5c06\u8f93\u51fa\u9884\u6d4b\u5206\u7c7b\u7684\u6807\u7b7e":93,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":74,"\u8be5github\u4ed3\u5e93\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u9884\u7f16\u8bd1\u597d\u7684":66,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":57,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":68,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":75,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":80,"\u8be6\u7ec6\u5185\u5bb9\u8bf7\u53c2\u89c1":96,"\u8be6\u7ec6\u53ef\u53c2\u8003":73,"\u8be6\u7ec6\u5730\u5c55\u793a\u4e86\u6574\u4e2a\u7279\u5f81\u63d0\u53d6\u7684\u8fc7\u7a0b":94,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":56,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca":96,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":60,"\u8be6\u7ec6\u89c1":67,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8":[95,99],"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":47,"\u8bed\u8a00\u6a21\u578b":92,"\u8bf4\u660e":[20,60,87],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":73,"\u8bf4\u660e\u6bcf\u4e2a\u7279\u5f81\u6587\u4ef6\u5177\u4f53\u5b57\u6bb5\u662f":98,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":74,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":75,"\u8bf7\u4fdd\u8bc1travi":73,"\u8bf7\u5148\u4f7f\u7528":[65,66],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":84,"\u8bf7\u53c2\u8003":[2,35,53,56,63,68,74,75,96],"\u8bf7\u53c2\u8003\u5982\u4e0b\u8868\u683c":96,"\u8bf7\u53c2\u8003\u9875\u9762":98,"\u8bf7\u53c2\u8003layer\u6587\u6863":93,"\u8bf7\u53c2\u89c1":73,"\u8bf7\u53c2\u9605":71,"\u8bf7\u53c2\u9605\u60c5\u611f\u5206\u6790\u7684\u6f14\u793a\u4ee5\u4e86\u89e3\u6709\u5173\u957f\u671f\u77ed\u671f\u8bb0\u5fc6\u5355\u5143\u7684\u66f4\u591a\u4fe1\u606f":99,"\u8bf7\u5728\u8be5pull":73,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":73,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":73,"\u8bf7\u628a\u6587\u6863\u91cc\u547d\u4ee4\u4e2d\u7684paddlepaddl":61,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":82,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":75,"\u8bf7\u67e5\u770b":92,"\u8bf7\u6ce8\u610f":[61,71,75,86,92],"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":73,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":72,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":73,"\u8bf7\u76f4\u63a5\u586b\u51450":58,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":84,"\u8bf7\u786e\u4fdd":73,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":73,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":73,"\u8bf7\u8bb0\u4f4f":80,"\u8bf7\u8fd0\u884c":61,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":73,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":53,"\u8bf7\u9075\u5b88":73,"\u8bf7\u91c7\u7528":73,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":84,"\u8bfb\u53d612\u4e2a\u91c7\u6837\u6570\u636e\u8fdb\u884c\u968f\u673a\u68af\u5ea6\u8ba1\u7b97\u6765\u66f4\u65b0\u66f4\u65b0":59,"\u8bfb\u53d6\u6570\u636e":2,"\u8bfb\u53d6\u6bcf\u4e00\u884c":2,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":87,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":87,"\u8c03\u7528":[74,75,93],"\u8c03\u7528\u4e00\u6b21":2,"\u8c03\u7528\u4e0a\u9762\u7684process\u51fd\u6570\u83b7\u5f97\u89c2\u6d4b\u6570\u636e":59,"\u8c03\u7528\u5bf9\u5e94":76,"\u8c03\u7528\u65b9\u6cd5\u89c1c":65,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":75,"\u8c03\u7528\u7684pydataprovider2\u662f":2,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":2,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":74,"\u8c03\u7528\u8fd9\u4e2apydataprovider2\u7684\u65b9\u6cd5":2,"\u8c13\u8bcd\u4e0a\u4e0b\u6587":99,"\u8d1f\u6837\u672c":96,"\u8d1f\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5206\u5c0f\u4e8e\u7b49\u4e8e4":100,"\u8d1f\u9762\u8bc4\u4ef7\u6837\u672c":100,"\u8d21\u732e\u6587\u6863":77,"\u8d44\u6e90\u5bf9\u8c61\u7684\u540d\u5b57\u662f\u552f\u4e00\u7684":85,"\u8d77":68,"\u8def\u5f84\u4e0b":[59,94],"\u8df3\u8f6c\u5230":73,"\u8df3\u8fc7":56,"\u8f6c\u4e3ajpeg\u6587\u4ef6\u5e76\u5b58\u5165\u7279\u5b9a\u7684\u76ee\u5f55":93,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":21,"\u8f6c\u6362\u8fc7\u6765\u7684":94,"\u8f6e":98,"\u8f83":68,"\u8f93\u5165":[67,71],"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":70,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":70,"\u8f93\u5165\u56fe\u7247\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":93,"\u8f93\u5165\u5c42\u5c3a\u5bf8":94,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":56,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":68,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":68,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":84,"\u8f93\u5165\u6570\u6910\u6240\u5728\u76ee\u5f55":100,"\u8f93\u5165\u6587\u672c":92,"\u8f93\u5165\u6587\u672c\u4e2d\u6ca1\u6709\u5934\u90e8":92,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":74,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":74,"\u8f93\u5165\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":94,"\u8f93\u5165\u7684":92,"\u8f93\u5165\u7684\u539f\u59cb\u6570\u636e\u96c6\u8def\u5f84":101,"\u8f93\u5165\u7684\u540d\u5b57":74,"\u8f93\u5165\u7684\u5927\u5c0f":74,"\u8f93\u5165\u7684\u6587\u672c\u683c\u5f0f\u5982\u4e0b":92,"\u8f93\u5165\u7684\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":92,"\u8f93\u5165\u7684\u7c7b\u578b":74,"\u8f93\u5165\u95e8":100,"\u8f93\u5165\u9884\u6d4b\u6837\u672c":100,"\u8f93\u5165n\u4e2a\u5355\u8bcd":96,"\u8f93\u51fa":[67,71,75],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":70,"\u8f93\u51fa\u4e3an\u4e2aword_dim\u7ef4\u5ea6\u5411\u91cf":96,"\u8f93\u51fa\u51fd\u6570":71,"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":67,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":70,"\u8f93\u51fa\u5e94\u8be5\u7c7b\u4f3c\u5982\u4e0b":98,"\u8f93\u51fa\u6587\u4ef6\u7684\u683c\u5f0f\u8bf4\u660e":92,"\u8f93\u51fa\u65e5\u5fd7\u4fdd\u5b58\u5728\u8def\u5f84":100,"\u8f93\u51fa\u65e5\u5fd7\u8bf4\u660e\u5982\u4e0b":100,"\u8f93\u51fa\u67092\u5217":92,"\u8f93\u51fa\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":94,"\u8f93\u51fa\u7684\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":92,"\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u540d\u79f0":92,"\u8f93\u51fa\u7684\u68af\u5ea6":82,"\u8f93\u51fa\u76ee\u5f55":94,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":86,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":20,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":68,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":56,"\u8fd0":61,"\u8fd0\u884c\u4e00\u4e2a":72,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u5373\u53ef":98,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":75,"\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u4e0b\u8f7d\u8fd9\u4e2a\u811a\u672c":101,"\u8fd0\u884c\u4ee5\u4e0b\u6307\u4ee4":61,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u548c\u83b7\u53d6\u6211\u4eec\u7684\u5b57\u5178\u548c\u9884\u8bad\u7ec3\u6a21\u578b":92,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u6570\u636e\u96c6":92,"\u8fd0\u884c\u4ee5\u4e0b\u8bad\u7ec3\u547d\u4ee4":59,"\u8fd0\u884c\u4ee5\u53ca\u53d1\u5e03\u60a8\u7684ai\u7a0b\u5e8f":61,"\u8fd0\u884c\u5206\u5e03\u5f0f\u4f5c\u4e1a":80,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":[56,78,96],"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":[61,72],"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":75,"\u8fd0\u884c\u5931\u8d25":84,"\u8fd0\u884c\u5b8c\u4ee5\u4e0a\u547d\u4ee4":92,"\u8fd0\u884c\u5b8c\u6210\u540e":80,"\u8fd0\u884c\u5b8c\u811a\u672c":100,"\u8fd0\u884c\u6210\u529f\u4ee5\u540e":92,"\u8fd0\u884c\u6210\u529f\u540e\u76ee\u5f55":100,"\u8fd0\u884c\u65e5\u5fd7":80,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":87,"\u8fd1":68,"\u8fd1\u671f\u63d0\u51fa\u7684nmt\u6a21\u578b\u901a\u5e38\u90fd\u5c5e\u4e8e\u7f16\u89e3\u7801\u6a21\u578b":101,"\u8fd4\u56de":[7,8,9,12,14],"\u8fd4\u56de0":2,"\u8fd4\u56de8\u4e2a\u7279\u5f81list\u548c1\u4e2a\u6807\u7b7elist":99,"\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u6837\u672c":2,"\u8fd4\u56de\u6570\u636e\u7684\u6bcf\u4e00\u6761\u6837\u672c\u7ed9":98,"\u8fd4\u56de\u65f6":2,"\u8fd4\u56de\u7684\u662f":[2,63],"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548cinput_types\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":2,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":47,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":74,"\u8fd4\u56de\u7c7b\u578b":[7,8,9,12,14],"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":75,"\u8fd8\u4f1a":68,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":65,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":73,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u5f8b\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":56,"\u8fd8\u662f":68,"\u8fd8\u662f\u4ece":21,"\u8fd8\u662f\u865a\u62df\u673a":72,"\u8fd8\u6709":68,"\u8fd8\u80fd\u5904\u7406\u5176\u4ed6\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e":100,"\u8fd8\u91c7\u7528\u4e86\u4e24\u4e2a\u5176\u4ed6\u7279\u5f81":99,"\u8fd8\u9700\u8981\u8fdb\u884c\u9884\u5904\u7406":93,"\u8fd8\u9700\u8981\u91cd\u5199":75,"\u8fd9":[56,68,96],"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":58,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":79,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":35,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":35,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":57,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":70,"\u8fd9\u4e09\u4e2a\u5206\u652f":47,"\u8fd9\u4e09\u4e2a\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":96,"\u8fd9\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":80,"\u8fd9\u4e24\u4e2a\u6587\u4ef6\u5939\u4e0b\u5404\u81ea\u670910\u4e2a\u5b50\u6587\u4ef6\u5939":93,"\u8fd9\u4e24\u4e2a\u6807\u51c6":99,"\u8fd9\u4e2a":[68,72,85],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":56,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":56,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":75,"\u8fd9\u4e2a\u51fd\u6570\u7684":71,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":68,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":71,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":35,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":35,"\u8fd9\u4e2a\u5411\u91cf\u4e0e\u6e90\u4e2d\u641c\u7d22\u51fa\u7684\u4f4d\u7f6e\u548c\u6240\u6709\u4e4b\u524d\u751f\u6210\u7684\u76ee\u6807\u5355\u8bcd\u6709\u5173":101,"\u8fd9\u4e2a\u5730\u5740\u5219\u4e3a\u5b83\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":1,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":87,"\u8fd9\u4e2a\u57fa\u7c7b":74,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":35,"\u8fd9\u4e2a\u5b57\u5178\u662f\u6574\u6570\u6807\u7b7e\u548c\u5b57\u7b26\u4e32\u6807\u7b7e\u7684\u4e00\u4e2a\u5bf9\u5e94":100,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":70,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":34,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":68,"\u8fd9\u4e2a\u6570\u91cf\u79f0\u4e3abeam":101,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":34,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":96,"\u8fd9\u4e2a\u6a21\u578b\u5bf9\u4e8e\u7f16\u89e3\u7801\u6a21\u578b\u6765\u8bf4":101,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":35,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":68,"\u8fd9\u4e2a\u7a0b\u5e8f\u662f\u60a8\u5728\u5f00\u53d1\u673a\u4e0a\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u5b8c\u6210\u5f00\u53d1":61,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":74,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":74,"\u8fd9\u4e2a\u7cfb\u7edf\u5c06srl\u4efb\u52a1\u89c6\u4e3a\u5e8f\u5217\u6807\u6ce8\u95ee\u9898":99,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":35,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":72,"\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u7269\u7406\u673a\u6216\u8005\u865a\u62df\u673a":85,"\u8fd9\u4e2a\u8868\u683c":85,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":75,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":70,"\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u662f\u6a21\u578b\u7684\u8bad\u7ec3\u8fc7\u7a0b":59,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":73,"\u8fd9\u4e2a\u914d\u7f6e\u4e0e":92,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6":85,"\u8fd9\u4e2a\u914d\u7f6e\u662f\u5426\u7528\u6765\u751f\u6210":101,"\u8fd9\u4e2a\u955c\u50cf\u5305\u542b\u4e86paddle\u76f8\u5173\u7684\u5f00\u53d1\u5de5\u5177\u4ee5\u53ca\u7f16\u8bd1\u548c\u8fd0\u884c\u73af\u5883":61,"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":71,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":2,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":35,"\u8fd9\u4e2adataprovider\u8f83\u590d\u6742":2,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":21,"\u8fd9\u4e2aissu":72,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":87,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":70,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":56,"\u8fd9\u4e9b":80,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":75,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":21,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":87,"\u8fd9\u4e9b\u53c2\u6570\u7684\u7b80\u77ed\u4ecb\u7ecd\u5982\u4e0b":98,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":74,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":56,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":56,"\u8fd9\u4e9b\u6587\u4ef6\u5c06\u4f1a\u88ab\u4fdd\u5b58\u5728":94,"\u8fd9\u4e9b\u6a21\u578b\u90fd\u662f\u7531\u539f\u4f5c\u8005\u63d0\u4f9b\u7684\u6a21\u578b":94,"\u8fd9\u4e9b\u7279\u5f81\u503c\u4e0e\u4e0a\u8ff0\u4f7f\u7528c":94,"\u8fd9\u4e9b\u7279\u5f81\u548c\u6807\u7b7e\u5b58\u50a8\u5728":99,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":68,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":74,"\u8fd9\u4efd\u7b80\u77ed\u7684\u4ecb\u7ecd\u5c06\u5411\u4f60\u5c55\u793a\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":59,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":73,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":73,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fd9\u4f7f\u5f97nmt\u6a21\u578b\u5f97\u4ee5\u89e3\u653e\u51fa\u6765":101,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":68,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":60,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":75,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":72,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":73,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":73,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":68,"\u8fd9\u56db\u4e2a\u7b80\u5355\u7684\u7279\u5f81\u662f\u6211\u4eec\u7684srl\u7cfb\u7edf\u6240\u9700\u8981\u7684":99,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":68,"\u8fd9\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u4f18\u4e8e\u5148\u524d\u7684\u6700\u5148\u8fdb\u7684\u7cfb\u7edf":99,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":71,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":34,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":75,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":75,"\u8fd9\u5c06\u82b1\u8d39\u6570\u5206\u949f\u7684\u65f6\u95f4":101,"\u8fd9\u5df2\u7ecf\u5728":100,"\u8fd9\u610f\u5473\u7740":71,"\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5728\u8bad\u7ec3\u6570\u636e\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":59,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":84,"\u8fd9\u65f6":56,"\u8fd9\u65f6\u5728\u4f7f\u7528":58,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u8fd9\u662f\u4e00\u4e2a\u57fa\u4e8e\u7edf\u8ba1\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":100,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":58,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":58,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":67,"\u8fd9\u662f\u56e0\u4e3a":34,"\u8fd9\u662f\u56e0\u4e3a\u5b83\u53d1\u6398\u51fa\u4e86\u56fe\u7247\u7684\u4e24\u7c7b\u91cd\u8981\u4fe1\u606f":93,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":73,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":68,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":53,"\u8fd9\u662f\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":101,"\u8fd9\u6765\u81ea\u4e8epaddlepaddle\u7684\u5185\u5b58\u4e2d":101,"\u8fd9\u6837":[35,59,80],"\u8fd9\u6837\u4fdd\u8bc1":47,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":72,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":56,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":84,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":72,"\u8fd9\u6837\u5bb9\u5668\u7684":87,"\u8fd9\u6837\u5c31\u4f1a\u751f\u6210\u4e24\u4e2a\u6587\u4ef6":98,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":21,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u6837\u5f00\u53d1\u4eba\u5458\u53ef\u4ee5\u4ee5\u4e00\u81f4\u7684\u65b9\u5f0f\u5728\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u5de5\u4f5c":61,"\u8fd9\u6837\u5f53\u8be5pull":73,"\u8fd9\u6837\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u5728docker\u4e2d\u8fd0\u884c\u9700\u8981\u7684\u7a0b\u5e8f\u800c\u4e0d\u9700\u8981\u5b89\u88c5\u540e\u5728\u6267\u884c":61,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":74,"\u8fd9\u6837\u7684\u8bdd":86,"\u8fd9\u6837\u7684\u8bdd\u6bcf\u4f4d\u7528\u6237\u5728\u6d4b\u8bd5\u6587\u4ef6\u4e2d\u5c06\u4e0e\u8bad\u7ec3\u6587\u4ef6\u542b\u6709\u540c\u6837\u7684\u4fe1\u606f":98,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":79,"\u8fd9\u6bb5\u7b80\u77ed\u7684\u914d\u7f6e\u5c55\u793a\u4e86paddlepaddle\u7684\u57fa\u672c\u7528\u6cd5":59,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":74,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":58,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":56,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":57,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":84,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":71,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":70,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":87,"\u8fd9\u7bc7\u6587\u6863":73,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":72,"\u8fd9\u7bc7\u6587\u6863\u5c06\u4ee5linux":66,"\u8fd9\u7bc7\u6587\u7ae0":[72,101],"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":68,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":71,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":34,"\u8fd9\u91cc":[58,61,71,73,85,87,94,99],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":75,"\u8fd9\u91cc\u4ecb\u7ecd\u5982\u751f\u6210\u9020\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":61,"\u8fd9\u91cc\u4ee5":96,"\u8fd9\u91cc\u4f7f\u7528\u4e00\u4e2a\u57fa\u4e8emomentum\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d":59,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u4e09\u79cd\u7f51\u7edc\u5355\u5143":59,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u7684python\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u6910":100,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":68,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":56,"\u8fd9\u91cc\u5229\u7528\u5b83\u5efa\u6a21\u53d8\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb":59,"\u8fd9\u91cc\u53ea\u52a0\u8f7d":101,"\u8fd9\u91cc\u53ea\u7b80\u5355\u4ecb\u7ecd\u4e86\u5355\u673a\u8bad\u7ec3":96,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":63,"\u8fd9\u91cc\u5c55\u793a\u5982\u4f55\u4f7f\u7528\u89c2\u6d4b\u6570\u636e\u6765\u62df\u5408\u8fd9\u4e00\u7ebf\u6027\u5173\u7cfb":59,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528":98,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662f\u4e00\u4e2a\u5c0f\u7684vgg\u7f51\u7edc":93,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662fgpu\u6a21\u5f0f\u8fdb\u884c\u8bad\u7ec3":93,"\u8fd9\u91cc\u6211\u4eec\u5728movielens\u6570\u636e\u96c6\u63cf\u8ff0\u4e00\u79cd":98,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":74,"\u8fd9\u91cc\u6211\u4eec\u7528paddl":61,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":87,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":96,"\u8fd9\u91cc\u6570\u636e\u5c42\u6709\u4e24\u4e2a":59,"\u8fd9\u91cc\u662f\u4e00\u4e2a\u4f8b\u5b50":101,"\u8fd9\u91cc\u6709\u4e00\u4e9b\u4e0d\u540c\u7684\u53c2\u6570\u9700\u8981\u6307\u5b9a":101,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":56,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":80,"\u8fd9\u91cc\u6bcf\u4e2a5\u4e2abatch\u6253\u5370\u4e00\u4e2a\u70b9":101,"\u8fd9\u91cc\u6bcf\u9694100\u4e2abatch\u663e\u793a\u4e00\u6b21\u53c2\u6570\u7edf\u8ba1\u4fe1\u606f":101,"\u8fd9\u91cc\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":101,"\u8fd9\u91cc\u7684\u5217\u51fa\u7684\u548c":93,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":76,"\u8fd9\u91cc\u76f4\u63a5\u901a\u8fc7\u9884\u6d4b\u811a\u672c":96,"\u8fd9\u91cc\u7ed9\u51fa\u96c6\u4e2d\u5e38\u89c1\u7684\u90e8\u7f72\u65b9\u6cd5":85,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3a\u4f7f\u7528cpu":101,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3afals":101,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3atrue":101,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":96,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":20,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":73,"\u8fdb\u5165":100,"\u8fdb\u5165\u5bb9\u5668":86,"\u8fdb\u5165\u5f00\u53d1\u955c\u50cf\u5e76\u5f00\u59cb\u5de5\u4f5c":61,"\u8fdb\u7a0b":61,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":87,"\u8fdb\u7a0b\u7684":80,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":87,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":87,"\u8fdb\u7a0b\u9700\u8981\u7684":87,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":47,"\u8fdb\u884c\u4e86":68,"\u8fdb\u884c\u4f7f\u7528":93,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":87,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":87,"\u8fdb\u884c\u56de\u590d":73,"\u8fdb\u884c\u5f00\u53d1":73,"\u8fdb\u884c\u62c6\u89e3":68,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fdb\u884c\u8bbe\u7f6e":75,"\u8fdb\u884c\u8bfb\u5165\u548c\u9884\u5904\u7406\u4ece\u800c\u5f97\u5230\u771f\u5b9e\u8f93\u5165":59,"\u8fdb\u884c\u9884\u6d4b":96,"\u8fdb\u9636\u6307\u5357":[63,90],"\u8fde\u63a5":70,"\u8fde\u63a5\u4e09\u4e2alstm\u9690\u85cf\u5c42":100,"\u9000\u4f11\u4eba\u5458":97,"\u9000\u51fa\u5bb9\u5668":86,"\u9002\u4e2d":68,"\u9002\u5408\u81ea\u5df1\u5b9e\u9a8c":61,"\u9009":68,"\u9009\u62e9":68,"\u9009\u62e9\u6d4b\u8bd5\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":96,"\u9009\u62e9\u76ee\u6807\u5206\u652f":73,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":82,"\u9009\u62e9\u8fc7\u540e\u7684":101,"\u9009\u62e9\u9002\u5408\u60a8\u7684\u573a\u666f\u7684\u5408\u9002\u65b9\u6848":85,"\u9009\u81ea\u4e0b\u5217\u7c7b\u578b":97,"\u9009\u9879":[60,72,92],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":81,"\u901a\u5e38":[35,75,80,100],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":87,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":84,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":58,"\u901a\u5e38\u540d\u5b57\u662f":73,"\u901a\u5e38\u60c5\u51b5\u4e0b":79,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":86,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":20,"\u901a\u5e38\u6bcf\u4e2ajob\u5305\u62ec\u4e00\u4e2a\u6216\u8005\u591a\u4e2apod":85,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":71,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":74,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":68,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":84,"\u901a\u7528":81,"\u901a\u77e5":68,"\u901a\u8fc7":[56,68,73,74,75,80,96],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":70,"\u901a\u8fc7\u4ea4\u53c9\u7f16\u8bd1\u7684\u65b9\u5f0f\u6765\u7f16\u8bd1":66,"\u901a\u8fc7\u4ea4\u66ff\u4f7f\u7528\u5377\u79ef\u548c\u6c60\u5316\u5904\u7406":93,"\u901a\u8fc7\u4f7f\u7528":60,"\u901a\u8fc7\u51fd\u6570":87,"\u901a\u8fc7\u5377\u79ef\u64cd\u4f5c\u4ece\u56fe\u7247\u6216\u7279\u5f81\u56fe\u4e2d\u63d0\u53d6\u7279\u5f81":93,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":56,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":70,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":70,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":73,"\u901a\u8fc7\u6240\u6709\u8bad\u7ec3\u96c6\u4e00\u6b21\u79f0\u4e3a\u4e00\u904d":100,"\u901a\u8fc7\u67e5\u770b\u4e70\u5bb6\u5bf9\u67d0\u4e2a\u4ea7\u54c1\u7684\u8bc4\u4ef7\u53cd\u9988":96,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":35,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":63,"\u901a\u8fc7\u7f16\u8bd1\u4f1a\u751f\u6210py_paddle\u8f6f\u4ef6\u5305":4,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":74,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":75,"\u901a\u8fc7\u8c03\u7528":4,"\u901a\u8fc7\u914d\u7f6e\u7c7b\u4f3c\u4e8e":96,"\u901a\u8fc7data":70,"\u901a\u8fc7volum":85,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u903b\u8f91\u56de\u5f52":96,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":57,"\u9053\u6b49":68,"\u9069":68,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":73,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":47,"\u9075\u5faa\u5982\u4e0b\u7684\u683c\u5f0f":97,"\u9075\u5faa\u6587\u7ae0":92,"\u90a3\u4e48":[35,70,74],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":70,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u5728":75,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":1,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":58,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":58,"\u90a3\u4e48\u5f53check\u51fa\u6570\u636e\u4e0d\u5408\u6cd5\u65f6":2,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":72,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6536\u96c6\u5e02\u573a\u4e0a\u623f\u5b50\u7684\u5927\u5c0f\u548c\u4ef7\u683c":59,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":71,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":71,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":58,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":56,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":53,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":72,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":56,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":84,"\u90a3\u4e48paddlepaddle\u4f1a\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":2,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":79,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":79,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":58,"\u90a3\u5bb9\u5668\u5c31\u662f\u8fd9\u4e2a\u7a0b\u5e8f\u8fd0\u884c\u65f6\u4ea7\u751f\u7684":61,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":79,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":79,"\u90ae\u7f16":97,"\u90e8\u7f72\u548c\u914d\u7f6e\u6bd4\u8f83\u7b80\u5355":85,"\u90fd":68,"\u90fd\u4e0d\u9700\u8981":72,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":82,"\u90fd\u4f7f\u7528\u968f\u673a\u503c\u521d\u59cb\u5316":59,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":68,"\u90fd\u53ef\u4ee5\u8fd0\u884c":72,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":21,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":67,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":68,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":34,"\u90fd\u7528":73,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":73,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":74,"\u914d\u7f6e":100,"\u914d\u7f6e\u4e86\u7f51\u7edc":98,"\u914d\u7f6e\u521b\u5efa\u5b8c\u6bd5\u540e":93,"\u914d\u7f6e\u5982\u4e0b":92,"\u914d\u7f6e\u6253\u5f00":79,"\u914d\u7f6e\u6587\u4ef6":96,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":74,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":72,"\u914d\u7f6e\u6a21\u578b\u6587\u4ef6":92,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u914d\u7f6e\u7b49\u6587\u4ef6\u7684\u76ee\u5f55\u89c6\u4e3a":80,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":71,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":74,"\u914d\u7f6eapi":67,"\u9152\u5e97":68,"\u91c7\u6837\u5c42":98,"\u91c7\u7528":99,"\u91c7\u7528\u53e6\u4e00\u79cd\u65b9\u6cd5\u6765\u5806\u53e0lstm\u5c42":99,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":82,"\u91c7\u7528multi":58,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":20,"\u91cc":72,"\u91cc\u4ecb\u7ecd\u4e86\u7528paddle\u6e90\u7801\u4e2d\u7684\u811a\u672c\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u7684\u8fc7\u7a0b":86,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":72,"\u91cc\u5b8c\u6210":75,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":34,"\u91cc\u6307\u5b9a\u56fe\u50cf\u6570\u636e\u5217\u8868":94,"\u91cc\u7684":72,"\u91cc\u7684\u65e5\u5fd7":80,"\u91cc\u7684\u6e90\u7801":72,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":72,"\u91cc\u9762":75,"\u91cc\u9762\u6db5\u76d6\u4e86":61,"\u91cc\u9762\u6db5\u76d6\u4e86paddlepaddle\u8fd0\u884c\u6240\u9700\u7684\u6240\u6709\u73af\u5883":61,"\u91cd\u547d\u540d\u6210":34,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":79,"\u9488\u5bf9\u4e0d\u540c\u5e73\u53f0\u7684\u7f16\u8bd1\u5de5\u5177":66,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":86,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":56,"\u9488\u5bf9\u6587\u672c":98,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":60,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":34,"\u94fe\u63a5\u5f85\u8865\u5145":96,"\u9500\u552e":97,"\u9519\u8bef\u5904\u7406":34,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":34,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":34,"\u9519\u8bef\u7387":96,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":58,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":72,"\u955c\u50cf":61,"\u955c\u50cf\u91cc\u6709":86,"\u957f\u5ea6":56,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":71,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":71,"\u95ee\u9898":59,"\u95f4\u9694":96,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":82,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":82,"\u9664\u4e86":2,"\u9664\u4e86boot_lay":68,"\u9664\u53bbdata\u5c42":96,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":35,"\u9664\u6b64\u4e4b\u5916":56,"\u9664\u8bcd\u5411\u91cf\u6a21\u578b\u5916\u7684\u53c2\u6570\u5c06\u4f7f\u7528\u6b63\u6001\u5206\u5e03\u968f\u673a\u521d\u59cb\u5316":92,"\u9664\u96f6\u7b49\u95ee\u9898":56,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":73,"\u968f\u673a\u521d\u59cb\u4e0d\u5b58\u5728\u7684\u53c2\u6570":99,"\u968f\u673a\u6570\u7684\u79cd\u5b50":82,"\u968f\u673a\u6570seed":81,"\u968f\u7740\u8f6e\u6570\u589e\u52a0\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u7684\u8f93\u51fa\u5728\u4e0d\u65ad\u7684\u51cf\u5c0f":59,"\u9694\u5f00":94,"\u96c6":97,"\u96c6\u675f\u641c\u7d22\u4e2d\u7684\u6269\u5c55\u5e7f\u5ea6":101,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u6784\u5efa\u641c\u7d22\u6811":101,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":82,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddle\u8bad\u7ec3\u4f5c\u4e1a":86,"\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u6240\u6709\u8fdb\u7a0b\u7684\u73af\u5883\u8bbe\u7f6e":80,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":80,"\u96c6\u7fa4\u5de5\u4f5c":80,"\u96c6\u7fa4\u6d4b\u8bd5":81,"\u96c6\u7fa4\u8bad\u7ec3":81,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":55,"\u96c6\u7fa4\u8fdb\u7a0b":80,"\u96c6\u7fa4\u901a\u4fe1\u4fe1\u9053\u7684\u7aef\u53e3\u6570":80,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684":80,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u53f7":80,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":75,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":79,"\u9700\u8981":[21,72,75],"\u9700\u8981\u4e3a":75,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":87,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":73,"\u9700\u8981\u4fee\u6539build":47,"\u9700\u8981\u5148\u6302\u8f7d\u5230\u670d\u52a1\u5668node\u4e0a\u518d\u901a\u8fc7kubernet":85,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":53,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":73,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":87,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":75,"\u9700\u8981\u5728":[75,80],"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":86,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":77,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":35,"\u9700\u8981\u5b89\u88c5graphviz\u6765\u8f6c\u6362dot\u6587\u4ef6\u4e3a\u56fe\u7247":94,"\u9700\u8981\u5bf9":85,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":56,"\u9700\u8981\u5c06\u6807\u8bb0\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6837\u672c\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8def\u5f84":100,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":47,"\u9700\u8981\u5f15\u7528":35,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":72,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":68,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":63,"\u9700\u8981\u660e\u786e\u6307\u5b9a":82,"\u9700\u8981\u6709\u4e00\u4e2a\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u6765\u4fdd\u5b58\u8bad\u7ec3\u6240\u9700\u6570\u636e\u548c\u8bad\u7ec3\u8f93\u51fa":85,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":34,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":87,"\u9700\u8981\u6ce8\u610f":75,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[47,56,82,98],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":74,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":68,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":65,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":57,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":35,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":72,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":70,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":47,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":76,"\u975e\u5e38\u6570":74,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":74,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":65,"\u97f3\u4e50\u5267":97,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":72,"\u987a\u5e8f":68,"\u9884\u5904\u7406\u6570\u636e\u4e00\u822c\u7684\u547d\u4ee4\u4e3a":98,"\u9884\u5904\u7406\u811a\u672c":100,"\u9884\u5b9a\u4e49\u7f51\u7edc":100,"\u9884\u5b9a\u4e49\u7f51\u7edc\u5982\u56fe3\u6240\u793a":100,"\u9884\u63d0\u4ea4\u94a9\u5b50":73,"\u9884\u6d4b\u540e":99,"\u9884\u6d4b\u63a5\u53e3\u811a\u672c":100,"\u9884\u6d4b\u6982\u7387\u53d6\u5e73\u5747":94,"\u9884\u6d4b\u7a0b\u5e8f\u5c06\u8bfb\u53d6\u7528\u6237\u7684\u8f93\u5165":98,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":96,"\u9884\u6d4b\u811a\u672c\u662f":99,"\u9884\u6d4bid":96,"\u9884\u6d4bimdb\u7684\u672a\u6807\u8bb0\u8bc4\u8bba\u7684\u4e00\u4e2a\u5b9e\u4f8b\u5982\u4e0b":100,"\u9884\u8bad\u7ec3\u6a21\u578b\u4f7f\u7528\u7684\u5b57\u5178\u7684\u8def\u5f84":92,"\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u5b57\u5178\u6a21\u578b\u7684\u8def\u5f84":92,"\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":94,"\u989d\u5916\u7684\u53c2\u6570":96,"\u9996\u5148":[2,59,68,71,74,92,94,96,99,100],"\u9996\u5148\u4e0b\u8f7dcifar":93,"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":60,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":73,"\u9996\u5148\u5b89\u88c5paddlepaddl":100,"\u9996\u5148\u5b9a\u4e49":75,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":74,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u9996\u5148\u662f\u6cd5\u8bed\u5e8f\u5217":101,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":58,"\u9996\u5148\u901a\u8fc7":73,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":63,"\u9a71\u52a8":77,"\u9ad8\u4e2d\u6bd5\u4e1a\u751f":97,"\u9ad8\u4eae\u90e8\u5206":68,"\u9ad8\u53ef\u7528":85,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":71,"\u9ad8\u65af\u5206\u5e03":58,"\u9ed1\u8272\u7535\u5f71":97,"\u9ed8\u8ba4":[2,82,101],"\u9ed8\u8ba4256k":28,"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":96,"\u9ed8\u8ba4\u4e0d\u663e\u793a":82,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":70,"\u9ed8\u8ba4\u4e3a0":[82,84],"\u9ed8\u8ba4\u4e3a1":[2,84],"\u9ed8\u8ba4\u4e3a100":84,"\u9ed8\u8ba4\u4e3a4096mb":82,"\u9ed8\u8ba4\u4e3a\u4e0d\u4f7f\u7528":98,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":70,"\u9ed8\u8ba4\u4e3anull":82,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":56,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":82,"\u9ed8\u8ba4\u503c":[60,67,84],"\u9ed8\u8ba4\u503c\u4e3a":[65,66],"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":70,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[58,61,80,100],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4f7f\u7528\u6b64\u7f51\u7edc":100,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":58,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":68,"\u9ed8\u8ba4\u7528\u6765\u5207\u5206\u5355\u8bb0\u548c\u6807\u70b9\u7b26\u53f7":100,"\u9ed8\u8ba4\u7684":86,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":84,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[65,66],"\u9ed8\u8ba4\u8c03\u7528":72,"\u9ed8\u8ba4\u914d\u7f6e\u5982\u4e0b":80,"abstract":48,"adamax\u7b49":96,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":96,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":65,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":65,"api\u4e2d\u4f7f\u7528":34,"api\u5bf9\u6bd4\u4ecb\u7ecd":69,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":35,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":35,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":35,"api\u63a5\u53e3":[28,85],"api\u63a5\u53e3\u751f\u6210":75,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":35,"api\u63a5\u53e3\u7684\u751f\u6210":75,"api\u6587\u6863":65,"api\u65f6":35,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":35,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":35,"api\u66b4\u9732\u7684\u7c7b\u578b":35,"api\u6765\u9884\u6d4b":65,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":35,"api\u7684\u5934\u6587\u4ef6":[65,66],"api\u7684\u5b9e\u4f8b":35,"api\u7684\u5b9e\u73b0\u7ec6\u8282":35,"api\u7684\u63a5\u53e3":35,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":35,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":35,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":35,"api\u7ea7\u522b":65,"api\u7ea7\u522b\u4e0d\u5c0f\u4e8e21":65,"api\u7ea7\u522b\u4e3a21":65,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":35,"app\u4e2d":65,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":58,"atlas\u7684\u8def\u5f84":60,"avx\u7684\u955c\u50cf":61,"awselasticblockstore\u7b49":85,"batch\u4e2d\u5305\u542b":56,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":82,"batches\u6b21":82,"bin\u548c\u8bc4\u5206\u6587\u4ef6":98,"blas\u7684\u8def\u5f84":60,"block\u6784\u6210\u4e00\u4e2amodel":20,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":61,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":47,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":61,"book\u7684":63,"book\u7684docker\u955c\u50cf":61,"bool\u578b\u53c2\u6570":2,"boolean":[29,33,34],"break":[18,51],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":47,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":47,"build\u6307\u4ee4\u6309\u7167dockerfile\u751f\u6210\u955c\u50cf":61,"build\u8fd9\u4e2a\u547d\u4ee4\u7684":61,"byte":[28,58],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":34,"c\u6709\u6807\u51c6\u7684abi":34,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":34,"caoying\u7684pul":101,"case":[8,22,35,41,42,45,79,91],"cc\u4e2d\u7684":76,"cells\u7b49":57,"char":24,"class":[5,6,7,8,9,10,11,12,14,15,17,30,32,34,37,39,40,42,45,46,48,49,50,51,58,74,75,76,100],"cmake\u4e2d\u5c06":79,"cmake\u53c2\u6570\u5982\u4e0b":66,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":65,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":53,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":[65,66],"cmake\u7f16\u8bd1\u65f6":60,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[65,66],"cmake\u914d\u7f6e\u4e2d\u5c06":79,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[65,66],"com\u4e0b\u8f7d\u7684":61,"conf\u4f5c\u4e3a\u914d\u7f6e":101,"const":[17,22,24,38,46,48,50,51,74,75,76],"container\u4e2d":86,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":35,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":35,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":35,"core\u6982\u5ff5":35,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":63,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":58,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":84,"count\u548cgpu":84,"cuda\u5e93":82,"cudnn\u5e93":[60,82],"dat\u4e2d":98,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":21,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":76,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":87,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":68,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":68,"dataprovider\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":1,"dataprovider\u7684\u4ecb\u7ecd":[3,96],"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":56,"deb\u5305":47,"deb\u5305\u7f16\u8bd1\u95ee\u9898":47,"debian\u955c\u50cf":61,"decay\u5219\u4e3a0":93,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":70,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":70,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":70,"decoer\u67b6\u6784":70,"default":[6,7,8,9,11,12,14,15,17,18,31,36,48,49,50,52,84,86,87,91,100],"demo\u9884\u6d4b\u8f93\u51fa\u5982\u4e0b":4,"dictionary\u662f\u4ece\u7f51\u7edc\u914d\u7f6e\u4e2d\u4f20\u5165\u7684dict\u5bf9\u8c61":2,"dictionary\u7531\u89e3\u6790\u81ea\u52a8\u751f\u6210":98,"dir\u4e2d\u670916\u4e2a\u5b50\u76ee\u5f55":101,"docker\u5b58\u5728\u95ee\u9898":61,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":77,"docker\u5bb9\u5668\u4e2d":61,"docker\u5bb9\u5668\u4f1a\u8fd0\u884c\u5728\u72ec\u7acb\u7684\u6587\u4ef6\u7cfb\u7edf\u7a7a\u95f4\u4e4b\u4e0a":61,"docker\u7684\u5b98\u7f51":77,"docker\u955c\u50cf\u6765\u670d\u52a1html\u4ee3\u7801":61,"dockerfile\u4f4d\u4e8epaddlepaddl":61,"dockers\u8bbe\u7f6e":61,"double\u7c7b\u578b\u65f6\u4e3a8":58,"dropout\u7684\u6bd4\u4f8b":74,"eigenscalar\u7684\u8f6c\u6362":76,"elec\u6d4b\u8bd5\u96c6":96,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u63d0\u4f9b\u6570\u636e\u7684python\u811a\u672c":96,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":70,"encoder\u8f93\u51fa":70,"entropy\u4f5c\u4e3acost":58,"enum":[22,24,39,49,50,52],"evaluator\u7684\u503c\u4f4e\u4e8e0":101,"export":[53,61,93],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":[2,63],"false\u7684\u60c5\u51b5":2,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":84,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":84,"final":[8,9,16,36,51],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":76,"float":[2,6,7,8,10,12,50,59,75,76,79,94],"float\u7b49":84,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":76,"full\u53c2\u6570\u63d0\u4ea4":54,"function":[8,9,10,12,15,17,19,23,24,25,27,32,36,37,38,39,41,42,43,45,46,48,50,51,71,91,100],"function\u4f7f\u7528":57,"gen\u6587\u4ef6\u5939\u4e2d\u7684\u6587\u4ef6\u5217\u8868":101,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":2,"generator\u81f3\u5c11\u9700\u8981\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":2,"git\u6d41\u5206\u652f\u6a21\u578b":73,"github\u9996\u9875":73,"golang\u53ef\u4ee5\u4f7f\u7528":34,"golang\u7684":34,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":60,"gpu\u5171\u4eabkernel\u5b9e\u73b0\u5728":75,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":79,"gpu\u53cc\u7f13\u5b58":2,"gpu\u548c\u975eavx\u533a\u5206\u4e86\u5982\u4e0b4\u4e2a\u955c\u50cf":61,"gpu\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":75,"gpu\u5b9e\u73b0\u5728":75,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":78,"gpu\u6267\u884c":76,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":82,"gpu\u7248\u672c\u5e76\u60f3\u4f7f\u7528":99,"gpu\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":75,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":53,"gram\u7ea7\u522b\u7684\u77e5\u8bc6":100,"group\u6559\u7a0b":69,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":57,"gru\u6216lstm":71,"gru\u6a21\u578b":96,"gru\u6a21\u578b\u914d\u7f6e":96,"h\u5e76\u4e0d\u56f0\u96be":34,"hot\u7a20\u5bc6\u5411\u91cf":98,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":77,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":[2,63],"id\u4e3a0\u7684\u6982\u7387":96,"id\u4e3a1\u7684\u6982\u7387":96,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":82,"id\u6307\u5b9a\u7684gpu":84,"id\u65e0\u6548":82,"image\u91cc":86,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":21,"imdb\u6570\u636e\u96c6\u5305\u542b25":100,"imdb\u6709\u4e24\u4e2a\u6807\u7b7e":100,"imdb\u7684\u6570\u6910\u96c6":100,"import":[2,4,7,8,15,17,18,31,33,36,39,43,48,59,63,75,92,93,94,100,101],"include\u4e0b\u9700\u8981\u5305\u542bcbla":60,"include\u4e0b\u9700\u8981\u5305\u542bmkl":60,"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":56,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":2,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":21,"instance\u5305\u6db5\u4e24\u4e2a\u503c":21,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":21,"int":[2,6,7,8,9,12,17,22,23,24,27,33,34,35,39,40,41,49,50,51,52,68,74,76,84,99],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":34,"issue\u7f16\u53f7":73,"job\u542f\u52a8\u540e\u4f1a\u521b\u5efa\u8fd9\u4e9bpod\u5e76\u5f00\u59cb\u6267\u884c\u4e00\u4e2a\u7a0b\u5e8f":85,"job\u6216\u8005\u5e94\u7528\u7a0b\u5e8f\u5728\u5bb9\u5668\u4e2d\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e\u4f1a\u5728\u5bb9\u5668\u9500\u6bc1\u65f6\u6d88\u5931":85,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":87,"job\u7684\u540d\u5b57":87,"kernel\u5b9e\u73b0":75,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":75,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":75,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":87,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":78,"kubernetes\u5355\u673a\u8bad\u7ec3":78,"kubernetes\u53ef\u4ee5\u5728\u7269\u7406\u673a\u6216\u865a\u62df\u673a\u4e0a\u8fd0\u884c":85,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":87,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":87,"kubernetes\u63d0\u4f9b\u4e86\u591a\u79cd\u96c6\u7fa4\u90e8\u7f72\u7684\u65b9\u6848":85,"kubernetes\u652f\u6301\u591a\u79cdvolum":85,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":86,"kubernetes\u96c6\u7fa4\u5c31\u662f\u7531node\u8282\u70b9\u4e0emaster\u8282\u70b9\u7ec4\u6210\u7684":85,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":68,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":68,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":57,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":70,"layer\u65f6":57,"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":63,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":74,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":57,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":60,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":60,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":60,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542bmkl_cor":60,"list\u4e2d\u7684\u6bcf\u4e00\u884c\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":2,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":47,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":2,"list\u548ctest":1,"list\u5982\u4e0b\u6240\u793a":84,"list\u5b58\u653e\u5728\u672c\u5730":1,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":84,"long":[8,9,12],"lstm\u67b6\u6784\u7684\u6700\u5927\u4f18\u70b9\u662f\u5b83\u53ef\u4ee5\u5728\u957f\u65f6\u95f4\u95f4\u9694\u5185\u8bb0\u5fc6\u4fe1\u606f":100,"lstm\u6a21\u578b":96,"lstm\u6a21\u578b\u914d\u7f6e":96,"lstm\u7f51\u7edc\u7c7b\u4f3c\u4e8e\u5177\u6709\u9690\u85cf\u5c42\u7684\u6807\u51c6\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":100,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":70,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":71,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":71,"memory\u53ea\u80fd\u5728":70,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":68,"memory\u6307\u5411\u4e00\u4e2alay":70,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":71,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":68,"memory\u7684":71,"memory\u7684\u521d\u59cb\u72b6\u6001":70,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":68,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":70,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":71,"memory\u7684i":70,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":70,"mkl\u7684\u8def\u5f84":60,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":60,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u670970":2,"mode\u548cattent":101,"mode\u7684python\u51fd\u6570":101,"model\u505a\u5206\u652f\u7ba1\u7406":47,"model\u53ef\u4ee5\u901a\u8fc7":4,"model\u6765\u5b9e\u73b0\u624b\u5199\u8bc6\u522b\u7684\u9884\u6d4b\u4ee3\u7801":4,"movielens\u6570\u636e\u96c6":98,"name\u662f\u4f53\u88c1":98,"name\u662f\u5e74\u9f84":98,"name\u662f\u6027\u522b":98,"name\u662f\u7535\u5f71\u540d":98,"name\u662f\u804c\u4e1a":98,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":87,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":21,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":65,"new":[8,12,16,17,18,19,22,23,24,25,26,40,41,42,44,45,50,51,73,74,91],"nfs\u7684\u90e8\u7f72\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":85,"nmt\u6a21\u578b\u53d7\u5236\u4e8e\u6e90\u8bed\u53e5\u7684\u7f16\u7801":101,"normalization\u5c42":94,"normalization\u5c42\u7684\u53c2\u6570":94,"note\u7684\u4e66\u5199":47,"notebook\u662f\u4e00\u4e2a\u5f00\u6e90\u7684web\u7a0b\u5e8f":61,"null":[8,74,82],"num_gradient_servers\u53c2\u6570":87,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":58,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":75,"op\u5b9a\u4e49":75,"op\u6709\u8ba1\u7b97\u51fd\u6570":75,"op\u6ce8\u518c\u5b9e\u73b0\u5728":75,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":75,"openblas\u7684\u8def\u5f84":60,"opprotomake\u5b9a\u4e49":75,"org\u76ee\u524d\u9075\u5faa":47,"out\u4e0b\u5305\u542b":93,"out\u7684\u6587\u4ef6\u5939":93,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":76,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":87,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":76,"packages\u91cc\u9762":53,"packages\u91cc\u9762\u7684python\u5305":53,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":60,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":34,"paddle\u4e0b\u8f7d":61,"paddle\u4e2d\u7684\u4e00\u6761pass\u8868\u793a\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u6240\u6709\u7684\u6837\u672c\u4e00\u6b21":101,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":68,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":56,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":34,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":34,"paddle\u662f\u4ece\u5b98\u65b9\u955c\u50cf\u6e90dockerhub":61,"paddle\u66ff\u6362\u6210dock":61,"paddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":86,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":34,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":35,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":34,"paddle\u7684c":35,"paddle\u7684dock":86,"paddle\u7684docker\u5f00\u53d1\u955c\u50cf\u5e26\u6709\u4e00\u4e2a\u901a\u8fc7":61,"paddle\u8bad\u7ec3\u4efb\u52a1":21,"paddle\u8def\u5f84\u4e0b":35,"paddle\u955c\u50cf":86,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":34,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":35,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":34,"paddle_\u7c7b\u578b\u540d":35,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":35,"paddlepaddle\u4e2d":[67,70],"paddlepaddle\u4e2d\u7684\u4e00\u4e2apass\u610f\u5473\u7740\u5bf9\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u8fdb\u884c\u4e00\u6b21\u8bad\u7ec3":100,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":68,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":57,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":63,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[65,66],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":63,"paddlepaddle\u4f1a\u5728\u8c03\u7528\u8bfb\u53d6\u6570\u636e\u7684python\u811a\u672c\u4e4b\u524d":96,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":57,"paddlepaddle\u4f7f\u7528\u5747\u503c0":58,"paddlepaddle\u4f7f\u7528avx":53,"paddlepaddle\u4f7f\u7528git":47,"paddlepaddle\u4f7f\u7528swig\u5bf9\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":4,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":58,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":58,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":2,"paddlepaddle\u5148\u4ece\u4e00\u4e2a\u6587\u4ef6\u5217\u8868\u91cc\u83b7\u5f97\u6570\u636e\u6587\u4ef6\u5730\u5740":59,"paddlepaddle\u53d1\u5e03\u65b0\u7248\u672c\u7684\u65f6\u5019\u90fd\u4f1a\u53d1\u5e03\u5bf9\u5e94\u7248\u672c\u7684\u751f\u4ea7\u955c\u50cf\u4ee5\u53ca\u5f00\u53d1\u955c\u50cf":61,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":60,"paddlepaddle\u53ef\u4ee5\u6267\u884c\u7528\u6237\u7684python\u811a\u672c\u7a0b\u5e8f\u6765\u8bfb\u53d6\u5404\u79cd\u683c\u5f0f\u7684\u6570\u636e\u6587\u4ef6":96,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":68,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":74,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":68,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":57,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":[2,63],"paddlepaddle\u5b9a\u4e49\u7684\u53c2\u6570":2,"paddlepaddle\u5c06\u4ee5\u8bbe\u7f6e\u53c2\u6570\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6e":96,"paddlepaddle\u5c06\u5728\u89c2\u6d4b\u6570\u636e\u96c6\u4e0a\u8fed\u4ee3\u8bad\u7ec330\u8f6e":59,"paddlepaddle\u5c06\u6839\u636e":65,"paddlepaddle\u5c06\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570\u4f5c\u4e3a\u4e00\u4e2anumpy\u6570\u7ec4\u5355\u72ec\u5b58\u4e3a\u4e00\u4e2a\u6587\u4ef6":59,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[65,66],"paddlepaddle\u5c06train":2,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":47,"paddlepaddle\u5f00\u53d1\u955c\u50cf\u5c31\u88ab\u6784\u5efa\u5b8c\u6bd5\u4e86":61,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":21,"paddlepaddle\u63d0\u4f9b\u4e86\u5f88\u591a\u4f18\u79c0\u7684\u5b66\u4e60\u7b97\u6cd5":59,"paddlepaddle\u63d0\u4f9bdocker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":62,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":63,"paddlepaddle\u652f\u6301\u4ee5\u4e0b\u4efb\u610f\u4e00\u79cdblas\u5e93":60,"paddlepaddle\u652f\u6301\u5927\u91cf\u7684\u8ba1\u7b97\u5355\u5143\u548c\u4efb\u610f\u6df1\u5ea6\u7684\u7f51\u7edc\u8fde\u63a5":59,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":56,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":56,"paddlepaddle\u6587\u6863\u4e3b\u9898\u5728":77,"paddlepaddle\u6587\u6863\u4f7f\u7528":77,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":[59,63],"paddlepaddle\u6bcf\u6b21\u53d1\u5e03\u65b0\u7248\u672c\u90fd\u4f1a\u53d1\u5e03\u5bf9\u5e94\u7684\u5f00\u53d1\u955c\u50cf\u4f9b\u5f00\u53d1\u8005\u76f4\u63a5\u4f7f\u7528":61,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":47,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":47,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":47,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":56,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":58,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":65,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":57,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":2,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":77,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e24\u79cd\u65b9\u5f0f":77,"paddlepaddle\u7684\u6e90\u7801":73,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":62,"paddlepaddle\u7684bas":74,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":65,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":66,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":65,"paddlepaddle\u7684docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f":62,"paddlepaddle\u7684docker\u955c\u50cf\u5c31\u5305\u542b\u4e86paddlepaddle\u7684python\u5e93\u4ee5\u53ca\u5176\u4f9d\u8d56\u7684\u591a\u4e2apython\u5e93":61,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":68,"paddlepaddle\u76ee\u524d\u552f\u4e00\u5b98\u65b9\u652f\u6301\u7684\u8fd0\u884c\u7684\u65b9\u5f0f\u662fdocker\u5bb9\u5668":61,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":58,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":58,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":65,"paddlepaddle\u8981\u6c42\u4f7f\u7528\u7684\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u652f\u6301\u7684andoid":65,"paddlepaddle\u8c03\u7528process\u51fd\u6570\u6765\u8bfb\u53d6\u6570\u636e":96,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":70,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":70,"paddlepaddle\u90fd\u53ef\u4ee5\u81ea\u52a8\u5224\u65ad\u786c\u4ef6\u662f\u5426\u652f\u6301avx":61,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":87,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":1,"paddlepaddle\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":61,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":82,"pass\u5230":101,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":82,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":82,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":82,"passes\u8f6e":82,"patch\u53f7":47,"patch\u53f7\u52a0\u4e00":47,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":84,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":82,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":82,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":82,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":82,"period\u4e2abatch\u5904\u7406\u7684\u5f53\u524d\u635f\u5931":100,"period\u4e2abatch\u7684\u5206\u7c7b\u9519\u8bef":100,"period\u6574\u9664":82,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":82,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":66,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":66,"pi\u5e73\u53f0\u4f7f\u7528\u7684c":66,"pi\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":66,"pi\u7248\u672c\u7684\u5e93":66,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":66,"pi\u7cfb\u7edf":66,"pi\u7cfb\u7edf\u4e0a":66,"pi\u7cfb\u7edf\u7684\u7248\u672c":66,"pod\u4e2d\u7684\u5bb9\u5668\u5171\u4eabnet":85,"pod\u662fkubernetes\u7684\u6700\u5c0f\u8c03\u5ea6\u5355\u5143":85,"pooling\u5bf9\u7279\u5f81\u56fe\u4e0b\u91c7\u6837":93,"process\u51fd\u6570\u4f1a\u7528yield\u8bed\u53e5\u8f93\u51fa\u8fd9\u6761\u6570\u636e":96,"prod\u7684\u751f\u4ea7\u955c\u50cf":61,"public":[12,17,30,46,48,50,51,74,75,76,86,100],"py\u4e2d":47,"py_paddle\u91cc\u9762\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7b":4,"pydataprovider2\u4f1a\u5c3d\u53ef\u80fd\u591a\u7684\u4f7f\u7528\u5185\u5b58":2,"pydataprovider2\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":2,"pydataprovider2\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":2,"pydataprovider2\u7684\u4f7f\u7528":[1,3,56,96,98],"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":56,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":47,"python\u4ee3\u7801\u5c06\u968f\u673a\u4ea7\u751f2000\u4e2a\u89c2\u6d4b\u70b9":59,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":2,"python\u5b89\u88c5\u5305\u652f\u6301linux":53,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":74,"query\u6539\u5199":101,"rate\u4e3a0":101,"rate\u4e3a5":101,"rate\u88ab\u8bbe\u7f6e\u4e3a0":93,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":21,"reader\u8f93\u51fa\u7684data":21,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":87,"release\u9875\u9762":47,"repo\u7684\u6839\u76ee\u5f55":61,"request\u524d":73,"request\u7684":73,"request\u88ab\u5408\u5e76\u540e":73,"research\u5b9e\u9a8c\u5ba4\u641c\u96c6\u6574\u7406":97,"resnet\u6a21\u578b":95,"return":[2,6,8,9,11,12,14,15,16,17,21,22,24,27,30,31,36,37,39,40,42,44,46,48,50,51,58,59,63,68,71,74,76,87,94],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":68,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":68,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":70,"rnn\u6a21\u578b":96,"rnn\u76f8\u5173\u6a21\u578b":78,"rnn\u914d\u7f6e":69,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":21,"search\u7684\u65b9\u6cd5":82,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":68,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":70,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":82,"server\u4e4b\u4e0a":20,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":20,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":20,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":20,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":20,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":20,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":20,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":20,"server\u751f\u6210\u4e00\u4e2auuid":20,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":20,"server\u7684\u6570\u636e\u5feb\u7167":20,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":20,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":20,"sh\u6765\u8bad\u7ec3\u6a21\u578b":93,"sh\u8c03\u7528\u4e86":94,"short":[8,9,31,48,51],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":53,"size\u4e3a1":101,"size\u4e3a50":101,"size\u4e3a512":82,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":56,"size\u5927\u5c0f\u4e3a128":100,"size\u662f3":101,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":56,"size\u7684\u503c":2,"softmax\u5c42":92,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":74,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":56,"srl\u4f5c\u4e3a\u5f88\u591a\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u7684\u4e2d\u95f4\u6b65\u9aa4\u662f\u5f88\u6709\u7528\u7684":99,"ssh\u65b9\u5f0f\u7684\u4e00\u4e2a\u4f18\u70b9\u662f\u6211\u4eec\u53ef\u4ee5\u4ece\u591a\u4e2a\u7ec8\u7aef\u8fdb\u5165\u5bb9\u5668":61,"ssh\u8fdb\u5165\u5bb9\u5668":61,"static":[14,24,35,48,50,91],"step\u51fd\u6570\u4e2d\u7684memori":70,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":70,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"super":[40,74],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":34,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":34,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"swig\u76f4\u63a5\u8bfb\u53d6c":34,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":34,"swig_paddle\u4e2d\u7684\u9884\u6d4b\u63a5\u53e3\u7684\u53c2\u6570\u662f\u81ea\u5b9a\u4e49\u7684c":4,"switch":[17,35,44],"t\u6307\u5b9a\u4e86\u751f\u6210\u7684\u955c\u50cf\u7684\u540d\u5b57":61,"tag\u4e3a":47,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":76,"tensor\u5230eigentensor":76,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":76,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":76,"tensor\u6a21\u5757\u5bf9el":76,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":75,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":76,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":76,"test\u548cgen\u8fd9\u4e09\u4e2a\u6587\u4ef6\u5939\u662f\u56fa\u5b9a\u7684":101,"tests\u7684paddlepaddl":73,"tflops\u4e86":79,"toolchain\u76ee\u5f55\u751f\u6210\u4e00\u5957\u7f16\u8bd1\u5de5\u5177\u94fe":65,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":63,"true":[6,7,8,9,11,12,14,15,17,22,33,37,39,41,50,51,56,58,68,71,74,84,87,94,98,99,100,101],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"try":[10,18,19,22,23,24,41,48,53],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":35,"type\u662fon":98,"ubuntu\u5b89\u88c5\u5305\u7684\u529f\u80fd\u6b63\u786e\u6027":47,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":57,"unsupported\u6a21\u5757":75,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":82,"utf8\u7f16\u7801":92,"uts\u7b49linux":85,"v1\u7248\u672c":53,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":60,"var":[17,30,32,33,37,39,40,45,48,51],"vector\u662frank\u4e3a1\u7684tensor":76,"vocab\u4e2d\u6bcf\u4e2a\u5207\u5206\u5355\u8bcd\u7684\u9884\u671f\u8bc4\u7ea7":100,"vocab\u505a\u4e3a\u5b57\u5178":100,"void":[17,22,24,30,34,35,39,49,50,74,75,76],"volume\u6302\u8f7d\u5230\u5bb9\u5668\u4e2d":85,"w0\u548c":94,"wbias\u662f\u9700\u8981\u5b66\u4e60\u7684\u53c2\u6570":94,"wheel\u5305":47,"while":[6,12,17,26,38,41,48,87,101],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":76,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":71,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":68,"x86_64\u548cmaco":53,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":63,"x\u548cwindow":[61,65],"x\u548cwindows\u4e0a\u7684\u786c\u4ef6\u8d44\u6e90":61,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":63,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":87,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":87,"zero\u4e09\u79cd\u64cd\u4f5c":82,AGE:86,AWS:[21,85,88,89],And:[7,8,10,12,14,16,22,26,27,31,41,42,48],But:[8,9,12,16,30,48,53,91],EOS:8,For:[4,7,8,10,12,14,15,17,23,24,25,27,30,32,36,38,39,40,41,42,44,45,46,49,50,52,79,91],IDE:72,IDs:[12,26],IRs:42,Its:49,K8s:91,NFS:85,NMS:8,NOT:40,Not:[15,19,91],OPs:[42,43],One:[7,9,14,16,26,44,48],Ops:[45,50],PFS:28,QoS:86,Such:51,TLS:[15,28],That:[8,12,41],The:[2,5,6,7,8,9,10,12,14,15,16,18,19,23,25,26,27,29,35,36,39,40,41,42,43,44,48,49,50,51,52,74,75,76,87,96,99,101],Their:[8,19],Then:[8,30],There:[7,8,12,14,15,17,18,19,24,26,27,29,36,38,48,49],These:[7,17,32,37,50],Use:[7,12,15,29,41,45],Used:[9,45],Using:[19,45,48,100],Will:[12,14],With:[8,9,39,51],YES:27,Yes:61,___embedding_0__:87,___embedding_1__:87,__doc__:50,__file__:27,__gradient_machines__:14,__impl__:50,__init__:[31,37,40,51,74],__main__:[4,31,94],__meta__:98,__metaclass__:75,__name__:[4,31,94],__param_conf__:14,__rnn_step__:71,__square_error_cost_0__:87,__tmp_params__:14,__va_args__:46,_binari:18,_create_global_var:40,_librari:18,_link:9,_loss:31,_op:75,_proj:8,_recurrent_group:71,_res2_1_branch1_bn:94,_source_language_embed:[71,92],_target_language_embed:[71,92],_test:18,a_op:75,aaaaa:21,abc:8,abil:31,abl:[8,15,37,40,42,44,52,91],about:[8,9,17,18,27,29,36,42,48,50,99,101],abov:[2,7,8,15,17,18,19,23,30,32,36,37,39,40,42,44,50,51,79,91],abs:[8,9,16,31],abs_numerical_grad:16,acceler:20,accept:[6,8,12,15,41,45,99],access:[8,9,15,18,23,26,27,40,42],accessor:40,accord:[7,8,16,24,32,42,43,45,51],accordingli:[7,8],account:[45,91],accrodingli:22,accumul:[19,24],accur:[16,26],accuraci:7,acl:100,aclimdb:100,across:[8,12,36],act:[8,9,17,42,44,51,56,59,63,68,71],act_output:50,act_typ:96,activ:[9,13,18,42,50,56,63,71,96],activi:9,actual:[22,31,50],adadelta:[56,96],adagrad:[49,96],adagradoptim:37,adam:[15,24,31,58,96,100],adamoptim:[92,96,100,101],adapt:[7,10,14],add:[8,9,12,14,16,17,18,22,26,30,33,37,42,43,45,48,53,73,76],add_depend:18,add_execut:18,add_input:[36,74],add_memori:36,add_output:36,add_scalar:[17,39],add_test:[18,74],add_to:[8,57],add_two:[17,36],add_unittest_without_exec:74,addattr:[50,75],addbia:74,addcom:[50,75],added:[7,14,17,43,73],addinput:[50,75],addit:[8,9,45,51],addop:30,addoutput:75,addr:19,address:[19,24,42,44,91],addrow:74,addtolay:8,addtyp:50,admin:91,administr:[26,91],adopt:31,advanc:16,advantag:16,adversari:[31,41],affect:[8,17],afford:23,afi:2,aforement:18,after:[8,9,12,17,18,23,24,26,29,38,42,43,73],again:[15,19],age:[12,87,98],agg_level:[8,67,68],aggregatelevel:[67,68],ago:18,aircraft:101,airplan:93,aistat:8,alex:[8,100],alexnet_pass1:84,alexnet_pass2:84,algo_hrnn_demo:68,algorithm:[8,10,23,92,100,101],align:[8,9,12,101],all:[2,6,7,8,10,14,15,17,18,19,22,24,26,27,29,31,32,35,36,37,39,40,42,44,45,50,56,70,87,91,99,100],alloc:[6,24,27,76],allow:[15,24,42],allow_only_one_model_on_one_gpu:[81,82,84],alpha:18,alreadi:[18,19,40,42,43,48,53],also:[8,9,12,15,17,18,22,25,30,31,32,38,39,40,41,48,50,51,79,91,96],altogeth:91,alwai:[8,9,14,18,41,44,49,87],amazon:86,ambigu:41,amd64:85,amend:73,analysi:[99,100],ancestor:[39,40],android:65,android_abi:65,android_arm_neon:65,android_native_api_level:65,android_standalone_toolchain:65,androideabi:65,ani:[8,9,12,15,18,19,24,26,27,40,41,42,43,44],annot:99,annual:99,anoth:[8,14,15,17,27,48,50],anroid_arm_mod:65,anyth:[12,41,99],anytim:31,api:[12,14,15,18,24,25,27,28,30,31,36,38,45,47,51,52,79,87,90,91,100],api_shar:18,api_test:18,api_trainer_config:98,api_trainer_config_helpers_data_sourc:98,api_trainer_config_helpers_lay:[71,96],api_trainer_config_helpers_layers_context_project:98,api_trainer_config_helpers_layers_cos_sim:98,api_trainer_config_helpers_layers_data_lay:98,api_trainer_config_helpers_layers_embedding_lay:98,api_trainer_config_helpers_layers_fc_lay:98,api_trainer_config_helpers_layers_pooling_lay:98,apiserv:85,apivers:[85,86,87],apo:101,appear:32,append:[2,14,40,41,68,71,87],append_gradient_machin:14,append_oper:40,appleyard:79,appli:[8,31,32,48],applic:[32,40,45,79,86,91],applyl1:22,approach:[8,38,42,43,91,96],apt:93,arbitrari:[8,42],arch:65,architectur:101,archiv:[12,34,35],area:31,arg:[2,7,9,37,50,58,59,75,87,93,94,96,99,100],arg_nam:8,argpars:87,args_ext:87,argument:[2,8,12,17,22,23,37,38,44,87,99],argumentpars:87,argv:94,arm64:65,arm:[65,66],arm_soft_fp_abi:65,armeabi:65,around:[2,8,26,91],arrai:[4,6,8,12,14,24,32,39,40,41,45,51,56,58,63,75,94],arrang:51,arrow:31,articl:[32,73],arxiv:[8,9,31,100],as_row_vector:8,as_step_input:17,ask:[19,26],assert:4,assign:[7,8,23,91],associ:[38,46,99],assum:[7,8,17,42],astyp:[41,75],asyc:19,async:[19,81],async_count:[81,82],async_lagged_grad_discard_ratio:82,async_lagged_ratio_default:[81,82],async_lagged_ratio_min:[81,82],asynchron:19,atla:60,atlas_root:60,attenion:9,attent:[8,9,101],attr1:8,attr2:8,attr:[6,8,9,17,39,40,50,56,57,58,71,75],attr_map:50,attrdesc:39,attribut:[8,9,13,17,39,43,45,48,50,51],attributemap:75,attrproto:50,attrtyp:[39,50,75],attrvalu:50,auc:81,author:[28,85],authorized_kei:80,auto:[17,22,34,45,48,51,74,75,76,79],automat:[8,15,24,30,37,42,43,45,50,101],automaticli:8,automobil:93,avail:[19,24,43,44,91],averag:[7,8,11,23,99],average_test_period:[81,82,99],averagepool:8,avg:[67,79,96],avgcost:[96,98,100,101],avgpool:[8,96],avoid:[16,17,19,38,79],avx:61,await:86,awar:[15,36,40],aws:28,axi:56,aync:43,azur:85,b2t:92,b363:86,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:86,back:[14,19,31,42],background:[7,8],background_id:[7,8],backpropag:16,backward:[5,8,9,16,17,22,24,31,37,38,46,74,75],backward_first:71,backward_op:16,backwardactiv:74,baidu:86,bake:42,balanc:43,balasubramanyan:100,bank:99,bare:[85,86,91],barrierstatset:79,base:[7,8,11,12,15,23,37,42,45,46,51,72],baseactiv:9,baseev:14,basematrix:74,basenam:7,basepoolingtyp:[8,9],basestr:[6,7,8,9,11,14],bash:[61,72,73,86,87],basic:[8,14,39,45,46,51],batch:[8,9,10,12,14,15,17,19,21,22,31,33,36,51,59,63,80,86,87,93,94,96,98,100,101],batch_0:94,batch_id:[14,31,63],batch_im:31,batch_label:31,batch_norm:31,batch_norm_lay:9,batch_norm_typ:8,batch_read:[21,41],batch_siz:[12,31,56,59,63,80,92,93,96,98,100,101],batch_szi:31,batch_z:31,batchnorm:31,batchsiz:[8,74],bazel:18,bbbbb:21,bbox:[7,8],bcd:8,bcebo:12,bcm2708:66,bdist_wheel:47,beam:[8,71,101],beam_gen:[8,71],beam_search:[14,70,71],beam_siz:[8,71,81,82,84],beamsiz:101,becaus:[7,8,12,15,17,18,19,24,38,40,41,42,48,51,52,68],becom:[43,48],been:[18,23,99],befor:[8,9,19,26,29,32,38,41,53,56,75,91],begin:[7,8,22,24,29,32],beginiter:[14,15],beginn:71,beginpass:[14,15],begintrain:15,behind:51,being:[26,41],belong:[8,42,48],below:[8,17,19,24,38,41,42,43,51,52],benefit:[9,26,27],bengio:8,bertolami:100,besid:[8,12,42],best:[8,18,98],best_model_path:99,besteffort:86,beta1:10,beta2:10,beta:[31,94],better:[8,9,18,91],between:[7,8,10,14,18,19,24,35,38,43,44,46,48,101],bgr:94,bi_gru:9,bi_lstm:9,bia:[8,9,10,74,94],bias:8,bias_attr:[8,9,56,58,59,68,71],bias_param_attr:9,biases_:74,biasparameter_:74,biassiz:74,bidi:86,bidirect:[8,9,99,100],bidirectional_lstm:57,bidirectional_lstm_net:100,big:[43,91],bigger:19,bilinear:8,bilinear_interpol:8,bilinearfwdbwd:79,bin:[61,80,85,86,87,98],binari:[7,8,12,18,27,31,42],bind:[30,48],bird:93,bitext:101,black:31,blank:8,bleu:101,block:[8,20,22,24,36,37,42,43,76],block_i:8,block_x:8,blockdesc:[17,32,37,40,45],bn_bias_attr:9,bn_layer_attr:9,bn_param_attr:9,bollen:100,book:[12,45,71],bool:[6,7,8,9,11,12,14,17,33,40,49,50,51,52,74,82,84,100],boot:[8,70,71,91],boot_bia:8,boot_bias_active_typ:8,boot_lay:[68,71],boot_stat:51,boot_with_const_id:8,bootstrapp:91,borrow:[31,51],bos_id:[8,71],both:[5,6,8,9,15,17,18,19,26,31,42,43,49],bottom:[14,96],bound:8,boundari:42,boundri:7,box:[8,31],brace:[17,32],brain:26,branch:[8,15,17,18,33,39,42,47,73],break_if:51,brendan:100,brief:[18,24,76],broadcast:[19,45,91],broken:73,browser:61,bryan:100,bsd:72,buf:22,buf_siz:12,buffer:[12,22,41,48],buffer_s:12,buffered_read:41,bug:73,build:[8,12,18,27,32,42,47,50,61,65,66,72,73,77,87,88,89,101],build_dict:12,build_doc:77,build_model:31,built:[18,42,50,51,79,91],bunk:100,c11:34,c703c041:73,c99:35,cach:[42,56,99],cache_pass_in_mem:[2,56,99],cachetyp:[2,56,99],cacul:9,caff:17,caffe2:17,caffe_poli:58,calc_batch_s:[2,99],calcul:[7,8,9,10,16,19,24],call:[7,8,9,14,15,16,17,22,23,24,25,27,31,32,36,37,40,42,45,46,48,50,51,79,87,96],callabl:[6,8,12],callback:74,caller:16,calrnn:68,caltech:93,can:[6,7,8,9,12,14,15,16,17,18,19,22,23,26,27,30,31,32,36,37,39,40,41,42,43,44,45,46,50,51,79,91],can_over_batch_s:[2,99],cancel:26,candid:8,cannot:[44,45,48,51,53],capabl:[38,45],capi:34,capi_prvi:35,caption:101,card:80,care:[9,27,41,91],caret:14,carpedm20:31,cast_to_op_attr:50,cat:[61,87,93,94,100],categori:[8,12,19],categorig:12,categoryfil:86,caus:[19,29],cc_:18,cc_binari:18,cc_test:18,ccb2_pc30:101,cclient:25,cde:8,cdn:12,cdot:8,ceil:8,ceil_mod:8,cell:[8,9],cento:91,ceph:[21,85],cephf:[21,27,28],certain:[37,48],certif:[15,28,85],cffi:34,cfg:86,cgo:34,chagn:46,chain:[12,32],challeng:[8,19,33],chanc:15,chang:[8,12,18,23,27,38,39,41,46,48,73,100],channel:[8,9,79],chapter:36,chapter_data:36,chapter_out:36,check:[2,12,17,18,45,58,73,74,82],check_align:12,check_attr:50,check_eq:74,check_fail_continu:2,check_grad:[16,75],check_l:74,check_sparse_distribution_batch:[81,82],check_sparse_distribution_in_pserv:[81,82],check_sparse_distribution_ratio:[81,82],check_sparse_distribution_unbalance_degre:[81,82],checker:45,checkgrad:82,checkgrad_ep:82,checkmark:91,checkout:73,checkpoint:43,checksum:28,child:17,choic:18,chosen:31,chunk:[23,28],chunk_schem:7,chunktyp:7,cifar:93,cifar_vgg_model:93,circl:32,claimnam:87,clang:[34,61,73],clarifi:7,class1:100,class2:100,class_dim:100,classic:8,classif:[8,32,96,100,101],classifi:[8,31,94],classification_cost:[42,56,68,93,96],classification_error_evalu:[7,96,100,101],classification_evalu:7,clean:[17,18,38,45,53,73],clear:[7,18,38,48],clearer:38,clearli:48,client:[22,25,45,85],clip:[6,9,82,96],clock:8,clone:[8,61,66,72],close:[2,41,44,73],cloud:[18,19,27,28,29,44,45,91],cloud_read:12,cluster:[12,14,15,17,19,24,42,44,80,85,87],cluster_train:80,cmake:[35,53,60,65,66,72,73,75,77,79],cmake_build_typ:[65,66],cmake_c:[65,66],cmake_system_nam:[65,66],cmakelist:[18,74],cmatrix:[34,35],cna:8,cnn:[8,86,96],coars:30,code:[2,4,8,12,15,18,26,30,31,32,37,38,41,42,43,45,46,50,51,61,74,86,98],codebas:45,coded_stream:58,codedinputstream:58,coeff:8,coeffici:8,collabor:19,collect:[8,12,14],collectbia:74,color:[93,94],colour:12,column:[7,8,32,41,44],column_evalu:7,column_nam:40,com:[8,9,12,18,31,61,65,66,72,73,85,86,91,94],combin:[7,8,9,12,14,37,45,48],come:[39,51],comma:[14,24],command:[18,22,27,29,72,74,84,86,87,88,89],commandlin:[79,87],comment:[10,18,50,68,87],commit:[18,86],common:21,common_util:80,commonli:29,commun:[19,24,25,42,43],compar:[16,18,45],comparison:18,compat:30,compil:[8,18,42,46,49,50,52,65,66,72],complaint:18,complet:[8,9,10,12,14,17,19,23,24,28,32,45,86,87,91],complex:[9,26,41,45],complic:[8,30,42,51],compon:[42,51],compos:[12,15,30,36,40,45],composenotalign:12,composit:30,compress:23,comput:[8,9,15,16,19,37,42,43,44,46,48,52,75,76,99,100],computation:8,conat:8,concat:[31,71,101],concaten:[9,31,36,51,56],concentr:45,concept:[7,15,30,31,36,38,39,44,48,51,52],conceptu:31,concern:15,concis:[31,51],concret:45,concurr:[19,26,43],cond:[17,33,39],condit:[8,23,33,42,86],condtion:31,conf:[4,8,58,68,80,87,92,94,101],conf_paddle_gradient_num:87,conf_paddle_n:87,conf_paddle_port:87,conf_paddle_ports_num:87,conf_paddle_ports_num_spars:87,confid:8,confidence_threshold:8,config:[6,8,21,29,59,63,74,80,81,82,84,85,86,87,91,93,96,98,99,100,101],config_:[22,82],config_arg:[81,82,84,94,96,99,100],config_bas:[7,8,14],config_fil:99,config_gener:[80,98],config_lay:74,config_len:24,config_pars:[4,74],config_proto:24,configprotostr:58,configur:[8,14,22,24,26,27,43,74,91,92,94,101],confirm:29,conflict:[48,73],confront:101,confus:31,conll05st:99,conll:[12,99],connect:[9,27,42,43,54,86,91,96],connectionist:[8,100],connor:100,consequ:[8,9],consid:[7,8,10,91],consider:9,consist:[7,8,12,23,39,41,45,46,50],consolid:17,const_cast:75,constant:[44,58],constraint:[42,48],construct:[7,15,36,40,45,48,50,52],constructbackwardgraph:32,constructoptimizationgraph:32,constructor:[40,45,48,50],consum:19,contact:26,contain:[2,7,8,9,11,12,14,15,17,23,31,38,44,45,46,48,49,50,51,52,72,86,87],content:[24,29],content_len:24,context:[2,8,9,12,48,49,56,71,75,76,85],context_attr:9,context_len:[8,9,96],context_proj_layer_nam:9,context_proj_param_attr:9,context_project:9,context_start:[8,9,96],continu:[7,19],contrast:8,contributor:45,control:[6,17,44,86,91,101],conv2d:31,conv:[9,31],conv_act:9,conv_batchnorm_drop_r:9,conv_bias_attr:9,conv_filter_s:9,conv_layer_attr:9,conv_num_filt:9,conv_op:8,conv_pad:9,conv_param_attr:9,conv_strid:9,conv_with_batchnorm:9,conveni:[15,37,50],convent:24,convers:42,convert:[2,4,12,21,41,46],convlay:8,convolut:[8,9,12,31],convoper:8,convtran:8,convtranslay:8,cool:73,coordin:[19,24],copi:[14,15,23,26,29,32,36,51,98],core:[6,35,38,51],coreo:91,corner:45,corpora:101,corpu:[12,99],correct:[8,16],correctli:[7,12,31],correspoind:15,correspond:[15,17,18,33,36,40,44,45,46,50,58],corss_entropi:15,cos:[8,50],cosin:[8,50],cosineop:50,cosineopproto:50,cosineopprotomak:50,cost:[10,14,15,32,37,39,42,44,59,63,98,100,101],cost_id:8,cost_val:42,could:[8,12,14,15,16,23,36,37,38,39,41,42,43,46],count:[7,19,27,41,79,82,84,86,98,99,100,101],counter:[19,23,32],cours:[7,27],cpp:[16,22,30,34,35,38,43,45,52,58,68,74,79,87,96,98,101],cpu:[2,6,8,16,27,38,42,44,45,47,61,72,75,76,79,84,86,87,99],cpu_per_p:44,cpu_per_train:44,cpuinfo:61,cpuplac:[75,76],cpusparsematrix:35,crash:[19,79],creat:[6,8,12,14,15,16,17,19,24,28,29,30,31,32,36,37,38,40,46,58,63,73,74,86,87,91],create_backward_pass:37,create_bias_paramet:74,create_block:40,create_cloud_job:44,create_doc_str:50,create_global_var:40,create_input_paramet:74,create_op:75,create_oper:30,create_optimization_pass:37,create_paramet:40,create_python_ops_creatation_funct:50,create_rnn:17,create_rnn_op:36,create_var:40,create_whileloop:51,createfromconfigproto:4,creategradientoper:46,createop:50,createoper:17,createvari:17,creation:30,creator:[12,21,45,46],creator_:46,credenti:29,crf:99,critic:[31,100],crlf:73,crop:94,crop_siz:94,cross:[8,58,65,66,96],cross_entropi:[8,15,31,44],cross_entropy_with_selfnorm:8,crt:[28,85],csc:74,cslm:101,csr:74,csv:58,ctc:7,ctc_evalu:7,ctest:[61,72,73,75],ctor:40,ctrl:[72,80,98],ctx:[75,76,99],ctx_0:99,ctx_0_slot:99,ctx_n1:99,ctx_n1_slot:99,ctx_n2:99,ctx_n2_slot:99,ctx_p1:99,ctx_p1_slot:99,ctx_p2:99,ctx_p2_slot:99,cub:93,cuda:[18,45,72,79,80,82],cuda_dir:[81,82],cuda_so:[53,61],cuda_visible_devic:56,cudaconfigurecal:79,cudadevicegetattribut:79,cudaeventcr:79,cudaeventcreatewithflag:79,cudafre:79,cudagetdevic:79,cudagetdevicecount:79,cudagetdeviceproperti:79,cudagetlasterror:79,cudahostalloc:79,cudalaunch:79,cudamalloc:79,cudamemcpi:79,cudaprofilerstart:79,cudaprofilerstop:79,cudaprofilestop:79,cudaruntimegetvers:79,cudasetdevic:79,cudasetupargu:79,cudastreamcr:79,cudastreamcreatewithflag:79,cudastreamsynchron:79,cudeviceget:79,cudevicegetattribut:79,cudevicegetcount:79,cudevicegetnam:79,cudevicetotalmem:79,cudnn:[8,11,18],cudnn_batch_norm:8,cudnn_conv:8,cudnn_conv_workspace_limit_in_mb:[81,82],cudnn_convt:8,cudnn_dir:[81,82],cudnnv5:60,cudrivergetvers:79,cuinit:79,cumul:8,curl:85,curli:[17,32],current:[2,8,17,18,19,22,24,36,38,40,43,44,48,51,85],current_block:[39,40],current_oper:39,current_word:[56,71],currentcost:[96,98,100,101],currentev:[96,98,100,101],curv:15,custom:[15,27,31,45],custom_batch_read:41,cut:[43,51],cutoff:12,cxx_compil:[65,66],cxx_flags_minsizerel:[65,66],cycl:19,cyclic:8,cython:34,d_b0:31,d_b1:31,d_b2:31,d_block:31,d_f:31,d_g:31,d_h0:31,d_h0_bn:31,d_h0_relu:31,d_h1:31,d_h1_bn:31,d_h1_relu:31,d_h2:31,d_loss:31,d_loss_fak:31,d_loss_real:31,d_optim:31,d_step:31,d_t:31,d_w0:31,d_w1:31,d_w2:31,dalla:2,dan:99,dandroid_abi:65,dandroid_arm_mod:65,dandroid_arm_neon:65,dandroid_standalone_toolchain:65,darwin:85,dash:31,dat:[21,80,98],data:[2,7,10,14,15,16,17,21,22,23,28,31,32,36,37,38,39,43,44,45,48,49,50,51,52,56,61,63,68,71,76,80,81,86,87,88,92,93,94,96,98,99,100,101],data_batch:56,data_config:4,data_dir:[92,93,100,101],data_fil:59,data_i:31,data_lay:[2,22,40,56,59,68,93,96,99],data_read:[12,41],data_reader_creator_random_imag:41,data_shar:51,data_typ:[12,49,52,63,71],data_x:31,databas:12,datacent:[21,29],datacenter1:21,datacenter2:21,datacenter_1:21,datacenter_2:21,datacenter_nam:21,datadim:8,dataprovid:[1,56,58,59,80,87,96,98,99],dataprovider_:96,dataprovider_bow:96,dataprovider_emb:96,dataproviderconvert:4,datasci:8,dataset:[21,27,41,63,71,94,97,100,101],datatyp:[49,52],date:99,db_lstm:99,dcgan:31,dcmake_build_typ:77,dcmake_install_prefix:[65,66],dcmake_system_nam:[65,66],dcudnn_root:60,ddim:76,dead:19,deal:91,deb:73,debian:61,debug:[16,29,42,77],decai:10,decar:12,decayr:22,decent:23,decid:[15,26,31,41,46,49],declar:[8,17,31,36],decod:[8,9,70,71,101],decoder_boot:71,decoder_group_nam:71,decoder_input:[56,71],decoder_mem:71,decoder_prev:9,decoder_s:[56,71],decoder_st:[9,71],deconv:[8,31],deconvolut:8,decor:[2,12],deduc:45,deep:[8,26,31,32,45,79,93,94],deer:93,def:[2,4,8,12,15,16,21,27,30,31,36,37,40,41,50,51,56,58,59,63,68,71,74,75,87,94,96,99],def_block:31,defalut:8,default_block:31,default_decor:87,default_devic:84,default_st:51,default_valu:84,defect:38,defer:26,defin:[2,8,9,12,14,15,17,18,19,26,30,31,36,39,40,41,43,45,48,50,51,56,63,75,96],define_py_data_sources2:[2,58,59,93,94,96],defini:101,definit:[17,19,23,39,42,46,50,51,92],definiton:30,degre:8,deisgn:46,delet:[27,28,73],delimit:[7,58,98],deliv:91,delta:[8,16],delv:8,demand:19,demo:[4,8,12,45,80,86,88,92,93,94,96,98,100,101],dens:[8,12,24,25,49,98],dense_arrai:12,dense_vector:[2,4,12,59,63],dense_vector_sequ:12,dep:18,depend:[17,18,19,27,42,43,91],deploi:[8,91],deploy:[45,91],deprec:8,depth:17,dequeu:43,deriv:[5,15,33,37],desc:[17,40,50,51],desc_:17,descend:51,descent:[8,19],describ:[15,17,18,23,38,39,40,45,49,50,52,86],descript:[7,17,18,46,49,52,87],deseri:[14,38],deserializ:45,desgin:32,design:[8,12,22,34,91],desir:[19,86],destin:[24,29],destroi:17,destruct:48,det_output:7,detail:[6,7,8,9,10,16,23,27,29,31,36,40,42,44,48,51,52,91],detect:73,detection_evalu:7,detection_output:7,determin:[8,12,17,45],dev:[45,53,61,72,73,91,93,101],dev_ctx:17,develop:[18,38,46,47,73,101],deviat:6,devic:[6,38,42,44,45,53,61,76,84],device_context:75,device_context_:75,devicecontext:[17,75],deviceid:84,devid:8,dez:100,dhcp:91,diagram:36,diamond:31,dict:[2,7,12,14,40,44,58,68,87,98,100,101],dict_dim:[56,68,100],dict_fil:[7,68,99],dict_siz:[12,22],dictionari:[2,7,8,12,14,15,16,44,56,96,101],dictrionari:96,dictsiz:101,did:38,diff:73,diff_mat:16,differ:[7,8,14,17,18,19,24,26,31,33,42,43,44,46,48,51],differenti:30,difficult:[7,16],digit:8,dilat:8,dilation_i:8,dim0:75,dim1:75,dim:[8,12,22,36,40,45,49,52,74,75,76,92,100],dim_:76,dimens:[5,8,11,12,31,45,49,51,56,76],dimes:8,dir:[65,80,87,94,98,99,100,101],direct:[8,9],directli:[9,18,25,27,38,42,50,51],directori:[8,18,21,26,28,29,73,79,86],disabl:58,discard:[12,19,23,73,82],discexp:58,discount:8,discov:19,discrim:31,discuss:[15,17,23,24,25,42],dispatch:[38,42],displai:[27,29],disput:101,dist:[47,53],dist_train:[15,27],distanc:7,distinguish:18,distribut:[8,17,23,24,25,26,43,44,45,52,82,88,89,91],distribute_test:[81,82],distributedli:42,disucss:15,divid:[10,50,52],diy_beam_search_prob_so:[81,82],dmkl_root:60,do_forward_backward:41,doc:[4,12,36,51,61,75,77,87],doc_cn:77,doc_them:77,docker:[47,53,61,73,86,87,88,89,91],docker_build:15,docker_push:15,dockerfil:[61,72,73,87],dockerhub:61,document:[9,16,28,32,36,45],documentari:2,doe:[9,19,23,24,26,27,38,41,42,43,45,46],doesn:[6,8,12,15,17,41,44],dog:[93,94],doing:[22,26,32,42],don:[9,15,18,30,32,41],done:[7,8,9,18,19,23,24,42,46,73,79,87],dot:[75,101],dot_period:[82,84,87,93,98,100,101],dotmuloper:8,dotmulproject:8,doubl:[8,32,42,75,82],down:79,download:[12,18,19,22,26,28,86,91],download_cifar:93,doxygen:73,dozen:18,dpython_execut:53,dpython_include_dir:53,dpython_librari:53,drive:48,drop:9,drop_fc:57,drop_rat:[6,57],dropout:[6,9,57],dropout_r:[8,57],drpi_arm_neon:66,drpi_toolchain:66,drwxr:86,dst:24,dtoh:79,dtype:[4,40,58,59,94],dubai:101,due:[23,26,31,40],dummi:[14,23],duplic:43,durat:23,dure:[2,8,9,17,19,23,26,27,45,91,101],dwith_c_api:[35,65,66],dwith_doc:77,dwith_gpu:[60,66,77],dwith_mkldnn:77,dwith_mklml:77,dwith_profil:79,dwith_python:[35,66],dwith_swig_pi:[35,65,66],dwith_test:75,dwith_tim:79,dynam:[2,24,35,41],dynamic_cast:74,dynamic_recurrent_op:51,e2e:91,each:[2,7,8,9,11,12,14,16,18,19,22,23,24,26,27,32,36,38,40,41,42,43,45,46,48,49,50,51,91,98],each_feature_vector:5,each_pixel_str:2,each_time_step_output:5,each_word:2,eaqual:8,eas:[12,41],easi:[16,41,45],easier:[15,41,43,51],easili:[15,31,41,46,48],ec2:85,echo:[53,61,98,100],edg:44,edit:7,edu:[12,86,93],effici:[8,42],effort:42,efg:8,eigen:[45,75],eigen_use_gpu:75,eigenmatrix:76,eigentensor:76,eigenvector:76,either:[8,12,14,15,31,33,36],electron:86,elem_dim:8,element:[7,8,9,12,14,16,23,41,43,44,45,75],element_typ:24,elementari:45,elif:[15,50],els:[15,22,27,31,33,42,43,48,50,61,68,74,94],emac:72,emailweixu:18,emb1:[22,68],emb2:[22,68],emb:[56,58,68,86,96],emb_group:68,emb_para:58,emb_param_fil:58,emb_sum:56,embed:[15,17,22,43,49,51,58,71,92,98,100],embedding_lay:[22,56,68,96],embedding_nam:[8,71],embedding_s:[8,71],empir:8,emplace_back:74,emploi:50,empti:[7,12,19,59],enabl:[6,8,17,18,23,43,72,79],enable_grad_shar:[81,82],enable_parallel_vector:82,enc_proj:[9,71],enc_seq:9,enc_vec:71,encapsul:[24,44],encod:[9,23,68,101],encoded_proj:[9,71],encoded_sequ:[9,71],encoded_vector:71,encoder1:68,encoder1_expand:68,encoder1_rep:68,encoder2:68,encoder2_rep:68,encoder_last:8,encoder_s:71,encount:22,encourag:42,end2end:91,end:[7,8,14,17,38,41,48,71,73,99,100],end_pass:15,end_po:8,endforwardbackward:14,enditer:[14,15,63],endpass:[14,15],endpoint:[12,21],endtrain:15,engin:27,english:[8,101],enlarg:75,enough:17,enqueu:43,ensembl:9,ensur:[19,48],enter:17,enterpris:45,entir:[8,9,24,26],entiti:[7,17,48],entri:[12,23,27],entropi:[8,96],entry_point:27,enueu:43,enumer:[5,58],env:[56,87],environ:[15,44,53,79,86],eol:73,eos_id:[8,71],epoch:31,epsilon:10,equal:[8,9,19,51,68,75],equat:[7,8,9,10,75],equival:[8,15,17,33,50,91],error:[6,7,8,9,10,15,16,23,29,48,53,58,75,82,96,98,100,101],error_clipping_threshold:[6,56],especi:9,essenc:15,essenti:[8,15],estim:[8,15,43],eta:86,etc:[7,12,17,41,42,48,91,101],etcd:[12,14,19,23,24,26],etcd_addr:24,etcd_endpoint:12,eth0:[80,87],eval:[7,17,31,44,45,96,98,100,101],eval_bleu:101,evalu:[8,13,14,26,42,44,79,80,98,100,101],evaluate_difficult:7,evaluate_pass:100,even:[15,41],evenli:24,event:[63,86],event_handl:[14,15,63],eventu:51,everi:[7,8,9,12,15,19,23,24,26,32,43,48,50],everyth:[31,42,43],evid:38,exactli:[8,9,56],exampl:[7,8,9,10,12,14,17,27,29,30,31,32,36,38,39,40,41,43,45,46,49,51,94],exc_path:53,exceed:8,except:[8,12,26,32,51],exchang:38,excluded_chunk_typ:7,exconv:8,exconvt:8,exdb:12,exe:85,exec:61,execut:[18,19,23,27,31,44,46],executioncontext:[75,76],executor:[31,37,39],exist:[15,17,19,29,40,41,44,50,51,76,100],exit:[24,29,86],exp:58,expand:68,expand_a:[8,67,68],expand_lay:68,expand_level:[8,67],expandconvlay:8,expandlevel:67,expans:8,expect:8,expert:18,expir:19,explain:[7,19,30,32],explan:[8,16,27,42,48],explicit:[51,74],explicitli:[15,44],explor:8,exponenti:5,expos:[25,51],express:[15,43],ext:8,extend:[7,43,51],extens:[26,43],extent:35,extern:[18,34,35,45],external_librari:18,extra:[6,8,9,42,91],extra_lay:14,extraattr:[6,84],extraattribut:8,extract:[7,8,38,42,92,94,99],extract_fea_c:94,extract_fea_pi:94,extralayerattribut:[6,9,56,57],extralayeroutput:9,extrem:8,f1205:58,f120da72:86,fa0wx:86,fabric:80,face:18,facotr:8,fact:[39,40],factor:[6,8,10],factori:34,fail:[19,23,44,53,58,82,86],failur:[19,24],fake:31,fake_imag:41,faked_imag:31,falloc:28,fals:[6,7,8,9,10,12,16,17,33,36,39,41,49,52,56,59,63,68,71,74,75,84,86,92,96,99,100,101],false_block:[17,33,39],false_label:41,false_read:41,faq:90,far:51,fast:[8,23,46,79],faster:[8,9,19],fault:[14,23,45],fbd1f2bb71f4:86,fc1:[44,74,84],fc2:[44,84],fc3:84,fc4:84,fc_act:9,fc_attr:9,fc_bias_attr:9,fc_layer:[40,50,56,58,59,68,84,96,98],fc_layer_nam:9,fc_mat:14,fc_op:50,fc_out:17,fc_output:50,fc_param_attr:9,fc_without_b:17,fclayer:74,fcop:30,fdata:[68,99],fea:94,fea_output:94,feat:100,featur:[2,5,8,12,73,94,98,99],feature_map:98,feed:[9,14,15,32,36,40,42,44,63],feed_dict:[31,44],feeder:12,fernan:100,festiv:2,fetch:[12,19,22,42,53,73],few:[18,19,41,49],fewer:8,fg0:8,field1:14,field2:14,field:[8,14,17,46,49,50,56,98],fifth:32,figur:[15,18,31,36,43,92,101],file1:101,file2:101,file:[2,7,8,12,14,15,18,19,21,23,24,26,27,28,29,35,41,42,45,52,73,75,91,94,97,100,101],file_list:2,file_nam:[58,59,68,94,96,99],filenam:[2,21,40,56,98],fileoffset:28,filer:8,filesystem:[26,27,28,42],fill:[8,19,23,40],fill_zero_grad:45,filter:[8,9],filter_s:[8,9],filter_size_i:8,find:[8,10,17,19,26,48],find_var:16,findop:17,findvar:[17,48],fine:[6,23,30],finish:[19,23,26,27,50,86],first:[8,14,15,17,19,23,26,27,29,31,32,36,39,40,42,45,49,50,51,75,76,91,96],first_seq:71,firstli:[7,8],firstn:12,firstseen:86,fit:[12,45],five:39,fix:[6,34,42,73],flag:12,flatten:[39,40,76],flatten_result:56,flexiabl:41,flexibl:[8,9,15,24,32,36,42,51],flight:101,float32:[4,12,30,31,40,41,58,59,75,94],floor:[8,58],flow:[17,36,47],fmt:58,fname:58,folder:[18,21,27,29,101],follow:[7,8,9,10,12,14,15,16,17,18,19,23,27,30,31,32,33,36,39,41,43,45,48,49,50,51,88,89,91],forbid:15,force_load:34,forest:17,forget:[10,15],fork:8,form:[8,9,10],format:[7,12,14,16,23,51,73,74],former:[15,18],formula:[8,9,16],formular:8,forth:31,forward:[5,8,9,16,17,22,24,31,37,38,39,45,46,74],forward_op:16,forwardactiv:74,forwardbackward:14,forwardtest:4,found:[8,39,48],four:[7,32],fp16:[45,52],fp32:[45,52],fp64:52,fparam:58,fpga:44,frame:[7,45,51],framework:[15,17,39,45,48,50,75],free:[12,91],french:101,frequenc:12,frequent:[23,41,45],fresh:[26,44],friend:48,friendli:31,frog:93,from:[2,4,7,8,9,12,14,16,17,18,19,21,22,23,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,48,51,53,59,61,70,75,76,79,86,91,92,93,96,98,99,100,101],from_no_sequ:[8,67],from_sequ:[8,67],from_tar:14,fromfil:[41,58,59,94],fromstr:58,fulfil:79,full:[8,19,26,36,91],full_matrix_project:[9,68,71],fulli:[42,43,91,96],fullmatrixproject:8,fullsiz:22,fully_matrix_project:9,fullyconnectedlay:74,func:[2,12,23,46],funciton:9,functor:30,fundament:[43,45],further:[8,50,91],furthermor:44,futur:[8,26,42,45],fvs:50,fwd_op:46,g_b0:31,g_b1:31,g_b2:31,g_block:31,g_h0:31,g_h0_bn:31,g_h0_relu:31,g_h1:31,g_h1_bn:31,g_h1_relu:31,g_h2:31,g_im:31,g_loss:31,g_optim:31,g_step:31,g_w0:31,g_w1:31,g_w2:31,gain:8,gamma:94,gan:15,gangliao:18,gate:[8,9],gate_act:[8,9,68],gate_attr:8,gate_bias_attr:8,gate_param_attr:8,gate_recurr:8,gather:[8,38,75],gauss:6,gaussian_normal_random:31,gcc:[34,45,61,65,66,72],gce:85,gcepersistentdisk:85,gcreators_:50,gen:[8,101],gen_conf:101,gen_data:101,gen_proto_pi:77,gen_rand_param:58,gen_result:101,gender:[12,87,98],gener:[2,7,8,9,12,14,15,16,17,18,19,21,23,24,26,30,37,39,41,42,43,45,46,49,50,51,79,84,87,92,101],generated_word_embed:8,generatedinput:[8,70,71],genr:[87,98],geq:8,gereat:7,get:[2,7,8,12,14,16,17,18,19,23,24,26,27,28,31,36,44,45,46,48,50,51,74,86,93,98,99,100],get_all_op_proto:50,get_batch_s:99,get_best_pass:100,get_block:40,get_cloud_job:44,get_config_arg:[84,100],get_data:[86,96,99],get_dict:12,get_dim:16,get_embed:12,get_float_el:16,get_grad:14,get_imdb:100,get_input_lay:74,get_model:94,get_movie_title_dict:12,get_numeric_gradi:16,get_numerical_gradi:16,get_output:16,get_sample_from_lin:56,get_shap:14,get_support:53,get_tensor:16,get_vari:17,get_word_dict:12,getbatchs:74,geteigendevic:76,getenv:[15,27,87],gethostbynam:87,gethostnam:87,getidmap:87,getinput:74,getinputgrad:74,getinputvalu:74,getlayeroutput:14,getmat:22,getoptconfig:22,getoutputgrad:74,getoutputvalu:74,getparam:22,getparameterconfig:22,getparameterptr:74,getparameterspars:22,getparametersremot:22,getplac:[75,76],getpodlist:87,getsiz:74,gettask:23,gettranspos:74,getw:74,getweight:74,getwgrad:74,gildea:99,gist:9,git:[47,53,61,66,72,73],github:[9,18,31,61,66,72,73,94],give:[2,19,36,45],given:[8,12,14,24,26,30,31,41,43,44,51],glide:18,global:[6,15,17,18,19,38,40,44,45,48,50,72,79],global_block:40,global_learning_r:6,globalstat:79,globalstatinfo:79,globe:2,glolal_block:40,glusterf:85,gnueabihf:66,go_librari:18,go_test:18,goal:[32,45],gob:23,godep:18,godoc:34,goe:[8,9,19,33,48],going:[30,91],golang:18,good:[8,31,41,91],goodfellow13:8,googl:[15,45,58,65],googleapi:85,got:48,gprotos_:50,gpu:[6,8,11,16,27,38,42,44,45,47,53,61,72,75,79,84,91,94,99,100,101],gpu_id:[56,82,84],gpu_per_train:[42,44],gpugpu_id:81,gpukernel:45,gpuplac:75,grab:19,grad:[16,24,49,82],grad_op_class:45,grad_op_maker_:46,grad_op_typ:[45,46],grad_op_type_:46,grad_share_block_num:[81,82],grad_var_nam:16,gradient:[6,7,8,10,14,19,23,32,37,38,45,49,82,87,96],gradient_check:75,gradient_clipping_threshold:[6,56,96,100],gradient_evalu:7,gradient_flat:16,gradient_machin:[14,35],gradientcheck:75,gradientmachin:[4,14,35,38,87,98,101],gradientmachine_:22,gradopdescmak:46,gradopdescmakerbas:46,gradopmak:46,grain:30,gram:92,grandient:14,graph:[8,14,17,18,19,31,36,39,42,44,52],grave:100,great:[43,91],greater:8,greaterthan:50,green:31,grep:[61,100],groudtruth:71,ground:[7,8,101],group:[9,23,91],group_input1:71,group_input2:71,group_input:[68,71],grouplen:[12,97],grpc:91,gru:[8,96],gru_bias_attr:9,gru_decod:71,gru_decoder_with_attent:71,gru_encoder_decod:[92,101],gru_layer_attr:9,gru_memori:9,gru_siz:96,gru_step:71,gru_step_lay:9,grumemori:[9,57,71],gserver:[8,74],gsizex:79,guarante:40,guard:22,guid:[28,45,86],gzip:[23,86],h0_bn:31,h_prev:17,hadoop:15,hand:45,handi:18,handl:[12,15,27,38,41,42,44,48,51],handler:[14,17],handwrit:100,happen:[23,50],hard:[42,43,51],harvest:96,has:[7,8,9,10,12,15,16,17,18,19,23,24,26,31,39,42,43,44,45,49,50,79,91,99],has_kei:14,hassubseq:68,have:[8,9,12,15,16,17,18,19,23,24,26,27,30,31,32,36,38,39,40,41,42,43,44,45,46,48,49,52,91],hdf:21,head:[75,100],header:[24,35,45,58,59,94],height:[8,12,17,34,41,58,74,75],height_:49,held:19,hello:15,help:[4,17,29,45,51,73],helper:[8,42,46,51],henc:[40,48],here:[6,7,8,9,12,15,18,19,25,29,32,41,50,91],heterogen:[42,43],heurist:[8,43,101],hidden:[8,9,37,42,57,58],hidden_a:58,hidden_b:58,hidden_dim:68,hidden_out:17,hidden_s:9,hierach:70,hierarch:[8,39,40,45,68],hierarchi:45,high:[6,91],higher:[30,51],highest:[12,17],highli:[12,51],him:15,hint:[4,43],his:44,histor:30,hl_get_sync_flag:74,hold:[15,19,23,25,31,42,44,48,50,76],holder_:76,home:[21,29,42,44,80,86,87],honor:23,hook2:68,hook:[6,68,99],hookattr:6,hookattribut:6,horizont:8,hors:93,horst:100,host:[18,27,80,86],host_c:[65,66],hostnetwork:87,hostpath:[85,86,87],hot:96,hous:[2,12],how:[6,8,15,17,19,23,29,30,38,50],howardjohnson:68,howev:[8,9,16,26,38,40,41,42,46,49,50],howto:87,hpp:34,html:[12,93],htod:79,http:[8,9,12,18,27,31,61,65,66,72,73,85,86,91,93,94,97,101],huber:8,huge:8,huina:100,human:8,hyper:[8,31],hyperplan:12,i0601:98,i0706:101,i0719:101,i1116:87,i1117:79,ib0:80,ics:12,icwsm:100,id_input:7,idea:[8,18,41],ident:[8,46],identifi:33,identityoffsetproject:8,identityproject:8,idmap:87,ids:[7,8,56,98],idx:[23,31,74],ieee:100,ies:29,ifels:[17,39],ifelseop:39,ight:8,ignor:[2,8],iil:58,ijcnlp:100,illustr:[7,19,24,30,36,42,44],ilsvrc:94,im_siz:31,imag:[11,12,15,31,32,37,39,41,44,61,72,73,86,87,88,89,91,93,94,101],image_a:41,image_b:41,image_classif:93,image_fil:41,image_lay:41,image_list_provid:94,image_nam:15,image_path:41,image_provid:93,image_reader_cr:41,image_s:94,imagenet:[8,21],imagepullpolici:87,imageri:8,images_reader_cr:41,imagin:32,imdber:100,img:[2,8,9,42,93],img_conv_lay:9,img_pool_lay:9,img_siz:93,imgsiz:79,imgsizei:79,imgsizex:79,immutable_paramet:15,imperfect:45,implement:[8,9,10,12,17,23,24,25,26,27,30,33,34,35,38,42,43,48,50,51],implemet:22,impli:18,implicit:44,imposs:91,improv:[8,43,45],inarg:[4,22],inc_path:53,includ:[7,8,9,12,15,17,18,24,27,31,34,35,36,39,40,42,45,50,65,66,73,75,79],incorpor:8,incorrect:8,increas:[19,23,58],increment:32,incupd:74,inde:[12,41],independ:[8,16,24,44,48,91],index:[7,8,11,12,14,16,17,19,23,39,40,51,68,98],indexslot:8,indic:[7,8,17,24,31,36,39,46,49,51],indice_map:51,indices_map:51,individu:19,industri:[19,91],ineffici:38,infer:[15,17,19,33,34,40,44,45,49],infer_shap:40,inferior:26,infershap:[17,40,45,75,76],infershapecontext:[75,76],infiniband:80,info:[7,8,12,36,63,68,74,80,87,91],inform:[8,12,14,17,27,29,36,40,42,48,49],inherit:[17,37,45],ininst:15,init:[6,14,17,31,36,42,63,74,87,99],init_attr:40,init_from_tar:14,init_hook:[68,96,99],init_model_path:[81,82,84,92,96,99],initi:[2,6,8,9,12,14,18,23,32,36,40,42,43,50,51,82,96],initial_max:[6,58],initial_mean:[6,8,58],initial_min:[6,58],initial_std:[6,8,58],initialize_op_attr:40,initpaddl:4,initrd:91,inlcud:9,inlin:76,inner:[56,68],inner_:68,inner_mem:68,inner_param_attr:9,inner_rnn_output:68,inner_rnn_st:68,inner_rnn_state_:68,inner_step:68,inner_step_impl:68,inproj_attr:8,inproj_bias_attr:8,inproj_param_attr:8,input0:76,input1:[8,9,76],input2:8,input:[2,5,7,8,9,11,12,14,16,17,22,26,30,31,32,36,38,40,41,42,43,44,45,46,48,50,51,56,57,58,59,63,67,68,70,71,74,75,76,84,87,92,93,96,98,99,101],input_conf:8,input_data:74,input_data_target:74,input_featur:5,input_fil:[59,99],input_hassub_sequence_data:74,input_id:8,input_imag:[9,93],input_index:74,input_label:74,input_lay:74,input_loc:8,input_nam:15,input_proj_bias_attr:9,input_proj_layer_attr:9,input_seg:51,input_seq:8,input_sequence_data:74,input_sequence_label:74,input_sparse_float_value_data:74,input_sparse_non_value_data:74,input_t:74,input_to_check:16,input_typ:[56,59,68,96],input_valu:16,input_var:16,inputbuff:22,inputdef:74,inputgradi:46,inputlayers_:74,inputs_to_check:16,inputtyp:12,insert:[45,46,73],insid:[7,8,19,38,41,43,45,46],instal:[8,27,47,53,65,66,73,80,86,93,98],instanc:[8,16,17,19,21,25,33,36,40,42,45,46],instanti:19,instead:[8,9,11,18,22,27,32,41,42],instruct:[17,32],int16:52,int32:[39,51,52,82],int64:[28,49,52],integ:[2,7,8,12,23,27,34,63,96],integer_sequ:56,integer_valu:[2,12,56,63,68,96],integer_value_sequ:[2,12,68,71,96,99],integer_value_sub_sequ:68,integr:[7,91,99],inter:[8,42],intercept:8,interchang:[32,45],interfac:[6,8,9,14,17,23,27,29,38,45,46,80,91],intergr:8,intermedi:[29,31,37,42],intern:[8,9,14],internet:[18,19,91],interpret:7,interv:8,introduc:[8,17,19,31,48,50],intuit:[26,45],invalid:[41,48],invoc:[18,30,45],invok:[2,8,14,38,42,43,45,46,50,79],iob:7,ioe:7,ip_str:87,ipc:85,ips:87,ipt:[8,50,58,68,71],ipx:91,ipython:15,is_gener:[92,101],is_kei:98,is_loc:14,is_predict:[96,100],is_seq:[8,71],is_stat:[6,58],is_tensor:50,is_test:[94,99,100],is_train:2,isinst:[4,63],ispodallrun:87,isspars:74,issu:[18,31,44],issue_numb:73,item:[8,12,14,26,41,87,91],iter:[2,8,9,10,12,14,15,19,41,42,51],its:[2,8,9,14,15,16,17,19,23,31,32,36,38,40,45,46,48,49,50,79],itself:[19,26,48],ivs:50,java:[17,34,39,45],jeremi:79,jie:[99,100],jmlr:8,job:[12,26,42,44,45,80,81,82,84,85,87,94,96,99,100,101],job_dispatch_packag:80,job_id:12,job_mod:92,job_nam:[27,87],job_namespac:87,job_path:87,job_path_output:87,job_workspac:80,jobnam:87,jobpath:87,jobselector:87,jobserv:27,johan:100,join:[19,68],joint:101,jointli:[9,101],journal:[99,100],jpg:94,json:[80,86,98],jth:9,jupyt:[27,61],just:[5,7,8,9,12,18,23,24,31,36,38,42,45,46,48,49],jypyt:15,k8s:[87,91],k8s_data:87,k8s_job:15,k8s_token:15,k8s_train:87,k8s_user:15,kafka:21,kaim:8,kaimingh:94,kebilinearinterpbw:79,kebilinearinterpfw:79,keep:[8,12,19,32,48,50,91],keep_top_k:8,kei:[2,12,14,16,17,19,21,23,28,45,46,50,51,72,73,79,85,87,98],kept:[8,40],kernel:[8,16,49,75,76],key1:82,key2:82,keyword:87,kill:19,kind:[15,16,19,25,32,37,42,49,52,85,86,87],kingsburi:99,know:[15,23],known:[17,30,36],kriz:[12,93],kselectedrow:49,ksimonyan:9,kube:85,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeadm:85,kubectl:[85,86,87],kuberent:19,kubernet:[15,19,45,78,80,87,88,89,91],kubernetes_service_host:15,kwarg:[2,9,10,12,50,68,96,99],l1_rate:6,l2_rate:6,l2regular:[56,93,96,100],l93:22,label:[2,7,8,10,12,14,31,32,37,39,41,42,43,44,56,59,63,68,86,93,94,96,99,100],label_dict:99,label_dim:[8,68,96],label_fil:[41,99],label_lay:41,label_list:99,label_path:41,label_slot:99,labeledbow:100,labelselector:87,lag:82,lake:2,lambdacost:8,lambdarank:8,languag:[8,12,32,45,48,92],larg:[11,12,42,43,73,101],larger:[6,7,8],larger_than:[17,33,39],last:[7,8,9,36,39,67,68],last_seq:68,last_time_step_output:8,lastseen:86,latenc:[8,42],later:[18,45,76],latest:[8,17,18,19,26,53,86,87],latter:51,launcher:15,layer1:[8,9,56,67],layer2:[8,56,67],layer3:8,layer:[4,6,7,9,11,12,13,14,17,22,31,32,33,37,39,41,42,43,45,50,51,56,58,63,67,70,71,74,94,96,99],layer_0:74,layer_att:57,layer_attr:[8,56,57,71,84],layer_num:[84,94],layer_s:8,layer_typ:8,layerbas:74,layerconfig:74,layergradutil:74,layermap:74,layeroutout:8,layeroutput:9,layers_test:53,lbl:[7,93],ld_library_path:80,leaki:31,learing_r:37,learn:[6,7,8,9,10,12,15,24,26,31,32,41,42,43,44,45,61,79,93,94,99,100,101],learnabl:14,learning_method:[59,92,93,96,100,101],learning_r:[6,24,42,56,58,59,92,93,96,100,101],learning_rate_arg:58,learning_rate_decay_a:58,learning_rate_decay_b:58,learning_rate_schedul:58,leas:19,least:[7,8,19],leav:17,lecun:12,left:[8,17],legal:50,leman:101,len:[2,8,24,28,40,68,74,87,96,99],length:[8,9,12,24,36,45,51,86],leq:8,less:[8,15,91],less_than:15,let02:86,let:[7,8,15,17,26,30,32,36,37,46],level:[6,8,30,36,51,52,70],lgtest:18,lgtest_main:18,lib64:[53,61,80,82],lib:[35,60,65,66],lib_path:53,libapi:18,libari:35,libcuda:[53,61],libjpeg:93,libnvidia:[53,61],libpaddl:[34,35,45,73],libpaddle_capi:35,libpaddle_gserv:35,libpaddle_math:35,libprotobuf:58,librari:[8,18,25,35,42,80,82],life:19,lifecycl:91,lifetim:48,lightweight:30,like:[7,8,12,17,18,19,22,27,30,31,32,40,41,42,45,48,49,51,91,94],limit:[8,12,45,58,79],linaro:66,line:[2,7,12,18,22,27,29,32,39,45,56,58,68,73,84,99],line_count:58,linear:[8,56,58,63],linearactiv:59,linguist:99,link:[8,9,18,28,29,45,48,70,91,100],linux:[28,61,65,66,72,85],linux_x86_64:[47,53],lipeng:92,lipton:100,list:[1,2,7,8,9,12,14,15,17,18,23,27,29,31,37,38,40,44,46,48,51,56,59,80,84,93,94,96,98,99,100,101],listen:19,littl:24,lium:101,liwicki:100,load:[8,15,19,31,40,42,59,87,94,99,100,101],load_data_arg:4,load_featur:94,load_feature_c:94,load_feature_pi:94,load_missing_parameter_strategi:[81,82,84,92,99],load_mnist:31,load_paramet:58,loadparamet:4,loadsave_parameters_in_pserv:[22,81,82],loc:7,local:[6,14,16,17,19,25,26,32,36,39,45,60,80,81,82,87],local_scop:16,localhost:[61,85],localip:87,localpath:29,locat:[8,14,18,51],lock:[18,19,23,24,43],lod:[36,49,51,52],lod_desc:[49,52],lod_level:[40,49,52],lod_tensor:[36,49,52],lodtensor:[45,52],lodtensordesc:49,log:[23,29,31,42,54,58,74,80,82,86,87,93,98,99,100,101],log_barrier_abstract:[81,82],log_barrier_lowest_nod:[81,82],log_barrier_show_log:[81,82],log_clip:[81,82],log_error_clip:[81,82],log_period:[82,84,86,87,93,96,98,99,100,101],log_period_serv:[81,82],logarithm:5,logger:[2,68],logic:[26,31,37,38,42,43,48,51],logist:96,logit:31,longer:[19,42],look:[2,7,17,27,32,42],lookahead:8,loop:[16,17,41,48],loop_var:51,loss:[8,31,37,96],lost:37,lot:[42,91],low:[8,37,51],low_rnn:36,lower:[8,36],lower_level_rnn:36,lpaddle_capi_shar:35,lpaddle_capi_whol:35,lrelu:31,lstm:[8,68,71,86,96],lstm_bias_attr:9,lstm_cell_attr:9,lstm_group:[9,68],lstm_group_input:68,lstm_input:68,lstm_last:68,lstm_layer_attr:9,lstm_nest_group:68,lstm_output:68,lstm_size:96,lstm_step:9,lstmemori:[9,57,68,71],lstmemory_group:[8,57,68],lstmemory_unit:57,ltr:8,mac:[35,61,65],machin:[8,9,12,14,31,42,43,56,70,91,100,101],machine_transl:71,maco:72,macro:[30,46],made:[19,24],mai:[8,9,16,17,41,42,43,44,45,48],main:[4,39,45],mainli:25,maintain:[8,17,23,40,45],majel:18,major:[42,101],make:[2,7,8,15,17,18,19,23,24,26,32,36,38,41,42,45,46,51,65,66,72,73,74,75,77,79,91,100],make_ddim:76,make_function_oper:30,make_vari:50,maker:[45,46],man:28,manag:[14,19,24,25,29,42,48],mandarin:8,mani:[8,9,18,23,31,38,45,46,48,49,50,51],manipul:[40,46],manner:8,manual:[37,42,46,58,91],manufactur:101,manylinux1_x86_64:[47,53],mao:100,map:[7,8,12,14,15,17,23,40,46,48,50,51,63,91],map_fn:51,map_read:12,mapper:12,mapreduc:15,marcu:100,mark:[31,32,36,43,48,91,99],mark_slot:99,market:100,martha:99,mask:[6,8],master:[15,26,45,47,85,100],mastermind:18,mat:[34,35],mat_cache_row:22,mat_norm:22,mat_normal_shar:22,mat_param_attr:9,mat_sparse_row:22,mat_sparse_row_auto_grow:22,mat_sparse_row_id:22,mat_sparse_row_prefetch:22,mat_sparse_row_prefetch_full_s:22,mat_value_shar:22,match:[8,18,56],matchbox:91,math:[9,34,45,74,75,79],matirx:8,matmul:[17,36,51,75],matplotlib:93,matrix:[7,8,9,12,14,22,34,35,74,75],matrixptr:74,matrixtyp:35,mattyp:22,max:[6,8,12,16,40,58,67,79,84,98],max_diff:16,max_id:[8,14],max_job_id:12,max_length:[8,71],max_movie_id:12,max_relative_error:[16,75],max_sort_s:8,max_user_id:12,maxframe_evalu:7,maxid:7,maxid_evalu:7,maxim:8,maximum:[7,8,12,17,24],maxinum:11,maxpool:8,mayb:[8,17],md5:[12,20],mean:[6,7,8,9,10,11,12,14,18,36,41,42,48,56,82,91,94,98],mean_img_s:93,mean_meta:94,mean_meta_224:94,mean_valu:94,mean_var_nam:8,meant:51,mechan:[8,9,25,46],meet:99,mem:[8,17,27,68],mem_per_p:44,mem_per_train:44,member:[12,15,32,38,40,48],memcpi:[38,79],memori:[9,17,22,23,27,45,71,76,79,86],memory_boot:9,memory_nam:[8,57],memory_test:72,memory_threshold_on_load_data:[81,82],mention:[18,23,43],mere:9,merg:[8,24,26,36,38,73],mergedict:[92,101],messag:[17,32,39,40,45,46,49,52,53,73,86],meta:[80,93,94,98],meta_config:[80,98],meta_gener:[80,98],meta_path:93,metadata:[28,86,87],metal:[85,91],metaphor:32,metaplotlib:15,method:[2,8,10,14,16,17,26,31,32,37,43,45,48,49,51,101],mfs:87,might:[8,17,18,39,43],million:12,min:[6,8,40,79,84,98],min_block:17,min_count:43,min_desc:17,min_pool_s:[2,56],min_word_freq:12,mini:[8,12,14,17,19,33,36],mini_batch:41,minibatch:[8,17,32,33,39],minikub:85,minim:[10,17,31,37,43,45],minimum:8,minsizerel:[65,66],minu:46,minus_grad:46,minusgradop:46,minusop:46,minusopgradmak:46,minusopprotoandcheckermak:46,minut:[19,26],mip:65,mirror:18,mislead:24,miss:[31,99],mix:[9,51,71],mixed_lay:[9,68,99],mixed_layer_attr:9,mixedlayertyp:8,mkdir:[29,77],mkl:[45,60],mkl_root:60,ml_data:[80,98],mnist:[2,4,21,31,32,39,41,42,44,45],mnist_model:4,mnist_provid:2,mnist_random_image_batch_read:41,mnist_train:[2,41],mnist_train_batch_read:41,mnt:87,mobil:45,mod:99,mode:[8,14,73,87,100],model:[8,9,12,14,17,19,20,32,37,42,43,44,45,51,84,92,93,96,98,99,100,101],model_config:4,model_list:[82,84,99,100],model_output:100,model_path:84,model_zoo:[92,94],modifi:[8,42,73],modul:[2,9,12,14,30,31,51,58,59,75,93,94,96],modulo:8,momentum:[6,48,56,63,96],momentumoptim:[59,93],mon:86,mono:8,month:[18,101],mood:100,moosef:85,more:[7,8,9,12,15,16,18,19,23,26,27,29,30,32,36,37,40,41,42,43,45,46,51,58,79,91],morin:8,mose:[100,101],moses_bleu:101,mosesdecod:100,most:[8,12,15,18,26,32,41,42,91],mostli:91,motiv:45,mount:27,mountpath:[86,87],move:[8,19,23,29,91],movi:[2,12,98],movie_categori:12,movie_id:[87,98],movie_info:12,movie_review:12,movieinfo:12,movielen:97,moving_average_fract:8,mpi:80,mse:[32,37,39],much:[8,19,37,41,51],mul:[30,44,74,75],mul_grad:75,mul_op:75,mulgradkernel:75,mulkernel:75,mulop:[30,75],mulopgrad:75,mulopmak:75,multi:[8,38,91,94,101],multi_binary_label_cross_entropi:8,multi_crop:94,multigradientmachin:38,multinomi:8,multipl:[7,8,9,12,14,15,16,23,24,26,30,42,43,44,45,52],multipli:[7,8],multiprocess:12,must:[5,7,8,9,12,24,40,41,45,50,56,74,75,76],mutabl:76,mutable_data:[75,76],mxnet:17,my_cost:58,my_standalone_toolchain:65,mypaddl:[86,87],name:[2,6,7,8,9,11,14,15,16,17,19,21,22,24,27,30,35,39,40,44,45,47,49,50,51,52,58,59,61,63,68,71,74,79,84,85,86,87,88,89,91,93,96,98,101],name_prefix:21,namespac:[17,33,34,74,75,85,86,87],nativ:8,natur:[23,26,43,51],nchw:8,ndarrai:[14,21],ndcg:8,ndcg_num:8,ndk:65,nearli:16,necess:51,necessari:[8,17,24,26,38,40,50,51],need:[7,8,9,12,15,16,18,22,23,24,26,27,29,30,31,37,38,40,42,43,44,45,46,48,50,51,53,79,87,91],need_tran:58,neg:[2,7,8,99,100],neg_distribut:8,neg_overlap:8,neg_pos_ratio:8,ner:7,nerual:42,nest:[8,12,17,39],net:[8,9,17,31,36,48,100],net_conf:100,net_diagram:94,netop:[17,45],network:[4,6,7,8,10,12,13,14,15,16,17,19,22,31,36,37,41,42,43,48,50,52,57,63,68,80,84,87,91,92,93,94,99,100,101],network_config:84,neural:[8,9,10,12,14,15,17,19,42,48,52,68,70,92,99,100,101],neuralnetwork:38,never:[12,41,48,86,87],new_block_idx:40,new_stat:36,newblock:40,newest:24,newli:91,newop:17,newopdesc:40,newprogram:40,newremot:42,newvardesc:40,next:[2,8,12,19,25,51],nfs:87,nfsdir:87,nginx:61,ngram:12,nic:[80,81,82,87],nil:23,nine:12,nlp:8,nltk:12,nms_threshold:8,nms_top_k:8,nmt:101,nmt_without_attent:56,nnz:74,no_cach:2,no_grad_set:[16,75],no_sequ:[2,8,63,98],noah:100,noavx:61,node0:87,node:[8,18,26,42,43,44,45,52,85,86,87,91],node_0:87,node_1:87,node_2:87,nodebook:61,nodefil:80,nois:[8,19,31],noisi:31,non:[8,19,49],none:[2,4,6,7,8,9,10,11,14,15,16,17,31,33,36,37,39,40,44,50,51,59,71,94],norm:[9,31],norm_by_tim:8,normal:[8,9,12,86,87,94],notat:8,note:[6,8,9,11,14,15,17,22,23,27,41,45,76,100],notebook:27,noth:[5,14,48,73],notic:46,notingradi:75,notion:51,notori:16,novel:100,now:[8,12,18,19,31,43,45,46,48,70],np_arrai:12,nproc:72,ntst1213:101,ntst14:101,nullptr:[46,48,74],num:[8,9,80,82,87,99,100,101],num_channel:[8,9,93],num_chunk_typ:7,num_class:[8,9,93],num_filt:[8,9],num_gradient_serv:[81,82],num_group:8,num_neg_sampl:8,num_p:[42,44],num_parameter_serv:15,num_pass:[14,59,63,81,82,84,86,87,96,98,99,100,101],num_repeat:8,num_result:7,num_results_per_sampl:8,num_row:49,num_samples_process:58,num_shard:21,num_step:51,num_train:[42,44],number:[7,8,9,12,17,19,21,41,43,45,50,51,101],numchunktyp:7,numdevices_:84,numeric_grad:16,numerical_grad:16,numlogicaldevices_:84,numofallsampl:7,numofwrongpredict:7,numpi:[6,12,14,21,31,40,41,58,59,63,75,94],numreal:22,numsampl:79,numtagtyp:7,numtimeout:23,nv_:18,nv_gpu:72,nv_librari:18,nv_test:18,nvcc:[18,61],nvidia:[53,61,72],obei:7,obj:[2,58,59,93,94,96,98],object:[2,6,8,9,10,12,14,15,22,31,34,37,40,44,45,48,79],observ:[8,10],obtain:26,obvious:18,occup:[87,98],occur:[12,14],occurr:17,oct:86,odd:8,off:[35,60,61,65,66,72,73,77,91],offer:[17,44,45,50],offici:[8,18],offlin:[19,21,91],offset:[8,22,98],often:22,ograd:74,old:[16,24,26,45],omit:[56,96],on_init:2,onc:[8,19,23,32,42,43],one:[2,5,7,8,9,10,11,12,14,15,16,17,19,22,23,24,26,27,30,31,36,37,38,39,40,41,42,44,45,46,48,49,51,91,96,99,100],one_host_dens:98,one_hot_dens:98,onehotcrossentropyopkernel:75,ones:[30,31,45],onli:[7,8,9,11,14,15,16,18,22,23,24,25,26,27,29,31,32,36,37,38,40,42,43,44,45,49,50,51,68,70,91],onlin:[8,10,19,21,41],only_cpu:16,onto:[42,43],op_:75,op_check:75,op_class:[45,50],op_maker_class:[45,50],op_proto:50,op_test_util:75,op_typ:45,opattrcheck:75,opcreat:50,opdesc:[17,32,39,40,45,46,50,52],opdescbind:46,opdescbuild:17,open:[2,8,15,21,31,41,56,58,59,68,94,99],openbla:60,openblas_root:60,oper:[8,9,10,12,16,17,31,32,36,37,42,44,48,52,75,76],operaotr:46,operartor:76,operator_grad:16,operatorbas:[17,30,45,46,50,75],operatorwithkernel:75,opinfo:[45,46],opinfomap:46,opinion:100,opkernel:[75,76],opkernelkei:45,opmak:50,opproto:75,opprotoandcheckermak:[46,75],opprotomak:[50,75],opregist:50,opregistri:50,ops:[16,17,18,32,39,40,45,75,91],ops_:17,ops_test:18,opt:[15,37,44,50,60,87],opt_op_list:37,optestmeta:75,optim:[6,13,14,16,31,38,39,42,43,44,45,49,56,58,63],optimis:37,optimize_op_attr:40,optimzi:56,option:[7,8,15,18,31,39,45,49,50,52,91],optmization_op_list:37,optyp:50,opwithkernel:49,order:[8,9,12,14,32,41,51,87,91],ordereddict:14,org:[7,8,9,12,21,28,31,61,97],organ:[7,8],orient:50,origin:[8,12,16,31,48,51,73],other:[7,8,9,12,17,19,24,29,36,48,50,91],otherchunktyp:7,otherwis:[8,12,15,19,24,26,31,41],our:[15,18,31,42,43,48,51],out:[8,14,15,17,18,23,26,36,40,56,68,70,71,75,76,93],out_dir:87,out_left:8,out_mem:71,out_memori:9,out_right:8,out_size_i:8,out_size_x:8,outer:68,outer_mem:68,outer_rnn_st:68,outer_rnn_state_:68,outer_step:68,outlier:8,outout_lay:14,outout_layer1:14,outout_layer2:14,output:[5,6,7,9,11,12,14,15,16,17,21,26,29,30,31,32,33,36,39,40,41,42,43,45,46,48,49,50,51,56,59,68,71,75,76,80,84,86,87,92,93,94,96,98,99,100],output_:8,output_all_step:36,output_dir:94,output_fil:99,output_id:8,output_lay:[14,56,94],output_max_index:11,output_mem:[8,71],output_nam:16,output_num:36,output_path:21,output_seg:51,outputbuff:22,outputgradi:46,outputh:8,outputw:8,outsid:[2,8,9,48],outupt:51,outv:74,over:[8,9,14,15,51],overal:[31,91],overlap:[7,8],overlap_threshold:[7,8],overrid:[17,19,29,44,75,76],overview:[23,24,25],overwrit:29,own:[24,26,37,42,44,50],pack:[51,58],packag:[12,23,27,30,47,53],pad:9,pad_c:8,pad_h:8,pad_w:8,padding_attr:8,padding_i:8,padding_x:8,paddl:[2,4,5,6,7,8,9,10,11,12,14,15,17,18,19,21,27,29,30,31,33,34,35,36,38,39,42,44,45,50,51,56,58,59,61,63,71,72,73,74,75,77,79,80,84,86,87,91,92,93,96,98,99,100,101],paddle_begin_init_param:24,paddle_dir:75,paddle_doc:77,paddle_docs_cn:77,paddle_element_typ:24,paddle_element_type_float32:24,paddle_element_type_float64:24,paddle_element_type_int32:24,paddle_element_type_int64:24,paddle_element_type_uint32:24,paddle_element_type_uint64:24,paddle_enforc:17,paddle_enforce_eq:[75,76],paddle_error:[34,35],paddle_exampl:27,paddle_finish_init_param:24,paddle_get_param:24,paddle_gradi:24,paddle_init_param:24,paddle_job:27,paddle_matrix:[34,35],paddle_matrix_cr:35,paddle_matrix_get_shap:34,paddle_matrix_shap:34,paddle_n:[80,87],paddle_new_etcd_pserver_cli:24,paddle_new_pserver_cli:24,paddle_on_cloud:27,paddle_output:86,paddle_paramet:24,paddle_port:[80,87],paddle_ports_num:[80,87],paddle_ports_num_for_spars:80,paddle_ports_num_spars:87,paddle_process_by_paddl:87,paddle_pserver2:80,paddle_pserver_cli:24,paddle_pserver_client_releas:24,paddle_root:92,paddle_save_model:24,paddle_send_grad:24,paddle_server_num:87,paddle_source_root:92,paddle_train:[35,47,80,87],paddledev:[53,61,86,87],paddlepaddl:[8,9,12,14,18,19,21,24,25,26,27,28,29,30,31,32,33,36,37,38,40,41,44,45,48,51,52,61,71,72,73,79,80,88,89,91,92,99],pain:44,pair:[7,8,17,32,37,42,45],pakcag:18,palceholder_just_ignore_the_embed:92,palmer:99,paper:[8,31,101],para:[22,92],paraconvert:92,paradigm:45,paragraph:36,paragraph_data:36,paragraph_out:36,parallel:[42,43,45,79,84,86,87,101],parallel_nn:[6,81,82],param:[6,8,9,12,16,17,24,38,58,76],param_attr:[8,9,22,56,58,59,71],param_config_proto:24,param_fil:58,paramattr:[6,8,56,58,59,71],paramet:[7,9,10,11,12,13,16,17,18,20,22,26,29,31,32,36,37,39,41,42,48,50,51,56,58,63,82,87,98,99,100,101],parameter_attribut:8,parameter_block_s:[81,82],parameter_block_size_for_spars:[81,82],parameter_learning_r:6,parameter_list:37,parameter_nam:[14,15],parameter_serv:15,parameter_valu:22,parameterattribut:[6,8,9,22],parameterclient2:87,parameterclient_:22,parametermap:74,parametermutex_:22,parameters_:74,parameters_and_grad:37,parameterserver2:22,parameterset:15,parameterupdat:38,parameterupdater_:22,parametris:10,params_grad:37,paramutil:98,paraphras:[92,101],paraphrase_data:92,paraphrase_model:92,paraphrase_modeldata:92,paraspars:74,parent:[17,39,40,45],parent_:[17,48],parent_idx:40,parenthes:45,pars:[12,18,72],parse_config:4,parse_known_arg:87,parsefromstr:58,parser:87,part:[7,8,17,26,39,40,91,100],partial:[8,14],partial_sum:8,particular:[32,45],partit:[19,21,42,43,45],paserv:87,pass:[2,8,14,17,19,31,37,38,41,45,48,51,56,59,63,73,79,82,84,86,87,93,96,98,99,100,101],pass_id:[14,63],pass_idx:41,pass_manu:58,passtyp:74,past:15,patch:28,path:[7,12,14,19,23,24,27,41,65,66,80,82,85,86,87,99,100],pattern:[12,19,34,100],paul:99,paus:[19,26],pave:101,pdf:[8,9],peer:54,pem:[15,21],pend:[19,23],penn:99,pep425tag:53,per:[7,8,12,19,24,41],perform:[8,16,24,31,38,45,79,81],period:[19,26,44,82,99,100,101],perl:[100,101],peroid:8,persist:[49,52],persistentvolum:85,persistentvolumeclaim:[85,87],person:[7,15],perspect:45,perturb:16,peter:44,pex:91,pfs:[21,29,44],pfsclient:21,pfspath:29,phase:[46,91],photo:31,physic:91,pid:85,piec:[8,9],pillow:[27,93],pip:[47,53,73,80,93,98],pixel:[2,8,12],pixels_float:2,pixels_str:2,place:[2,19,26,42,43,45,75,76],placehold:[31,76],placement:43,plain:[7,8,27,35],plan:[19,45],platform:[17,65,75,76],pleas:[6,8,9,10,15,19,23,24,25,36,40,41,42,44,45,52,53,87],plot:[15,93],plotcurv:93,plu:[8,16],png:93,pnpairvalid:81,pod:[21,27,85,86,87],podip:87,podlist:87,point:[17,19,27,44,76,79,91],pointer:[17,24,40,45,48,76],polar:12,poli:58,poll:100,pollut:26,pool3:74,pool:[9,13],pool_attr:9,pool_bias_attr:9,pool_layer_attr:9,pool_pad:9,pool_siz:[2,8,9],pool_size_i:8,pool_strid:9,pool_typ:[8,9],pooling_lay:[9,56,96],pooling_typ:[8,56,67,96],poolingtyp:11,pop:17,popul:24,popular:[18,31],port:[18,80,81,82,86,87],port_num:81,ports_num:[82,87],ports_num_for_spars:[22,81,82,84,87],pos:[98,100],pose:19,posit:[2,7,8,9],positive_label:7,posix:85,possibl:[15,17,23,40,43],post:[27,28],potenti:79,pow:58,power:91,practic:8,pre:[8,9,12,15,24,92,100,101],pre_dictandmodel:92,pre_stat:[36,51],preambl:40,precis:7,precision_evalu:7,pred:99,predetermin:8,predic:[12,99],predicate_dict:99,predicate_dict_fil:99,predicate_slot:99,predict:[2,4,7,8,10,14,42,56,80,92,93,94,96,98,99,100],predict_fil:[81,82],predict_lay:14,predict_output_dir:[81,82,96],predict_sampl:4,prediction1:14,prediction2:14,predin:93,prefer:85,prefetch:[22,74],prefix:[7,19,21],pregrad:74,premodel:92,prepand:40,prepar:[16,27,38,88],prepend:40,prepend_oper:40,preprocess:[12,51,80,92,93,96,98,100,101],present:[15,17,51,73],preserv:29,prev_batch_st:[81,82],prevent:[10,15,19,23,26],preview:45,previou:[8,9,14,19,29,36,43],previous:8,previous_memori:17,price:[12,45],primari:32,primit:51,principl:[15,18],print:[4,6,14,15,42,53,59,63],printallstatu:79,printer:7,printstatu:79,priorbox:8,prioriti:45,prite:7,privat:[17,35,48,49,50,51,73,76],prob:[7,14],probabilist:[8,92],probabl:[7,8,14],problem:[8,10,15,16,18,26,31,32,45],proc:61,proce:[12,19,41],procedur:17,proceed:[8,99],process2:68,process:[2,6,8,9,12,15,17,21,22,23,26,42,50,56,58,59,68,87,96,98,99],process_num:12,processdata:[93,94],processor:79,prod:[61,73],produc:[8,9,12,19,41],product:[8,27],productgraph:86,profil:[29,79],proflier:79,prog:87,program:[12,15,21,24,26,32,33,37,41,42,44,45,48,79,87],programdesc:[40,44,46],programm:[40,42],progress:[19,23],proj:8,project:[8,9,27,35],promis:[8,9],prompt:29,prone:15,prop:99,propag:10,propos:[17,37,43,51],proposit:99,protect:[50,74,75],proto:[11,39,45,50,52,75],proto_:50,protobuf:[14,17,27,32,39,40,45,46,50,58],protocol:[7,91],protomak:75,provid:[8,12,15,17,24,27,31,44,50,51,56,59,68,81,91,96,99],provis:91,prune:[8,17],ps_desir:19,pserver:[14,22,24,25,27,45,80,81,82,87],pserver_addr:24,pserver_cpu:27,pserver_id:20,pserver_mem:27,pserver_num_thread:[22,81,82],pserver_spec:14,pseudo:[15,27,46,51],pseudocod:51,psize:74,ptr:35,pull:[18,45,47,61],purpos:[8,19,42,43,79],push:[17,87],push_back:74,put:[18,19,22,40,43],pwd:[61,72,73],pxe:91,py_paddl:[4,53],pybind:17,pydataprovid:56,pydataprovider2:[2,4,59,87],pyramid:8,pyramid_height:8,python:[14,15,17,25,30,31,32,34,38,45,47,51,53,56,61,71,72,73,74,75,80,92,93,94,98,99,100,101],pythonpath:[53,93],pzo:100,queri:[8,101],question:[8,15,43,50],queue:43,quick:86,quick_start:[27,86,87,88,96],quick_start_data:86,quickli:45,quickstart:86,r14b:65,r_t:8,rac:8,rais:12,rajathkmp:31,ramnath:100,ran:[43,79],rand:[31,58,79,82,84,99],random:[6,8,12,21,31,38,41,58,59,75],random_imag:21,randomli:26,rang:[8,12,21,31,41,42,44,50,87,96],rank:[8,15,51,94,96],rare:2,raspberri:66,raspberrypi:66,raspbian:66,rate:[6,7,9,10,12,24,56,80,87,98],rather:[27,31,51],ratio:[8,82],raw:8,raw_meta:98,rdma_tcp:[81,82],reach:19,read:[2,12,14,15,19,21,41,42,43,45,51,58,59,91,94],read_from_realistic_imag:15,read_from_rng:15,read_lock:20,read_mnist_imag:15,read_next_from_fil:56,read_paramet:58,read_ranking_model_data:15,readabl:45,reader:[14,21,31,32,39,40,42,44,63],reader_cr:21,reader_creator_bool:41,reader_creator_random_imag:[12,41],reader_creator_random_image_and_label:[12,41],readi:[19,86,91],readlockguard:22,readm:[35,73,98,100],readwritebuffer_:22,real:[8,22,31,41],real_process:2,realist:15,realiz:[17,36],reason:[9,15,16,19,86],recal:7,receiv:[19,27,43],recognit:[8,94,100],recommend:[9,15,80,87,98],record:[12,23,50,99],recordio:[12,15,21,23,42,44],recov:[19,51],recover:45,recoveri:23,rectangular:8,rectifi:8,recurr:[48,68,69,99,100],recurrent_group:[9,57,68,70,71],recurrent_lay:9,recurrent_op:51,recurrentgradientmachin:[35,51],recurrentgroup:7,recurs:[17,18,29,45],recv:[42,43],recvparametertyp:22,red:31,reduc:[10,43,45],reduce_by_kei:45,reduce_mean:31,ref:98,refactor:[32,38,40,42,43,51],refer:[6,8,9,10,16,17,19,23,24,25,36,39,40,45,48,51,52,60],referenc:[8,23],reference_cblas_root:60,refine_unknown_arg:87,reflect:23,reg:50,regard:91,region:[8,48],regist:46,register_gpu_profil:79,register_lay:74,register_op:[30,45,46,50,75],register_op_cpu_kernel:75,register_op_gpu_kernel:75,register_op_without_gradi:[45,75],register_oper:46,register_tim:22,register_timer_info:79,registerop:50,registri:[27,86,91],regress:8,regular:[6,56,93,96,100],reinforc:44,rel:[9,16,26,75],relat:[19,26,27,48,49,91],relationship:46,releas:[44,47,65,66,85,99],reli:[16,37],reliabl:19,relu:[8,31],remain:51,rememb:8,remot:[6,18,22,45,73,80,82,84],remote_ess:44,remote_sess:44,remoteparameterupdat:[22,25],remov:[12,29,73],renam:29,reorgan:8,repeat:[17,32,39,49,50,52],repeatedli:32,replac:[18,23,44,46],replic:42,replicaset:27,repo:18,report:[23,42],reportdataset:23,repositori:[8,65],repres:[8,9,17,23,40,43,44,45,49,51,52],represent:[8,24,31,32,42,49],request:[18,19,22,26,42,45,47,86,91,101],requir:[7,8,15,19,24,26,27,29,36,39,42,43,45,46,49,50,52,80,91,98],res5_3_branch2c_bn:94,res5_3_branch2c_conv:94,res:99,research:[12,42,93],reserv:29,reserveoutput:74,reset:[8,19,54],reshap:[16,41,58],reshape_s:8,residu:94,resiz:[22,75,76],resnet_101:94,resnet_152:94,resnet_50:94,resolv:[18,73,86],resourc:44,respect:[16,31,36],respons:[8,22,31,38,86],rest:[8,17,27,28,91],restart:[19,24,86,91],restartpolici:[86,87],restor:16,restrict:48,resu:41,result:[2,5,7,8,14,16,23,31,32,37,38,42,79,96,101],result_fil:7,resum:26,retriev:[17,48],return_seq:9,reuqest:47,reus:[17,26,41,45],rev:72,reveal:15,revers:[8,9,70,71],review:[12,73,86,100],reviews_electronics_5:86,rewrit:[18,101],rgb:8,rgen:100,rho:10,right:[8,16,17,18,27,45],rkt:[27,72],rmsprop:[56,96],rnn:[8,9,17,31,40,45,48,70,71,81,100],rnn_bias_attr:71,rnn_layer_attr:71,rnn_out:71,rnn_output:51,rnn_state:68,rnn_state_:68,rnn_step:8,rnn_use_batch:[81,82],rnnlm:12,rnnstep:51,roadmap:51,robot:93,robust:8,role:[12,15,23,24,42,99,100],rollback:40,roman:100,root:[10,11,61,80,86,87,92],root_dir:80,rot:8,routledg:100,row:[7,8,12,22],row_id:8,rows_:49,rpc:23,rpcserver:23,rpi:66,rpi_arm_neon:66,rpi_toolchain:66,rstrip:87,rtk:91,rtype:[8,12],rule:[7,32,42],run:[15,16,17,18,19,27,30,31,32,36,37,39,42,43,44,45,48,49,53,61,72,73,76,79,80,86,87,88,89,91,98],runinitfunct:[79,87],runnabl:43,running_on_cloud:27,runtim:[2,17,36,44,45,52,53],runtime_table_:17,safe:27,sai:[8,32,33],same:[2,7,8,9,14,15,16,23,24,26,30,31,36,42,44,45,46,48,51,68,76,96],samping_id:8,sampl:[2,7,12,31,50,96,98,100,101],sample_id:7,sample_num:7,sampler:31,santiago:100,satifi:7,satisfi:[18,49],save:[2,8,12,14,19,21,23,24,27,32,42,49,52,86,98,99,100,101],save_dir:[59,82,84,86,87,93,96,98,99,100,101],save_only_on:[81,82],savetxt:58,saving_period:[81,82,87],saving_period_by_batch:[81,82,84],saw:2,sbin:61,scalabl:45,scalar:[8,17,33,51],scale:[5,42,43,46,50,75],scaleop:75,scaleopmak:[45,75],scalingproject:8,scan:[23,45],scatter:8,schedul:[23,27,43],scheduler_factor:6,scheme:[7,22],schmidhub:100,schwenk:101,scienc:100,scope:[16,40,44],score:[7,8,98],script:[12,77],seaplane_s_000978:93,search:[8,19,48,71,101],seat:101,second:[8,15,29,31,36,39,41,48,50,75,96],section:[40,43],sed:100,see:[8,9,15,19,40,42,44,58],seed:[58,79,82],seem:18,segment:[7,36,51],sel_fc:8,selcet:8,select:8,selected_id:8,selected_indic:8,selected_row:[49,52],selected_rows_desc:[49,52],selectedrow:52,selectiv:8,selector:86,self:[16,31,37,40,51,74,75],selfnorm:8,semant:[12,15,47,99,100],semat:15,sen_len:99,send:[19,24,42,43,45,50,52],send_back_parameter_typ:22,sendbackparameterspars:22,sendbackparametertyp:22,sendparameterrequest:22,sendparameterrespons:22,sensit:8,sent:[15,24,42,45,50,86],sentanc:56,sentenc:[2,8,12,36,51,68,71,99],sentence_input:51,sentence_last_state1:68,sentence_last_state2:68,sentiment:[2,99,100],sentiment_data:100,sentiment_net:100,sentimental_provid:2,sentimental_train:2,separ:[7,24,30,46,98],seper:51,seq:[8,12,68,98],seq_len:51,seq_pool:[8,67],seq_silc:8,seq_text_print:7,seq_to_seq_data:[92,101],seq_typ:12,seqlastin:68,seqtext_evalu:7,seqtoseq:[8,58,92,101],seqtoseq_net:[8,92,101],sequel:2,sequenc:[2,5,7,8,9,11,12,17,32,37,39,51,56,63,68,70,96,98,100,101],sequence_conv_pool:96,sequence_group:8,sequence_layer_group:68,sequence_nest_group:8,sequence_nest_layer_group:68,sequencegen:68,sequencestartposit:8,sequencetextprint:7,sequencetyp:[2,8,63],sequenti:[8,17,99],seri:[9,68,100],serial:[14,17,23,38,45,52],serializ:45,serv:[42,45,51],server:[15,18,22,25,26,42,45,54,80,82,85,87,91],serverless:19,servic:91,sess:[31,37,44],session:37,set:[2,6,7,8,9,12,14,15,19,27,31,36,40,45,46,48,51,56,58,59,68,72,75,76,79,80,86,92,93,94,96,99,100,101],set_active_typ:74,set_default_parameter_nam:6,set_drop_r:74,set_float_el:16,set_input:8,set_siz:74,set_typ:74,setdatatyp:49,setdefault:75,setq:72,settotalbyteslimit:58,setup:[47,74,75,91],sever:[7,8,16,22,31,36,38,49,51],sexstant:91,sgd:[10,14,15,19,27,38,42,43,44,49,59,63,80,81,100],shall:18,shape:[8,12,14,16,17,31,33,36,39,40,44,45,49,63],shard:[19,20,21,22,23,24,26,42,43],share:[8,18,31,35,38,45,51,99],shared_bia:9,shared_bias:8,shared_librari:18,shared_ptr:[34,35,48,76],ship:93,shold:100,shorten:8,should:[6,7,8,12,14,15,16,17,24,27,30,31,36,37,38,39,41,42,45,46,49,50,51,52,70,75],should_be_fals:15,should_be_tru:15,should_shuffl:[2,68,99],show:[7,10,17,19,29,33,36,39,49,51,72,99,100,101],show_check_sparse_distribution_log:[81,82],show_layer_stat:[81,82],show_parameter_stats_period:[81,82,84,86,99,100,101],shown:[8,15,42],shuf:[56,98],shuffl:[12,56],side:[8,14,38],sigint:80,sigmod:50,sigmod_op:50,sigmod_output:50,sigmoid:[8,17,44,50,51],sigmoidactiv:[9,68],sign:28,similar:[8,17,41,43,45,51,91],similarli:[8,12],simpl:[5,7,8,9,12,14,32,39,43,48,50,51,87],simple_attent:71,simple_gru:[71,96],simple_lstm:[8,57,96],simple_rnn:[8,71],simpler:38,simpli:[8,15,24,36],simplifi:[15,40,50],sinc:[8,19,23,25,26,41,42,44,46,49,51,91],singl:[7,9,12,19,42,43,44,45,48],sinlg:14,site:18,size:[2,7,8,9,10,12,14,19,21,22,24,31,40,41,42,44,49,50,51,56,58,59,63,68,71,74,75,76,93,94,96,100,101],size_a:8,size_b:8,size_t:[22,51,74],sizeof:17,skip:[41,58,59,73,94],sleep:87,sliceproject:8,slide:[8,10,12,19],slightli:31,slope:8,slopeinterceptlay:8,slot:[98,99],small:[12,16,31],small_messag:[81,82],small_vgg:93,smaller:[8,16,19],smart:48,smartli:8,smith:100,smooth:8,snap:86,snapshot:[20,26],snippet:[30,37],sock:27,sock_recv_buf_s:[81,82],sock_send_buf_s:[81,82],socket:87,softmax:[8,9,15,17,33,39,42,43,44,56,71,74,96],softmax_param:58,softmax_param_attr:9,softmax_selfnorm_alpha:8,softmaxactiv:[68,96],softwar:91,solid:31,solut:91,solv:[15,42,45],some:[6,8,12,14,15,17,18,22,23,24,26,27,30,31,32,36,37,39,40,42,43,45,46,48,51,91],some_c_api_funct:35,some_inst:35,some_op:[36,51],some_python_class:34,somecppclass:34,somedata:14,somegotyp:34,someth:[8,22,40],sometim:[8,10,41],somewhat:24,somewher:48,soon:19,sort:[8,12,51,87,100],sort_by_length:51,sourc:[8,12,16,18,29,31,35,41,45,101],source_dict_dim:71,source_language_word:71,space:[7,8,40,43],space_seperated_tokens_from_dictionary_according_to_seq:7,space_seperated_tokens_from_dictionary_according_to_sub_seq:7,spars:[6,8,10,12,22,56,74,80,82,84,87],sparse_binary_vector:[2,12,56,63],sparse_binary_vector_sequ:12,sparse_float_vector:[2,63],sparse_non_value_slot:12,sparse_remot:22,sparse_upd:[6,22,56],sparse_value_slot:12,sparse_vector:[12,56],sparse_vector_sequ:12,sparseparam:74,sparseprefetchrowcpumatrix:74,spatial:8,spec:[86,87],special:[8,24,37,40,42],specif:[14,18,19,29,45,48],specifi:[7,8,15,16,22,23,24,27,29,31,40,42,44,48,50,51],speech:8,speed:[9,91],sphinx:[34,61,77],split:[2,8,26,33,45,51,68,80,98,99],split_count:87,sqrt:8,squar:[8,10,11],square_error_cost:[59,63],squarerootnpool:8,squash:73,srand:82,src:[18,87,101],src_backward:71,src_dict:58,src_dict_path:58,src_embed:71,src_forward:71,src_root:4,src_word_id:71,srl:[12,99],ssd:8,ssh:[61,80],sshd:61,sstabl:15,stabil:16,stabl:[47,85],stack:[45,51],stacked_lstm_net:100,stacked_num:100,stackexchang:8,stage:[18,25,31,52,73],stake:101,stale:[19,44],standalon:65,standard:[6,45],stanford:[12,16,86],star:18,start:[8,9,14,18,19,22,23,24,26,27,38,42,53,73,82,86,87],start_paddl:87,start_pass:[81,82],start_po:8,start_pserv:[81,82],startpaddl:87,startup:[19,27],stat:[79,82,99,100,101],state:[8,9,19,36,48,51,57,70,86],state_act:[8,9,68],statement:32,statfulset:87,static_cast:76,staticinput:[8,70,71],statist:8,statset:79,statu:[27,73,79,86,87],status:86,std:[14,18,22,34,35,45,46,48,50,74,75,76,82],stderr:80,stdout:80,step:[8,9,11,16,17,19,24,31,32,38,40,42,43,45,50,51,68,70,71,91],step_id:51,step_input:51,step_net:17,step_output:51,step_scop:45,stepnet:[17,36,45,48],stepout:68,still:[23,26,42,46],stirng:40,stochast:[10,19,23,26],stock:100,stop:8,storag:[28,85],store:[7,8,12,14,16,17,18,22,38,39,40,42,44,45,46,48,51],str:[14,27,51,84,87],straight:39,straightforward:49,strategi:[11,19,43,82,99],street:[8,99],strict:41,stride:[8,9],stride_i:8,stride_x:8,string:[2,7,8,14,17,23,29,39,40,44,45,46,48,49,50,52,74,75,82],strip:[58,68,99],struct:[23,24,28,35,46,50,58],structur:[17,23,31,39,40,45,49],stuff:73,stun:2,style:[8,45,50],sub:[7,8,12,15,26,31,36,38,40,42],sub_nest_seq:8,sub_sequ:[2,8,63],subclass:40,subcommand:29,subgradi:10,subgraph:[31,43],submiss:42,submit:45,subnet:15,subobjectpath:86,subseq:[67,70],subsequ:8,subsequenceinput:[8,68],succeed:[23,86],success:[8,24,86],successfulcr:86,sudo:[72,93],suffer:16,suffic:41,suffix:27,suggest:[8,18],suit:91,suitabl:49,sum:[8,10,17,20],sum_:8,summar:31,sumopgradmak:46,sumpool:[8,56],suppli:49,support:[6,7,8,11,12,16,17,19,26,27,30,31,38,41,42,43,45,46,49,68,91],suppos:[18,30,49],suppress:[8,29],sure:[45,100],surpass:8,svs:50,swagger:28,swap_channel:94,swig:[25,34,35],swig_paddl:4,switchop:17,symbol:[8,17,35],symbols_ready_:17,symbolt:[17,45],symlink:73,sync:19,syncflag:74,synchron:[10,19,23],syntax:41,sys:94,sysroot:65,system:[17,18,19,24,26,28,30,31,42,43,56,100],t2b:92,tab:96,tabl:[7,8,17,49,52],tablelookup:49,tablelookupgrad:49,tablelookupop:49,tableproject:8,tag:[7,12,53,61],tagtyp:7,tainer_id:87,take:[2,7,8,9,15,17,18,19,26,31,32,33,39,40,45,46,51],taken:51,talk:24,tanh:[8,9,31,42,71,74],tanhactiv:[9,68],tar:14,target:[8,12,14,17,18,31,37,42,44,45,101],target_dict_dim:71,target_dictionary_dim:8,target_language_embed:8,target_language_word:71,target_link_librari:18,targetinlink:[8,68],task:[7,8,42,50,99],task_queu:23,taskentri:23,taskqueu:23,tbd:[25,68],tconf:100,tcp:82,tear:79,technic:19,tee:[86,93,99,100,101],tell:[19,23,24,50],tellig:100,templat:[30,50,75,76,86,87,91],tempor:8,temporari:27,tensor:[16,18,31,36,43,44,49,51,52,75],tensor_array_read:51,tensor_array_s:51,tensor_array_stack:51,tensor_array_unstack:51,tensor_array_writ:51,tensor_s:16,tensor_test:18,tensor_to_check:16,tensorarraydesc:51,tensordesc:49,tensorflow:[17,31,33,42,43,51],term:[8,9,19],termin:86,tesh:99,tessorarrai:51,test100:12,test10:12,test1:21,test:[1,2,8,12,14,15,16,18,35,41,44,47,73,74,75,76,79,80,82,84,93,94,96,98,99,100,101],test_:75,test_all_data_in_one_period:[86,93,98,99,100],test_check_grad_ingore_i:75,test_check_grad_ingore_x:75,test_check_grad_norm:75,test_compar:53,test_comparespars:53,test_comparetwonet:53,test_comparetwoopt:53,test_config_pars:53,test_data:[4,101],test_fcgrad:74,test_gpuprofil:79,test_layergrad:74,test_list:[2,58,59,93],test_mul_op:75,test_networkcompar:53,test_part_000:100,test_pass:[81,82,84,101],test_period:[81,82,84],test_predict:53,test_pydataprovid:53,test_pydataprovider2:53,test_pydataproviderwrapp:53,test_ratio:98,test_recurrent_machine_gener:53,test_recurrentgradientmachin:[53,68],test_swig_api:53,test_train:53,test_traineronepass:53,test_wait:[81,82],testa:15,testb:15,testbilinearfwdbwd:79,testcas:75,testconfig:74,tester:[98,101],testfcgrad:74,testfclay:74,testlayergrad:74,testmulgradop:75,testmulop:75,testq:15,testresult:14,testutil:74,text1:29,text:[2,7,9,12,15,36,92,100,101],text_conv:96,text_conv_pool:98,text_fil:[12,100],tflop:79,tftp:91,tgz:12,than:[6,7,8,9,19,27,30,31,40,45,46,51,58,91],the_current_program:40,thei:[8,15,18,19,24,26,29,31,32,37,40,43,44,45,49,50,51,52,79],them:[7,8,9,15,16,18,19,22,27,30,41,43,45,46,48,49,50,51,52,79],themselv:18,therein:[8,17],theta:31,theta_d:31,theta_g:31,thi:[2,6,7,8,9,10,12,14,15,16,17,18,19,22,23,24,25,26,27,30,31,32,36,37,38,39,40,41,42,43,44,45,50,51,79,91,100],thing:[2,31,45],think:[15,18],third:[8,19],third_parti:[8,65,66],those:[17,18,19,30,32,33,39,99],though:[51,91],thought:18,thread:79,thread_local_rand_use_global_se:[81,82],threadid:84,threadloc:79,three:[7,8,16,19,32,37,38,39,41,94],threshold:[6,7,8,19,23,82],through:[8,18,19,23,25,37,44],throughput:79,thrust:45,thu:[8,26],tier:86,time:[8,9,11,12,15,16,18,19,23,26,30,36,40,41,42,43,45,46,49,50,51,52,68,79,82,86,87,91,100],timelin:[8,45],timeout:[19,23],timeout_sec:12,timer:79,timestamp:[8,20],timestep:[8,48],titl:[12,87,98],tls:28,tmp:2,to_no_sequ:[8,67],to_sequ:[8,67,68],to_your_paddle_clone_path:77,todo:[7,10,12,17,19,23,26,50],toend:8,togeth:[8,9,12,14,51],token:[7,8,15,71,100],toler:[14,16],too:[12,16,42,51],took:91,tool:[65,66,77,87],toolchain:[65,66],top:[7,14,36,94],top_k:7,top_level_rnn:36,toplevel:72,topolog:[15,19,38,42,44],topolopi:14,torch:17,toronto:[12,93],tostr:58,total:[14,19,41,43,79,86,91,101],total_pass:41,touch:100,tourist:101,trace:[17,31],track:[19,23,40,73],tractabl:8,tradit:[8,17],traffic:42,trail:12,train100:12,train10:12,train:[1,2,6,7,8,10,12,17,21,23,24,26,31,32,38,39,44,45,49,52,54,56,59,63,71,80,82,84,86,87,88,89,92,93,94,96,98,99,100,101],train_arg:87,train_args_dict:87,train_args_list:87,train_conf:[92,101],train_config_dir:87,train_data:101,train_i:63,train_list:[2,58,59,93,94],train_part_000:100,train_read:63,train_x:63,trainabl:[8,40],trainer:[2,4,15,20,21,22,23,25,38,42,43,45,59,63,74,82,84,87,99,100,101],trainer_config:[1,2,4,59,80,86,87,96,98,100],trainer_config_help:[2,59,74,93],trainer_count:[56,81,82,84,86,87,98,99,100,101],trainer_cpu:27,trainer_cr:27,trainer_gpu:27,trainer_id:[82,87],trainer_intern:22,trainer_mem:27,trainer_packag:27,trainerconfighelp:58,trainerid:[26,87],trainerintern:[96,98,101],trainonebatch:22,tran:74,transact:[19,23,100],transform:[8,45],transform_param_attr:9,translat:[8,9,56,92,101],transpos:8,transposedfullmatrixproject:8,travel:2,travers:32,travi:73,treat:[8,17,24],treatment:24,tree:[8,17,40,87],trg:101,trg_embed:71,tricki:34,trigger:[26,38],trim:8,trivial:51,truck:93,true_block:[17,33,39],true_imag:41,true_label:41,true_read:41,truth:[7,8,101],tune:[6,8,81],tupl:[8,9,12,14,40,41],ture:8,turn:[8,40,41,70],tutori:[86,87,88,89,92,101],tweet:100,twice:[31,43],twine:47,twitter:100,two:[7,8,9,15,24,25,26,27,29,31,32,39,41,42,44,45,46,48,49,50,51,52,75,76,79],txt:[2,18,27,29,74,80,85,96,98,100],type:[2,7,8,9,11,12,15,17,19,22,23,26,27,28,29,34,35,36,39,40,41,45,46,49,50,52,59,63,68,71,74,75,76,84,86,94,96,98,99],type_nam:50,typedef:[24,34,35],typeid:50,typenam:[30,50,75,76],typic:[7,42],ubuntu:47,ubyt:41,uci:12,ufldl:8,uid:86,uint32:28,uint64:34,uint64_t:34,unawar:24,unclear:26,unconstrain:100,under:[18,23,43],understand:91,understand_senti:71,undeterminist:79,unidirect:8,unifi:49,uniform:[6,8,12,21,31,41],uniform_random:40,uninstal:53,uniqu:[15,17,19,26,27,48],unique_name_gener:40,unique_ptr:[46,48,74],unit:[8,9,18],unittest:[35,53,75],univ:101,unix:80,unk:[49,52,92,101],unk_idx:99,unknown:8,unlik:8,unordered_map:48,unpack:51,unrol:36,unseg:8,unsign:24,unstack:51,unstack_from:51,unsup:100,unsupbow:100,unsupervis:31,unsupport:75,until:[19,24,43,48,87],untrack:73,unzip:65,updat:[6,8,10,19,23,24,28,31,36,37,38,42,48,51,73,80,84],update_equ:[14,63],update_hook:6,update_memori:17,update_op:37,updatecallback:74,upgrad:53,upload:[19,27,28,47],upon:19,upper:8,upstream:[53,73],url:[12,100],urls_neg:100,urls_po:100,urls_unsup:100,usag:[7,8,9,14,33,38,87],use:[6,7,8,9,11,12,14,15,16,17,18,19,25,31,36,37,38,42,43,44,48,49,50,51,52,73,75,79,87,94,99,100,101],use_etcd:14,use_global_stat:8,use_gpu:[4,56,63,81,82,84,86,87,93,94,96,98,99,100,101],use_jpeg:93,use_old_updat:[22,81,82],use_seq:[59,98],use_sparse_remote_updat:22,used:[2,7,8,9,10,11,12,14,15,16,17,18,19,25,26,31,36,38,40,41,42,44,45,48,50,51,79,100],useful:[8,9,16,48],usegpu:74,user:[6,8,9,12,14,15,16,17,18,21,23,26,27,29,30,31,32,37,40,41,42,43,44,45,46,48,50,51,85,91,98],user_id:[87,98],user_info:12,user_nam:21,usercert:21,userinfo:12,userkei:21,usernam:[21,73],uses:[19,26,38,42],using:[6,8,9,12,14,15,17,18,19,23,24,26,27,29,30,31,36,37,39,41,42,46,48,50,75,99],usr:[53,60,61,80,82,87],usrdict:92,usrmodel:92,usual:[8,14,27,39,79],utc:97,util:[79,87,91,93,98],uuid:[20,26],v28:8,v7a:65,valid:[8,41,45,48],valu:[2,4,6,7,8,10,11,12,14,16,17,19,33,36,37,38,39,42,44,45,48,49,50,51,52,56,74,84,87,94,96,99],value1:82,value2:82,value_:49,value_evalu:7,value_rang:12,valueerror:56,values_:51,vanilla:71,varabl:43,vardesc:[17,32,39,40,45,49],vardescbuild:17,variabl:[8,12,15,16,17,31,32,33,36,37,39,42,43,44,46,49,50,51,86],variablenamemap:75,varialbl:31,varianc:8,variant:[8,51],varienc:51,varient:51,variou:17,varproto:50,vars_:[17,48],vartyp:[49,52],vec:58,vector:[8,9,12,15,17,22,24,33,36,40,45,46,49,51,96,98],vendor:18,verb:12,verbos:29,veri:[8,11,18,23,30,31,38,43,48,51,93],verifi:17,version:[8,9,18,27,29,31,33,47,61,79,81,82],versu:15,vertic:8,vgg:[9,93],vgg_16_cifar:93,via:[19,36,41,73,91],view:8,virtual:46,virtualenv:72,visibl:[26,48],vision:93,visipedia:93,visit:14,visual:8,vlog:22,vocab:100,volum:[61,85,86,87],volumemount:[86,87],vutbr:12,wai:[7,8,9,15,24,26,42,44,51,101],wait:[10,19,24,87],wall:99,wangkuiyi:18,want:[2,8,15,27,31,41,44,48,51],warn:[29,53,58,87],warp:8,warpctc:8,watch:19,wbia:94,wei:[99,100],weight:[7,8,9,10,74,94],weight_act:9,weightlist:74,weights_:74,weights_t:74,welcom:18,well:[27,30,31,42,44,49],were:[7,18],wether:8,wget:65,what:[6,8,10,18,31,43,50,73,91],when:[2,6,7,8,12,14,16,17,18,19,22,23,24,27,29,38,39,40,42,43,45,51,79,91],whenev:40,where:[8,9,10,15,17,19,26,32,36,39,45,51],wherea:[17,23,30,33],whether:[7,8,14,16,17,41,49,51,100],which:[6,7,8,9,10,12,14,15,16,17,18,19,21,23,24,26,27,30,31,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,91,98],while_loop:51,whileloop:51,whileop:17,who:[30,32,40],whoever:24,whole:[2,7,12,31,33,34,35,36,50,91],whose:[8,12,16,19,26,36,45,50,51],why:[9,16,35,79],wide:[18,31],width:[7,8,12,22,34,41,58,74,75,101],wiki:[8,18],wikipedia:[8,12],wilder:2,window:[8,11,12,72,85],wise:[8,43,45],with_avx:[60,61,65,73],with_bia:50,with_c_api:[65,66],with_doc:60,with_doubl:[60,74],with_dso:60,with_gpu:[60,61,65,72,73],with_profil:79,with_python:[60,65],with_rdma:[60,65],with_style_check:[60,73],with_swig_pi:[60,65],with_test:[60,61,73,75],with_tim:[60,79],within:[8,23],without:[7,8,19,24,41,43,45],wloop:51,wmt14:[71,101],wmt14_data:101,wmt14_model:101,wmt_shrinked_data:12,woboq:61,won:68,wonder:2,word2vec:[27,56],word:[2,7,8,12,32,36,43,45,50,51,56,68,70,96,99],word_dict:[68,96,99],word_dim:[58,68,96],word_id:[2,56],word_idx:12,word_slot:99,word_vector_dim:[8,71,92],words_freq_sort:12,work:[12,15,17,18,19,37,40,41,61,68,73,86,87,91],worker:[43,52],workflow:45,workspac:80,would:[14,17,18,19,26,30,31,32,37,38,40,41,43,49,51,91,99],wouldn:32,wrap:[30,31,91],wrapper:[9,18,30,42,46,51,79],write:[12,15,19,26,30,37,40,41,42,43,45,46,51,58,99],write_lock:20,writelin:59,writer:[15,40],written:[17,31,42,45,49],wrong:41,wrote:43,wsj:99,wuyi:85,www:[8,12,93,101],x64:66,x86:[65,66],x86_64:65,x_1:8,x_n:8,x_neg:16,x_po:16,xarg:[7,53,61,74],xgbe0:82,xgbe1:82,xiaojun:100,xmap_read:12,xrang:[16,31,41,59,63,74],xxbow:100,xxx:[15,51,94,101],xxxx:20,y_dim:31,y_neg:16,y_po:16,y_predict:63,yaml:[18,86,87,91],yancey1989:27,yann:12,yapf:73,yeild:14,yet:91,yield:[2,12,15,21,41,56,59,63,68,99],yin:8,you:[2,6,8,9,14,16,27,48,91,94,100],your:[8,14,15,18,22,27,29,45,53,65,66,91],your_param_nam:58,your_repo:87,your_source_root:35,yourself:8,yuyang18:[10,12],z_dim:31,z_size:31,zachari:100,zeng:100,zero:[6,8,9,10,12,16,19,31,38,49,82],zhou:[99,100],zip:[12,65,87,97],zoo:92},titles:["API","DataProvider\u7684\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","API\u4e2d\u6587\u624b\u518c","\u57fa\u4e8ePython\u7684\u9884\u6d4b","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","The IfElse Operator","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","RNNOp design","Optimizer Design","Design Doc: The C++ Class Parameters","Design Doc: PaddlePaddle Programs","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Distributed Training Architecture","Design Doc: Operation Graph Based Parameter Server","Design Doc: Session","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","Design for TensorArray","Background","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1","PaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","PaddlePaddle\u7684Docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u6784\u5efaAndroid\u5e73\u53f0\u4e0a\u7684PaddlePaddle\u5e93","\u6784\u5efaRaspberry Pi\u5e73\u53f0\u4e0a\u7684PaddlePaddle\u5e93","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u7f16\u8bd1PaddlePaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","Kubernetes \u7b80\u4ecb","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","<no title>","<no title>","PaddlePaddle \u6587\u6863","Cluster bootstrapping tool survey","\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528","\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b","Model Zoo - ImageNet","\u5b8c\u6574\u6559\u7a0b","\u5feb\u901f\u5165\u95e8\u6559\u7a0b","MovieLens\u6570\u636e\u96c6","MovieLens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b","\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b","\u60c5\u611f\u5206\u6790\u6559\u7a0b","\u6587\u672c\u751f\u6210\u6559\u7a0b"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":87,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":21,"\u4e0b\u8f7d\u4e0e\u89e3\u538b\u7f29":101,"\u4e0b\u8f7d\u548c\u6570\u636e\u62bd\u53d6":92,"\u4e0b\u8f7d\u5e76\u89e3\u538b\u6570\u636e\u96c6":98,"\u4e0b\u8f7d\u6570\u636e":86,"\u4e0d\u4f7f\u7528":34,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":34,"\u4e0d\u540c\u7684":57,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":34,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e24\u79cd\u4f7f\u7528":57,"\u4e2d\u6587\u5b57\u5178":92,"\u4e2d\u6587\u77ed\u8bed\u6539\u5199\u7684\u4f8b\u5b50":92,"\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528":92,"\u4e2d\u6587\u8bcd\u5411\u91cf\u7684\u9884\u8bad\u7ec3\u6a21\u578b":92,"\u4e3a\u4ec0\u4e48\u8981":72,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":79,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":79,"\u4ec5\u4ec5\u4f7f\u7528void":34,"\u4ecb\u7ecd":[92,94],"\u4ece\u5feb\u7167\u6062\u590d":20,"\u4ee3\u7801\u8981\u6c42":73,"\u4efb\u52a1\u7b80\u4ecb":59,"\u4f18\u5316\u7b97\u6cd5":96,"\u4f7f\u7528":[73,86],"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u4f7f\u7528\u6848\u4f8b":84,"\u4f7f\u7528\u6982\u8ff0":96,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":84,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":87,"\u4f7f\u7528\u7528\u6237\u6307\u5b9a\u7684\u8bcd\u5411\u91cf\u5b57\u5178":92,"\u4f7f\u7528\u8bf4\u660e":78,"\u4f7f\u7528\u8f6c\u6362\u5e93":21,"\u4f7f\u7528docker\u6784\u5efa":77,"\u4f7f\u7528paddlepaddle\u751f\u6210\u6a21\u578b":101,"\u4f7f\u7528paddlepaddle\u8bad\u7ec3\u6a21\u578b":101,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":73,"\u4fee\u6539\u542f\u52a8\u811a\u672c":86,"\u4fee\u6539\u6587\u6863":77,"\u514b\u9686":73,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":35,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":2,"\u5185\u7f6e\u5b9a\u65f6\u5668":79,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[65,66],"\u51c6\u5907\u5de5\u4f5c\u7a7a\u95f4":80,"\u51c6\u5907\u6570\u636e":[59,98],"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":87,"\u51c6\u5907\u96c6\u7fa4\u4f5c\u4e1a\u914d\u7f6e":80,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":56,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":56,"\u51fa\u73b0":57,"\u5206\u5272\u8bad\u7ec3":98,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u652f\u89c4\u8303":47,"\u521b\u5efa\u672c\u5730\u5206\u652f":73,"\u521b\u5efajob":87,"\u521b\u5efapaddl":86,"\u5220\u9664\u672c\u5730\u5206\u652f":73,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":73,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":56,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":73,"\u5236\u4f5c\u955c\u50cf":87,"\u5236\u4f5cdocker\u955c\u50cf":86,"\u524d\u5411operator\u5355\u5143\u6d4b\u8bd5":75,"\u524d\u63d0\u6761\u4ef6":80,"\u52a0\u8f7dpaddlepaddl":63,"\u52a0\u901f\u6267\u884c":20,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":56,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u52a8\u6001\u6269\u5bb9":20,"\u5355\u5143\u6d4b\u8bd5":82,"\u5355\u53cc\u5c42rnn":68,"\u5377\u79ef\u6a21\u578b":96,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":93,"\u539f\u56e0":34,"\u539f\u56e0\u5217\u8868":34,"\u53c2\u6570\u4fe1\u606f":94,"\u53c2\u6570\u5185\u5b58":56,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":82,"\u53c2\u6570\u6982\u8ff0":81,"\u53c2\u6570\u8bbe\u7f6e":58,"\u53c2\u6570\u8bfb\u53d6":94,"\u53c2\u8003":2,"\u53c2\u8003\u6587\u6863":[28,100],"\u53c2\u8003\u8d44\u6599":79,"\u53cc\u5411lstm":100,"\u53cc\u5c42rnn":68,"\u53cc\u5c42rnn\u4ecb\u7ecd":70,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":70,"\u53cd\u5411operator\u5355\u5143\u6d4b\u8bd5":75,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":2,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":72,"\u53ef\u9009\u529f\u80fd":92,"\u540d\u8bcd\u89e3\u91ca":28,"\u5411\u7cfb\u7edf\u4f20\u9001\u6570\u636e":96,"\u5411\u91cf":82,"\u542f\u52a8\u4efb\u52a1":87,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":80,"\u5440":72,"\u547d\u4ee4\u884c\u53c2\u6570":96,"\u548c":67,"\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b":93,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":84,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":76,"\u5728paddlepaddle\u5e73\u53f0\u8bad\u7ec3\u6a21\u578b":92,"\u57fa\u4e8epython\u7684\u9884\u6d4b":4,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":63,"\u57fa\u672c\u539f\u7406":70,"\u57fa\u672c\u8981\u6c42":34,"\u5982\u4f55\u4e66\u5199\u6587\u6863":77,"\u5982\u4f55\u4f7f\u7528":57,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":58,"\u5982\u4f55\u5199\u65b0\u7684oper":75,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":56,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":58,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":58,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":56,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":58,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":56,"\u5982\u4f55\u66f4\u65b0\u6587\u6863\u4e3b\u9898":77,"\u5982\u4f55\u66f4\u65b0doc":77,"\u5982\u4f55\u6784\u5efa\u6587\u6863":77,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":58,"\u5982\u4f55\u8c03\u7528":56,"\u5982\u4f55\u8d21\u732e":77,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":73,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":58,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":68,"\u5b50\u5e8f\u5217\u95f4\u6709memori":68,"\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6":98,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":58,"\u5b89\u88c5":96,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":62,"\u5b89\u88c5\u6d41\u7a0b":62,"\u5b89\u88c5kubectl":85,"\u5b8c\u6574\u6559\u7a0b":95,"\u5b9a\u4e49operator\u7c7b":75,"\u5b9a\u4e49opkernel\u7c7b":75,"\u5b9a\u4e49protomaker\u7c7b":75,"\u5b9e\u73b0":34,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":75,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":74,"\u5b9e\u73b0\u65b9\u5f0f":35,"\u5b9e\u73b0\u8ba1\u7b97":76,"\u5b9e\u73b0c":[74,75],"\u5b9e\u73b0python\u5c01\u88c5":74,"\u5bfc\u51fac":34,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":84,"\u5c0f\u7ed3":2,"\u5de5\u5177":79,"\u5e38\u7528\u6a21\u578b":95,"\u5e76\u5b8c\u6210":73,"\u5efa\u7acb":73,"\u5f00\u53d1\u6807\u51c6":78,"\u5f00\u59cb\u5f00\u53d1":73,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":82,"\u5f15\u7528":99,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":20,"\u5feb\u901f\u5165\u95e8\u6559\u7a0b":96,"\u6027\u80fd\u4f18\u5316":78,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":79,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":79,"\u6027\u80fd\u8c03\u4f18":82,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":96,"\u603b\u4f53\u6d41\u7a0b":72,"\u60c5\u611f\u5206\u6790\u6559\u7a0b":100,"\u6216\u8005\u662f":53,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":53,"\u62a5importerror":53,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":34,"\u63a5\u53e3":94,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":56,"\u63a8\u5bfc\u65b9\u7a0b":74,"\u63a8\u6d4b\u6267\u884c":20,"\u63d0\u4ea4":73,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":73,"\u63d0\u4ea4\u955c\u50cf":86,"\u63d0\u53d6\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u5e76\u751f\u6210python\u5bf9\u8c61":98,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":63,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":67,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":21,"\u6570\u636e\u51c6\u5907":[93,98,101],"\u6570\u636e\u63cf\u8ff0":99,"\u6570\u636e\u63d0\u4f9b":99,"\u6570\u636e\u63d0\u4f9b\u811a\u672c":98,"\u6570\u636e\u652f\u6301":82,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":96,"\u6570\u636e\u7684\u51c6\u5907\u548c\u9884\u5904\u7406":92,"\u6570\u636e\u96c6\u7279\u5f81":97,"\u6570\u636e\u9884\u5904\u7406":101,"\u6570\u6910\u4ecb\u7ecd":100,"\u6570\u6910\u51c6\u5907":100,"\u6574\u4f53\u65b9\u6848":87,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":21,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":21,"\u6587\u4ef6\u9884\u5904\u7406":21,"\u6587\u672c\u751f\u6210":101,"\u6587\u672c\u751f\u6210\u6559\u7a0b":101,"\u6587\u6863":[61,90],"\u65b0\u624b\u5165\u95e8":64,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":54,"\u65f6\u5e8f\u6a21\u578b":96,"\u65f6\u5e8f\u6a21\u578b\u7684\u4f7f\u7528\u573a\u666f":2,"\u65f6\u95f4\u5e8f\u5217":68,"\u65f6\u95f4\u6b65":68,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":35,"\u672c\u5730\u6d4b\u8bd5":84,"\u672c\u5730\u8bad\u7ec3":84,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":56,"\u672f\u8bed":20,"\u6784\u5efa\u548c\u6d4b\u8bd5":73,"\u6784\u5efaandroid\u5e73\u53f0\u4e0a\u7684paddlepaddle\u5e93":65,"\u6784\u5efaraspberri":66,"\u67b6\u6784\u56fe":28,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":86,"\u67e5\u770b\u8f93\u51fa":87,"\u6837\u4f8b\u6570\u636e":2,"\u6846\u67b6\u751f\u6210":28,"\u6848\u4f8b\u4e00":84,"\u6848\u4f8b\u4e8c":84,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":80,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":80,"\u6982\u5ff5\u7b80\u4ecb":75,"\u6982\u5ff5\u89e3\u91ca":21,"\u6982\u8ff0":[67,70],"\u6a21\u5757":28,"\u6a21\u578b":94,"\u6a21\u578b\u4e0b\u8f7d":94,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":20,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":35,"\u6a21\u578b\u68c0\u9a8c":59,"\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":96,"\u6a21\u578b\u8bad\u7ec3":[93,101],"\u6a21\u578b\u8bc4\u4f30\u548c\u9884\u6d4b":98,"\u6a21\u578b\u914d\u7f6e":[57,68,78],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":68,"\u6ce8\u518coper":75,"\u6ce8\u610f\u4e8b\u9879":[2,75],"\u6d41\u7a0b\u4ecb\u7ecd":21,"\u6d4b\u8bd5":[82,99],"\u6d4b\u8bd5\u6587\u4ef6":98,"\u6d4b\u8bd5\u6a21\u578b":100,"\u7279\u5f81":99,"\u7279\u5f81\u63d0\u53d6":94,"\u751f\u6210\u5e8f\u5217":71,"\u751f\u6210\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":101,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":70,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u7528\u6237\u6587\u4ef6\u63cf\u8ff0":97,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u636e\u96c6":101,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u6910\u9884\u5904\u7406":100,"\u7535\u5f71\u6587\u4ef6\u63cf\u8ff0":97,"\u7684\u533a\u522b":57,"\u7684\u53c2\u6570":57,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":57,"\u76ee\u5f55\u7ed3\u6784":35,"\u76ee\u6807":28,"\u76f4\u63a5\u6784\u5efa":77,"\u76f8\u5173\u6982\u5ff5":70,"\u77e9\u9635":82,"\u793a\u4f8b1":68,"\u793a\u4f8b2":68,"\u793a\u4f8b3":68,"\u793a\u4f8b4":68,"\u793a\u4f8b\u7a0b\u5e8f":21,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":56,"\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e":98,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":99,"\u7a00\u758f\u8bad\u7ec3":84,"\u7b26\u53f7":34,"\u7b80\u4ecb":[85,101],"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u7c7b":[34,74,75],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":63,"\u7ec3\u4e60":93,"\u7ec6\u8282\u63a2\u7a76":93,"\u7ec6\u8282\u63cf\u8ff0":82,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":80,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":59,"\u7ed1\u5b9apython":75,"\u7f16\u5199yaml\u6587\u4ef6":86,"\u7f16\u8bd1":75,"\u7f16\u8bd1\u548c\u5b89\u88c5":[65,66],"\u7f16\u8bd1\u548c\u6267\u884c\u5355\u5143\u6d4b\u8bd5":75,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":53,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":53,"\u7f16\u8bd1\u6d41\u7a0b":62,"\u7f16\u8bd1\u9009\u9879":35,"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":60,"\u7f16\u8bd1paddlepaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":72,"\u7f29\u5bb9":20,"\u7f51\u7edc\u53ef\u89c6\u5316":94,"\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684\u8c03\u7528":2,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u80cc\u666f":34,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":82,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u89c2\u6d4b\u8bcd\u5411\u91cf":92,"\u8bad\u7ec3":[82,98,99],"\u8bad\u7ec3\u5668\u914d\u7f6e\u6587\u4ef6":98,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":56,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":21,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":21,"\u8bad\u7ec3\u6a21\u578b":[59,63,96,100],"\u8bad\u7ec3\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":101,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":70,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":56,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":83,"\u8bc4\u5206\u6587\u4ef6\u63cf\u8ff0":97,"\u8bcd\u5411\u91cf\u6a21\u578b":96,"\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4fee\u6b63":92,"\u8bcd\u6c47\u8868":68,"\u8be6\u7ec6\u6559\u7a0b":79,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b":99,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":68,"\u8f6c\u6362\u5e93":21,"\u8f93\u5165":70,"\u8f93\u5165\u4e0d\u7b49\u957f":68,"\u8f93\u5165\u793a\u4f8b":70,"\u8f93\u51fa":70,"\u8f93\u51fa\u65e5\u5fd7":96,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":80,"\u8fd0\u884c\u5bb9\u5668":86,"\u8fd0\u884cdocker":53,"\u8fd0\u884cpaddlepaddl":61,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":34,"\u8fdb\u884c\u8bad\u7ec3":[21,86],"\u8fdb\u9636\u6307\u5357":78,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":85,"\u901a\u7528":82,"\u901a\u8fc7docker\u5bb9\u5668\u5f00\u53d1paddlepaddl":61,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":96,"\u9047\u5230":53,"\u90e8\u7f72kubernetes\u96c6\u7fa4":85,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":96,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[65,66],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u914d\u7f6e\u7f51\u7edc":63,"\u914d\u7f6ekubectl":85,"\u914d\u7f6ekubectl\u8bbf\u95ee\u4f60\u7684kubernetes\u96c6\u7fa4":85,"\u94a9\u5b50":73,"\u9519\u8bef\u600e\u4e48\u529e":57,"\u9644\u5f55":96,"\u968f\u673a\u6570":82,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":54,"\u96c6\u7fa4\u8bad\u7ec3":84,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":54,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":72,"\u975e\u6cd5\u6307\u4ee4":53,"\u9884\u5904\u7406":93,"\u9884\u5904\u7406\u547d\u4ee4\u548c\u7ed3\u679c":101,"\u9884\u5904\u7406\u5de5\u4f5c\u6d41\u7a0b":101,"\u9884\u6d4b":[93,94,96,99,100],"\u9884\u6d4b\u6d41\u7a0b":4,"\u9884\u6d4bdemo":4,"\u9884\u8bad\u7ec3\u7684\u6a21\u578b":101,"abstract":[42,43,44,91],"api\u4e2d\u6587\u624b\u518c":3,"api\u5bf9\u6bd4\u4ecb\u7ecd":68,"beam_search\u7684\u751f\u6210":68,"blas\u8def\u5f84\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":60,"bleu\u8bc4\u4f30":101,"book\u4e2d\u6240\u6709\u7ae0\u8282":47,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":60,"class":[31,38],"cmake\u6e90\u7801\u7f16\u8bd1":53,"cudnn\u7684\u7f16\u8bd1\u9009\u9879":60,"dataprovider\u7684\u4ecb\u7ecd":1,"dataprovider\u7684\u4f7f\u7528":2,"docker\u4f7f\u7528\u5165\u95e8":61,"filemanager\u8bbe\u8ba1\u6587\u6863":28,"float":56,"function":[18,30,31,40],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":84,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":79,"gpu\u955c\u50cf\u51fa\u73b0":53,"group\u6559\u7a0b":70,"import":53,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"kubernetes\u5355\u673a\u8bad\u7ec3":86,"meta\u6587\u4ef6":98,"meta\u914d\u7f6e\u6587\u4ef6":98,"mnist\u7684\u4f7f\u7528\u573a\u666f":2,"movielens\u6570\u636e\u96c6":97,"movielens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b":98,"paddle\u52a8\u6001\u5e93\u4e2d":34,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":34,"paddle\u7248\u672c\u53f7\u4e3a0":53,"paddlepaddle\u53d1\u5e03\u7684docker\u955c\u50cf\u4f7f\u7528\u8bf4\u660e":61,"paddlepaddle\u53d1\u884c\u89c4\u8303":47,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":47,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":60,"paddlepaddle\u7684docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f":61,"pi\u5e73\u53f0\u4e0a\u7684paddlepaddle\u5e93":66,"pod\u95f4\u901a\u4fe1":87,"pydataprovider2\u7684\u4f7f\u7528":2,"python\u63a5\u53e3":94,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":53,"python\u811a\u672c\u8bfb\u53d6\u6570\u636e":96,"return":41,"rnn\u76f8\u5173\u6a21\u578b":69,"rnn\u914d\u7f6e":71,"tensor\u4f7f\u7528\u6837\u4f8b":76,"tensor\u5230eigentensor\u7684\u8f6c\u6362":76,"tensor\u6a21\u5757":76,Abs:5,For:18,The:[17,24,31,32,33,37,38,45,46],USE:45,Use:[17,39],Using:[18,24],With:27,about:31,activ:[5,8],adadelta:10,adagrad:10,adam:10,adamax:10,addto:8,aggreg:8,aggregatelevel:8,alalysi:22,algorithm:[16,19,36,42],all:[48,51],analysi:42,anneal:58,api:[0,3,35,37,40,50],appendix:91,applic:3,architectur:42,argument:[29,41],arrai:16,associ:48,assumpt:91,async:82,attent:71,attribut:6,auc:7,auto:16,avg:11,backgraound:16,background:[43,44,51,52],backward:[32,45],base:[27,43],basepool:11,basic:91,batch:41,batch_norm:8,batch_siz:41,beam_search:8,becaus:58,benefit:[43,45],between:[15,45,50],bidirectional_gru:9,bidirectional_lstm:9,big:58,bilinear_interp:8,binari:17,bla:60,block:[17,31,32,39,40,45],block_expand:8,blockdesc:39,book:61,bootstrap:91,brelu:5,bring:91,build:[31,45],cach:2,can:48,capi:35,capi_priv:35,challeng:43,check:[8,16],checker:16,checkpoint:[19,20,26],choos:18,chunk:7,cifar:12,classif:7,classification_error:7,classification_error_print:7,client:24,clip:8,clone:73,close:16,cluster:[25,91],cmake:18,code:27,column_sum:7,commit:73,compar:91,compil:[17,39,45],compos:41,comput:[17,32,45],con:91,concat:8,concept:[40,45],conclus:[26,91],condit:31,config:3,configur:13,conll05:12,connect:8,construct:32,content:[2,35,53,54,56,57,58,67,79],context_project:8,control:45,conv:8,conv_oper:8,conv_project:8,conv_shift:8,convert:[26,42,43],core:[16,40],cos_sim:8,cost:8,creat:[41,44,45,48],creation:23,creator:41,crf:8,crf_decod:8,cross_channel_norm:8,cross_entropy_cost:8,cross_entropy_with_selfnorm_cost:8,ctc:8,ctc_error:7,cuda:[53,60],cudnn:60,cudnnavg:11,cudnnmax:11,current:46,custom:41,dat:97,data:[8,12,19,40,41,42],datafeed:12,dataprovid:[3,82],dataset:[12,19,23],datatyp:12,decayedadagrad:10,decor:41,deep:17,definit:52,demo:31,dens:26,depend:31,deploi:27,describ:37,descript:[29,45],design:[15,16,17,19,23,24,25,26,30,31,32,36,37,38,39,40,41,42,43,44,45,46,48,49,51],destroi:48,detail:22,detect:[7,8],detection_map:7,detection_output:8,develop:45,dictionari:41,differ:45,discrimin:31,discuss:[31,43],dispatch:[19,23],distribut:[15,19,22,27,42],doc:[15,17,19,23,24,25,26,30,32,38,39,40,41,42,43,44,45,46,49],docker:[27,72],dotmul_oper:8,dotmul_project:8,driver:53,drop_out:57,dropout:8,duplic:57,dylib:35,dynam:[19,51],eigen:76,elect:26,els:17,embed:8,engin:31,enough:16,entri:41,environ:27,eos:8,eval:42,evalu:7,event:[14,15],exampl:[15,18,33,35,44],except:56,execut:[17,39,45],exp:5,expand:[8,67],expandlevel:8,explain:16,faq:55,fault:19,file:17,first_seq:[8,67],fork:73,format:[17,19],forward:32,frame:17,framework:[16,76],from:[15,26,50],full_matrix_project:8,fulli:8,gan:31,gate:71,gated_unit:8,gener:[31,91],get_output:8,global:39,gpu:82,gradient:[16,24,46],gradient_print:7,graident:16,graph:[32,43,45],group:8,gru:[9,82],gru_group:9,gru_step:8,gru_unit:9,grumemori:8,handler:[15,34],happen:26,hierarchi:17,high:[37,50],how:[16,22,41,45],hsigmoid:8,huber_classification_cost:8,huber_regression_cost:8,ident:5,identity_project:8,ifels:33,ifelseop:17,illeg:53,imag:[8,9,27],imagenet:94,imdb:[12,100],img_cmrnorm:8,img_conv:8,img_conv_bn_pool:9,img_conv_group:9,img_pool:8,imikolov:12,implement:[16,18,22,36,41,45,46],infer:[14,56],infershap:[39,49],ingredi:15,ingress:28,init_hook:2,initi:[24,31],input_typ:2,insid:48,instal:91,instruct:53,insuffici:53,interact:50,interfac:[12,16,19,24,25,37,41,44,48],intermedi:45,interpol:8,introduc:51,isn:41,issu:73,job:[19,27,86],join:8,kernel:45,kmax_sequence_scor:8,kubernet:[27,85,86],lambda_cost:8,languag:17,larg:22,last_seq:[8,67],layer:[8,15,30,40,57],learn:[17,58],learnabl:8,leval:50,level:[37,50],libpaddle_capi_shar:35,libpaddle_capi_whol:35,librari:[24,45],limit:42,linear:5,linear_comb:8,list:[20,41],local:[42,44,48],lodtensor:[36,51],lodtensordesc:52,log:5,logic:23,low:50,lstm:[9,82,99,100],lstm_step:8,lstmemori:8,lstmemory_group:9,lstmemory_unit:9,macro:45,main:31,manag:18,map:[41,45],master:[19,23,27],math:8,mathemat:16,max:11,maxframe_print:7,maxid:8,maxid_print:7,maxout:8,member:31,memori:[8,36,57,68,70],messag:[50,58],might:31,migrat:45,mileston:45,mini:41,minibatch:12,misc:8,mix:8,mnist:12,model:[3,13,15,22,24,26,31,71,94],modul:[45,53],momentum:10,more:31,movi:97,movielen:12,multi_binary_label_cross_entropy_cost:8,multibox_loss:8,multipl:41,multiplex:8,name:[48,53,57],nce:8,necessari:45,need:41,nest:36,network:[9,45,71],neural:71,nlp:[9,82],norm:8,note:16,numer:16,numpi:16,nvprof:79,nvvp:79,object:19,onli:[41,48],op_mak:45,oper:[30,33,39,40,43,45,46,49,51],opinfomap:45,opkernel:45,opproto:50,optim:[10,19,24,32,37,40],option:29,opwithkernel:45,order:29,org:77,origin:45,orthogon:48,output:8,overview:[26,45,48],packag:18,pad:8,paddl:[22,41,48,53,57,76],paddlejob:27,paddlepaddl:[15,17,39,42,47,53,77,90],parallel_nn:84,paramet:[6,8,14,15,19,24,25,27,38,40,43],parent:48,part:32,partit:24,path:[26,29],perform:82,persist:23,pfsclient:[28,29],pfsserver:28,placement:42,platform:53,pnpair:7,point:56,pool:[8,11,67],pose:46,power:8,pre:73,precision_recal:7,prefetch:41,prelu:8,print:7,pro:91,problem:[37,46],procedur:91,process:[19,24,27,37,45],program:[17,39,40],programdesc:39,project:18,propos:46,protobuf:49,protocol:58,provid:[2,41],pserver:26,pull:73,push:73,python:[16,27,36,37,40,41,42,50,52],qualiti:45,queue:[19,23],rank:7,rank_cost:8,rate:[58,97],reader:[12,15,41],realiz:45,recoveri:19,recurr:[8,9,57,70,71],recurrent_group:8,ref:16,refactor:45,refer:[2,42,43],regist:[45,50],registr:[45,46],registri:45,regular:24,reject:58,relat:[45,51],relu:5,remot:[25,44],repeat:8,represent:[17,45],request:73,requir:[18,31],reshap:8,resiz:8,resnet:94,retri:23,rmsprop:10,rnn:[36,51,68,82],rnnop:[17,36,45],rotat:8,row:49,row_conv:8,row_l2_norm:8,runtim:[27,42],sampl:8,sampling_id:8,save:26,scale:[8,19],scale_shift:8,scaling_project:8,scope:[17,36,45,48],select:[24,49],selectedrow:49,selective_fc:8,sentiment:12,separ:45,seq_concat:8,seq_reshap:8,seq_slic:8,seqtext_print:7,sequenc:71,sequence_conv_pool:9,sequencesoftmax:5,server:[19,23,24,27,43],session:[42,44],sextant:91,sgd:82,share:[15,48],should:48,shuffl:41,sigmoid:5,simple_attent:9,simple_gru2:9,simple_gru:9,simple_img_conv_pool:9,simple_lstm:9,singl:41,slice:8,slice_project:8,slope_intercept:8,small_vgg:9,smooth_l1_cost:8,softmax:5,softrelu:5,solut:46,spars:[24,25,26,49],spp:8,squar:5,square_error_cost:8,squarerootn:11,stack:[17,100],stanh:5,start:15,step:36,store:19,sub_nested_seq:8,subcommond:29,submit:27,suffici:41,suitabl:18,sum:[7,11],sum_cost:8,sum_to_one_norm:8,summar:15,support:[51,53],survei:91,synopsi:29,tabl:35,table_project:8,take:41,tanh:5,task:[19,23],tecton:91,tensor:[8,45,76],tensorarrai:51,tensordesc:52,text_conv_pool:9,theori:16,thi:[48,53],think:31,three:51,timelin:26,todo:[20,21],togeth:48,toler:19,too:58,tool:[18,91],train:[14,15,19,22,25,27,37,41,42],trainer:[14,19,24,26,27],tran:8,trans_full_matrix_project:8,tune:82,two:16,uci_h:12,uniform:51,updat:[15,25,26],usag:[36,41],use:[22,41],user:[19,97],util:7,value_print:7,vardesc:52,variabl:[40,45,48,52],version:53,vgg_16_network:9,warp_ctc:8,what:[22,26],wheel:53,when:[26,48],whl:53,why:[41,45,51],wmt14:12,zoo:94}}) \ No newline at end of file +Search.setIndex({docnames:["api/index_cn","api/v1/data_provider/dataprovider_cn","api/v1/data_provider/pydataprovider2_cn","api/v1/index_cn","api/v1/predict/swig_py_paddle_cn","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/file_manager/README","design/file_manager/pfs/pfsclient","design/functions_operators_layers","design/gan_api","design/graph","design/if_else_op","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/ops/rnn","design/optimizer","design/parameters_in_cpp","design/program","design/python_api","design/reader/README","design/refactor/distributed_architecture","design/refactor/parameter_server","design/refactor/session","design/refactorization","design/register_grad_op","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/tensor_array","design/var_desc","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/basic_usage/index_cn","getstarted/build_and_install/cmake/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","howto/cross_compiling/cross_compiling_for_android_cn","howto/cross_compiling/cross_compiling_for_raspberry_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/build_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/new_op_cn","howto/dev/use_eigen_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/gpu_profiling_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","howto/usage/k8s/k8s_basis_cn","howto/usage/k8s/k8s_cn","howto/usage/k8s/k8s_distributed_cn","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_cn","survey/cluster_bootstrapping_tools","v1_api_tutorials/README","v1_api_tutorials/embedding_model/index_cn","v1_api_tutorials/imagenet_model/resnet_model_cn","v1_api_tutorials/quick_start/index_cn"],envversion:50,filenames:["api/index_cn.rst","api/v1/data_provider/dataprovider_cn.rst","api/v1/data_provider/pydataprovider2_cn.rst","api/v1/index_cn.rst","api/v1/predict/swig_py_paddle_cn.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/if_else_op.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/ops/rnn.md","design/optimizer.md","design/parameters_in_cpp.md","design/program.md","design/python_api.md","design/reader/README.md","design/refactor/distributed_architecture.md","design/refactor/parameter_server.md","design/refactor/session.md","design/refactorization.md","design/register_grad_op.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/tensor_array.md","design/var_desc.md","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/basic_usage/index_cn.rst","getstarted/build_and_install/cmake/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","howto/cross_compiling/cross_compiling_for_android_cn.md","howto/cross_compiling/cross_compiling_for_raspberry_cn.md","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/build_cn.md","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/new_op_cn.md","howto/dev/use_eigen_cn.md","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/gpu_profiling_cn.rst","howto/usage/cluster/cluster_train_cn.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","howto/usage/k8s/k8s_basis_cn.md","howto/usage/k8s/k8s_cn.md","howto/usage/k8s/k8s_distributed_cn.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_cn.rst","survey/cluster_bootstrapping_tools.md","v1_api_tutorials/README.md","v1_api_tutorials/embedding_model/index_cn.md","v1_api_tutorials/imagenet_model/resnet_model_cn.md","v1_api_tutorials/quick_start/index_cn.rst"],objects:{},objnames:{},objtypes:{},terms:{"000\u5e45\u56fe\u50cf\u4e0a\u6d4b\u8bd5\u4e86\u6a21\u578b\u7684\u5206\u7c7b\u9519\u8bef\u7387":94,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":2,"00186201e":4,"00m":79,"01852v1":8,"03m":79,"0424m":79,"0473v3":9,"0630u":79,"06u":79,"0810u":79,"08823112e":4,"0957m":79,"0\u4e4b\u540e\u7684\u7248\u672c":61,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":82,"0\u5c42\u5e8f\u5217":67,"0ab":8,"0rc1":47,"0rc2":47,"100m":56,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d":94,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u53ef\u53c2\u7167":94,"101\u5c42\u7f51\u7edc\u6a21\u578b":94,"10g":27,"1150u":79,"11\u5b9e\u73b0\u4e86c":35,"11e6":86,"12194102e":4,"124n":79,"128\u7ef4\u548c256\u7ef4":93,"12\u64cd\u4f5c\u7cfb\u7edf":53,"13m":86,"1490u":79,"14\u4ee5\u4e0a":66,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":84,"152\u5c42\u7f51\u7edc\u6a21\u578b":94,"15501715e":4,"1550u":79,"15\u884c":68,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":58,"16u":79,"173m":94,"173n":79,"1770u":79,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":86,"197u":79,"1\u7684\u5c42\u4e4b\u5916":84,"1\u7a00\u758f\u6570\u636e":74,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":84,"210u":79,"211839e770f7b538e2d8":9,"215n":79,"228u":79,"234m":94,"2520u":79,"25639710e":4,"25k":95,"2680u":79,"26\u884c":68,"27787406e":4,"279n":79,"27m":79,"285m":79,"2863m":79,"28\u7684\u56fe\u7247\u50cf\u7d20\u7070\u5ea6\u503c":2,"28\u7ef4\u7684\u7a20\u5bc6\u6d6e\u70b9\u6570\u5411\u91cf\u548c\u4e00\u4e2a":2,"28m":79,"2977m":79,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":58,"2\u4e2a\u6d6e\u70b9\u6570":59,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":87,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":84,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":87,"2nd":8,"302n":79,"30u":79,"3206326\u4e2a\u8bcd\u548c4\u4e2a\u7279\u6b8a\u6807\u8bb0":93,"32777140e":4,"328n":79,"32\u7ef4":93,"32u":79,"32x32":12,"331n":79,"3320u":79,"36540484e":4,"36u":79,"3710m":79,"3768m":79,"387u":79,"38u":79,"3920u":79,"39u":79,"3\u53f7gpu":56,"4035m":79,"4090u":79,"4096mb":82,"4279m":79,"43630644e":4,"43u":79,"448a5b355b84":86,"4560u":79,"4563m":79,"45u":79,"4650u":79,"4726m":79,"473m":86,"48565123e":4,"48684503e":4,"49316648e":4,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":58,"4gb":82,"4yf":8,"500m":56,"50\u5c42":94,"50\u5c42\u7f51\u7edc\u6a21\u578b":94,"51111044e":4,"514u":79,"525n":79,"526u":79,"53018653e":4,"536u":79,"5460u":79,"5470u":79,"54u":79,"5690m":79,"573u":79,"578n":79,"5798m":79,"586u":79,"58s":86,"5969m":79,"5\u4e2a\u6d4b\u8bd5\u6837\u4f8b\u548c2\u4e2a\u751f\u6210\u5f0f\u6837\u4f8b":93,"5delta":8,"6080u":79,"6082v4":8,"6140u":79,"6305m":79,"639u":79,"64\u5e73\u53f0\u4e3a\u4f8b":[65,66],"64\u73af\u5883":66,"64\u7ef4":93,"655u":79,"6780u":79,"6810u":79,"682u":79,"6970u":79,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":79,"6\u4e2a\u8282\u70b9":80,"6\u5143\u4e0a\u4e0b\u6587\u4f5c\u4e3a\u8f93\u5165\u5c42":93,"704u":79,"70634608e":4,"7090u":79,"72296313e":4,"72u":79,"73u":79,"75u":79,"760u":79,"767u":79,"783n":79,"784u":79,"78m":79,"7\u548cpip":53,"7\u7248\u672c\u5f00\u59cb":65,"7eamaa":12,"7kb":86,"8250u":79,"8300u":79,"830n":79,"849m":79,"85625684e":4,"861u":79,"8661m":79,"877\u4e2a\u88ab\u5411\u91cf\u5316\u7684\u8bcd":93,"877\u884c":93,"892m":79,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":58,"901n":79,"90u":79,"918u":79,"9247m":79,"924n":79,"9261m":79,"93137714e":4,"9330m":79,"94u":79,"9530m":79,"96644767e":4,"983m":79,"988u":79,"997u":79,"99982715e":4,"99m":94,"99u":79,"9\u4e2d\u7684\u4e00\u4e2a\u6570\u5b57":2,"9f18":86,"\u0233":59,"\u03b5":59,"\u4e00":68,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":75,"\u4e00\u4e2a\u4f8b\u5b50\u662f\u623f\u4ea7\u4f30\u503c":59,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u7cfb\u7edf":85,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":86,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":70,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":70,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":70,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":70,"\u4e00\u4e2a\u5bb9\u5668\u5c31\u662f\u4e00\u4e2a\u64cd\u4f5c\u7cfb\u7edf\u7684\u8fdb\u7a0b":61,"\u4e00\u4e2a\u6216\u591a\u4e2a":85,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":56,"\u4e00\u4e2a\u6587\u4ef6":2,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":79,"\u4e00\u4e2a\u662f\u76f4\u63a5\u628a\u4e00\u4e2a\u5bb9\u5668\u8f6c\u6362\u6210\u955c\u50cf":61,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":67,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":67,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":20,"\u4e00\u4e2a\u7ec8\u7aef\u8fd0\u884cvi":61,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":74,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":75,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":58,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2adocker\u955c\u50cf\u662f\u4e00\u4e2a\u6253\u5305\u597d\u7684\u8f6f\u4ef6":61,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":82,"\u4e00\u4e2alabel":68,"\u4e00\u4e2alogging\u5bf9\u8c61":2,"\u4e00\u4e2amemory\u5305\u542b":71,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":95,"\u4e00\u4e2apod\u4e2d\u7684\u6240\u6709\u5bb9\u5668\u4f1a\u88ab\u8c03\u5ea6\u5230\u540c\u4e00\u4e2anode\u4e0a":85,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u4eba":68,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":70,"\u4e00\u53f0\u7535\u8111":72,"\u4e00\u65e9":68,"\u4e00\u662fbatch":56,"\u4e00\u6761\u6837\u672c":2,"\u4e00\u6837\u7684\u65b9\u5f0f":72,"\u4e00\u6837\u8bbe\u7f6e":80,"\u4e00\u6b21\u4f5c\u4e1a\u79f0\u4e3a\u4e00\u4e2ajob":85,"\u4e00\u6b21\u6027\u676f\u5b50":68,"\u4e00\u6b21yield\u8c03\u7528":2,"\u4e00\u79cd\u5e38\u7528\u7684\u505a\u6cd5\u662f\u7528\u5b66\u4e60\u7684\u6a21\u578b\u5bf9\u53e6\u5916\u4e00\u7ec4\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b":59,"\u4e00\u79cd\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":65,"\u4e00\u81f4":[67,68],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":47,"\u4e00\u822c\u4ece":73,"\u4e00\u822c\u5728paddlepaddle\u4e2d":68,"\u4e00\u822c\u60c5\u51b5\u4e0b":[1,59],"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":2,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":58,"\u4e00\u822c\u6765\u8bf4":71,"\u4e00\u822c\u8868\u793a":68,"\u4e00\u822c\u8bbe\u7f6e":58,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":95,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":[2,63],"\u4e0a":73,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":47,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":68,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":87,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0a\u7f16\u8bd1\u5f88\u6162":72,"\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":65,"\u4e0a\u7f51":68,"\u4e0a\u8fd0\u884c":61,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":58,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":72,"\u4e0a\u8ff0\u7684":57,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":79,"\u4e0a\u8ff0\u811a\u672c\u4f7f\u7528":80,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":75,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":75,"\u4e0b":75,"\u4e0b\u540c":58,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":79,"\u4e0b\u56fe\u5c55\u793a\u7684\u662f\u57fa\u4e8e\u6b8b\u5dee\u7684\u8fde\u63a5\u65b9\u5f0f":94,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":74,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":21,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":70,"\u4e0b\u6587\u4f7f\u7528":87,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":86,"\u4e0b\u6b21":68,"\u4e0b\u7684":87,"\u4e0b\u7684\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":66,"\u4e0b\u8868\u5c55\u793a\u4e86batch":94,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":86,"\u4e0b\u8f7draspberri":66,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":79,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":75,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":75,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":76,"\u4e0b\u9762\u5148\u7b80\u8981\u4ecb\u7ecd\u4e00\u4e0b\u672c\u6587\u7528\u5230\u7684\u51e0\u4e2akubernetes\u6982\u5ff5":85,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":35,"\u4e0b\u9762\u5217\u51fa\u4e86":71,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":87,"\u4e0b\u9762\u662f":75,"\u4e0b\u9762\u662f\u5bf9":75,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":58,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":74,"\u4e0b\u9762\u7684\u4f8b\u5b50\u4f7f\u7528\u4e86":94,"\u4e0b\u9762\u7684\u4f8b\u5b50\u540c\u6837\u4f7f\u7528\u4e86":94,"\u4e0b\u9762\u7684\u547d\u4ee4\u628a\u5f53\u524d\u76ee\u5f55\u6302\u8f7d\u5230\u4e86\u5bb9\u5668\u4e2d\u7684":61,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":75,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":74,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":63,"\u4e0b\u9762\u811a\u672c\u7b26\u5408paddlepaddle\u671f\u5f85\u7684\u8bfb\u53d6\u6570\u636e\u7684python\u7a0b\u5e8f\u7684\u6a21\u5f0f":59,"\u4e0b\u9762\u89e3\u91ca\u4ee3\u7801\u4e2d\u4e00\u4e9b\u5173\u952e\u7684\u5730\u65b9":75,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":67,"\u4e0d":68,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":2,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":72,"\u4e0d\u4f1a\u518d\u4ece":56,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":72,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":34,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":74,"\u4e0d\u4f7f\u7528c":34,"\u4e0d\u4f7f\u7528swig":34,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":75,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":75,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":75,"\u4e0d\u540c\u4e3b\u673a":85,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":57,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":75,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":82,"\u4e0d\u540c\u5c42\u7684\u7279\u5f81\u7531\u5206\u53f7":94,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":71,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":34,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":56,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":87,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":[2,63],"\u4e0d\u540c\u7a7a\u95f4\u7684\u8d44\u6e90\u540d\u53ef\u4ee5\u91cd\u590d":85,"\u4e0d\u540c\u8bbe\u5907":75,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":34,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":70,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":70,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":68,"\u4e0d\u540cpod\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7ip\u5730\u5740\u8bbf\u95ee":85,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":76,"\u4e0d\u5728":35,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5c11":68,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":34,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":70,"\u4e0d\u6307\u5b9a\u65f6":70,"\u4e0d\u63d0\u4f9b\u5206\u5e03\u5f0f\u5b58\u50a8":85,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":[2,63],"\u4e0d\u662f\u771f\u6b63\u7684layer":57,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":57,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":34,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":73,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":21,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":2,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":75,"\u4e0d\u80fd\u592a\u968f\u610f":73,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":73,"\u4e0d\u8fc7":68,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":72,"\u4e0d\u8fdc":68,"\u4e0d\u9519":68,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":72,"\u4e0e":[75,87,93],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":47,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":68,"\u4e0e\u53ef\u80fd\u6709\u7684":47,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":58,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":80,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":87,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":56,"\u4e0ejob":87,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":75,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":75,"\u4e14":68,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":73,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":[2,63],"\u4e14\u652f\u6301\u90e8\u7f72\u5230":85,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":68,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":35,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":34,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":34,"\u4e24":68,"\u4e24\u4e2a\u5217\u8868\u6587\u4ef6":80,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":77,"\u4e24\u4e2a\u5d4c\u5957\u7684":70,"\u4e24\u4e2a\u64cd\u4f5c":79,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":68,"\u4e24\u4e2a\u90e8\u5206":77,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":56,"\u4e24\u79cd\u7c7b\u522b":95,"\u4e24\u8005\u5747\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":1,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":56,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":47,"\u4e2a":95,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":56,"\u4e2a\u6027\u5316\u63a8\u8350":47,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":82,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":82,"\u4e2d":[34,35,56,74,75,76,87,95],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":73,"\u4e2d\u4ecb\u7ecd\u7684\u65b9\u6cd5":93,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":56,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":68,"\u4e2d\u5199\u5165json\u5185\u5bb9":20,"\u4e2d\u5305\u542b\u4e00\u4e2aandroid\u7248\u672c\u7684\u5e93":65,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":66,"\u4e2d\u5305\u542b\u4e86\u8bad\u7ec3\u6a21\u578b\u7684\u57fa\u672c\u547d\u4ee4":95,"\u4e2d\u5305\u542bc":[65,66],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":73,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":73,"\u4e2d\u5b89\u88c5":80,"\u4e2d\u5b8c\u5168\u4e00\u81f4":34,"\u4e2d\u5b9a\u4e49":71,"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovid":1,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":70,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":35,"\u4e2d\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528python\u6765\u63d0\u53d6\u7279\u5f81":94,"\u4e2d\u6307\u5b9a":82,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":84,"\u4e2d\u6307\u5b9a\u7684\u5c42\u987a\u5e8f\u4e00\u81f4":94,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":76,"\u4e2d\u63d0\u51fa\u7684resnet\u7f51\u7edc\u7ed3\u6784\u57282015\u5e74imagenet\u5927\u89c4\u6a21\u89c6\u89c9\u8bc6\u522b\u7ade\u8d5b":94,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":60,"\u4e2d\u6587\u6587\u6863":77,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":77,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":68,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":56,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":87,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":82,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":75,"\u4e2d\u7684":[76,94],"\u4e2d\u7684\u4e00\u884c":[2,73],"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":73,"\u4e2d\u7684\u6570\u636e":94,"\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b":94,"\u4e2d\u7684\u7528\u6237\u8bc1\u4e66":85,"\u4e2d\u7684\u8bf4\u660e":2,"\u4e2d\u83b7\u53d6":87,"\u4e2d\u8ba4\u771f\u8bbe\u7f6e":80,"\u4e2d\u8bbe\u7f6e":80,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":80,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":74,"\u4e2d\u8bfb\u53d6":2,"\u4e2d\u8c03\u7528":75,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":21,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u4e2d\u914d\u7f6e\u7684\u6548\u679c\u4e00\u81f4":2,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":56,"\u4e3a":[2,65,66,71,75],"\u4e3a0":2,"\u4e3a\u4e86\u4f7f":75,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":73,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":74,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":61,"\u4e3a\u4e86\u5b8c\u6210\u5206\u5e03\u5f0f\u673a\u5668\u5b66\u4e60\u8bad\u7ec3\u4efb\u52a1":85,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":74,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":72,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":70,"\u4e3a\u4e86\u65b9\u4fbf\u5728\u56fd\u5185\u7684\u5f00\u53d1\u8005\u4e0b\u8f7ddocker\u955c\u50cf":61,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":73,"\u4e3a\u4e86\u65b9\u4fbf\u8d77\u89c1":80,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":35,"\u4e3a\u4e86\u6ee1\u8db3\u8bad\u7ec3":80,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":[65,66],"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":79,"\u4e3a\u4e86\u8fd8\u539f":59,"\u4e3a\u4ec0\u4e48\u7528":72,"\u4e3a\u4f8b":[57,75,95],"\u4e3a\u4f8b\u521b\u5efa\u5206\u5e03\u5f0f\u7684\u5355\u8fdb\u7a0b\u8bad\u7ec3":80,"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":75,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":95,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":58,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":79,"\u4e3a\u60f3\u4fee\u6b63\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u4e8c\u8fdb\u5236\u6a21\u578b\u7684\u547d\u4ee4":93,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":80,"\u4e3a\u6b64":86,"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":75,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":74,"\u4e3a\u96c6\u7fa4\u4f5c\u4e1a\u8bbe\u7f6e\u989d\u5916\u7684":80,"\u4e3aconst\u51fd\u6570":75,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":74,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":82,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u4e94\u4e2a\u6b65\u9aa4":4,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":63,"\u4e3b\u8981\u539f\u56e0":68,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":56,"\u4e3b\u8981\u539f\u56e0\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":2,"\u4e3b\u8981\u7528\u4e8epython":75,"\u4e3b\u8981\u804c\u8d23\u5728\u4e8e\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":95,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":58,"\u4e3e\u4f8b":56,"\u4e3e\u4f8b\u8bf4\u660e":68,"\u4e4b\u524d":73,"\u4e4b\u524d\u914d\u7f6e\u6587\u4ef6\u4e2d":95,"\u4e4b\u540e":[59,63,74],"\u4e4b\u540e\u4f60\u4f1a\u5f97\u5230\u8bad\u7ec3":80,"\u4e4b\u540e\u4f7f\u7528":74,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":74,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":74,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":35,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":72,"\u4e4b\u95f4\u7684\u8ddd\u79bb":59,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":70,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u4e58\u9664\u7b49\u65f6\u5019":56,"\u4e5f":68,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":70,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":35,"\u4e5f\u4e0d\u751f\u6210":35,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":57,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":72,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":73,"\u4e5f\u53ef\u4ee5\u53bb\u6389\u8fd9\u4e9b\u8bc1\u4e66\u7684\u914d\u7f6e":85,"\u4e5f\u53ef\u4ee5\u5728\u5f00\u53d1\u955c\u50cf\u4e2d\u542f\u52a8\u4e00\u4e2asshd\u670d\u52a1":61,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":70,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":79,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":87,"\u4e5f\u53ef\u4ee5\u901a\u8fc7saving_period_by_batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":95,"\u4e5f\u53ef\u4ee5\u914d\u7f6e\u4e0d\u540c\u7684\u91cd\u8bd5\u673a\u5236":85,"\u4e5f\u53ef\u5199\u6210":75,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":[65,66],"\u4e5f\u5c31\u662f":73,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u8fdb\u4e00\u6b65\u6f14\u5316\u4e3a\u4e09\u4e2a\u65b0\u6b65\u9aa4":95,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":72,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":73,"\u4e5f\u5c31\u662f\u8bf4":[82,84,93],"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":87,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":79,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u4e5f\u662f\u5bb9\u5668\u4e0enode\u4e4b\u95f4\u5171\u4eab\u6587\u4ef6\u7684\u65b9\u5f0f":85,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":70,"\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":2,"\u4e5f\u6ca1\u7528":53,"\u4e5f\u79f0\u4e3arnn\u6a21\u578b":95,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u76f8\u540cgenerator\u7684\u65f6\u5019":2,"\u4e66\u5199":34,"\u4e7e":68,"\u4e86":[68,72],"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":79,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":71,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":71,"\u4e8c\u7ef4\u77e9\u9635":94,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":68,"\u4e8c\u8fdb\u5236":93,"\u4e92\u76f8\u901a\u4fe1":85,"\u4e94\u661f\u7ea7":68,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe":66,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":65,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":65,"\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":65,"\u4ea4\u901a":68,"\u4ea4\u901a\u4fbf\u5229":68,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[65,66],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":61,"\u4eba\u8138\u8bc6\u522b":21,"\u4ec0\u4e48\u662f":72,"\u4ec5\u4ec5\u4f7f\u7528":34,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":74,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":74,"\u4ec5\u9700\u8981\u77e5\u9053\u5982\u4f55\u4ece":2,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":87,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":65,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"\u4ecb\u7ecd\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e4b\u524d":85,"\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5":95,"\u4ece":[47,54,79],"\u4ece0\u5230num":82,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":70,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":79,"\u4ece\u56fe\u4e2d\u53ef\u4ee5\u770b\u5230":59,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":58,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":68,"\u4ece\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u4e24\u7aef\u5206\u522b\u83b7\u53d6k\u4e2a\u76f8\u90bb\u7684\u5355\u8bcd":95,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":[65,66],"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":20,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":74,"\u4ece\u800c\u53ef\u4ee5\u62df\u5408\u4efb\u610f\u7684\u51fd\u6570\u6765\u5b66\u4e60\u590d\u6742\u7684\u6570\u636e\u5173\u7cfb":59,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":54,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":2,"\u4ece\u800c\u80fd\u591f\u88abpaddlepaddl":95,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":1,"\u4ece\u8bed\u4e49\u4e0a\u770b":70,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":68,"\u4ece\u8f93\u51fa\u65e5\u5fd7\u53ef\u4ee5\u770b\u5230":59,"\u4ece\u9884\u8bad\u7ec3\u6a21\u578b\u4e2d":93,"\u4ececmake":65,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":20,"\u4ecestart":82,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":73,"\u4ed4\u7ec6\u89c2\u5bdf":94,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":35,"\u4ed6\u4eec\u5206\u522b\u662f":68,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":72,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":68,"\u4ed6\u4eec\u63d0\u51fa\u6b8b\u5dee\u5b66\u4e60\u7684\u6846\u67b6\u6765\u7b80\u5316\u7f51\u7edc\u7684\u8bad\u7ec3":94,"\u4ed6\u662f\u5c06":35,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":34,"\u4ee3\u66ff":87,"\u4ee3\u7801\u4e2d9":68,"\u4ee3\u7801\u5982\u4e0b":[56,57,58,71],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":73,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":34,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":75,"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":87,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":21,"\u4ee3\u8868shard\u7684index":21,"\u4ee5":57,"\u4ee5\u4e0a":73,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":21,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u6309\u7167\u751f\u6210\u7684dockerfile\u628a\u751f\u6210\u7684\u7a0b\u5e8f\u62f7\u8d1d\u5230\u751f\u4ea7\u955c\u50cf\u4e2d\u5e76\u505a\u76f8\u5e94\u7684\u914d\u7f6e":61,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u7f16\u8bd1paddlepaddl":61,"\u4ee5\u4e0a\u65b9\u6cd5\u5728gpu\u955c\u50cf\u91cc\u4e5f\u80fd\u7528":61,"\u4ee5\u4e0b":21,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":71,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":72,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":61,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":73,"\u4ee5\u4e0b\u662f\u5bf9\u4e0a\u8ff0\u6570\u636e\u52a0\u8f7d\u7684\u89e3\u91ca":95,"\u4ee5\u4e0b\u6b65\u9aa4\u57fa\u4e8e":80,"\u4ee5\u4e0b\u793a\u8303\u5982\u4f55\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u4e2d\u6587\u5b57\u5178\u548c\u8bcd\u5411\u91cf\u8fdb\u884c\u77ed\u8bed\u6539\u5199":93,"\u4ee5\u4e0b\u9009\u9879\u5fc5\u987b\u5728":80,"\u4ee5\u4ea4\u4e92\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u5f00\u53d1\u955c\u50cf":61,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":58,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u4fbf\u7528\u6237":80,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":74,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":74,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":72,"\u4ee5\u53ca":[72,74],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":72,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":67,"\u4ee5\u53ca\u751f\u6210\u521b\u5efa\u751f\u4ea7\u955c\u50cf\u7684dockerfil":61,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":66,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":75,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":70,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":74,"\u4ee5\u53caandroid":65,"\u4ee5\u53caandroid\u6240\u9700":65,"\u4ee5\u53canumpi":21,"\u4ee5\u53carelu":74,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":[65,66],"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":1,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[65,66],"\u4ee5\u83b7\u5f97\u66f4\u597d\u7684\u7f51\u7edc\u6027\u80fd":80,"\u4ee5\u8f93\u51fa":56,"\u4ee5\u9017\u53f7":93,"\u4ee5\u9017\u53f7\u95f4\u9694":82,"\u4ee5eigentensor\u4e3a\u4f8b":76,"\u4ee5embedding\u5c42\u4e3a\u4f8b":58,"\u4ee5lstm\u4e3a\u4f8b":57,"\u4ef7\u683c":68,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":80,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":20,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":74,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":87,"\u4f1a\u5171\u4eab\u53c2\u6570":58,"\u4f1a\u5173\u8054\u53c2\u6570":57,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":82,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":68,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":87,"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":77,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":56,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":70,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":34,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":70,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":56,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":70,"\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":2,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":56,"\u4f1a\u62a5\u9519":70,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":1,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":2,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":34,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":73,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":87,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":70,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":21,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":73,"\u4f20\u5165":[2,21],"\u4f20\u5165\u4e0a\u4e00\u6b65\u89e3\u6790\u51fa\u6765\u7684\u6a21\u578b\u914d\u7f6e\u5c31\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":4,"\u4f20\u5165\u9884\u6d4b\u6570\u636e":4,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":58,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":82,"\u4f46":35,"\u4f46\u4e0d\u66b4\u9732":35,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":74,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":82,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":68,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":68,"\u4f46\u5728\u8d77\u521d\u7684\u51e0\u8f6e\u8bad\u7ec3\u4e2d\u5b83\u4eec\u90fd\u5728\u5feb\u901f\u903c\u8fd1\u771f\u5b9e\u503c":59,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":70,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":60,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":47,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":68,"\u4f46\u5f53\u8c03\u7528\u8fc7\u4e00\u6b21\u540e":2,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":56,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":47,"\u4f46\u662f":[56,68],"\u4f46\u662f2008\u5e74\u4e4b\u524d\u751f\u4ea7\u7684\u65e7\u7535\u8111\u4e0d\u652f\u6301avx":61,"\u4f46\u662f\u4e5f\u6ca1\u6709\u5fc5\u8981\u5220\u9664\u65e0\u7528\u7684\u6587\u4ef6":80,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":35,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":81,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":68,"\u4f46\u662f\u6211\u4eec\u5e76\u4e0d\u63a8\u8350\u8fd9\u79cd\u65b9\u6cd5":61,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":73,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548c\u6d4bbenchmark":60,"\u4f46\u662f\u662f\u8fd0\u884c\u5728\u72ec\u7acb\u7684\u8fdb\u7a0b\u7a7a\u95f4":61,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":84,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":56,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":72,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":34,"\u4f46\u662fbatch":56,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":[2,63],"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":[2,63],"\u4f46\u8fd9\u4e2a\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":2,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":75,"\u4f46eigen":76,"\u4f4d\u7f6e":68,"\u4f4f":68,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":68,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":71,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":75,"\u4f5c\u4e3a\u53c2\u6570\u7684id":58,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":21,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":70,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":34,"\u4f5c\u4e3a\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165":59,"\u4f5c\u4e3a\u8f93\u51fa":71,"\u4f5c\u4e3a\u96c6\u7fa4\u8bad\u7ec3\u7684\u5de5\u4f5c\u7a7a\u95f4":80,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":68,"\u4f5c\u7528":67,"\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u4e2a\u503c":94,"\u4f60\u4e5f\u53ef\u4ee5\u5148\u8df3\u8fc7\u672c\u6587\u7684\u89e3\u91ca\u73af\u8282":95,"\u4f60\u4e5f\u53ef\u4ee5\u7b80\u5355\u7684\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4":93,"\u4f60\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5728\u547d\u4ee4\u884c\u53c2\u6570\u4e2d\u589e\u52a0\u4e00\u4e2a\u53c2\u6570\u5982":94,"\u4f60\u4e5f\u8bb8\u53ef\u4ee5\u5c1d\u8bd5\u66f4\u8001\u7684\u65b9\u6cd5":61,"\u4f60\u53ea\u9700\u5b8c\u6210":80,"\u4f60\u53ea\u9700\u8981\u5728\u547d\u4ee4\u884c\u8f93\u5165\u4ee5\u4e0b\u547d\u4ee4":95,"\u4f60\u53ef\u4ee5\u4f7f\u7528":94,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8bbe\u7f6e":80,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u4e2d\u7684\u76f8\u540c\u6a21\u578b\u6587\u4ef6\u8fdb\u884c\u96c6\u7fa4\u8bad\u7ec3":80,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":84,"\u4f60\u53ef\u4ee5\u6267\u884c\u4e0a\u8ff0\u547d\u4ee4\u6765\u4e0b\u8f7d\u6240\u6709\u7684\u6a21\u578b\u548c\u5747\u503c\u6587\u4ef6":94,"\u4f60\u53ef\u4ee5\u901a\u8fc7\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u5f97\u5230resnet\u7f51\u7edc\u7684\u7ed3\u6784\u53ef\u89c6\u5316\u56fe":94,"\u4f60\u5c06\u4f1a\u770b\u5230\u4ee5\u4e0b\u7684\u6a21\u578b\u7ed3\u6784":93,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u7ed3\u679c":94,"\u4f60\u5c06\u4f1a\u770b\u5230\u7279\u5f81\u5b58\u50a8\u5728":94,"\u4f60\u7684\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":80,"\u4f60\u8fd8\u53ef\u4ee5\u5c06\u7528\u6237\u548c":80,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":74,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":84,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":74,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":74,"\u4f7f\u5176\u8f6c\u53d8\u4e3a\u7ef4\u5ea6\u4e3ahidden_dim\u7684\u65b0\u5411\u91cf":95,"\u4f7f\u5f97":59,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":53,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":74,"\u4f7f\u5f97\u6700\u7ec8\u5f97\u5230\u7684\u6a21\u578b\u51e0\u4e4e\u4e0e\u771f\u5b9e\u6a21\u578b\u4e00\u81f4":59,"\u4f7f\u7528":[35,47,56,57,58,61,68,70,71,74,79,82,95],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":84,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":84,"\u4f7f\u752810\u4e2a\u88c1\u526a\u56fe\u50cf\u5757":94,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":84,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":84,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":74,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":56,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":86,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":21,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":58,"\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u8fdb\u884c\u6a21\u578b\u8bad\u7ec3":93,"\u4f7f\u7528\u52a8\u6001\u5e93":34,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":20,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":56,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":56,"\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4":93,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":71,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":87,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":86,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":75,"\u4f7f\u7528\u6587\u6863":75,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":56,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":35,"\u4f7f\u7528\u6848\u4f8b":83,"\u4f7f\u7528\u7684\u7f16\u8bd1\u5668\u4e3aarm":65,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":35,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":82,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u4f7f\u7528\u8005\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684python\u811a\u672c\u6765\u8bfb\u53d6\u53c2\u6570\u503c":94,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":82,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":82,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":58,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":20,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":68,"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":74,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":34,"\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u6807\u51c6\u683c\u5f0f\u8bcd\u5411\u91cf\u6a21\u578b":93,"\u4f7f\u7528args\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u8bbe\u7f6e":2,"\u4f7f\u7528c":35,"\u4f7f\u7528c99\u505a\u63a5\u53e3":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":34,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":34,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":82,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":84,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":84,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":72,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":77,"\u4f7f\u7528init":84,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":68,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":68,"\u4f7f\u7528model":84,"\u4f7f\u7528paddlepaddl":95,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":82,"\u4f7f\u7528regress":47,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":34,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":34,"\u4f7f\u7528void":34,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":58,"\u4f86":68,"\u4f8b\u5982":[2,21,34,35,47,56,57,60,63,68,71,74,79,80,81,82,84,87,94,95],"\u4f8b\u5982\u4e0a\u6587\u7684pod":85,"\u4f8b\u5982\u4e0a\u9762\u7684":59,"\u4f8b\u5982\u4ee5\u592a\u7f51\u7684":80,"\u4f8b\u5982\u4f7f\u7528":56,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":34,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":34,"\u4f8b\u5982\u5bf9\u4e8epython":34,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":68,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":68,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":68,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":56,"\u4f8b\u5982c":34,"\u4f8b\u5982hostpath":85,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":34,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":87,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":34,"\u4f8b\u5982python\u7684":34,"\u4f8b\u5982sigmoid":74,"\u4f8b\u5982sigmoid\u53d8\u6362":95,"\u4f8b\u5b50\u4e2d\u662f":74,"\u4f8b\u5b50\u4e2d\u662f0":74,"\u4f8b\u5b50\u4e2d\u662f100":74,"\u4f8b\u5b50\u4e2d\u662f4096":74,"\u4f8b\u5b50\u4e2d\u662f8192":74,"\u4f8b\u5b50\u4e2d\u662ffc":74,"\u4f8b\u5b50\u4e2d\u662fsoftmax":74,"\u4f8b\u5b50\u4f7f\u7528":85,"\u4f9bpaddlepaddle\u52a0\u8f7d":82,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":75,"\u4f9d\u6b21\u7c7b\u63a8":47,"\u4fbf\u4e8e\u5b58\u50a8\u8d44\u6e90\u7ba1\u7406\u548cpod\u5f15\u7528":85,"\u4fbf\u4e8e\u672c\u5730\u9a8c\u8bc1\u548c\u6d4b\u8bd5":85,"\u4fbf\u4e8e\u7528\u6237\u6d4f\u89c8c":61,"\u4fbf\u5229":68,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":68,"\u4fbf\u5b9c":68,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":34,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":82,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":58,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":82,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":82,"\u4fdd\u6301\u5bbd\u9ad8\u6bd4\u7f29\u653e\u5230\u77ed\u8fb9\u4e3a256":94,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":73,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":80,"\u4fee\u590d\u6240\u6709bug\u540e":47,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":47,"\u4fee\u590dubuntu":47,"\u4fee\u6539":[85,86],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":86,"\u4fee\u6539\u6210":47,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":79,"\u4fee\u6539\u6587\u6863":78,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[68,73],"\u503c\u5f97\u6df1\u5165\u5206\u6790":79,"\u503c\u7c7b\u578b":84,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":58,"\u5047\u8bbe":74,"\u5047\u8bbe\u53d8\u91cf":59,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5b8c\u6210\u4e86\u4e00\u4e2aai\u8bad\u7ec3\u7684python\u7a0b\u5e8f":61,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":74,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":56,"\u5047\u8bbe\u8bcd\u5411\u91cf\u7ef4\u5ea6\u4e3a32":93,"\u504f\u7f6e\u53c2\u6570":94,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":74,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":76,"\u505a\u53ea\u8bfb\u6302\u8f7d":21,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":47,"\u505a\u63a5\u53e3":34,"\u505a\u68af\u5ea6\u68c0\u6d4b":75,"\u505a\u68c0\u67e5":75,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":82,"\u505c\u7535":68,"\u50cf":61,"\u5143\u7d20":67,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":67,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":35,"\u5148\u627e\u51fa\u53c2\u6570":57,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":53,"\u5148\u8c03\u7528initializer\u51fd\u6570":95,"\u5168\u5bb6":68,"\u5168\u8fde\u63a5\u5c42":[59,93],"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u5168\u8fde\u63a5\u5c42\u6743\u91cd":94,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":74,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":74,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":74,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":74,"\u516c\u5f0f":61,"\u516c\u94a5\u5199\u5165":80,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":75,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":75,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":87,"\u5171\u670932":93,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":75,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":68,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":73,"\u5173\u4e8eeigen":76,"\u5173\u4e8elstm":57,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":63,"\u5173\u4e8eunbound":70,"\u5173\u952e\u8bcd\u5305\u62ec":73,"\u5176\u4e2d":[2,34,47,56,58,59,63,65,66,71,74,93,94],"\u5176\u4e2d156\u548c285\u662f\u8fd9\u4e9b\u56fe\u50cf\u7684\u5206\u7c7b\u6807\u7b7e":94,"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteger_value_sequ":95,"\u5176\u4e2d\u6bcf\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u5730\u5740":1,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":67,"\u5176\u4e2d\u6bcf\u884c\u6570\u636e\u4ee3\u8868\u4e00\u5f20\u56fe\u7247":2,"\u5176\u4e2d\u8f93\u5165\u56fe\u50cf\u7684\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":94,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":82,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":82,"\u5176\u4e2dvalue\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":4,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":63,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":76,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":72,"\u5176\u4ed6\u4eba\u5f88\u5bb9\u6613\u770b\u61c2\u955c\u50cf\u751f\u6210\u8fc7\u7a0b":61,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":56,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":56,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":35,"\u5176\u4ed6\u53c2\u6570\u4f7f\u7528":2,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":95,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":84,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":47,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[65,66],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":71,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":74,"\u5176\u4f59\u884c\u662f":93,"\u5176\u4f5c\u7528\u662f\u5c06\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u663e\u5b58":1,"\u5176\u5185\u90e8\u7684\u6587\u4ef6\u4e5f\u4f1a\u968f\u4e4b\u6d88\u5931":85,"\u5176\u5305\u62ec\u4e24\u4e2a\u51fd\u6570":95,"\u5176\u53c2\u6570\u5982\u4e0b":2,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":95,"\u5176\u5b83layer\u7684\u8f93\u51fa":70,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":56,"\u5176\u63d0\u4f9b\u5e94\u7528\u90e8\u7f72":85,"\u5176\u6b21":[2,68,95],"\u5176\u8bf4\u660e\u5982\u4e0b":68,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":71,"\u5176name\u7531\u53c2\u6570":57,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[35,56],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":72,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":35,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[2,56,74],"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":70,"\u5177\u4f53\u5982\u4e0b":61,"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":79,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":53,"\u5177\u4f53\u6d41\u7a0b\u5982\u4e0b":95,"\u5177\u4f53\u7684\u683c\u5f0f\u8bf4\u660e":2,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":53,"\u5177\u4f53\u8bf7\u53c2\u7167\u793a\u4f8b":94,"\u5177\u4f53\u8bf7\u53c2\u8003":[2,35,73],"\u5177\u4f53\u8bf7\u89c1":73,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":68,"\u5185":71,"\u5185\u5b58":79,"\u5185\u5b58\u4e0d\u8db3":54,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":82,"\u5185\u5bb9":[75,95],"\u5185\u5bb9\u5982\u4e0b":86,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":68,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":87,"\u5185\u90e8":87,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":34,"\u518d\u4ee5":75,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":58,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":34,"\u518d\u57fa\u4e8e":47,"\u518d\u5b89\u88c5":53,"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":68,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":68,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":68,"\u518d\u6307\u5b9a":60,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":74,"\u518d\u901a\u8fc7\u51fd\u6570":87,"\u5197\u4f59\u7b49\u529f\u80fd":85,"\u5199\u4ee3\u7801":34,"\u5199\u5165\u5feb\u7167\u6570\u636e":20,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":74,"\u51c6\u5907":68,"\u51c6\u5907\u9884\u6d4b\u6570\u636e":4,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":56,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":56,"\u51cf\u5c0fbatch":56,"\u51e0\u4e2a\u57fa\u7840\u7684\u6982\u5ff5\u5e2e\u52a9\u7406\u89e3\u548c\u4f7f\u7528docker":61,"\u51fa\u53bb\u73a9":68,"\u51fa\u5dee":68,"\u51fa\u6765":68,"\u51fa\u73b0":53,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":58,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":57,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":53,"\u51fd\u6570":[2,59,71,74,79],"\u51fd\u6570\u4e2d\u4f7f\u7528":2,"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":75,"\u51fd\u6570\u4e2d\u8bbe\u7f6e\u7684":80,"\u51fd\u6570\u5047\u8bbe":71,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":79,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":21,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":70,"\u51fd\u6570\u540d\u4e3a":35,"\u51fd\u6570\u547d\u540d":34,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":75,"\u51fd\u6570\u5c31\u662f\u6839\u636e\u8be5\u673a\u5236\u914d\u7f6e\u7684":2,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":74,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":74,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":70,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":74,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":79,"\u51fd\u6570\u67e5\u8be2\u8f6f\u4ef6\u5305\u76f8\u5173api\u8bf4\u660e":4,"\u51fd\u6570\u7684":2,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":74,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":74,"\u51fd\u6570\u91cc\u5b9e\u73b0":75,"\u5206\u4e3a\u597d\u8bc4":95,"\u5206\u522b\u4e3a":93,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":70,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":68,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":70,"\u5206\u522b\u5bf9\u5e94\u4e8e\u53d8\u91cf":59,"\u5206\u522b\u662f":67,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":71,"\u5206\u522b\u662fsentences\u548clabel":68,"\u5206\u522b\u662fwords\u548clabel":68,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":74,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":68,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":20,"\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":85,"\u5206\u6210\u4e24\u90e8\u5206":2,"\u5206\u652f":[47,73],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":47,"\u5206\u652f\u4e0a":73,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":73,"\u5206\u652f\u4e2d":47,"\u5206\u652f\u4e3a\u5f00\u53d1":47,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":47,"\u5206\u652f\u4e3a\u7a33\u5b9a":47,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":47,"\u5206\u652f\u5408\u5165":47,"\u5206\u652f\u5408\u5165master\u5206\u652f":47,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":47,"\u5206\u652f\u540d":73,"\u5206\u652f\u540d\u4e3a":47,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":47,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":47,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":75,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":47,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":47,"\u5206\u652f\u7684\u76ee\u6807\u673a\u7248openblas\u5e93":65,"\u5206\u652f\u89c4\u8303":73,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":79,"\u5206\u7247":20,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":2,"\u5206\u7c7b\u9519\u8bef\u7387\u548c\u6a21\u578b\u5927\u5c0f\u7531\u4e0b\u8868\u7ed9\u51fa":94,"\u5206\u8bcd\u5e8f\u5217\u7684\u5f00\u59cb":93,"\u5206\u8bcd\u5e8f\u5217\u7684\u7ed3\u675f":93,"\u5206\u8bcd\u98ce\u683c\u5982\u4e0b":93,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":82,"\u5206\u9694":93,"\u5207\u6362\u5230":73,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":73,"\u5217\u8868\u5982\u4e0b":[2,63],"\u5219\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":2,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u5219\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":2,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":82,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":20,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":82,"\u5219\u53ef\u4ee5\u50cf":80,"\u5219\u53ef\u8bbe\u7f6e":[65,66],"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":95,"\u5219\u5ffd\u7565":20,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":82,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":20,"\u5219\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u65f6batch":2,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":79,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":82,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5219\u8bbe\u7f6e\u6210":[65,66],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":56,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":20,"\u5219\u9700\u8981\u914d\u7f6e":85,"\u5219\u9700\u9009\u7528":66,"\u521b\u5efa\u4e00\u4e2akubernet":87,"\u521b\u5efa\u53cd\u5411op\u5bf9\u5e94\u7684\u524d\u5411op":75,"\u521b\u5efa\u548c\u53d1\u5e03\u81ea\u5df1\u7684ai\u7a0b\u5e8f\u955c\u50cf":61,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":73,"\u521b\u5efa\u6210\u529f\u540e":87,"\u521b\u5efagener":2,"\u521d\u59cb\u5316\u4e4b\u540e":4,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":74,"\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":2,"\u521d\u59cb\u5316\u6743\u91cd\u8868":74,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":82,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84\u914d\u7f6e\u4e3a":93,"\u521d\u59cb\u5316\u7236\u7c7b":74,"\u521d\u59cb\u5316biases_":74,"\u521d\u59cb\u5316paddlepaddle\u73af\u5883":4,"\u521d\u59cb\u72b6\u6001":70,"\u5220\u9664":73,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":20,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":56,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u8be5\u5355\u8bcd\u5bf9\u5e94\u7684\u8fde\u7eed\u5411\u91cf":95,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4e00\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":56,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":70,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":95,"\u5229\u7528kubernetes\u80fd\u65b9\u4fbf\u5730\u7ba1\u7406\u8de8\u673a\u5668\u8fd0\u884c\u5bb9\u5668\u5316\u7684\u5e94\u7528":85,"\u5229\u843d":68,"\u522b\u4eba\u5e2e\u4e86\u5fd9":73,"\u522b\u5fd8\u4e86":72,"\u5230":[20,53,71],"\u5230\u6240\u6709\u8282\u70b9\u800c\u4e0d\u7528\u5bc6\u7801":80,"\u5230\u672c\u5730":73,"\u5230\u6b64":[61,75],"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":87,"\u5236\u4f5cpaddlepaddle\u5f00\u53d1\u955c\u50cf":61,"\u5236\u4f5cpaddlepaddle\u751f\u4ea7\u955c\u50cf":61,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":87,"\u5237\u7259":68,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":87,"\u524d\u53f0":68,"\u524d\u5411\u4f20\u64ad":74,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":74,"\u524d\u5411\u548c\u540e\u5411":74,"\u524d\u5411op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":75,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":75,"\u524d\u5411operator\u5355\u6d4b":75,"\u524d\u8005\u5728":56,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":75,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":56,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":75,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":73,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":2,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":47,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":74,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":95,"\u52a0\u5165":79,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":71,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":71,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":58,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":58,"\u52a0\u8f7dtest":82,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":56,"\u52a8\u6001\u5e93":34,"\u52a9\u624b":74,"\u5305\u542b20\u4e2a\u8bad\u7ec3\u6837\u4f8b":93,"\u5305\u542b3\u4e2a\u5c5e\u6027":93,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":35,"\u5305\u542b\u6240\u6709\u548c\u524d\u7aef\u7f51\u9875\u8bbe\u8ba1\u76f8\u5173\u7684\u6587\u4ef6":77,"\u5305\u542b\u7684\u6240\u6709\u4f9d\u8d56\u5047\u8bbe\u90fd\u53ef\u4ee5\u5728paddle\u7684\u8fd0\u884c\u5bb9\u5668\u4e2d":61,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":75,"\u5305\u62ec":[21,82,95],"\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd":2,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":56,"\u5305\u62ec\u6570\u636e\u8f93\u5165":59,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":20,"\u5305\u62ec\u751f\u6210cpu":60,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":63,"\u5305\u62ec\u7b80\u5355\u7684":95,"\u5305\u62ecbool":84,"\u5305\u62eclinux":61,"\u5305\u7684\u65b9\u6cd5\u662f":53,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":68,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":68,"\u5341\u4e00":68,"\u534e\u6da6\u4e07\u5bb6":68,"\u534f\u540c\u5b8c\u6210releas":47,"\u5355\u4e2a\u503c":21,"\u5355\u4f4d\u662fmb":82,"\u5355\u5143\u6d4b\u8bd5":[72,76],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":53,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":75,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":72,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":81,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":68,"\u5355\u53cc\u5c42rnn":69,"\u5355\u53d8\u91cf\u7684\u7ebf\u6027\u56de\u5f52":59,"\u5355\u5c42":70,"\u5355\u5c42\u4e0d\u7b49\u957frnn":68,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":68,"\u5355\u5c42\u5e8f\u5217":67,"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":67,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":67,"\u5355\u5c42\u6216\u53cc\u5c42":67,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u5355\u5c42rnn":[68,70],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":68,"\u5355\u673acpu\u8bad\u7ec3":56,"\u5355\u673agpu\u8bad\u7ec3":56,"\u5355\u6b65\u51fd\u6570":71,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":71,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":71,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":71,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5355\u70b9\u6545\u969c":20,"\u5355\u8fdb\u5355\u51fa":70,"\u5360\u4f4d\u7b26":93,"\u536b\u751f":68,"\u5373":[35,56,57,59,75,77,87,95],"\u5373\u4e00\u4e2a\u5c06\u5355\u8bcd\u5b57\u7b26\u4e32\u6620\u5c04\u5230\u5355\u8bcdid\u7684\u5b57\u5178":2,"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":68,"\u5373\u4e0d\u5141\u8bb8\u5728":75,"\u5373\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":2,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":68,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":68,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":68,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":68,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":68,"\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6\u7684\u540d\u5b57":2,"\u5373\u4e8c\u7ef4\u6570\u7ec4":68,"\u5373\u4f7f\u7528":[35,57],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":82,"\u5373\u4f7fc":35,"\u5373\u4f7fprocess\u51fd\u6570\u91cc\u9762\u53ea\u6709\u4e00\u4e2ayield":2,"\u5373\u4f8b\u5982":35,"\u5373\u4fbf\u662f":72,"\u5373\u4fbf\u8bbe\u7f6e":53,"\u5373\u4fbfpaddl":35,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":70,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":2,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":71,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":70,"\u5373\u53ef":[59,73],"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":56,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":68,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":56,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":[2,63],"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":35,"\u5373\u5bf9\u7b2c\u4e09\u6b65\u8fdb\u884c\u66ff\u6362":95,"\u5373\u5c06\u4e00\u6bb5\u82f1\u6587\u6587\u672c\u6570\u636e":2,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":68,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":68,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":76,"\u5373\u6211\u4eec\u7684\u8bad\u7ec3\u76ee\u6807":59,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":70,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":67,"\u5373\u6574\u6570\u6570\u7ec4":68,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":68,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":68,"\u5373\u66b4\u9732":35,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":68,"\u5373\u7f51\u5361\u540d":87,"\u5373\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a":2,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":56,"\u5373\u8bbe\u7f6e":56,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":34,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":58,"\u5373input":70,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":68,"\u5377\u79ef\u5c42\u6743\u91cd":94,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":95,"\u5378\u8f7dpaddlepaddle\u5305":53,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":68,"\u539f\u56e0":73,"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":53,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":73,"\u53bb\u8fc7":68,"\u53c2\u6570":[2,6,7,8,9,10,11,12,14,34,56,72,74,81,87,93,94],"\u53c2\u6570\u4e3a":75,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":58,"\u53c2\u6570\u540d":94,"\u53c2\u6570\u6570\u91cf":95,"\u53c2\u6570\u670d\u52a1\u5668":81,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":82,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":82,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":82,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":56,"\u53c2\u6570\u6982\u8ff0":83,"\u53c2\u6570\u7684\u89e3\u6790":87,"\u53c2\u6570\u7ef4\u5ea6":93,"\u53c2\u6570\u884c":93,"\u53c2\u6570\u8bbe\u7f6e":55,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":68,"\u53c2\u6570\u8f93\u5165":56,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":71,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":73,"\u53c2\u8003":[28,34,85],"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":79,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":68,"\u53c2\u8003\u955c\u50cf\u7684":87,"\u53c8":68,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":67,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":56,"\u53ca":74,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":71,"\u53cc\u5411\u9a8c\u8bc1":28,"\u53cc\u5c42":70,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":68,"\u53cc\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":68,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":67,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":70,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":67,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":67,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":68,"\u53cc\u5c42rnn":70,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":68,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":68,"\u53cc\u8fdb\u5355\u51fa":70,"\u53cc\u8fdb\u53cc\u51fa":70,"\u53cd\u5411\u4f20\u64ad":74,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u53cd\u5411\u5355\u5143\u6d4b\u8bd5\u51fd\u6570\u9700\u8981\u4ee5":75,"\u53cd\u5411op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":75,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":75,"\u53cd\u5411op\u7c7b":75,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":75,"\u53cd\u5411operator\u5355\u6d4b":75,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":75,"\u53d1\u5e03":61,"\u53d1\u5e03\u5230dockerhub":47,"\u53d1\u5e03\u5230github":47,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":56,"\u53d1\u884c\u548c\u7ef4\u62a4":73,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":82,"\u53d6\u503c\u76f8\u540c\u7684layer":57,"\u53d6\u51b3\u4e8e":75,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":60,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":60,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230swig":60,"\u53d8\u6362\u77e9\u9635":74,"\u53d8\u91cf\u6765\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761":2,"\u53e3\u5934":68,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a\u4e24\u6b65":95,"\u53e6\u4e00\u4e2a\u597d\u5904\u662f\u6211\u4eec\u53ef\u4ee5\u628apaddlepaddle\u5bb9\u5668\u8fd0\u884c\u5728\u8fdc\u7a0b\u670d\u52a1\u5668\u4e0a":61,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":79,"\u53e6\u4e00\u4e2a\u662f\u521b\u5efadockerfile\u5e76\u8fd0\u884cdock":61,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":56,"\u53e6\u4e00\u4e2a\u7ec8\u7aef\u8fd0\u884cpython":61,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":84,"\u53e6\u5916":[68,72],"\u53e6\u5916\u4e24\u4e2a\u5206\u522b\u662f\u6ed1\u52a8\u5747\u503c\u548c\u65b9\u5dee":94,"\u53ea\u4f5c\u4e3aread":70,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":82,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":60,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":20,"\u53ea\u622a\u53d6\u4e2d\u5fc3\u65b9\u5f62\u7684\u56fe\u50cf\u533a\u57df":94,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":68,"\u53ea\u662f\u5c06\u53e5\u5b50\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u4e3a\u7528\u7a00\u758f\u5411\u91cf\u8868\u793a":95,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":2,"\u53ea\u662f\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":61,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":35,"\u53ea\u6709":68,"\u53ea\u67092\u4e2a\u914d\u7f6e\u4e0d\u4e00\u6837":93,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":82,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":70,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":57,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":84,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":57,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":34,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":68,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":56,"\u53ea\u8981\u5728docker\u91cc\u542f\u52a8paddlepaddle\u7684\u65f6\u5019\u7ed9\u5b83\u4e00\u4e2a\u540d\u5b57":61,"\u53ea\u8bfbmemory\u8f93\u5165":70,"\u53ea\u9488\u5bf9\u5185\u5b58":56,"\u53ea\u9700\u4e2d\u65ad":80,"\u53ea\u9700\u4f7f\u7528":80,"\u53ea\u9700\u7528\u4f60\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":80,"\u53ea\u9700\u77e5\u9053\u8fd9\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":2,"\u53ea\u9700\u8981":71,"\u53ea\u9700\u8981\u4e00\u884c\u4ee3\u7801\u5c31\u53ef\u4ee5\u8c03\u7528\u8fd9\u4e2apydataprovider2":2,"\u53ea\u9700\u8981\u5728\u51fd\u6570\u4e2d\u8c03\u7528\u591a\u6b21yield\u5373\u53ef":2,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":20,"\u53ef\u4ee5":[68,73,80],"\u53ef\u4ee5\u4ee5\u540e\u53f0\u8fdb\u7a0b\u65b9\u5f0f\u8fd0\u884c\u5bb9\u5668":61,"\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":2,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":58,"\u53ef\u4ee5\u4f7f\u7528":58,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":58,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":58,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":82,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":87,"\u53ef\u4ee5\u4f7f\u7528python\u7684":4,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":20,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":56,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":86,"\u53ef\u4ee5\u521b\u5efa\u975e":75,"\u53ef\u4ee5\u53c2\u8003":[68,71,72,73,85,87],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":54,"\u53ef\u4ee5\u53c2\u8003\u4fdd\u5b58\u5728":93,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":63,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":76,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":79,"\u53ef\u4ee5\u5728":61,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":34,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":87,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":73,"\u53ef\u4ee5\u5728kubernetes\u4e2d\u6309\u7167":85,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":76,"\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":2,"\u53ef\u4ee5\u5c06\u78c1\u76d8\u4e0a\u67d0\u4e2a\u76ee\u5f55\u5171\u4eab\u7ed9\u7f51\u7edc\u4e2d\u5176\u4ed6\u673a\u5668\u8bbf\u95ee":85,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":70,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":75,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":79,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":72,"\u53ef\u4ee5\u5feb\u901f\u8fed\u4ee3":61,"\u53ef\u4ee5\u6267\u884c":[53,61],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":77,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":72,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":21,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":68,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[67,70],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":70,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":74,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":70,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":70,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":82,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":20,"\u53ef\u4ee5\u67e5\u770b":87,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":86,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":84,"\u53ef\u4ee5\u7528":[28,72],"\u53ef\u4ee5\u7528\u4e8e\u5c0f\u91cf\u6570\u636e\u7684\u9a8c\u8bc1":85,"\u53ef\u4ee5\u7528\u4e8e\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e\u5e76\u8f6c\u6362\u6210\u9884\u6d4b\u63a5\u53e3\u6240\u9700\u7684\u6570\u636e\u7c7b\u578b":4,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":21,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":73,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":79,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":67,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":79,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":47,"\u53ef\u4ee5\u7f16\u5199":61,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":56,"\u53ef\u4ee5\u8054\u7cfbop":54,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":54,"\u53ef\u4ee5\u88c5\u7684\u662f":72,"\u53ef\u4ee5\u8bbe\u7f6e":[65,66],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":57,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":76,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":63,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":84,"\u53ef\u4ee5\u901a\u8fc7":[61,73,85],"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":71,"\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528":4,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":20,"\u53ef\u4ee5\u901a\u8fc7show_parameter_stats_period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":95,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":53,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":84,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":95,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":87,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":20,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":56,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":58,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":79,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":72,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":75,"\u53ef\u8bbe\u7f6e":65,"\u53ef\u9009":[2,74],"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":57,"\u53f3\u8fb9\u662f":94,"\u5403":68,"\u5403\u996d":68,"\u5404\u65b9\u9762":68,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":75,"\u5408":68,"\u5408\u7406":68,"\u540c\u65f6":[53,56,79],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":60,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":56,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":73,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":70,"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":95,"\u540c\u65f6\u4f60\u53ef\u4ee5\u4f7f\u7528":94,"\u540c\u65f6\u4f7f\u7528\u4e86l2\u6b63\u5219":95,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":79,"\u540c\u65f6\u518d\u5c06":47,"\u540c\u65f6\u53ef\u4ee5\u4f7f\u7528\u6237\u53ea\u5173\u6ce8\u5982\u4f55\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":2,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":56,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":58,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":72,"\u540c\u65f6\u63d0\u8d77":47,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":84,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":56,"\u540c\u65f6\u8bbe\u7f6e\u5b83\u7684input_types\u5c5e\u6027":2,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":56,"\u540c\u65f6\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u7f51\u7edc\u4e00\u6837\u518d\u63a5\u4e00\u5c42cost":4,"\u540c\u6837":63,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":82,"\u540c\u6837\u53ef\u4ee5\u6267\u884c":61,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":70,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":75,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":82,"\u540c\u7406":75,"\u540d\u5b57\u4fee\u9970":34,"\u540d\u79f0":95,"\u540e":[58,60,65,66,73,87],"\u540e\u5411\u4f20\u64ad":74,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":56,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":56,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":75,"\u540e\u8005\u7ee7\u627f\u81ea":75,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":20,"\u5411\u91cfenable_parallel_vector":81,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":47,"\u5417":72,"\u5426":60,"\u5426\u5219":[1,65,66,75,80],"\u5426\u5219\u4f1a\u628a":73,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":82,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":82,"\u5426\u5219\u4f7f\u7528gpu":84,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":71,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":34,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":80,"\u542b\u4e49":94,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":20,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":87,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":82,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":82,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":82,"\u5440":68,"\u5468\u56f4":68,"\u547d\u4ee4":80,"\u547d\u4ee4\u4e3a":[53,86],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":86,"\u547d\u4ee4\u5220\u9664":[65,66],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":60,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":95,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":72,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":72,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":72,"\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":95,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":60,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":80,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":72,"\u547d\u540d\u4e3a":73,"\u547d\u540d\u7a7a\u95f4":85,"\u547d\u540d\u7a7a\u95f4\u4e3b\u8981\u4e3a\u4e86\u5bf9\u8c61\u8fdb\u884c\u903b\u8f91\u4e0a\u7684\u5206\u7ec4\u4fbf\u4e8e\u7ba1\u7406":85,"\u547d\u540d\u89c4\u8303":75,"\u547d\u540d\u8bf7\u9075\u5b88":75,"\u548c":[21,34,35,47,56,57,58,59,60,65,66,68,71,72,73,74,75,76,77,79,80,84,85,93,95],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":68,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":[2,63],"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":75,"\u548c\u4e2d\u6587\u6587\u6863":77,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":56,"\u548c\u504f\u7f6e\u5411\u91cf":74,"\u548c\u5185\u5b58":72,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":67,"\u548c\u56fd\u5185\u955c\u50cf":61,"\u548c\u5728":2,"\u548c\u5bf9\u8c61\u5b58\u50a8api":85,"\u548c\u5dee\u8bc4":95,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":67,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":71,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":72,"\u548c\u68af\u5ea6\u622a\u65ad":95,"\u548c\u771f\u5b9e":59,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":68,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":21,"\u548c\u90e8\u5206layer":70,"\u548cpool":67,"\u548cpython\u63a5\u53e3\u6765\u63d0\u53d6\u7279\u5f81":94,"\u54c1\u8d28":68,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":20,"\u54ea\u4e9b\u4e0d\u662f":68,"\u5546\u52a1":68,"\u554a":68,"\u5668":95,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":[2,63],"\u56de\u5f52\u8bef\u5dee\u4ee3\u4ef7\u5c42":59,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":74,"\u56e0\u4e3a\u53c2\u6570":84,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":71,"\u56e0\u4e3a\u5b83\u6bd4":71,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":87,"\u56e0\u4e3a\u5bb9\u5668\u5185\u7684\u6587\u4ef6\u90fd\u662f\u6682\u65f6\u5b58\u5728\u7684":85,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":72,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":72,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":20,"\u56e0\u4e3adocker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":61,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":53,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":34,"\u56e0\u6b64":[1,2,68,70,74,75],"\u56e0\u6b64\u4f7f\u7528":2,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":68,"\u56e0\u6b64\u53ef\u4ee5\u4f7f\u7528\u8be5\u9009\u9879":93,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":76,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":76,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":68,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":74,"\u56e0\u6b64\u6709\u4e24\u79cd\u89e3\u51b3\u65b9\u6848":2,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":81,"\u56e0\u6b64\u8be5\u5c42\u4e2d\u6ca1\u6709\u504f\u7f6e":94,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":53,"\u56e0\u6b64init_hook\u5c3d\u91cf\u4f7f\u7528":2,"\u56fe":94,"\u56fe\u50cf\u5206\u7c7b":47,"\u56fe\u50cf\u5927\u5c0f\u4e3a3":94,"\u56fe\u8868":61,"\u5728":[2,35,47,67,68,71,72,73,75,80,94,95],"\u57280":61,"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":20,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":86,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":74,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":82,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":21,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":68,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":75,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":86,"\u5728\u4e0b\u9762\u4f8b\u5b50\u91cc":95,"\u5728\u4e0d\u540c\u64cd\u4f5c\u7cfb\u7edf":85,"\u5728\u4e4b\u540e\u7684":56,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":63,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":47,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":74,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":76,"\u5728\u51c6\u5907\u53d1\u8d77":73,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":20,"\u5728\u51fd\u6570":87,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":82,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":82,"\u5728\u521b\u5efaparameters\u540e":58,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":68,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":82,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":82,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":68,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":56,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":68,"\u5728\u540c\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4\u4e2d":85,"\u5728\u542f\u52a8job\u4e4b\u524d":87,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":73,"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165dictionary\u4f5c\u4e3a\u53c2\u6570":2,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":82,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":63,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":63,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":35,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":57,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":87,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":87,"\u5728\u5c42\u4e2d\u6307\u5b9a":84,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":70,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":21,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":20,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":35,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5728\u5f97\u5230":87,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":20,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":20,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":71,"\u5728\u6267\u884c\u65f6":76,"\u5728\u63d0\u4ea4":73,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":63,"\u5728\u6570\u636e\u52a0\u8f7d\u548c\u7f51\u7edc\u914d\u7f6e\u5b8c\u6210\u4e4b\u540e":95,"\u5728\u672c\u4f8b\u4e2d":[68,73,84],"\u5728\u672c\u4f8b\u4e2d\u6ca1\u6709\u4f7f\u7528":2,"\u5728\u672c\u6559\u7a0b\u4e2d":71,"\u5728\u672c\u6587\u4e2d":80,"\u5728\u672c\u6587\u4e2d\u4f7f\u7528\u7684":80,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u672c\u793a\u4f8b\u4e2d":68,"\u5728\u672c\u8282\u4e2d":71,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":21,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":82,"\u5728\u6837\u4f8b\u4e2d":35,"\u5728\u6a21\u578b\u6587\u4ef6\u7684":80,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u901a\u8fc7":95,"\u5728\u6b64":[81,84],"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":95,"\u5728\u6b64\u611f\u8c22":93,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":71,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":68,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":71,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":87,"\u5728\u6d4b\u8bd5\u9636\u6bb5":82,"\u5728\u6d4b\u8bd5\u9636\u6bb5\u5b83\u4eec\u5c06\u4f1a\u88ab\u52a0\u8f7d\u5230\u6a21\u578b\u4e2d":94,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":73,"\u5728\u7269\u7406\u673a\u4e0a\u624b\u52a8\u90e8\u7f72":85,"\u5728\u751f\u6210\u65f6":71,"\u5728\u7528\u6237\u4f7f\u7528c":35,"\u5728\u7528\u6237\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0":65,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":58,"\u5728\u76f8\u5e94layer\u7684":57,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":4,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":21,"\u5728\u7ec4\u5408\u65f6":63,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[65,66],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":74,"\u5728\u7f51\u7edc\u914d\u7f6e\u91cc":2,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":67,"\u5728\u8bad\u7ec3\u4e2d":71,"\u5728\u8bad\u7ec3\u4e4b\u524d":87,"\u5728\u8bad\u7ec3\u6570\u96c6\u4e0a\u8bad\u7ec3\u751f\u6210\u8bcd\u5411\u91cf\u5b57\u5178":93,"\u5728\u8bad\u7ec3\u65f6":86,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":87,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":82,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":1,"\u5728\u8bbe\u7f6e":[65,66],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":47,"\u5728\u8be5\u793a\u4f8b\u4e2d":58,"\u5728\u8be5\u914d\u7f6e\u76847":68,"\u5728\u8d2d\u7269\u7f51\u7ad9\u4e0a":95,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":79,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":70,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":76,"\u5728\u8fd9\u4e2a":47,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d":59,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[74,86],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":68,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":79,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":71,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":47,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":35,"\u5728\u8fd9\u4e9blayer\u4e2d":68,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":76,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":76,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[71,74],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":70,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":86,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":87,"\u5728\u8fd9\u91cc":70,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":74,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":76,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":76,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":63,"\u5728\u914d\u7f6e\u4e2d\u9700\u8981\u8bfb\u53d6\u5916\u90e8\u5b57\u5178":2,"\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u7684":94,"\u5728\u91c7\u7528sgd":58,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":84,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":56,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":65,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":65,"\u5728aws\u4e0a\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":85,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":53,"\u5728c":34,"\u5728c\u7684\u5934\u6587\u4ef6":34,"\u5728eigen\u4e2d":76,"\u5728generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":2,"\u5728kubernetes\u4e2d\u521b\u5efa\u7684\u6240\u6709\u8d44\u6e90\u5bf9\u8c61":85,"\u5728paddl":87,"\u5728paddle\u4e2d":84,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":21,"\u5728paddlepaddle\u4e2d":[63,70],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":57,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":57,"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":68,"\u5728paddlepaddle\u91cc":59,"\u5728paramet":20,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":70,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":70,"\u5728trainer":84,"\u5730\u5740\u4e5f\u53ef\u4ee5\u4e3ahdfs\u6587\u4ef6\u8def\u5f84":1,"\u5730\u6bb5":68,"\u5730\u7406\u4f4d\u7f6e":68,"\u5730\u94c1\u7ad9":68,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":35,"\u5747\u503c\u56fe\u50cf\u6587\u4ef6":94,"\u5747\u5300\u5206\u5e03":58,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":82,"\u5747\u662f\u5728":35,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":68,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":68,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":70,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u57fa\u4e8epython\u7684\u6a21\u578b\u9884\u6d4b":4,"\u57fa\u4e8epython\u7684\u9884\u6d4b":[3,95],"\u57fa\u672c\u4e0a\u548cmnist\u6837\u4f8b\u4e00\u81f4":2,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":64,"\u57fa\u672c\u76f8\u540c":93,"\u57fa\u7c7b":75,"\u586b\u5199":73,"\u589e\u52a0":75,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":86,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":75,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":84,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":74,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":79,"\u5904\u7406\u6570\u636e\u7684python\u811a\u672c\u6587\u4ef6":95,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":70,"\u5907\u6ce8":79,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":79,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":68,"\u5916\u5c42outer_step\u4e2d":68,"\u591a\u4e2a\u503c":21,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":56,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":56,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":95,"\u591a\u4e2aparamet":20,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":70,"\u591a\u673a\u8bad\u7ec3":56,"\u591a\u7ebf\u7a0b\u7684\u6570\u636e\u8bfb\u53d6":2,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":70,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":74,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":74,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":34,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":72,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":61,"\u5927\u5c0f":80,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":56,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":72,"\u5929":68,"\u5929\u4e00\u5e7f\u573a":68,"\u5929\u4e00\u9601":68,"\u5934\u4fe1\u606f\u4e2d":58,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":74,"\u5934\u6587\u4ef6\u5982\u4e0b":74,"\u597d":68,"\u597d\u5403":68,"\u597d\u8bc4":95,"\u5982":[2,71,73,75,80,84],"\u59822":80,"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":76,"\u5982\u4e0b":2,"\u5982\u4e0b\u56fe\u6240\u793a":[68,79],"\u5982\u4e0b\u6240\u793a":[84,94],"\u5982\u4e0b\u662f\u4e00\u6bb5\u4f7f\u7528mnist":4,"\u5982\u4e0b\u8868\u683c":95,"\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":2,"\u5982\u4f55\u89e3\u6790\u8be5\u5730\u5740\u4e5f\u662f\u7528\u6237\u81ea\u5b9a\u4e49dataprovider\u65f6\u9700\u8981\u8003\u8651\u7684\u5730\u65b9":1,"\u5982\u4f55\u8d21\u732e":78,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":78,"\u5982\u4f55\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":95,"\u5982\u56fe\u4e2dtrainer":20,"\u5982\u6709":75,"\u5982\u672c\u4f8b\u4e2d":2,"\u5982\u672c\u4f8b\u7684":2,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":74,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":20,"\u5982\u679c\u4e0b\u8f7d\u6210\u529f":94,"\u5982\u679c\u4e0d\u4e3a0":82,"\u5982\u679c\u4e0d\u4e86\u89e3":2,"\u5982\u679c\u4e0d\u5207\u8bcd":95,"\u5982\u679c\u4e0d\u6536\u655b":58,"\u5982\u679c\u4e3a":2,"\u5982\u679c\u4e3a0":82,"\u5982\u679c\u4e3afals":82,"\u5982\u679c\u4e3atrue":[2,82],"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":60,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":73,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":82,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":71,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":84,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":82,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[65,66],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":71,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":74,"\u5982\u679c\u4f7f\u7528":[80,93],"\u5982\u679c\u4f7f\u7528nvidia":61,"\u5982\u679c\u4f7f\u7528ssl\u8ba4\u8bc1":85,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":34,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":53,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":56,"\u5982\u679c\u53c2\u6570\u6a21\u578b\u6587\u4ef6\u7f3a\u5931":93,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":54,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":82,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":82,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":82,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":58,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":75,"\u5982\u679c\u5931\u8d25":47,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":20,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":56,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":87,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":20,"\u5982\u679c\u5f00\u542f\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":60,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":54,"\u5982\u679c\u60a8\u5728\u56fd\u5185":61,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":61,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":72,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":79,"\u5982\u679c\u60f3\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u6837\u672c":2,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":79,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":79,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":68,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":79,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":72,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":79,"\u5982\u679c\u6267\u884c\u5931\u8d25":85,"\u5982\u679c\u6267\u884c\u6210\u529f":94,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":56,"\u5982\u679c\u63d0\u793a\u6b63\u786e":77,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":54,"\u5982\u679c\u6570\u636e\u6587\u4ef6\u5b58\u4e8e\u672c\u5730\u78c1\u76d8":1,"\u5982\u679c\u662f\u4f7f\u7528\u975essl\u65b9\u5f0f\u8bbf\u95ee":85,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":21,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":70,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":70,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":1,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":73,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":47,"\u5982\u679c\u672a\u8bbe\u7f6e":82,"\u5982\u679c\u672a\u8bbe\u7f6egpu":84,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":35,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":35,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":79,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":82,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":70,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6etest":1,"\u5982\u679c\u6ca1\u8fc7":73,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":82,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":20,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":72,"\u5982\u679c\u7528\u6237\u4e0d\u663e\u793a\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":2,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":57,"\u5982\u679c\u7528\u6237\u60f3\u8981\u4e86\u89e3\u8be6\u7ec6\u7684\u6570\u636e\u96c6\u7684\u683c\u5f0f":93,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":58,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":34,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":72,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":79,"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":80,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":53,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":53,"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":53,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":72,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":71,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":47,"\u5982\u679c\u8981\u4f7f\u7528gpu":61,"\u5982\u679c\u8981\u542f\u7528gpu":80,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":73,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":73,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":58,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":58,"\u5982\u679c\u8bbe\u7f6e":2,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":82,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":73,"\u5982\u679c\u8bf4\u4e00\u4e2adocker\u955c\u50cf\u5c31\u662f\u4e00\u4e2a\u7a0b\u5e8f":61,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":34,"\u5982\u679c\u8f93\u51fa\u662fno":61,"\u5982\u679c\u8fd0\u884c":53,"\u5982\u679c\u8fd0\u884c\u6210\u529f":94,"\u5982\u679c\u8fd8\u4e0d\u884c":53,"\u5982\u679c\u96c6\u7fa4\u8282\u70b9\u6570\u91cf\u5c11":80,"\u5982\u679c\u9700\u8981\u5305\u542b\u66f4\u591a\u7684\u4f9d\u8d56":61,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":74,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":74,"\u5982\u679cgpu":75,"\u5982\u679clearning_rate\u592a\u5927":58,"\u5982\u679clearning_rate\u592a\u5c0f":58,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0gpu":75,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":75,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":53,"\u5982\u679cparamet":20,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":73,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":56,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":73,"\u5982\u9ad8\u4eae\u90e8\u5206":79,"\u5b50":68,"\u5b50\u53e5":70,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":70,"\u5b50\u76ee\u5f55":72,"\u5b57\u5178\u5171\u5305\u542b":93,"\u5b57\u5178\u91c7\u7528utf8\u7f16\u7801":93,"\u5b57\u6bb5\u4e2d":87,"\u5b57\u6bb5\u4e3a\u4f8b":56,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":87,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":87,"\u5b57\u7b26\u4e32":21,"\u5b58\u50a8":21,"\u5b58\u50a8\u5377":85,"\u5b58\u5165settings\u5bf9\u8c61":2,"\u5b66\u4e60":72,"\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u5b66\u4e60\u7387\u4e3a":58,"\u5b66\u4e60\u7b97\u6cd5":59,"\u5b81\u6ce2":68,"\u5b83\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4f5c\u4e3a\u7f51\u7edc\u7684\u51fa\u53e3":59,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":21,"\u5b83\u4eec\u8fd8\u53ef\u4ee5\u4f9b\u90a3\u4e9b\u8fd0\u884c\u66f4\u590d\u6742\u7684\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":80,"\u5b83\u4f1a\u5728dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":2,"\u5b83\u4f7f\u752850\u5c42\u7684resnet\u6a21\u578b\u6765\u5bf9":94,"\u5b83\u5305\u542b\u4e86\u8fd9\u4e2a\u8f6f\u4ef6\u672c\u8eab\u548c\u5b83\u6240\u4f9d\u8d56\u7684\u8fd0\u884c\u73af\u5883":61,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":74,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":74,"\u5b83\u5305\u542b\u7684\u5c5e\u6027\u53c2\u6570\u5982\u4e0b":2,"\u5b83\u53eb\u505a":71,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":80,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":73,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":79,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":74,"\u5b83\u548c\u6570\u636e\u4f20\u5165\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":2,"\u5b83\u5b58\u50a8\u5f53\u524d\u8282\u70b9\u6240\u6709\u8bad\u7ec3":80,"\u5b83\u5b9a\u4e49\u4e86":71,"\u5b83\u5b9a\u4e49\u4e86\u6a21\u578b\u53c2\u6570\u6539\u53d8\u7684\u89c4\u5219":59,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":71,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":80,"\u5b83\u5c06\u8fd4\u56de\u5982\u4e0b\u7684\u5b57\u5178":94,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":57,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":74,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":68,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":68,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":80,"\u5b83\u7684":71,"\u5b83\u7684\u529f\u80fd\u662f":75,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":67,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":74,"\u5b83\u8868\u793a":72,"\u5b83\u8bfb\u5165\u6570\u636e\u5e76\u5c06\u5b83\u4eec\u4f20\u8f93\u5230\u63a5\u4e0b\u6765\u7684\u7f51\u7edc\u5c42":59,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":74,"\u5b89\u6392":68,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":64,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":35,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":77,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":72,"\u5b89\u88c5\u6587\u6863":63,"\u5b89\u88c5\u6d41\u7a0b":95,"\u5b89\u88c5\u8be5\u8f6f\u4ef6\u5305\u5c31\u53ef\u4ee5\u5728python\u73af\u5883\u4e0b\u5b9e\u73b0\u6a21\u578b\u9884\u6d4b":4,"\u5b89\u88c5paddlepaddl":95,"\u5b89\u9759":68,"\u5b8c\u6210":73,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":70,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":87,"\u5b8c\u6210\u5f00\u53d1":61,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":21,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":67,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":63,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":56,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":58,"\u5b8c\u6574\u7684\u4ee3\u7801\u89c1":4,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":74,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":71,"\u5b98\u65b9\u6587\u6863":60,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u5b9a\u4e49\u4e00\u4e2apython\u7684":2,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":70,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784\u5e76\u4fdd\u5b58\u4e3a":59,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":57,"\u5b9a\u4e49\u4f4d\u7f6e":75,"\u5b9a\u4e49\u5728\u5916\u5c42":70,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":82,"\u5b9a\u4e49\u6570\u636e\u6765\u6e90":59,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":71,"\u5b9a\u4e49\u7c7b\u578b":75,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":71,"\u5b9a\u4e49\u8f93\u5165":75,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b":59,"\u5b9a\u4e49\u8f93\u51fa":75,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":71,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":71,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":63,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":68,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":71,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5728":75,"\u5b9e\u73b0\u5bf9":76,"\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u51fd\u6570":2,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":75,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":74,"\u5b9e\u73b0\u7684":57,"\u5b9e\u73b0\u7b80\u5355":34,"\u5b9e\u73b0\u7ec6\u8282":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":70,"\u5b9e\u73b0\u8be5\u5c42\u7684c":74,"\u5b9e\u9645\u4e0a":61,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":57,"\u5b9e\u9645\u4e0a\u53ea\u6709":94,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":56,"\u5ba2\u6237":68,"\u5bb6":68,"\u5bb9\u5668":[61,85],"\u5bb9\u5668\u4e0d\u4f1a\u4fdd\u7559\u5728\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e":85,"\u5bb9\u5668\u4f7f\u7528":61,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":87,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":56,"\u5bbf\u4e3b\u673a\u662flinux":66,"\u5bbf\u4e3b\u673a\u7684c":[65,66],"\u5bbf\u4e3b\u673a\u76ee\u5f55":85,"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":79,"\u5bf9":68,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":[2,63],"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":[2,63],"\u5bf9\u4e8e":71,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":34,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":68,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":72,"\u5bf9\u4e8e\u5185\u5b58\u8f83\u5c0f\u7684\u673a\u5668":2,"\u5bf9\u4e8e\u5355\u5c42rnn":68,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":68,"\u5bf9\u4e8e\u53cc\u5c42rnn":68,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":34,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":68,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":34,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":34,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":74,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":68,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":68,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":35,"\u5bf9\u4e8e\u6bcf\u79cdc":35,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":95,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":71,"\u5bf9\u4e8eamazon":95,"\u5bf9\u4e8erasspberri":66,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":74,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":58,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":73,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":70,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":70,"\u5bf9\u5e94\u4e8e\u5b57\u5178":93,"\u5bf9\u5e94\u7684":2,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":75,"\u5bf9\u6574\u4e2a\u65b0\u5411\u91cf\u96c6\u5408\u7684\u6bcf\u4e00\u4e2a\u7ef4\u5ea6\u53d6\u6700\u5927\u503c\u6765\u8868\u793a\u6700\u540e\u7684\u53e5\u5b50":95,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":74,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":74,"\u5bf9\u6bd4":34,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":74,"\u5bf9\u7528\u6237\u6765\u8bf4":2,"\u5bf9\u8bad\u7ec3\u6570\u636e\u8fdb\u884cshuffl":2,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":73,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":73,"\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":95,"\u5bf9\u8c61":58,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":35,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":70,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":47,"\u5bf9\u9762":68,"\u5bf9check":2,"\u5bf9sparse_binary_vector\u548csparse_float_vector":[2,63],"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":35,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":56,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":56,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":53,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":58,"\u5c01\u88c5\u4e86":79,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":74,"\u5c06":[2,47,58,79,95],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":20,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":71,"\u5c06\u4e3b\u673a\u4e0a\u7684\u6587\u4ef6\u6216\u76ee\u5f55\u6302\u8f7d\u5230":61,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":65,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":82,"\u5c06\u5176\u8bbe\u7f6e\u6210":56,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":68,"\u5c06\u542b\u6709\u5b50\u53e5":70,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u5c06\u5728\u8fd0\u884c\u65f6\u62a5\u9519":80,"\u5c06\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u5728kubernetes\u4e2d\u63cf\u8ff0\u6210\u4e3a\u7edf\u4e00\u7684\u8d44\u6e90\u5f62\u5f0f":85,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":68,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":82,"\u5c06\u5927\u91cf\u7684":34,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":58,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":71,"\u5c06\u6570\u636e\u5904\u7406\u6210\u89c4\u8303\u683c\u5f0f":93,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8fdb\u884c\u8bad\u7ec3":2,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":47,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":74,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":58,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":73,"\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c\u6587\u4ef6":2,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":87,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":87,"\u5c06\u7528\u4e8epython":75,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":87,"\u5c06\u884c\u4e2d\u7684\u6570\u636e\u8f6c\u6362\u6210\u4e0einput_types\u4e00\u81f4\u7684\u683c\u5f0f":2,"\u5c06\u88ab\u5206\u4e3a":93,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":87,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747":95,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":80,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":68,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":73,"\u5c06\u900f\u660e":80,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":56,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":87,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":47,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":58,"\u5c06recurr":57,"\u5c11\u4e8e5":80,"\u5c1a\u53ef":68,"\u5c31":68,"\u5c31\u4f1a\u751f\u6210\u975e\u5e38\u591a\u7684gener":2,"\u5c31\u53ef\u4ee5\u518d\u8fd0\u884c\u53e6\u4e00\u4e2anginx":61,"\u5c31\u53ef\u4ee5\u5c06\u6570\u636e\u4f20\u9001\u7ed9paddlepaddle\u4e86":2,"\u5c31\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u6587\u4ef6\u6301\u4e45\u5316\u5b58\u50a8":85,"\u5c31\u53ef\u4ee5\u6309":72,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":56,"\u5c31\u662f":68,"\u5c31\u662f\u6a21\u578b\u7684\u53c2\u6570":59,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":79,"\u5c31\u80fd\u591f\u5f88\u65b9\u4fbf\u7684\u5b8c\u6210\u6570\u636e\u4e0b\u8f7d\u548c\u76f8\u5e94\u7684\u9884\u5904\u7406\u5de5\u4f5c":95,"\u5c31\u8fd9\u4e48\u7b80\u5355":61,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":79,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":34,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":61,"\u5c3a\u5bf8":94,"\u5c3d\u65e9\u62a5\u9519":75,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":74,"\u5c42\u6743\u91cd":94,"\u5c42\u6b21\u5316\u7684rnn":70,"\u5c42\u7279\u5f81":94,"\u5c42\u7684\u540d\u79f0\u4e0e":71,"\u5c42\u7684\u5927\u5c0f":74,"\u5c42\u7684\u7279\u5f81":94,"\u5c42\u7684\u7c7b\u578b":74,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":71,"\u5c45\u7136":68,"\u5c55\u793a\u4e86\u4e0a\u8ff0\u7f51\u7edc\u6a21\u578b\u7684\u8bad\u7ec3\u6548\u679c":95,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":57,"\u5c5e\u6027":75,"\u5de5\u4f5c\u6a21\u5f0f":82,"\u5de5\u4f5c\u7a7a\u95f4":80,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":80,"\u5de5\u4f5c\u7a7a\u95f4\u6839\u76ee\u5f55":80,"\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55\u7684\u5de5\u4f5c\u7a7a\u95f4":80,"\u5de5\u4f5c\u7a7a\u95f4\u914d\u7f6e":80,"\u5de5\u5177\u6765\u7ba1\u7406":73,"\u5de5\u5177\u94fe\u7684android":65,"\u5de6\u56fe\u6784\u9020\u7f51\u7edc\u6a21\u5757\u7684\u65b9\u5f0f\u88ab\u7528\u4e8e34\u5c42\u7684\u7f51\u7edc\u4e2d":94,"\u5de6\u8fb9\u662f":94,"\u5dee\u8bc4":95,"\u5df2\u6253\u5f00":73,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":82,"\u5df2\u7ecf\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u8fd9\u4e24\u4e2a\u6587\u4ef6":80,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":79,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":75,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":70,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":70,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":67,"\u5e38\u5e38\u51fa\u73b0":53,"\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u5305\u62ecmomentum":95,"\u5e38\u89c1\u7684\u53ef\u9009\u5b58\u50a8\u670d\u52a1\u5305\u62ec":85,"\u5e72\u51c0":68,"\u5e73\u53f0\u4e3a\u60f3\u89c2\u6d4b\u8bcd\u5411\u91cf\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u6587\u672c\u6a21\u578b\u7684\u529f\u80fd":93,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":20,"\u5e73\u5747\u6545\u969c\u7387":20,"\u5e76\u4e0d\u4fdd\u8bc1":74,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":68,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":87,"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":68,"\u5e76\u4e0d\u96be":72,"\u5e76\u4e14":[2,71],"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":76,"\u5e76\u4e14\u4f7f\u7528":35,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":68,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":84,"\u5e76\u4e14\u5305\u62ecunit":73,"\u5e76\u4e14\u53ea\u6709\u4e00\u4e2a\u6743\u91cd":94,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":56,"\u5e76\u4e14\u540e\u7eed\u4ecd\u5728\u4e0d\u65ad\u6539\u8fdb":59,"\u5e76\u4e14\u542f\u52a8\u540e\u6267\u884c":61,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":87,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":2,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":34,"\u5e76\u4e14\u5728\u968f\u540e\u7684\u8bfb\u53d6\u6570\u636e\u8fc7\u7a0b\u4e2d\u586b\u5145\u8bcd\u8868":95,"\u5e76\u4e14\u5728dataprovider\u4e2d\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":1,"\u5e76\u4e14\u5b83\u4eec\u7684\u987a\u5e8f\u4e0e":94,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":63,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":72,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":53,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":75,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":73,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":34,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":75,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":73,"\u5e76\u4e14\u8fd0\u884c":72,"\u5e76\u4e14\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u7684\u6240\u6709\u8282\u70b9\u5c06\u5728\u6b63\u5e38\u60c5\u51b5\u4e0b\u5904\u7406\u5177\u6709\u76f8\u540c\u903b\u8f91\u4ee3\u7801\u7684\u6587\u4ef6":80,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":74,"\u5e76\u4e14cpu":75,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":58,"\u5e76\u4f20\u5165\u76f8\u5e94\u7684\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316paddlepaddl":4,"\u5e76\u4f7f\u7528\u4e86dropout":95,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":73,"\u5e76\u521b\u5efaoptim":63,"\u5e76\u521d\u59cb\u5316":75,"\u5e76\u5220\u9664":47,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":20,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":20,"\u5e76\u53d1\u5e03\u5230pypi":47,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":74,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":71,"\u5e76\u5728\u7b14\u8bb0\u672c\u4e0a\u901a\u8fc7ssh\u4e0e\u5176\u8fde\u63a5":61,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":74,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":57,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":21,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5e76\u5b89\u88c5\u4e86python":53,"\u5e76\u5b9a\u4e49\u5143\u7c7b":75,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":53,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":74,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":71,"\u5e76\u5c06\u6bcf\u8f6e\u7684\u6a21\u578b\u7ed3\u679c\u5b58\u653e\u5728":59,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":57,"\u5e76\u5c06c":35,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":20,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":2,"\u5e76\u66f4\u6362job":54,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":34,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":75,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":75,"\u5e76\u7ed9\u51fa\u7684\u76f8\u5173\u6a21\u578b\u683c\u5f0f\u7684\u5b9a\u4e49":93,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":[65,66],"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":21,"\u5e76\u89c2\u5bdf\u7ed3\u679c":79,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":75,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":73,"\u5e76\u8bbe\u7f6e":80,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":63,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":47,"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":95,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":47,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":75,"\u5e8a\u4e0a\u7528\u54c1":68,"\u5e8a\u57ab":68,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":67,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":70,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":67,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":70,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":70,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":67,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":56,"\u5e93":80,"\u5e93\u7684\u8def\u5f84":80,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":71,"\u5e94\u7528\u6a21\u578b":95,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":73,"\u5e94\u8be5":68,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":71,"\u5e94\u8be5\u8bf4\u8c22\u8c22":73,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":72,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":58,"\u5e95\u5c42\u8fdb\u7a0b":80,"\u5efa\u7acb\u4e00\u4e2a":73,"\u5efa\u8bae":[47,73],"\u5efa\u8bae\u5c06\u5176\u8bbe\u7f6e\u4e3a\u8f83\u5927":80,"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":82,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":35,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":73,"\u5f00\u53d1\u4eba\u5458\u53ef\u4ee5\u5728docker\u5f00\u53d1\u955c\u50cf\u4e2d\u5f00\u53d1paddlepaddl":61,"\u5f00\u53d1\u8005\u4f7f\u7528":72,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":47,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":47,"\u5f00\u53d1\u955c\u50cf":[61,73],"\u5f00\u53d1\u955c\u50cf\u5305\u542b\u4e86\u4ee5\u4e0b\u5de5\u5177":61,"\u5f00\u5934":75,"\u5f00\u59cb":59,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":20,"\u5f00\u59cb\u6807\u8bb0":71,"\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b":95,"\u5f00\u59cb\u9636\u6bb5":79,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":81,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":2,"\u5f15\u53d1":12,"\u5f15\u5bfc\u5c42":71,"\u5f15\u7528":80,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":70,"\u5f3a\u70c8\u63a8\u8350":68,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":71,"\u5f53":84,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":74,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":58,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":2,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":71,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":58,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":68,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":95,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":95,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":47,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":82,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":82,"\u5f53\u5bb9\u5668\u56e0\u4e3a\u5404\u79cd\u539f\u56e0\u88ab\u9500\u6bc1\u65f6":85,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":58,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":58,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":87,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":82,"\u5f53\u6a21\u578b\u8bad\u7ec3\u597d\u4e86\u4e4b\u540e":95,"\u5f53\u6a21\u5f0f\u4e3a":82,"\u5f53\u7136":79,"\u5f53\u7136\u53ef\u4ee5":72,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":35,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":57,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":74,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":71,"\u5f53\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u65f6":2,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":82,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":84,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":76,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f53n1":56,"\u5f62\u6210recurr":70,"\u5f62\u6210recurrent\u8fde\u63a5":70,"\u5f62\u72b6":94,"\u5f88":[68,95],"\u5f88\u591a":[68,72],"\u5f88\u591a\u5f00\u53d1\u8005\u4f1a\u4f7f\u7528\u8fdc\u7a0b\u7684\u5b89\u88c5\u6709gpu\u7684\u670d\u52a1\u5668\u5de5\u4f5c":61,"\u5f88\u5b89\u9759":68,"\u5f88\u5e72\u51c0":68,"\u5f88\u65b9\u4fbf":68,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":79,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":54,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"\u5f88\u96be\u6574\u4f53\u4fee\u6b63":2,"\u5f97":68,"\u5f97\u4f7f\u7528":34,"\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":95,"\u5f97\u5230\u8f93\u51fa\u503c":75,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":70,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":71,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":71,"\u5faa\u73af\u7f51\u7edc\u4ece":71,"\u5fc5\u8981":35,"\u5fc5\u987b":74,"\u5fc5\u987b\u4e00\u81f4":2,"\u5fc5\u987b\u4f7f\u7528python\u5173\u952e\u8bcd":2,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":68,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":70,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":71,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":65,"\u5fc5\u987b\u914d\u7f6e\u4e3a":66,"\u5feb":68,"\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u7684kubernetes\u670d\u52a1\u5668":85,"\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":85,"\u6027\u4ef7\u6bd4":68,"\u6027\u80fd\u5206\u6790":79,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":79,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":79,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":72,"\u6027\u80fd\u8c03\u4f18":81,"\u603b\u4f53\u6765\u8bf4":68,"\u603b\u8ba1\u7684\u53c2\u6570\u4e2a\u6570":93,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":79,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":79,"\u60a8\u53ef\u4ee5\u5bfc\u5165":79,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":79,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":71,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":79,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":79,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":79,"\u60a8\u9700\u8981\u66f4\u6539":61,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":79,"\u60c5\u611f\u5206\u6790":47,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":71,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":82,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":82,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":82,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":82,"\u611f\u89c9":68,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":87,"\u6210\u5458":75,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":79,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":35,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":63,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":74,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":86,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":87,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b\u522b":95,"\u6211\u4eec\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":2,"\u6211\u4eec\u4f1a\u5728":61,"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":74,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":74,"\u6211\u4eec\u4f7f\u7528":[74,80],"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":63,"\u6211\u4eec\u4f7f\u7528\u4e86":68,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u6211\u4eec\u4f7f\u7528paddlepaddle\u5728ilsvrc\u7684\u9a8c\u8bc1\u96c6\u517150":94,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":84,"\u6211\u4eec\u5047\u8bbe\u623f\u4ea7\u7684\u4ef7\u683c":59,"\u6211\u4eec\u5148\u4ece\u4e00\u6761\u968f\u673a\u7684\u76f4\u7ebf":59,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":76,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":63,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":86,"\u6211\u4eec\u53ea\u9700\u8981":72,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":68,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c":95,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":73,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":72,"\u6211\u4eec\u53ef\u4ee5":72,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":63,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":71,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":63,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":76,"\u6211\u4eec\u53ef\u4ee5\u5728":73,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":63,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":63,"\u6211\u4eec\u53ef\u4ee5\u5c06":80,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":67,"\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u89c2\u5bdf\u6a21\u578b\u7684\u53c2\u6570\u662f\u5426\u7b26\u5408\u9884\u671f\u6765\u8fdb\u884c\u68c0\u9a8c":59,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":70,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":87,"\u6211\u4eec\u5728":76,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":71,"\u6211\u4eec\u5728initialzier\u51fd\u6570\u91cc\u521d\u59cb\u5316\u8bcd\u8868":95,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":71,"\u6211\u4eec\u5c06":87,"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":68,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":86,"\u6211\u4eec\u5c06\u4ee5":[80,95],"\u6211\u4eec\u5c06\u4ee5\u6700\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":95,"\u6211\u4eec\u5c06\u4f7f\u7528":71,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":71,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":68,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u6d41\u7a0b\u7684\u811a\u672c":95,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":81,"\u6211\u4eec\u5c06\u5bf9\u8fd9\u4e24\u4e2a\u6b65\u9aa4\u7ed9\u51fa\u4e86\u8be6\u7ec6\u7684\u89e3\u91ca":95,"\u6211\u4eec\u5c06\u653e\u7f6e\u4f9d\u8d56\u5e93":80,"\u6211\u4eec\u5c06\u9610\u91ca\u5982\u4f55\u5728\u96c6\u7fa4\u4e0a\u8fd0\u884c\u5206\u5e03\u5f0f":80,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8bad\u7ec3\u6a21\u578b\u4e86":95,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8fdb\u884c\u9884\u6d4b\u4e86":95,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":73,"\u6211\u4eec\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u89e3\u51b3":59,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u68c0\u9a8c\u6a21\u578b\u7684\u597d\u574f":59,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":74,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":74,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":57,"\u6211\u4eec\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":95,"\u6211\u4eec\u628apaddlepaddle\u7684\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":61,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":61,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":60,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":21,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u793a\u4f8b\u811a\u672c":94,"\u6211\u4eec\u63d0\u4f9b\u4e86\u56fd\u5185\u7684\u955c\u50cf\u670d\u52a1\u5668\u4f9b\u5927\u5bb6\u4f7f\u7528":61,"\u6211\u4eec\u63d0\u4f9b\u4e86c":94,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":61,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u65e0\u6cd5\u5728docker\u5bb9\u5668\u4e2d":61,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":68,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":71,"\u6211\u4eec\u7528paddlepaddle\u89e3\u51b3\u4e86\u5355\u53d8\u91cf\u7ebf\u6027\u56de\u5f52\u95ee\u9898":59,"\u6211\u4eec\u7684":72,"\u6211\u4eec\u7684\u5b57\u5178\u4f7f\u7528\u5185\u90e8\u7684\u5206\u8bcd\u5de5\u5177\u5bf9\u767e\u5ea6\u77e5\u9053\u548c\u767e\u5ea6\u767e\u79d1\u7684\u8bed\u6599\u8fdb\u884c\u5206\u8bcd\u540e\u4ea7\u751f":93,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":73,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":68,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":68,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":73,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":67,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":76,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":86,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":71,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":68,"\u6211\u4eec\u9009\u62e9":21,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":75,"\u6211\u4eec\u901a\u5e38\u5728\u6240\u6709\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a":80,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":87,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":21,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":95,"\u6211\u4eec\u91c7\u7528\u7b2c\u4e8c\u4e2a\u65b9\u6cd5":61,"\u6211\u4eec\u9700\u8981":72,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":76,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddle\u955c\u50cf":86,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":80,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":76,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":74,"\u6211\u4eec\u9884\u8bad\u7ec3\u5f97\u52304\u79cd\u4e0d\u540c\u7ef4\u5ea6\u7684\u8bcd\u5411\u91cf":93,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":63,"\u6211\u5220\u9664\u4e86":73,"\u6211\u53ef\u4ee5\u7528":72,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":72,"\u6216":[2,79],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6216\u4e00\u4e2a\u5411\u91cf":70,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6216\u6700\u5927\u503c":67,"\u6216\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":1,"\u6216\u7b2c\u4e00\u4e2a":67,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":67,"\u6216\u8005":[34,35,56,61,67,68,72,75,79],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[67,70],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":79,"\u6216\u8005\u53cd\u5411\u5730\u4ece":71,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":82,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":20,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":81,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u8def\u5f84\u7b49":1,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":68,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":67,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":79,"\u6216\u8005\u66f4\u65e9":58,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":68,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":21,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":21,"\u6216\u8005\u76f4\u63a5\u4f7f\u7528\u4e0b\u9762\u7684shell\u547d\u4ee4":94,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":56,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[65,66],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":56,"\u6216\u8005\u8fd0\u884c":53,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":84,"\u6216\u8005\u9700\u8981\u53d1\u5e03\u60a8\u7684\u5e94\u7528\u7684\u955c\u50cf":61,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":1,"\u6216\u8bbe\u7f6e\u4e3anone":1,"\u6216gpu":82,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":56,"\u623f":68,"\u623f\u95f4":68,"\u6240\u4ee5":[2,56],"\u6240\u4ee5\u4e00\u822c\u9700\u8981\u5bf9\u8bad\u7ec3\u7528\u7684\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u7a0d\u4f5c\u76f8\u5e94\u4fee\u6539\u624d\u80fd\u5728\u9884\u6d4b\u65f6\u4f7f\u7528":4,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":57,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":56,"\u6240\u4ee5\u53ef\u4ee5\u5229\u7528\u5982\u4e0b\u65b9\u6cd5\u8bfb\u53d6\u6a21\u578b\u7684\u53c2\u6570":59,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":86,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":20,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":68,"\u6240\u4ee5\u5982\u679c\u9700\u8981\u81ea\u884c\u914d\u7f6e\u5f00\u53d1\u73af\u5883\u9700\u8981\u8003\u8651\u7248\u672c\u7684\u56e0\u7d20":61,"\u6240\u4ee5\u5b83\u4eec\u4f7f\u7528\u540c\u4e00\u4e2aip\u5730\u5740":85,"\u6240\u4ee5\u5bf9":68,"\u6240\u4ee5\u5f88\u591a\u65f6\u5019\u4f60\u9700\u8981\u505a\u7684\u53ea\u662f\u5b9a\u4e49\u6b63\u786e\u7684\u7f51\u7edc\u5c42\u5e76\u628a\u5b83\u4eec\u8fde\u63a5\u8d77\u6765":59,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":79,"\u6240\u4ee5\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u5230docker":86,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":87,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":68,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6einput_typ":2,"\u6240\u4ee5\u653e\u4e00\u4e2a\u7a7a\u5217\u8868":59,"\u6240\u4ee5\u65e0\u9700\u5224\u65adavx\u5373\u53ef\u4f7f\u7528":61,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":57,"\u6240\u4ee5\u8bad\u7ec3":80,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":4,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":74,"\u6240\u4f7f\u7528\u7684\u7f16\u8bd1\u5668\u4e3aarm":66,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":68,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":35,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":73,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":82,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":80,"\u6240\u6709\u6587\u4ef6\u5217\u8868":2,"\u6240\u6709\u672c\u5730\u8bad\u7ec3":80,"\u6240\u6709\u67b6\u6784":65,"\u6240\u6709\u751f\u6210\u7684\u7684\u6587\u4ef6\u90fd\u5728build\u76ee\u5f55\u4e0b":61,"\u6240\u6709\u7684":[73,74],"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":74,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":35,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":68,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":74,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":74,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":35,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":74,"\u6240\u6709\u8282\u70b9\u8fd0\u884c\u96c6\u7fa4\u4f5c\u4e1a\u7684\u4e3b\u673a\u540d\u6216":80,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":71,"\u6240\u6709\u914d\u7f6e\u90fd\u80fd\u5728":95,"\u6240\u6784\u5efa\u7f51\u7edc\u7ed3\u6784\u7684\u7684\u6df1\u5ea6\u6bd4\u4e4b\u524d\u4f7f\u7528\u7684\u7f51\u7edc\u6709\u5927\u5e45\u5ea6\u7684\u63d0\u9ad8":94,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":2,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":65,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":2,"\u624d\u4f1astop":2,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":68,"\u624d\u80fd\u5145\u5206\u5229\u7528mac":61,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":79,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":60,"\u6253\u5f00":79,"\u6253\u5f00\u6587\u672c\u6587\u4ef6":2,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":77,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":35,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":75,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[65,66],"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":71,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[65,66],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":79,"\u6267\u884c\u7684\u547d\u4ee4\u5982\u4e0b":94,"\u6269\u5c55\u673a\u5236\u7b49\u529f\u80fd":85,"\u627e\u5230":71,"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":54,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":79,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":79,"\u628a":[21,74],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":21,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":76,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":72,"\u628a\u7f16\u8bd1\u51fa\u6765\u7684paddlepaddle\u4e5f\u6253\u5305\u6210\u4e00\u4e2a\u955c":61,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":86,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":72,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":71,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":71,"\u62bd\u53d6\u51fa\u7684\u65b0\u8bcd\u8868\u7684\u4fdd\u5b58\u8def\u5f84":93,"\u62bd\u53d6\u5bf9\u5e94\u7684\u8bcd\u5411\u91cf\u6784\u6210\u65b0\u7684\u8bcd\u8868":93,"\u62c6\u89e3":70,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":68,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":87,"\u62fc\u63a5":56,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf":95,"\u6301\u7eed\u96c6\u6210\u7cfb\u7edf\u4e5f\u53ef\u4ee5\u7b80\u5355\u5730\u590d\u73b0\u8fd9\u4e2a\u8fc7\u7a0b":61,"\u6302\u8f7dvolum":61,"\u6307\u5411\u4e00\u4e2alayer":70,"\u6307\u5b9a":[56,57,70,71],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":82,"\u6307\u5b9a\u4f7f\u75282":56,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":95,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":75,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":82,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":75,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":94,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u5f0f\u6765\u63d0\u53d6\u7279\u5f81":94,"\u6307\u5b9a\u63d0\u53d6\u7279\u5f81\u7684\u5c42":94,"\u6307\u5b9a\u662f\u5426\u4f7f\u7528gpu":94,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":75,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":95,"\u6307\u5b9a\u7684\u6570\u636e\u5c06\u4f1a\u88ab\u6d4b\u8bd5":95,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":70,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":56,"\u6307\u5b9a\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e":95,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":82,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":68,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":20,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":82,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":82,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":82,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":82,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":82,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":82,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":82,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":82,"\u6309\u7167":66,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":87,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":72,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":57,"\u6309\u94ae":73,"\u633a":68,"\u633a\u597d":68,"\u6355\u83b7":95,"\u6362":68,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":67,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":63,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":63,"\u63a5\u4e0b\u6765":[75,95],"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":79,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":79,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":73,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":73,"\u63a5\u4e0b\u6765\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u8bad\u7ec3\u4e00\u4e2a\u6587\u672c\u5206\u7c7b\u6a21\u578b":95,"\u63a5\u4e0b\u6765\u7b49\u5f85":73,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":75,"\u63a5\u53e3":[34,35,75,76],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":76,"\u63a5\u53e3\u540d\u79f0":80,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":35,"\u63a5\u53e3\u63d0\u53d6\u7684\u7ed3\u679c\u662f\u4e00\u81f4\u7684":94,"\u63a5\u53e3\u662f":21,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":76,"\u63a5\u53e3\u6709\u4e00\u4e2a":56,"\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u636e":95,"\u63a5\u53e3\u6765\u52a0\u8f7d\u8be5\u6587\u4ef6":94,"\u63a5\u53e3\u6765\u6253\u5f00\u8be5\u6587\u4ef6":94,"\u63a5\u53e3\u7684":56,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a5\u7740\u6211\u4eec\u5c31\u80fd\u591f\u6253\u5f00\u6d4f\u89c8\u5668\u5728":61,"\u63a7\u5236":82,"\u63a7\u5236\u5982\u4f55\u6539\u53d8\u6a21\u578b\u53c2\u6570":59,"\u63a7\u5236\u662f\u5426\u751f\u6210\u5355\u5143\u6d4b\u8bd5":61,"\u63a7\u5236\u751f\u6210\u7684\u751f\u4ea7\u955c\u50cf\u662f\u5426\u652f\u6301avx":61,"\u63a7\u5236\u751f\u6210\u7684\u751f\u4ea7\u955c\u50cf\u662f\u5426\u652f\u6301gpu":61,"\u63a7\u5236\u7528\u6237\u6743\u9650":21,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":74,"\u63a8\u8350":68,"\u63a8\u8350\u4f7f\u7528":2,"\u63a8\u8350\u56fd\u5185\u7528\u6237\u4f7f\u7528docker":61,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":60,"\u63a8\u8350\u76f4\u63a5\u5b58\u653e\u5230\u8bad\u7ec3\u76ee\u5f55":1,"\u63a8\u8350\u7cfb\u7edf":80,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":73,"\u63cf\u8ff0":60,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":72,"\u63cf\u8ff0\u7f51\u7edc\u7ed3\u6784\u548c\u4f18\u5316\u7b97\u6cd5":95,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u63cf\u8ff0\u95ee\u9898":73,"\u63cf\u8ff0kubernetes\u4e0a\u8fd0\u884c\u7684\u4f5c\u4e1a":85,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":77,"\u63d0\u4ea4pull":73,"\u63d0\u4f9b":80,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":87,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":80,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":80,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":80,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":67,"\u63d0\u4f9b\u6700\u65b0":61,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":21,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":80,"\u63d0\u51fa\u7684\u4ee3\u7801\u9700\u6c42":93,"\u63d0\u793a":53,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":63,"\u64cd\u4f5c":68,"\u64cd\u4f5c\u7cfb\u7edf":72,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[69,70],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":65,"\u652f\u6301rbd":85,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":87,"\u653e\u5fc3":68,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u6548\u679c\u603b\u7ed3":95,"\u6559\u7a0b\u6587\u6863\u5230":80,"\u6570":70,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":70,"\u6570\u636e":28,"\u6570\u636e\u4e2d0":58,"\u6570\u636e\u5217\u8868":94,"\u6570\u636e\u5c06\u4fdd\u5b58\u5728":93,"\u6570\u636e\u5c42":59,"\u6570\u636e\u5e94\u8be5\u5728\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a\u4e4b\u524d\u51c6\u5907\u597d":80,"\u6570\u636e\u63d0\u4f9b\u5668":81,"\u6570\u636e\u76ee\u5f55\u4e2d\u7684\u6240\u6709\u6587\u4ef6\u88ab":80,"\u6570\u636e\u7c7b\u578b":4,"\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":2,"\u6570\u636e\u8bbf\u95ee":0,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":34,"\u6570\u636e\u8f93\u5165":70,"\u6570\u636e\u8f93\u5165\u683c\u5f0f":2,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":21,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":21,"\u6570\u636e\u9884\u5904\u7406\u5b8c\u6210\u4e4b\u540e":95,"\u6570\u76ee":84,"\u6574\u4f53":68,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":68,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":87,"\u6574\u6570":74,"\u6574\u6570\u6807\u7b7e":[2,63],"\u6574\u6d01":68,"\u6587\u4ef6":[34,72,73,75,86],"\u6587\u4ef6\u4e2d":[75,87,94],"\u6587\u4ef6\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84\u548c\u8f93\u51fa\u7684\u76ee\u5f55":94,"\u6587\u4ef6\u4e2d\u6307\u5b9a\u8981\u63d0\u53d6\u7279\u5f81\u7684\u7f51\u7edc\u5c42\u7684\u540d\u5b57":94,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":75,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":75,"\u6587\u4ef6\u4e2d\u6ce8\u518cgpu":75,"\u6587\u4ef6\u4e2d\u7684":94,"\u6587\u4ef6\u4e3a":56,"\u6587\u4ef6\u4e4b\u5916":73,"\u6587\u4ef6\u4e5f\u53ef\u4ee5\u7528\u4e8e\u5bf9\u6837\u672c\u8fdb\u884c\u9884\u6d4b":94,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":34,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":20,"\u6587\u4ef6\u547d\u540d\u4ee5":75,"\u6587\u4ef6\u59390":87,"\u6587\u4ef6\u5939\u4e0b":77,"\u6587\u4ef6\u5bf9\u5e94\u7684data":21,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u6587\u4ef6\u7684\u6539\u53d8":73,"\u6587\u4ef6\u7cfb\u7edf\u4ee5\u53ca\u7f51\u7edc\u4e4b\u4e0a":61,"\u6587\u4ef6\u7d22\u5f15":80,"\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":95,"\u6587\u4ef6model":84,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":61,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":95,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217\u6570\u636e":2,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":95,"\u6587\u672c\u5377\u79ef\u5206\u53ef\u4e3a\u4e09\u4e2a\u6b65\u9aa4":95,"\u6587\u6863":53,"\u6587\u68631":76,"\u6587\u68632":76,"\u6587\u6863\u7f16\u5199\u7b49\u5de5\u4f5c":61,"\u6587\u6863\u8f83\u5c11":76,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":77,"\u6587\u7ae0":87,"\u65b0":68,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":74,"\u65b0\u624b\u5165\u95e8":90,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":47,"\u65b9\u4fbf":68,"\u65b9\u4fbf\u4eca\u540e\u7684\u5d4c\u5165\u5f0f\u79fb\u690d\u5de5\u4f5c":60,"\u65b9\u4fbf\u5f00\u53d1\u8005\u76f4\u63a5\u767b\u5f55\u5230\u955c\u50cf\u4e2d\u8fdb\u884c\u5f00\u53d1":61,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":47,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65b9\u5f0f1":56,"\u65b9\u5f0f2":56,"\u65b9\u6cd5\u4e00":84,"\u65b9\u6cd5\u4e09":84,"\u65b9\u6cd5\u4e8c":84,"\u65c1\u8fb9":68,"\u65e0":68,"\u65e0\u5ef6\u8fdf":82,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":34,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":21,"\u65e0\u8bba\u662f\u4ece":21,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":21,"\u65e0\u9ed8\u8ba4\u503c":[65,66],"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":54,"\u65e9\u9910":68,"\u65f6":[20,56,58,67,71,74,82,87],"\u65f6\u5019":68,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":95,"\u65f6\u5e8f\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":2,"\u65f6\u88ab\u8bad\u7ec3\u7684":74,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":84,"\u65f6\u95f4":68,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":68,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":58,"\u6620\u5c04\u4e3a":72,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u662f":[28,53,60,68],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":74,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":79,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":79,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":67,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":34,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":79,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":84,"\u662f\u4e00\u4e2a\u7b26\u5408\u9ad8\u65af\u5206\u5e03\u7684\u968f\u673a\u53d8\u91cf":59,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":35,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":74,"\u662f\u4e00\u4e2apython\u7684":2,"\u662f\u4e00\u4e2aunbound":70,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":[2,63],"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":70,"\u662f\u4e00\u7ec4":85,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":86,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":34,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":2,"\u662f\u4e0d\u662f\u8981\u5bf9\u6570\u636e\u505ashuffl":2,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":2,"\u662f\u4f17\u591a\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u5c42\u7684\u4e00\u79cd":59,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":58,"\u662f\u504f\u5dee":71,"\u662f\u5176\u5927\u5c0f":59,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":2,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":35,"\u662f\u5411\u91cf":74,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":70,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":60,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":82,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":74,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":65,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[65,66],"\u662f\u5426\u5141\u8bb8\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":2,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":60,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":75,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":82,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":60,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd":60,"\u662f\u5426\u5f00\u542frdma":60,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":82,"\u662f\u5426\u652f\u6301gpu":60,"\u662f\u5426\u663e\u793a":82,"\u662f\u5426\u7a00\u758f":74,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":60,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":60,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":60,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":60,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":60,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":82,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":72,"\u662f\u56e0\u4e3ac99\u652f\u6301":34,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":71,"\u662f\u57fa\u7840\u7684\u8ba1\u7b97\u5355\u5143":59,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":74,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":74,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":67,"\u662f\u6211\u4eec":73,"\u662f\u6307":35,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":68,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":68,"\u662f\u6570\u636e\u8f93\u5165":71,"\u662f\u6709\u610f\u4e49\u7684":68,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":71,"\u662f\u6a21\u578b\u53c2\u6570\u4f18\u5316\u7684\u76ee\u6807\u51fd\u6570":59,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":72,"\u662f\u7528\u6237\u4f7f\u7528c":35,"\u662f\u7684":72,"\u662f\u77e9\u9635":74,"\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u5165\u53e3":59,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":74,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":74,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u662f\u8f93\u5165":71,"\u662f\u8fd9\u4e00\u7c7b\u7684":57,"\u662f\u901a\u7528\u7269\u4f53\u5206\u7c7b\u9886\u57df\u4e00\u4e2a\u4f17\u6240\u5468\u77e5\u7684\u6570\u636e\u5e93":94,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":79,"\u662fc":35,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":70,"\u662fgoogle\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":85,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":79,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":70,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":95,"\u662fpod\u5185\u7684\u5bb9\u5668\u90fd\u53ef\u4ee5\u8bbf\u95ee\u7684\u5171\u4eab\u76ee\u5f55":85,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":74,"\u662frnn\u72b6\u6001":71,"\u663e":95,"\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u662f\u4e00\u4e2a28":2,"\u665a":68,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":62,"\u6682\u4e0d\u8003\u8651\u5728\u5185":56,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":20,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":35,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":72,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":53,"\u66f4\u591a\u7684\u7f16\u8bd1\u914d\u7f6e\u89c1":66,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":76,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":70,"\u66f4\u5feb":71,"\u66f4\u65b0":53,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":72,"\u66f4\u65b0\u6a21\u5f0f":56,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":77,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":56,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":58,"\u66f4\u8be6\u7ec6\u6570\u636e\u683c\u5f0f\u548c\u7528\u4f8b\u8bf7\u53c2\u8003":95,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e\u8fde\u63a5\u8bf7\u53c2\u8003":95,"\u66f4\u8be6\u7ec6\u7684\u8bf4\u660e":95,"\u66f4\u8fdb\u4e00\u6b65":70,"\u66f4\u9ad8":71,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":70,"\u6700":68,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":87,"\u6700\u4f73\u63a8\u8350":2,"\u6700\u540e":[2,73,74,80,95],"\u6700\u540e\u4e00\u4e2a":67,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":63,"\u6700\u540e\u4e00\u90e8\u5206\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e":59,"\u6700\u540e\u518d\u8c03\u7528mutabl":76,"\u6700\u540e\u5220\u9664":47,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":74,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":82,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":34,"\u6700\u65b0\u7684\u4ee3\u7801":73,"\u6700\u65b0\u7684paddlepaddl":53,"\u6700\u7ec8":74,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":70,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":63,"\u6700\u7ec8\u751f\u6210\u540d\u4e3apaddl":61,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":70,"\u6700\u7ec8\u8d8b\u4e8e\u63a5\u8fd1":59,"\u6708\u6e56":68,"\u6709":68,"\u6709\u4e00\u4e2a\u57fa\u672c\u7684\u8ba4\u8bc6":85,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[65,66],"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":74,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":74,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":56,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":72,"\u6709\u5173":68,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":65,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":63,"\u6709\u5173kubernetes\u76f8\u5173\u6982\u5ff5\u4ee5\u53ca\u5982\u4f55\u642d\u5efa\u548c\u914d\u7f6ekubernetes\u96c6\u7fa4":87,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":80,"\u6709\u591a\u96be":72,"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":72,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":72,"\u6709\u6807\u51c6\u7684":34,"\u6709\u7684\u65f6\u5019":34,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":79,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":53,"\u670d\u52a1":68,"\u670d\u52a1\u5458":68,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":58,"\u672a\u77e5\u8bcd":93,"\u672c\u4f8b\u4e2d\u4e3a0":93,"\u672c\u4f8b\u4e2d\u4e3a32":93,"\u672c\u4f8b\u4e2d\u4e3a4":93,"\u672c\u4f8b\u4e2d\u4f7f\u7528for\u5faa\u73af\u8fdb\u884c\u591a\u6b21\u8c03\u7528":2,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":68,"\u672c\u4f8b\u4e2d\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":2,"\u672c\u4f8b\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d":2,"\u672c\u4f8b\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":95,"\u672c\u4f8b\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u6587\u672c\u5206\u7c7b\u7f51\u7edc\u914d\u7f6e":95,"\u672c\u4f8b\u7684":2,"\u672c\u4f8b\u7684\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":95,"\u672c\u4f8b\u91c7\u7528\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":2,"\u672c\u4f8b\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":95,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":47,"\u672c\u5730":53,"\u672c\u5730\u6d4b\u8bd5":81,"\u672c\u5730\u8bad\u7ec3":81,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":55,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":84,"\u672c\u5b9e\u4f8b\u4e2d":93,"\u672c\u5c0f\u8282\u6211\u4eec\u5c06\u4ecb\u7ecd\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":95,"\u672c\u5c42\u5c3a\u5bf8":94,"\u672c\u5c42\u6709\u56db\u4e2a\u53c2\u6570":94,"\u672c\u6559\u7a0b\u4e2d\u6211\u4eec\u7ed9\u51fa\u4e86\u4e09\u4e2aresnet\u6a21\u578b":94,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":75,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":71,"\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7528\u4e8eimagenet\u4e0a\u7684\u5377\u79ef\u5206\u7c7b\u7f51\u7edc\u6a21\u578b":94,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":68,"\u672c\u6587\u4e2d\u7531\u4e8e\u8f93\u5165\u6570\u636e\u662f\u968f\u673a\u751f\u6210\u7684\u4e0d\u9700\u8981\u8bfb\u8f93\u5165\u6587\u4ef6":59,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":72,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":68,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":68,"\u672c\u6587\u53ea\u4f7f\u7528\u4e86\u9ed8\u8ba4\u547d\u540d\u7a7a\u95f4":85,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":87,"\u672c\u6587\u6863\u4ecb\u7ecd\u5982\u4f55\u5728paddlepaddle\u5e73\u53f0\u4e0a":93,"\u672c\u6587\u6863\u5185\u4e0d\u91cd\u590d\u4ecb\u7ecd":85,"\u672c\u6587\u6863\u5c06\u4ee5linux":65,"\u672c\u6587\u6863\u63cf\u8ff0paddl":35,"\u672c\u6765":68,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":87,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":87,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":87,"\u672c\u6b21\u8bd5\u9a8c":95,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":68,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":68,"\u673a\u5668\u7684\u8bbe\u5907":84,"\u673a\u5668\u7ffb\u8bd1":47,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":82,"\u6761\u4ef6\u4e0b":85,"\u6765":68,"\u6765\u4e0b\u8f7ddocker\u955c\u50cf":61,"\u6765\u4ee3\u66ff":73,"\u6765\u4f7f\u7528\u4e00\u4e2a\u955c\u50cf\u542f\u52a8\u4e00\u4e2a\u5bb9\u5668":61,"\u6765\u4f7f\u7528dropout":57,"\u6765\u4f7f\u7528dropout\u7684":57,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":20,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":74,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":79,"\u6765\u5217\u51fa\u5f53\u524d\u7cfb\u7edf\u4e2d\u7684\u6240\u6709\u955c\u50cf":61,"\u6765\u521d\u59cb\u5316\u53c2\u6570":58,"\u6765\u542f\u52a8\u548c":72,"\u6765\u5b89\u88c5":80,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":63,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":68,"\u6765\u5e2e\u52a9\u4f60\u7406\u89e3paddlepaddle\u7684\u5185\u90e8\u8fd0\u884c\u673a\u5236":95,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[65,66],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":74,"\u6765\u6267\u884c":72,"\u6765\u6307\u5b9a\u7f51\u7edc\u5c42\u7684\u6570\u76ee":94,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684\u51fd\u6570\u4ee5\u4fdd\u8bc1\u517c\u5bb9\u6027":2,"\u6765\u63cf\u8ff0\u7684":76,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":63,"\u6765\u6ce8\u518c\u8be5\u5c42":74,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":84,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":72,"\u6765\u786e\u4fdd\u628a":34,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":2,"\u6765\u7f16\u8bd1":72,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":1,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u6765\u8868\u793a":71,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":34,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":56,"\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":68,"\u6765\u8bbe\u7f6e":58,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":21,"\u6765\u8bf4\u660epydataprovider2\u7684\u7b80\u5355\u4f7f\u7528\u573a\u666f":2,"\u6765\u8c03\u6574":73,"\u6765\u8c03\u7528":72,"\u6765\u8fd0\u884c":80,"\u6765\u8fd0\u884c\u5305\u62ec":72,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":72,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":79,"\u6765\u8fd0\u884c\u955c\u50cf":61,"\u6765\u8fdb\u884c\u8ba8\u8bba":35,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":56,"\u676f\u5b50":68,"\u6784\u5efa":65,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":67,"\u6784\u9020":87,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":75,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":75,"\u6784\u9020paddl":4,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":68,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":81,"\u67e5\u770b":[73,95],"\u67e5\u770b\u5f53\u524d\u72b6\u6001":73,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":73,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":73,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":54,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":86,"\u6807\u51c6\u5dee\u4e3a":58,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":47,"\u6807\u7b7e\u4e0b\u627e\u5230\u6700\u65b0\u7684paddle\u955c\u50cf\u7248\u672c":61,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":82,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":72,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":84,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":87,"\u6839\u636e\u5728\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u7684\u540d\u4e3a":80,"\u6839\u636e\u7528\u6237\u6307\u5b9a\u7684\u5b57\u5178":93,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":82,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":76,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":81,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":82,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":82,"\u6839\u636ecpu":61,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":86,"\u683c\u5f0f":82,"\u683c\u5f0f\u5982\u4e0b":95,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":75,"\u683c\u5f0f\u8bf4\u660e":93,"\u68af\u5ea6\u4f1a\u5c31\u5730":74,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":82,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":74,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":82,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":74,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":74,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":20,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":75,"\u68d2":95,"\u697c\u5c42":68,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":76,"\u6a21\u5757\u4e2d\u7684":2,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":56,"\u6a21\u578b\u5171\u5305\u542b1":93,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":20,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":95,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":20,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":80,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":71,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":71,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":71,"\u6a21\u578b\u7684\u7ed3\u6784\u548c\u8bad\u7ec3\u8fc7\u7a0b":93,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":71,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u7c7b\u4f3c\u4e0a\u9762\u8fd9\u6837\u7684\u65e5\u5fd7\u4fe1\u606f":95,"\u6a21\u578b\u8bad\u7ec3\u548c\u6700\u540e\u7684\u7ed3\u679c\u9a8c\u8bc1":59,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":63,"\u6a21\u578b\u8def\u5f84":94,"\u6a21\u578b\u914d\u7f6e":[0,55],"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":34,"\u6a21\u578b\u91c7\u7528":93,"\u6a21\u578b\u9884\u6d4b":4,"\u6a2a\u5411\u62fc\u63a5":56,"\u6b21":68,"\u6b22\u8fce\u901a\u8fc7":73,"\u6b63\u6837\u672c":95,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":53,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":81,"\u6b64\u547d\u4ee4\u5c06\u5728your":65,"\u6b64\u5904":93,"\u6b64\u5904\u90fd\u4e3a2":68,"\u6b64\u5916":[57,65,72,73],"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":79,"\u6b64\u65f6\u53ea\u9700\u8981":72,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":56,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":58,"\u6b64\u65f6\u60a8\u53ef\u4ee5\u8fd0\u884c\u8fd9\u4e2a\u547d\u4ee4\u5728\u5f00\u53d1\u673a\u4e0a\u8fdb\u884c\u6d4b\u8bd5\u8fd0\u884c":61,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":20,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":54,"\u6b65\u9aa4":56,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":70,"\u6bcf\u4e00\u4e2a":47,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u5982\u4e0b\u4e94\u4e2a\u6b65\u9aa4":95,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":21,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":68,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":68,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":80,"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":56,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":68,"\u6bcf\u4e2a":80,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":21,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u6bcf\u4e2a\u5355\u5c42rnn":70,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":68,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":71,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":71,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":68,"\u6bcf\u4e2a\u5c42\u5728\u5176":74,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":95,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":82,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":70,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":68,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":74,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":68,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":68,"\u6bcf\u4e2a\u72b6\u6001":70,"\u6bcf\u4e2a\u7ebf\u7a0b":82,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":82,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":82,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":74,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":74,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":73,"\u6bcf\u4e2adata":21,"\u6bcf\u4e2aparamet":20,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":95,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":95,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":87,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":20,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":82,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":84,"\u6bcf\u6279\u6b21":82,"\u6bcf\u6b21":61,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":73,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":73,"\u6bcf\u6b21\u8bfb\u53d6\u4e00\u6761\u6570\u636e\u540e":95,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":21,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":2,"\u6bcf\u884c\u5b58\u50a8\u4e00\u4e2a\u8bcd":93,"\u6bcf\u884c\u5b58\u50a8\u7684\u662f\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81":94,"\u6bcf\u884c\u6253\u537032\u4e2a\u53c2\u6570\u4ee5":93,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":74,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":82,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":82,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":82,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":82,"\u6bcf\u969410\u5206\u949f":20,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":95,"\u6bcfdot":82,"\u6bcflog":82,"\u6bcfsave":82,"\u6bcftest":82,"\u6bd4\u5982":[21,54,56,61,65,72,73,95],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":68,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":73,"\u6bd4\u5982\u5c06":47,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[65,66],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":20,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":21,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":58,"\u6bd4\u5982\u901a\u8fc78080\u7aef\u53e3":85,"\u6bd4\u5982fpe":54,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":73,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":21,"\u6c34\u6e29":68,"\u6c49\u5ead":68,"\u6ca1":68,"\u6ca1\u6709\u4f5c\u7528":2,"\u6ca1\u6709\u5b9e\u9645\u610f\u4e49":93,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":53,"\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":2,"\u6ca1\u6709\u8bbe\u7f6e":[65,66],"\u6ce8":[20,61],"\u6ce8\u518c":75,"\u6ce8\u518ccpu":75,"\u6ce8\u518cop":75,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":75,"\u6ce8\u610f":[2,60,61,63,65,66,71,74,87],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":87,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":84,"\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38\u4e0d\u5305\u542blabel":4,"\u6ce8\u610fnode":87,"\u6ce8\u91ca":75,"\u6cf3\u6c60":68,"\u6d41":68,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":73,"\u6d44":68,"\u6d4b\u8bd5":73,"\u6d4b\u8bd5\u524d\u5411oper":75,"\u6d4b\u8bd5\u6570\u636e":80,"\u6d4b\u8bd5\u6570\u636e\u4e5f\u5305\u542b":80,"\u6d4b\u8bd5\u6570\u636e\u548c\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":80,"\u6d4b\u8bd5\u6570\u636e\u653e\u7f6e\u5728\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u4e0d\u540c\u76ee\u5f55\u7684\u8981\u6c42":80,"\u6d4b\u8bd5\u6570\u636e\u7684\u6240\u6709\u76f8\u5bf9\u6216\u7edd\u5bf9\u6587\u4ef6\u8def\u5f84":80,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":82,"\u6d4b\u8bd5\u65f6\u9ed8\u8ba4\u4e0dshuffl":2,"\u6d4b\u8bd5\u662f":73,"\u6d4b\u8bd5\u6837\u672c":80,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":84,"\u6d4b\u8bd5docker\u955c\u50cf":47,"\u6d4b\u8bd5model_list":81,"\u6d4b\u8bd5save_dir":81,"\u6d4f\u89c8\u4ee3\u7801":61,"\u6d6e\u70b9\u578b\u6570\u636e":21,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u6d6e\u70b9\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":93,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":74,"\u6df1\u5ea6\u5b66\u4e60\u5165\u95e8\u8bfe\u7a0b":64,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":71,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":75,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":87,"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":75,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":75,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":75,"\u6e05\u7406":72,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":53,"\u6e29\u99a8":68,"\u6e90\u4ee3\u7801":[61,95],"\u6e90\u4ee3\u7801\u683c\u5f0f":73,"\u6e90\u5e8f\u5217":71,"\u6e90\u7801":61,"\u6e90\u7801\u4e0edemo":86,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":72,"\u6e90\u7801\u7f16\u8bd1paddlepaddl":66,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u5171\u4eab\u76f8\u540c\u7684\u7f16\u7801\u5b57\u5178":93,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u90fd\u662f\u76f8\u540c\u7684\u8bed\u8a00":93,"\u6e90\u8bed\u8a00\u77ed\u8bed\u548c\u76ee\u6807\u8bed\u8a00\u77ed\u8bed\u7684\u5b57\u5178\u5c06\u88ab\u5408\u5e76":93,"\u6ee4\u6ce2\u5668\u6838\u5728\u5782\u76f4\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":94,"\u6ee4\u6ce2\u5668\u6838\u5728\u6c34\u5e73\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":94,"\u6fc0\u6d3b":74,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":95,"\u6fc0\u6d3b\u65b9\u7a0b":74,"\u6fc0\u6d3b\u7684\u7c7b\u578b":74,"\u70ed\u60c5":68,"\u7136\u540e":[79,80,93],"\u7136\u540e\u4ea4\u7ed9\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u51fd\u6570":59,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":70,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":76,"\u7136\u540e\u5229\u7528\u89c2\u6d4b\u6570\u636e\u8c03\u6574":59,"\u7136\u540e\u5355\u51fb":73,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":87,"\u7136\u540e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u56fe\u7247":94,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":68,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":61,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":58,"\u7136\u540e\u5728etcd\u7684":20,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":53,"\u7136\u540e\u5b9a\u4e49":71,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":87,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":57,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u6240\u6709\u7528":73,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7136\u540e\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":94,"\u7136\u540e\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":86,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":73,"\u7136\u540e\u70b9\u51fb":73,"\u7136\u540e\u7528\u5bc6\u7801":61,"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":87,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":74,"\u7136\u540e\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":2,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":87,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":87,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":53,"\u7136\u800c":[71,82],"\u7248\u672c":72,"\u7248\u672c\u5206\u652f":47,"\u7248\u672c\u53f7":47,"\u7248\u672c\u53f7rc":47,"\u7248\u672c\u5728":73,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":47,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":56,"\u7279\u5f81\u56fe\u5747\u503c":94,"\u7279\u5f81\u56fe\u65b9\u5dee":94,"\u7279\u5f81\u5c06\u4f1a\u5b58\u5230":94,"\u72ec\u7acb\u5de5\u5177\u94fe":65,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":65,"\u73af\u5883\u53d8\u91cf":87,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":56,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":34,"\u7406\u89e3":72,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":79,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":21,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":21,"\u751f\u4ea7\u955c\u50cf":[61,73],"\u751f\u4ea7\u955c\u50cf\u7684\u751f\u6210\u5206\u4e3a\u4e24\u6b65":61,"\u751f\u6210":87,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":34,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":77,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":71,"\u751f\u6210\u6587\u6863":34,"\u751f\u6210\u751f\u4ea7\u955c\u50cf\u53ea\u9700\u8981\u8fd0\u884c":61,"\u751f\u6210\u7684":21,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":87,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":56,"\u751f\u6210\u7684html\u7248\u672c\u7684c":61,"\u751f\u6210\u7ed9\u5b9a":21,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":74,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":73,"\u751f\u6210\u8fd0\u884c\u7a0b\u5e8f":61,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":75,"\u751f\u6210api\u6587\u6863":34,"\u751f\u6210docker\u955c\u50cf\u7684\u65b9\u5f0f\u6709\u4e24\u4e2a":61,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u7528":28,"\u75280\u548c1\u8868\u793a":2,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":95,"\u7528\u4e8e":80,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":74,"\u7528\u4e8e\u5c06\u4e0b\u4e00\u884c\u7684\u6570\u636e\u8f93\u5165\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":2,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":84,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":57,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":82,"\u7528\u4e8e\u653e\u7f6e":80,"\u7528\u4e8e\u6784\u6210\u65b0\u7684\u8bcd\u8868":93,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":75,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":82,"\u7528\u4e8e\u81ea\u5b9a\u4e49\u6bcf\u6761\u6570\u636e\u7684batch":2,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":57,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":71,"\u7528\u4e8e\u8bfb\u53d6\u8bad\u7ec3":80,"\u7528\u4e8e\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u6570":80,"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":71,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":68,"\u7528\u6237":80,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":21,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a":66,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":1,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":70,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u4ee3\u66ff\u914d\u7f6e\u672c\u5730\u73af\u5883":61,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528ssh\u767b\u5f55\u5230\u8fd9\u53f0\u670d\u52a1\u5668\u4e0a\u5e76\u6267\u884c":61,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":77,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":77,"\u7528\u6237\u53ef\u4ee5\u5728\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u4e2d\u770b\u5230":93,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":35,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":21,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3\u65e5\u5fd7":95,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":35,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":82,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":84,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u4f7f\u7528python\u63a5\u53e3":1,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8\u6587\u6863":61,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":60,"\u7528\u6237\u53ef\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":60,"\u7528\u6237\u53ef\u5c06":65,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":65,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80":66,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":65,"\u7528\u6237\u53ef\u901a\u8fc7\u4ea4\u53c9\u7f16\u8bd1\u7684\u65b9\u5f0f":65,"\u7528\u6237\u53ef\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":66,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":57,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":53,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":21,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570":2,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":58,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":87,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":53,"\u7528\u6237\u6307\u5b9a\u65b0\u7684\u5b57\u5178\u7684\u8def\u5f84":93,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[65,66],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[57,58],"\u7528\u6237\u901a\u8fc7c":35,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":84,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[65,66],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":53,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[65,66],"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":72,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":74,"\u7528\u6765\u4f30\u8ba1\u7ebf\u6027\u51fd\u6570\u7684\u53c2\u6570w":59,"\u7528\u6765\u8ba1\u7b97\u6a21\u578b\u7684\u8bef\u5dee":59,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":87,"\u7531":[57,70],"\u7531\u4e8e\u4e0a\u4e00\u6b65cmake\u914d\u7f6e\u4e2d":66,"\u7531\u4e8e\u4e0d\u540c\u7684paddle\u7684\u7248\u672c\u53ef\u80fd\u9700\u8981\u4e0d\u540c\u7684\u4f9d\u8d56\u548c\u5de5\u5177":61,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":68,"\u7531\u4e8e\u5bb9\u5668\u4e4b\u95f4\u5171\u4eabnet":85,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"\u7531\u4e8e\u5df2\u7ecf\u77e5\u9053\u4e86\u771f\u5b9e\u7b54\u6848":59,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":68,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":74,"\u7531\u4e8e\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8fde\u63a5\u7684\u662fbatch":94,"\u7531\u4e8e\u8fd9\u4e2a\u5730\u5740\u4f1a\u88abdataprovider\u4f7f\u7528":1,"\u7531\u4e8e\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":2,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":20,"\u7531\u4e8e\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u4e0d\u4f1a\u51fa\u73b0\u4e0a\u8ff0\u95ee\u9898":2,"\u7531\u4e8ec":34,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8eeigen":76,"\u7531\u4e8epaddlepaddle\u5df2\u7ecf\u5b9e\u73b0\u4e86\u4e30\u5bcc\u7684\u7f51\u7edc\u5c42":59,"\u7531\u4e8epypi":47,"\u7531\u4e8estep":70,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":76,"\u7531\u4e8etest_data\u5305\u542b\u4e24\u6761\u9884\u6d4b\u6570\u636e":4,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":67,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u7535\u8111":68,"\u7684":[68,72,73,76,80,86,87,95],"\u768410\u7ef4\u6574\u6570\u6807\u7b7e":2,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":70,"\u7684\u4e00\u4e2a\u7ebf\u6027\u51fd\u6570":59,"\u7684\u4e3a0":82,"\u7684\u4efb\u4e00\u4e00\u79cd":56,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":76,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":67,"\u7684\u503c":[65,66],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":65,"\u7684\u504f\u7f6e\u5411\u91cf":74,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":75,"\u7684\u5185\u5b58":56,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":87,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":79,"\u7684\u5206\u7c7b\u4efb\u52a1\u4e2d\u8d62\u5f97\u4e86\u7b2c\u4e00\u540d":94,"\u7684\u522b\u540d":[5,6,8],"\u7684\u5355\u5143\u6d4b\u8bd5":75,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":82,"\u7684\u53d8\u6362\u77e9\u9635":74,"\u7684\u540d\u5b57":2,"\u7684\u540d\u79f0\u76f8\u540c":71,"\u7684\u5411\u91cf":74,"\u7684\u542f\u52a8\u53c2\u6570":87,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":87,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":34,"\u7684\u5730\u5740":85,"\u7684\u5730\u65b9":73,"\u7684\u5747\u5300\u5206\u5e03":58,"\u7684\u5934\u6587\u4ef6":34,"\u7684\u5b9e\u73b0":75,"\u7684\u5dee\u8ddd\u4e0d\u65ad\u51cf\u5c0f":59,"\u7684\u5e73\u5747\u503c":67,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":68,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":73,"\u7684\u5f00\u53d1\u6d41\u7a0b":72,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":75,"\u7684\u603b":80,"\u7684\u63a5\u53e3\u6837\u5f0f":34,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":73,"\u7684\u64cd\u4f5c":76,"\u7684\u6570\u636e\u6d41\u56fe":21,"\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u7c7b\u4f3c\u4e8e":95,"\u7684\u6570\u76ee\u4e00\u81f4":67,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":73,"\u7684\u65b9\u5f0f":61,"\u7684\u65b9\u7a0b":74,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":56,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":68,"\u7684\u6700\u5c0f\u503c":82,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":73,"\u7684\u6784\u9020\u51fd\u6570":75,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":71,"\u7684\u6837\u5f0f":73,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":70,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":70,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":73,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":34,"\u7684\u7248\u672c":72,"\u7684\u7248\u672c\u53f7":93,"\u7684\u7279\u5f81":94,"\u7684\u72b6\u6001":70,"\u7684\u7528\u6237\u53c2\u8003":80,"\u7684\u771f\u5b9e\u5173\u7cfb\u4e3a":59,"\u7684\u77e9\u9635":[56,74],"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":74,"\u7684\u7b2ci\u4e2a\u503c":74,"\u7684\u7b2cj\u4e2a\u503c":74,"\u7684\u7cfb\u7edf":72,"\u7684\u7d22\u5f15\u6587\u4ef6\u5f15\u7528\u8bad\u7ec3":80,"\u7684\u7ef4\u5ea6":93,"\u7684\u7f29\u5199":28,"\u7684\u89c4\u8303":34,"\u7684\u89d2\u5ea6":21,"\u7684\u8ba1\u7b97\u4ee3\u7801":76,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":75,"\u7684\u8bad\u7ec3\u6a21\u578b\u811a\u672c":95,"\u7684\u8bdd":56,"\u7684\u8f93\u5165":70,"\u7684\u8f93\u51fa":79,"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":79,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":71,"\u7684\u8f93\u51fa\u683c\u5f0f":68,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":71,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":56,"\u7684\u8fd0\u884c\u73af\u5883":72,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":73,"\u7684\u90e8\u5206":80,"\u7684\u914d\u7f6e":93,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":21,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":72,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":73,"\u7684cpu":75,"\u7684docker\u955c\u50cf":61,"\u76ee\u524d":70,"\u76ee\u524d\u4f7f\u7528":73,"\u76ee\u524d\u53ea\u652f\u6301":65,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":20,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":34,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":[65,66],"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":67,"\u76ee\u524d\u652f\u6301fail":82,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":82,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":70,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":34,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":77,"\u76ee\u5f55":[65,66,72,80,86,87],"\u76ee\u5f55\u4e0b":[35,61,74,95],"\u76ee\u5f55\u4e0b\u627e\u5230":95,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":75,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":65,"\u76ee\u5f55\u4e0b\u7684demo\u8bad\u7ec3\u51fa\u6765":4,"\u76ee\u5f55\u4e0b\u7684python\u5305":53,"\u76ee\u5f55\u4e2d":80,"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[65,66],"\u76ee\u5f55\u4e2d\u7684":[79,80],"\u76ee\u5f55\u4e2dpaddl":87,"\u76ee\u5f55\u548c":[65,66],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":87,"\u76ee\u5f55\u91cc\u63d0\u4f9b\u4e86\u8be5\u6570\u636e\u7684\u4e0b\u8f7d\u811a\u672c\u548c\u9884\u5904\u7406\u811a\u672c":95,"\u76ee\u6807\u5411\u91cf":71,"\u76ee\u6807\u673a\u7248protobuf\u5e93":[65,66],"\u76ee\u6807\u67b6\u6784abi":65,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":58,"\u76f4\u5230\u903c\u8fd1\u771f\u5b9e\u89e3":59,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":34,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":35,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":34,"\u76f4\u63a5\u7f16\u8bd1raspberri":66,"\u76f4\u63a5\u8fd0\u884c":61,"\u76f4\u63a5\u8fd4\u56de\u8ba1\u7b97\u7ed3\u679c":4,"\u76f4\u63a5\u8fdb\u5165\u8bad\u7ec3\u6a21\u578b\u7ae0\u8282":95,"\u76f8\u5173\u6587\u6863":66,"\u76f8\u5173\u6587\u6863\u6240\u8ff0":66,"\u76f8\u5173\u6982\u5ff5\u662f":2,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":58,"\u76f8\u5bf9":68,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":1,"\u76f8\u5bf9mnist\u800c\u8a00":2,"\u76f8\u5e94\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u8bad\u7ec3\u6a21\u578b\u811a\u672c":95,"\u76f8\u5f53":68,"\u76f8\u6bd4":75,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":54,"\u77e9\u9635":81,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":75,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":73,"\u78c1\u76d8\u4e0d\u591f":72,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":54,"\u793a":95,"\u793a\u4f8b":[56,58,94],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":68,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":68,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":68,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":56,"\u793a\u4f8b\u5982\u4e0b":58,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":34,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":34,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":20,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":63,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":63,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":56,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":76,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":68,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":56,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":59,"\u79bb":68,"\u79bb\u7ebf\u6279\u5904\u7406":21,"\u79f0\u4e3a":[71,73],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":61,"\u79f0\u4e3a\u751f\u4ea7\u955c\u50cf":61,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":67,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":82,"\u79f0\u4f5c\u6709kernel":75,"\u79f0\u4f5ckernel":75,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":74,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":87,"\u7a00\u758f\u768401\u5411\u91cf":[2,63],"\u7a00\u758f\u7684\u5411\u91cf":[2,63],"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":84,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":87,"\u7a0b\u5e8f\u505c\u6b62":82,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":82,"\u7a20\u5bc6\u5411\u91cf":74,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":87,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":[2,63],"\u7a97\u6237":68,"\u7acb\u523b\u9000\u51fa":56,"\u7aef\u53e3":[54,80],"\u7aef\u53e3\u6570":80,"\u7aef\u53e3\u9644\u52a0\u5230\u4e3b\u673a\u540d\u4e0a":80,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":1,"\u7aef\u8bfb\u53d6\u6570\u636e":56,"\u7b2c":68,"\u7b2c\u4e00\u4e2a":73,"\u7b2c\u4e00\u4e2a\u53c2\u6570":75,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662fsettings\u5bf9\u8c61":2,"\u7b2c\u4e00\u4e2a\u65b9\u6cd5\u7684\u597d\u5904\u662f\u7b80\u5355\u5feb\u6377":61,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":68,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":2,"\u7b2c\u4e00\u4e2atag\u4e3a":47,"\u7b2c\u4e00\u5929":68,"\u7b2c\u4e00\u6b65\u662f\u8fd0\u884c":61,"\u7b2c\u4e00\u7ae0\u8282":63,"\u7b2c\u4e00\u884c\u5b58\u7684\u662f\u56fe\u50cf":94,"\u7b2c\u4e00\u884c\u662f":93,"\u7b2c\u4e00\u90e8\u5206\u5b9a\u4e49\u4e86\u6570\u636e\u8f93\u5165":59,"\u7b2c\u4e00\u90e8\u5206\u662f\u56fe\u7247\u7684\u6807\u7b7e":2,"\u7b2c\u4e09\u4e2a\u53c2\u6570":75,"\u7b2c\u4e09\u6b65":94,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":47,"\u7b2c\u4e8c\u4e2a":56,"\u7b2c\u4e8c\u4e2a\u4e3a":47,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":75,"\u7b2c\u4e8c\u4e2a\u65b9\u6cd5\u7684\u597d\u5904\u662fdockerfile\u53ef\u4ee5\u628a\u6574\u4e2a\u751f\u6210\u6d41\u7a0b\u63cf\u8ff0\u5f88\u6e05\u695a":61,"\u7b2c\u4e8c\u6b65":[93,94],"\u7b2c\u4e8c\u6b65\u662f\u8fd0\u884c":61,"\u7b2c\u4e8c\u7c7b":57,"\u7b2c\u4e8c\u884c\u5b58\u7684\u662f\u56fe\u50cf":94,"\u7b2c\u4e8c\u90e8\u5206\u4e3b\u8981\u662f\u9009\u62e9\u5b66\u4e60\u7b97\u6cd5":59,"\u7b2c\u4e8c\u90e8\u5206\u662f28":2,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":74,"\u7b49":[35,54,75],"\u7b49\u4e8e\u6837\u672c\u6570":56,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":35,"\u7b49\u53c2\u6570":87,"\u7b49\u591a\u79cd\u516c\u6709\u4e91\u73af\u5883":85,"\u7b49\u5f85\u8fd9\u4e2a\u7a0b\u5e8f\u6267\u884c\u6210\u529f\u5e76\u8fd4\u56de0\u5219\u6210\u529f\u9000\u51fa":85,"\u7b49\u6587\u4ef6":35,"\u7b49\u7b49":95,"\u7b49\u90fd\u5c5e\u4e8e\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4":85,"\u7b80\u4ecb":78,"\u7b80\u5199":75,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":75,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":75,"\u7b80\u5355\u6765\u8bf4":79,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":58,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":79,"\u7b80\u5355\u7684pydataprovider2\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":2,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":86,"\u7b80\u76f4":68,"\u7b97\u6cd5":[56,59,71],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":71,"\u7c7b\u4f3c":[35,67],"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":74,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":81,"\u7c7b\u522bid":95,"\u7c7b\u522bid\u548c\u6587\u672c\u4fe1\u606f\u7528":95,"\u7c7b\u540d\u548cc":34,"\u7c7b\u578b":[34,75,82],"\u7c7b\u578b\u4e3a":75,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":76,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":67,"\u7c7b\u578b\u540d\u4e3a":75,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":56,"\u7c7b\u578b\u662fsparse_binary_vector":[2,63],"\u7c7b\u578b\u662fsparse_float_vector":[2,63],"\u7c7b\u578b\u6765\u8bbe\u7f6e":2,"\u7c7b\u578b\u7684":68,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":75,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":75,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":74,"\u7c7b\u91cd\u5199":75,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":74,"\u7cfb\u6570":75,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":75,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":75,"\u7ea2\u697c\u68a6":93,"\u7eafcpu\u955c\u50cf\u4ee5\u53cagpu\u955c\u50cf\u90fd\u4f1a\u7528\u5230avx\u6307\u4ee4\u96c6":61,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165\u662f\u4e00\u6279\u70b9":59,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u51fa\u662f\u4ece\u8fd9\u6279\u70b9\u4f30\u8ba1\u51fa\u6765\u7684\u53c2\u6570":59,"\u7ebf\u6027\u8ba1\u7b97\u7f51\u7edc\u5c42":59,"\u7ebf\u7a0bid\u53f7":84,"\u7ec6\u8282\u63cf\u8ff0":83,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":56,"\u7ed3\u5408":85,"\u7ed3\u5c3e":75,"\u7ed3\u675f\u6807\u8bb0":71,"\u7ed3\u6784\u5982\u4e0b\u56fe":93,"\u7ed3\u679c\u8f93\u51fa\u5230":72,"\u7ed3\u8bba":34,"\u7ed9":68,"\u7ed9\u4e2a\u7b80\u5355\u7684":73,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":70,"\u7edf\u4e00\u7528":21,"\u7ee7\u627f\u81ea":75,"\u7ee7\u627f\u81eaoperatorbas":75,"\u7ee7\u7eed\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":68,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":68,"\u7ef4\u5ea6\u4e3aword_dim":95,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":95,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":95,"\u7ef4\u62a4":85,"\u7ef4\u7a7a\u95f4":71,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":71,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":56,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":2,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":87,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":87,"\u7f16\u53f7\u4ece0\u5f00\u59cb":56,"\u7f16\u7801\u5411\u91cf":71,"\u7f16\u7801\u5668\u8f93\u51fa":71,"\u7f16\u7801\u6e90\u5e8f\u5217":71,"\u7f16\u8bd1":[61,72,73],"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":66,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":65,"\u7f16\u8bd1\u548c\u6267\u884c":75,"\u7f16\u8bd1\u5668":[65,66],"\u7f16\u8bd1\u5668\u6ca1\u6709":34,"\u7f16\u8bd1\u578b\u8bed\u8a00":34,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":55,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":77,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":66,"\u7f16\u8bd1\u6210\u529f\u540e":75,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":82,"\u7f16\u8bd1\u6d41\u7a0b\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":62,"\u7f16\u8bd1\u751f\u6210":77,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":47,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684ubuntu":47,"\u7f16\u8bd1\u9009\u9879":60,"\u7f16\u8bd1c":35,"\u7f16\u8bd1master\u5206\u652f\u7684docker\u53d1\u884c\u955c\u50cf":47,"\u7f16\u8bd1paddlepaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":78,"\u7f16\u8bd1ubuntu\u7684deb\u5305":47,"\u7f16\u8f91":85,"\u7f29\u653e\u53c2\u6570":94,"\u7f51\u7edc\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":85,"\u7f51\u7edc\u540d\u79f0":95,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":74,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":74,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":74,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":82,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":74,"\u7f51\u7edc\u63a5\u53e3\u5361":80,"\u7f51\u7edc\u6a21\u5757":94,"\u7f51\u7edc\u901a\u4fe1":74,"\u7f51\u7edc\u914d\u7f6e":[80,95],"\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":94,"\u800c":[57,59,71,75,86],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":35,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":34,"\u800c\u4e0d\u662f\u4f7f\u7528\u540c\u6b65":80,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":57,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":53,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":68,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":35,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93":2,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":82,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":79,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":79,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":84,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":20,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":68,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":57,"\u800c\u53f3\u56fe\u7684\u74f6\u9888\u8fde\u63a5\u6a21\u5757\u7528\u4e8e50\u5c42":94,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":76,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":34,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":34,"\u800c\u5b89\u88c5\u5305":53,"\u800c\u5b89\u88c5\u5305\u662f":53,"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":68,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":68,"\u800c\u5bf9\u4e8egolang":34,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":34,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":68,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":79,"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":56,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":35,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":21,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":79,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":81,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":71,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":63,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":84,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":76,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":68,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38\u5927":2,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":68,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":73,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":60,"\u800ceigenvector":76,"\u800cpaddlepaddle\u5219\u4f1a\u5e2e\u7528\u6237\u505a\u4ee5\u4e0b\u5de5\u4f5c":2,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":70,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":34,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":63,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":63,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":70,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":70,"\u80fd\u591f\u627e\u5230\u8fd9\u91cc\u4f7f\u7528\u7684\u6240\u6709\u6570\u636e":95,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":70,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":57,"\u80fd\u83b7\u53d6":80,"\u811a\u672c":[72,80],"\u811a\u672c\u5f00\u59cb\u65f6":87,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":73,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":80,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":70,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":20,"\u81ea\u52a8\u751f\u6210":77,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":71,"\u81ea\u5e95\u5411\u4e0a\u6cd5":95,"\u81ea\u6b64":65,"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":72,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":84,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":35,"\u81f3\u6b64":[2,68,73],"\u8212\u9002":68,"\u826f\u597d\u7684\u6587\u6863":34,"\u8282\u70b9\u4e2d\u7684":80,"\u82e5":74,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":58,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[65,66],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":67,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":79,"\u82e5\u6709\u5fc5\u8981":74,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":65,"\u82e5\u73af\u5883\u53d8\u91cf":[65,66],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":57,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":67,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":67,"\u82f1\u6587\u6587\u6863":77,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":77,"\u8303\u56f4":84,"\u83b7\u53d6":73,"\u83b7\u53d6\u5229\u7528":95,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":53,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":20,"\u83b7\u53d6\u6e90\u7801":72,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":95,"\u83b7\u53d6trainer":87,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":74,"\u865a\u62df\u673a\u4e0a":72,"\u867d\u7136":59,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":35,"\u867d\u7136\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":2,"\u867d\u7136\u8fd9\u4e9b\u6587\u4ef6\u5e76\u975e\u90fd\u9700\u8981\u96c6\u7fa4\u8bad\u7ec3":80,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":81,"\u884c":93,"\u884c\u4f18\u5148\u6b21\u5e8f\u5b58\u50a8":94,"\u884c\u5185\u4f7f\u7528":2,"\u884c\u955c\u50cf\u5305\u62ec\u7eafcpu\u7248\u672c\u548cgpu\u7248\u672c\u4ee5\u53ca\u5176\u5bf9\u5e94\u7684\u975eavx\u7248\u672c":61,"\u8865\u5145\u4e0a\u6b21\u7684commit":73,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":74,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":74,"\u8868\u793a":75,"\u8868\u793a\u4e00\u4e2akubernetes\u96c6\u7fa4\u4e2d\u7684\u4e00\u4e2a\u5de5\u4f5c\u8282\u70b9":85,"\u8868\u793a\u4e3adeviceid":84,"\u8868\u793a\u5728\u96c6\u7fa4\u4f5c\u4e1a":80,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":68,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":80,"\u8868\u793a\u6570\u636e\u7c7b\u578b":75,"\u8868\u793a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":80,"\u8868\u793a\u7528\u4e8e\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":95,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":75,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":87,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":95,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":95,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":87,"\u88ab":73,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"\u88ab\u653e\u5728":74,"\u88ab\u79f0\u4e3a":71,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":79,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u8981\u5728\u6240\u6709\u8282\u70b9\u4e0a\u5b58\u5728":80,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":67,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":70,"\u8981\u8c03\u7528":74,"\u89e3\u51b3\u529e\u6cd5\u662f":53,"\u89e3\u51b3\u65b9\u6848\u662f":58,"\u89e3\u6790\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":4,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":87,"\u89e3\u6790\u8bad\u7ec3\u6a21\u578b\u65f6\u7528\u7684\u914d\u7f6e\u6587\u4ef6":4,"\u89e3\u7801\u5668\u4f7f\u7528":71,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":71,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u89e3\u91ca":95,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":34,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":34,"\u8ba1\u7b97":71,"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u5355\u5143\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u6838\u5fc3":59,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":71,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":74,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":57,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":71,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":74,"\u8ba1\u7b97\u8bef\u5dee\u51fd\u6570":59,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":74,"\u8ba1\u7b97\u8f93\u51fa":74,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":20,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":76,"\u8ba9\u6a21\u578b\u80fd\u591f\u5f97\u5230\u8bad\u7ec3\u66f4\u65b0":95,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3\u6216\u9884\u6d4b":1,"\u8ba9paddle\u6838\u5fc3\u4e2d":35,"\u8bad\u7ec3":81,"\u8bad\u7ec3\u4e0e\u5e94\u7528":0,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":20,"\u8bad\u7ec3\u4f5c\u4e1a":80,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":47,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":80,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":79,"\u8bad\u7ec3\u5b8c\u6210\u540e":59,"\u8bad\u7ec3\u6570\u636e\u662f":2,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":56,"\u8bad\u7ec3\u65f6":87,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":95,"\u8bad\u7ec3\u65f6\u9ed8\u8ba4shuffl":2,"\u8bad\u7ec3\u6a21\u578b\u540e":71,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":47,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":87,"\u8bad\u7ec3\u811a\u672c":95,"\u8bad\u7ec3\u811a\u672c\u7b49\u7b49":95,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":87,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":56,"\u8bad\u7ec3\u8f6e\u6b21":95,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":56,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":81,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":82,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":82,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":82,"\u8bad\u7ec3dot_period":81,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":47,"\u8bb0\u5fc6\u6a21\u5757":71,"\u8bba\u6587":94,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":80,"\u8bbe\u4e3a\u672c\u5730":80,"\u8bbe\u5b9a":57,"\u8bbe\u7f6e":[35,56,57],"\u8bbe\u7f6e\u4e3a":[66,74],"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":57,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":82,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":82,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":57,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":58,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":2,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":2,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":58,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[56,78],"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":58,"\u8bbe\u7f6e\u6210":58,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":56,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":75,"\u8bbe\u7f6e\u8fd9\u4e2apydataprovider2\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":2,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":84,"\u8bbe\u7f6egpu":82,"\u8bbf\u95ee\u5230\u4e3b\u673a\u4e0a\u7684\u6587\u4ef6":61,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":87,"\u8bc4\u4ef7\u9884\u6d4b\u7684\u6548\u679c":59,"\u8bc4\u4f30\u8be5\u4ea7\u54c1\u7684\u8d28\u91cf":95,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":73,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":73,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":73,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":73,"\u8bc6\u522b\u6570\u5b57":47,"\u8bcd\u5411\u91cf":[47,93],"\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":93,"\u8bcd\u672c\u8eab\u548c\u8bcd\u9891":93,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":79,"\u8be5":80,"\u8be5\u51fd\u6570\u5177\u6709\u4e24\u4e2a\u53c2\u6570":2,"\u8be5\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":2,"\u8be5\u51fd\u6570\u7684\u529f\u80fd\u662f":2,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":82,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":82,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":82,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":82,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":82,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":82,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":82,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":82,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":82,"\u8be5\u5bf9\u8c61\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u5c5e\u6027":2,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":74,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":95,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":82,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":74,"\u8be5\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":2,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":60,"\u8be5\u6570\u636e\u96c6":93,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":82,"\u8be5\u6587\u4ef6\u662f\u7531cpickle\u4ea7\u751f\u7684":94,"\u8be5\u6a21\u578b\u4f9d\u7136\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":95,"\u8be5\u6a21\u578b\u7684\u7f51\u7edc\u914d\u7f6e\u5982\u4e0b":59,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":71,"\u8be5\u7b97\u6cd5\u6bcf\u6279\u91cf":59,"\u8be5\u7c7b\u7684":75,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":74,"\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u7cfb\u7edfglibc\u652f\u63012":66,"\u8be5\u811a\u672c\u4f1a\u751f\u6210\u4e00\u4e2adot\u6587\u4ef6":94,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":74,"\u8be5github\u4ed3\u5e93\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u9884\u7f16\u8bd1\u597d\u7684":66,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":57,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":68,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":75,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":80,"\u8be6\u7ec6\u5185\u5bb9\u8bf7\u53c2\u89c1":95,"\u8be6\u7ec6\u53ef\u53c2\u8003":73,"\u8be6\u7ec6\u5730\u5c55\u793a\u4e86\u6574\u4e2a\u7279\u5f81\u63d0\u53d6\u7684\u8fc7\u7a0b":94,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":56,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca":95,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":60,"\u8be6\u7ec6\u89c1":67,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":47,"\u8bed\u8a00\u6a21\u578b":93,"\u8bf4\u660e":[20,60,87],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":73,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":74,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":75,"\u8bf7\u4fdd\u8bc1travi":73,"\u8bf7\u5148\u4f7f\u7528":[65,66],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":84,"\u8bf7\u53c2\u8003":[2,35,53,56,63,68,74,75,95],"\u8bf7\u53c2\u8003\u5982\u4e0b\u8868\u683c":95,"\u8bf7\u53c2\u89c1":73,"\u8bf7\u53c2\u9605":71,"\u8bf7\u5728\u8be5pull":73,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":73,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":73,"\u8bf7\u628a\u6587\u6863\u91cc\u547d\u4ee4\u4e2d\u7684paddlepaddl":61,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":82,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":75,"\u8bf7\u67e5\u770b":93,"\u8bf7\u6ce8\u610f":[61,71,75,86,93],"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":73,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":72,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":73,"\u8bf7\u76f4\u63a5\u586b\u51450":58,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":84,"\u8bf7\u786e\u4fdd":73,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":73,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":73,"\u8bf7\u8bb0\u4f4f":80,"\u8bf7\u8fd0\u884c":61,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":73,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":53,"\u8bf7\u9075\u5b88":73,"\u8bf7\u91c7\u7528":73,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":84,"\u8bfb\u53d612\u4e2a\u91c7\u6837\u6570\u636e\u8fdb\u884c\u968f\u673a\u68af\u5ea6\u8ba1\u7b97\u6765\u66f4\u65b0\u66f4\u65b0":59,"\u8bfb\u53d6\u6570\u636e":2,"\u8bfb\u53d6\u6bcf\u4e00\u884c":2,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":87,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":87,"\u8c03\u7528":[74,75],"\u8c03\u7528\u4e00\u6b21":2,"\u8c03\u7528\u4e0a\u9762\u7684process\u51fd\u6570\u83b7\u5f97\u89c2\u6d4b\u6570\u636e":59,"\u8c03\u7528\u5bf9\u5e94":76,"\u8c03\u7528\u65b9\u6cd5\u89c1c":65,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":75,"\u8c03\u7528\u7684pydataprovider2\u662f":2,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":2,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":74,"\u8c03\u7528\u8fd9\u4e2apydataprovider2\u7684\u65b9\u6cd5":2,"\u8d1f\u6837\u672c":95,"\u8d21\u732e\u6587\u6863":77,"\u8d44\u6e90\u5bf9\u8c61\u7684\u540d\u5b57\u662f\u552f\u4e00\u7684":85,"\u8d77":68,"\u8def\u5f84\u4e0b":[59,94],"\u8df3\u8f6c\u5230":73,"\u8df3\u8fc7":56,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":21,"\u8f6c\u6362\u8fc7\u6765\u7684":94,"\u8f83":68,"\u8f93\u5165":[67,71],"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":70,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":70,"\u8f93\u5165\u5c42\u5c3a\u5bf8":94,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":56,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":68,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":68,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":68,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":84,"\u8f93\u5165\u6587\u672c":93,"\u8f93\u5165\u6587\u672c\u4e2d\u6ca1\u6709\u5934\u90e8":93,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":74,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":74,"\u8f93\u5165\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":94,"\u8f93\u5165\u7684":93,"\u8f93\u5165\u7684\u540d\u5b57":74,"\u8f93\u5165\u7684\u5927\u5c0f":74,"\u8f93\u5165\u7684\u6587\u672c\u683c\u5f0f\u5982\u4e0b":93,"\u8f93\u5165\u7684\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":93,"\u8f93\u5165\u7684\u7c7b\u578b":74,"\u8f93\u5165n\u4e2a\u5355\u8bcd":95,"\u8f93\u51fa":[67,71,75],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":70,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":70,"\u8f93\u51fa\u4e3an\u4e2aword_dim\u7ef4\u5ea6\u5411\u91cf":95,"\u8f93\u51fa\u51fd\u6570":71,"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":67,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":70,"\u8f93\u51fa\u6587\u4ef6\u7684\u683c\u5f0f\u8bf4\u660e":93,"\u8f93\u51fa\u67092\u5217":93,"\u8f93\u51fa\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":94,"\u8f93\u51fa\u7684\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":93,"\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u540d\u79f0":93,"\u8f93\u51fa\u7684\u68af\u5ea6":82,"\u8f93\u51fa\u76ee\u5f55":94,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":86,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":20,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":68,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":56,"\u8fd0":61,"\u8fd0\u884c\u4e00\u4e2a":72,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":75,"\u8fd0\u884c\u4ee5\u4e0b\u6307\u4ee4":61,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u548c\u83b7\u53d6\u6211\u4eec\u7684\u5b57\u5178\u548c\u9884\u8bad\u7ec3\u6a21\u578b":93,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u6570\u636e\u96c6":93,"\u8fd0\u884c\u4ee5\u4e0b\u8bad\u7ec3\u547d\u4ee4":59,"\u8fd0\u884c\u4ee5\u53ca\u53d1\u5e03\u60a8\u7684ai\u7a0b\u5e8f":61,"\u8fd0\u884c\u5206\u5e03\u5f0f\u4f5c\u4e1a":80,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":[56,78,95],"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":[61,72],"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":75,"\u8fd0\u884c\u5931\u8d25":84,"\u8fd0\u884c\u5b8c\u4ee5\u4e0a\u547d\u4ee4":93,"\u8fd0\u884c\u5b8c\u6210\u540e":80,"\u8fd0\u884c\u6210\u529f\u4ee5\u540e":93,"\u8fd0\u884c\u65e5\u5fd7":80,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":87,"\u8fd1":68,"\u8fd4\u56de":[7,8,9,12,14],"\u8fd4\u56de0":2,"\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u6837\u672c":2,"\u8fd4\u56de\u65f6":2,"\u8fd4\u56de\u7684\u662f":[2,63],"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548cinput_types\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":2,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":47,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":74,"\u8fd4\u56de\u7c7b\u578b":[7,8,9,12,14],"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":75,"\u8fd8\u4f1a":68,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":65,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":73,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u5f8b\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":56,"\u8fd8\u662f":68,"\u8fd8\u662f\u4ece":21,"\u8fd8\u662f\u865a\u62df\u673a":72,"\u8fd8\u6709":68,"\u8fd8\u9700\u8981\u91cd\u5199":75,"\u8fd9":[56,68,95],"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":58,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":79,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":35,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":35,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":57,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":70,"\u8fd9\u4e09\u4e2a\u5206\u652f":47,"\u8fd9\u4e09\u4e2a\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":95,"\u8fd9\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":80,"\u8fd9\u4e2a":[68,72,85],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":56,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":56,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":75,"\u8fd9\u4e2a\u51fd\u6570\u7684":71,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":68,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":71,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":35,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":35,"\u8fd9\u4e2a\u5730\u5740\u5219\u4e3a\u5b83\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":1,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":87,"\u8fd9\u4e2a\u57fa\u7c7b":74,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":35,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":70,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":34,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":68,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":34,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":95,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":35,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":68,"\u8fd9\u4e2a\u7a0b\u5e8f\u662f\u60a8\u5728\u5f00\u53d1\u673a\u4e0a\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u5b8c\u6210\u5f00\u53d1":61,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":74,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":74,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":35,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":35,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":72,"\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u7269\u7406\u673a\u6216\u8005\u865a\u62df\u673a":85,"\u8fd9\u4e2a\u8868\u683c":85,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":75,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":70,"\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u662f\u6a21\u578b\u7684\u8bad\u7ec3\u8fc7\u7a0b":59,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":73,"\u8fd9\u4e2a\u914d\u7f6e\u4e0e":93,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6":85,"\u8fd9\u4e2a\u955c\u50cf\u5305\u542b\u4e86paddle\u76f8\u5173\u7684\u5f00\u53d1\u5de5\u5177\u4ee5\u53ca\u7f16\u8bd1\u548c\u8fd0\u884c\u73af\u5883":61,"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":71,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":2,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":35,"\u8fd9\u4e2adataprovider\u8f83\u590d\u6742":2,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":21,"\u8fd9\u4e2aissu":72,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":87,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":70,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":56,"\u8fd9\u4e9b":80,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":75,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":21,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":87,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":74,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":56,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":56,"\u8fd9\u4e9b\u6587\u4ef6\u5c06\u4f1a\u88ab\u4fdd\u5b58\u5728":94,"\u8fd9\u4e9b\u6a21\u578b\u90fd\u662f\u7531\u539f\u4f5c\u8005\u63d0\u4f9b\u7684\u6a21\u578b":94,"\u8fd9\u4e9b\u7279\u5f81\u503c\u4e0e\u4e0a\u8ff0\u4f7f\u7528c":94,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":68,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":74,"\u8fd9\u4efd\u7b80\u77ed\u7684\u4ecb\u7ecd\u5c06\u5411\u4f60\u5c55\u793a\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":59,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":73,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":73,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":68,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":60,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":75,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":72,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":73,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":73,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":68,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":68,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":71,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":34,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":75,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":75,"\u8fd9\u610f\u5473\u7740":71,"\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5728\u8bad\u7ec3\u6570\u636e\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":59,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":84,"\u8fd9\u65f6":56,"\u8fd9\u65f6\u5728\u4f7f\u7528":58,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":56,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":58,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":58,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":67,"\u8fd9\u662f\u56e0\u4e3a":34,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":73,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":68,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":53,"\u8fd9\u6837":[35,59,80],"\u8fd9\u6837\u4fdd\u8bc1":47,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":72,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":56,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":84,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":72,"\u8fd9\u6837\u5bb9\u5668\u7684":87,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":21,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u6837\u5f00\u53d1\u4eba\u5458\u53ef\u4ee5\u4ee5\u4e00\u81f4\u7684\u65b9\u5f0f\u5728\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u5de5\u4f5c":61,"\u8fd9\u6837\u5f53\u8be5pull":73,"\u8fd9\u6837\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u5728docker\u4e2d\u8fd0\u884c\u9700\u8981\u7684\u7a0b\u5e8f\u800c\u4e0d\u9700\u8981\u5b89\u88c5\u540e\u5728\u6267\u884c":61,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":74,"\u8fd9\u6837\u7684\u8bdd":86,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":79,"\u8fd9\u6bb5\u7b80\u77ed\u7684\u914d\u7f6e\u5c55\u793a\u4e86paddlepaddle\u7684\u57fa\u672c\u7528\u6cd5":59,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":74,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":58,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":56,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":57,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":84,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":71,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":70,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":87,"\u8fd9\u7bc7\u6587\u6863":73,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":72,"\u8fd9\u7bc7\u6587\u6863\u5c06\u4ee5linux":66,"\u8fd9\u7bc7\u6587\u7ae0":72,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":68,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":71,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":34,"\u8fd9\u91cc":[58,61,71,73,85,87,94],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":75,"\u8fd9\u91cc\u4ecb\u7ecd\u5982\u751f\u6210\u9020\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":61,"\u8fd9\u91cc\u4ee5":95,"\u8fd9\u91cc\u4f7f\u7528\u4e00\u4e2a\u57fa\u4e8emomentum\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d":59,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u4e09\u79cd\u7f51\u7edc\u5355\u5143":59,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":68,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":56,"\u8fd9\u91cc\u5229\u7528\u5b83\u5efa\u6a21\u53d8\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb":59,"\u8fd9\u91cc\u53ea\u7b80\u5355\u4ecb\u7ecd\u4e86\u5355\u673a\u8bad\u7ec3":95,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":63,"\u8fd9\u91cc\u5c55\u793a\u5982\u4f55\u4f7f\u7528\u89c2\u6d4b\u6570\u636e\u6765\u62df\u5408\u8fd9\u4e00\u7ebf\u6027\u5173\u7cfb":59,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":74,"\u8fd9\u91cc\u6211\u4eec\u7528paddl":61,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":87,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":95,"\u8fd9\u91cc\u6570\u636e\u5c42\u6709\u4e24\u4e2a":59,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":56,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":80,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":76,"\u8fd9\u91cc\u76f4\u63a5\u901a\u8fc7\u9884\u6d4b\u811a\u672c":95,"\u8fd9\u91cc\u7ed9\u51fa\u96c6\u4e2d\u5e38\u89c1\u7684\u90e8\u7f72\u65b9\u6cd5":85,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":95,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":20,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":73,"\u8fdb\u5165\u5bb9\u5668":86,"\u8fdb\u5165\u5f00\u53d1\u955c\u50cf\u5e76\u5f00\u59cb\u5de5\u4f5c":61,"\u8fdb\u7a0b":61,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":87,"\u8fdb\u7a0b\u7684":80,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":87,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":87,"\u8fdb\u7a0b\u9700\u8981\u7684":87,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":47,"\u8fdb\u884c\u4e86":68,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":87,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":87,"\u8fdb\u884c\u56de\u590d":73,"\u8fdb\u884c\u5f00\u53d1":73,"\u8fdb\u884c\u62c6\u89e3":68,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fdb\u884c\u8bbe\u7f6e":75,"\u8fdb\u884c\u8bfb\u5165\u548c\u9884\u5904\u7406\u4ece\u800c\u5f97\u5230\u771f\u5b9e\u8f93\u5165":59,"\u8fdb\u884c\u9884\u6d4b":95,"\u8fdb\u9636\u6307\u5357":[63,90],"\u8fde\u63a5":70,"\u9000\u51fa\u5bb9\u5668":86,"\u9002\u4e2d":68,"\u9002\u5408\u81ea\u5df1\u5b9e\u9a8c":61,"\u9009":68,"\u9009\u62e9":68,"\u9009\u62e9\u6d4b\u8bd5\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":95,"\u9009\u62e9\u76ee\u6807\u5206\u652f":73,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":82,"\u9009\u62e9\u9002\u5408\u60a8\u7684\u573a\u666f\u7684\u5408\u9002\u65b9\u6848":85,"\u9009\u9879":[60,72,93],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":81,"\u901a\u5e38":[35,75,80],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":87,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":84,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":58,"\u901a\u5e38\u540d\u5b57\u662f":73,"\u901a\u5e38\u60c5\u51b5\u4e0b":79,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":86,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":20,"\u901a\u5e38\u6bcf\u4e2ajob\u5305\u62ec\u4e00\u4e2a\u6216\u8005\u591a\u4e2apod":85,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":71,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":74,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":68,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":84,"\u901a\u7528":81,"\u901a\u77e5":68,"\u901a\u8fc7":[56,68,73,74,75,80,95],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":70,"\u901a\u8fc7\u4ea4\u53c9\u7f16\u8bd1\u7684\u65b9\u5f0f\u6765\u7f16\u8bd1":66,"\u901a\u8fc7\u4f7f\u7528":60,"\u901a\u8fc7\u51fd\u6570":87,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":56,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":70,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":70,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":73,"\u901a\u8fc7\u67e5\u770b\u4e70\u5bb6\u5bf9\u67d0\u4e2a\u4ea7\u54c1\u7684\u8bc4\u4ef7\u53cd\u9988":95,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":35,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":63,"\u901a\u8fc7\u7f16\u8bd1\u4f1a\u751f\u6210py_paddle\u8f6f\u4ef6\u5305":4,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":74,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":75,"\u901a\u8fc7\u8c03\u7528":4,"\u901a\u8fc7\u914d\u7f6e\u7c7b\u4f3c\u4e8e":95,"\u901a\u8fc7data":70,"\u901a\u8fc7volum":85,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u903b\u8f91\u56de\u5f52":95,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":57,"\u9053\u6b49":68,"\u9069":68,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":73,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":47,"\u9075\u5faa\u6587\u7ae0":93,"\u90a3\u4e48":[35,70,74],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":70,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u5728":75,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":1,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":58,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":58,"\u90a3\u4e48\u5f53check\u51fa\u6570\u636e\u4e0d\u5408\u6cd5\u65f6":2,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":72,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6536\u96c6\u5e02\u573a\u4e0a\u623f\u5b50\u7684\u5927\u5c0f\u548c\u4ef7\u683c":59,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":71,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":71,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":58,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":56,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":53,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":72,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":58,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":56,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":84,"\u90a3\u4e48paddlepaddle\u4f1a\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":2,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":79,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":79,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":58,"\u90a3\u5bb9\u5668\u5c31\u662f\u8fd9\u4e2a\u7a0b\u5e8f\u8fd0\u884c\u65f6\u4ea7\u751f\u7684":61,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":79,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":79,"\u90e8\u7f72\u548c\u914d\u7f6e\u6bd4\u8f83\u7b80\u5355":85,"\u90fd":68,"\u90fd\u4e0d\u9700\u8981":72,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":82,"\u90fd\u4f7f\u7528\u968f\u673a\u503c\u521d\u59cb\u5316":59,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":68,"\u90fd\u53ef\u4ee5\u8fd0\u884c":72,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":21,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":67,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":68,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":34,"\u90fd\u7528":73,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":73,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":74,"\u914d\u7f6e\u5982\u4e0b":93,"\u914d\u7f6e\u6253\u5f00":79,"\u914d\u7f6e\u6587\u4ef6":95,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":74,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":72,"\u914d\u7f6e\u6a21\u578b\u6587\u4ef6":93,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u914d\u7f6e\u7b49\u6587\u4ef6\u7684\u76ee\u5f55\u89c6\u4e3a":80,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":71,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":74,"\u914d\u7f6eapi":67,"\u9152\u5e97":68,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":82,"\u91c7\u7528multi":58,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":20,"\u91cc":72,"\u91cc\u4ecb\u7ecd\u4e86\u7528paddle\u6e90\u7801\u4e2d\u7684\u811a\u672c\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u7684\u8fc7\u7a0b":86,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":72,"\u91cc\u5b8c\u6210":75,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":34,"\u91cc\u6307\u5b9a\u56fe\u50cf\u6570\u636e\u5217\u8868":94,"\u91cc\u7684":72,"\u91cc\u7684\u65e5\u5fd7":80,"\u91cc\u7684\u6e90\u7801":72,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":72,"\u91cc\u9762":75,"\u91cc\u9762\u6db5\u76d6\u4e86":61,"\u91cc\u9762\u6db5\u76d6\u4e86paddlepaddle\u8fd0\u884c\u6240\u9700\u7684\u6240\u6709\u73af\u5883":61,"\u91cd\u547d\u540d\u6210":34,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":79,"\u9488\u5bf9\u4e0d\u540c\u5e73\u53f0\u7684\u7f16\u8bd1\u5de5\u5177":66,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":86,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":56,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":60,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":34,"\u94fe\u63a5\u5f85\u8865\u5145":95,"\u9519\u8bef\u5904\u7406":34,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":34,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":34,"\u9519\u8bef\u7387":95,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":58,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":72,"\u955c\u50cf":61,"\u955c\u50cf\u91cc\u6709":86,"\u957f\u5ea6":56,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":71,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":71,"\u95ee\u9898":59,"\u95f4\u9694":95,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":82,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":82,"\u9664\u4e86":2,"\u9664\u4e86boot_lay":68,"\u9664\u53bbdata\u5c42":95,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":35,"\u9664\u6b64\u4e4b\u5916":56,"\u9664\u8bcd\u5411\u91cf\u6a21\u578b\u5916\u7684\u53c2\u6570\u5c06\u4f7f\u7528\u6b63\u6001\u5206\u5e03\u968f\u673a\u521d\u59cb\u5316":93,"\u9664\u96f6\u7b49\u95ee\u9898":56,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":73,"\u968f\u673a\u6570\u7684\u79cd\u5b50":82,"\u968f\u673a\u6570seed":81,"\u968f\u7740\u8f6e\u6570\u589e\u52a0\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u7684\u8f93\u51fa\u5728\u4e0d\u65ad\u7684\u51cf\u5c0f":59,"\u9694\u5f00":94,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":82,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddle\u8bad\u7ec3\u4f5c\u4e1a":86,"\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u6240\u6709\u8fdb\u7a0b\u7684\u73af\u5883\u8bbe\u7f6e":80,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":80,"\u96c6\u7fa4\u5de5\u4f5c":80,"\u96c6\u7fa4\u6d4b\u8bd5":81,"\u96c6\u7fa4\u8bad\u7ec3":81,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":55,"\u96c6\u7fa4\u8fdb\u7a0b":80,"\u96c6\u7fa4\u901a\u4fe1\u4fe1\u9053\u7684\u7aef\u53e3\u6570":80,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684":80,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u53f7":80,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":75,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":79,"\u9700\u8981":[21,72,75],"\u9700\u8981\u4e3a":75,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":87,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":73,"\u9700\u8981\u4fee\u6539build":47,"\u9700\u8981\u5148\u6302\u8f7d\u5230\u670d\u52a1\u5668node\u4e0a\u518d\u901a\u8fc7kubernet":85,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":53,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":73,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":87,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":75,"\u9700\u8981\u5728":[75,80],"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":86,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":77,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":35,"\u9700\u8981\u5b89\u88c5graphviz\u6765\u8f6c\u6362dot\u6587\u4ef6\u4e3a\u56fe\u7247":94,"\u9700\u8981\u5bf9":85,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":56,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":47,"\u9700\u8981\u5f15\u7528":35,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":72,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":68,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":63,"\u9700\u8981\u660e\u786e\u6307\u5b9a":82,"\u9700\u8981\u6709\u4e00\u4e2a\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u6765\u4fdd\u5b58\u8bad\u7ec3\u6240\u9700\u6570\u636e\u548c\u8bad\u7ec3\u8f93\u51fa":85,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":34,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":87,"\u9700\u8981\u6ce8\u610f":75,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[47,56,82],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":74,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":68,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":65,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":57,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":35,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":72,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":70,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":47,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":76,"\u975e\u5e38\u6570":74,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":74,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":65,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":72,"\u987a\u5e8f":68,"\u9884\u63d0\u4ea4\u94a9\u5b50":73,"\u9884\u6d4b\u6982\u7387\u53d6\u5e73\u5747":94,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":95,"\u9884\u6d4bid":95,"\u9884\u8bad\u7ec3\u6a21\u578b\u4f7f\u7528\u7684\u5b57\u5178\u7684\u8def\u5f84":93,"\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u5b57\u5178\u6a21\u578b\u7684\u8def\u5f84":93,"\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":94,"\u989d\u5916\u7684\u53c2\u6570":95,"\u9996\u5148":[2,59,68,71,74,93,94,95],"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":60,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":73,"\u9996\u5148\u5b9a\u4e49":75,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":74,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":58,"\u9996\u5148\u901a\u8fc7":73,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":63,"\u9a71\u52a8":77,"\u9ad8\u4eae\u90e8\u5206":68,"\u9ad8\u53ef\u7528":85,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":71,"\u9ad8\u65af\u5206\u5e03":58,"\u9ed8\u8ba4":[2,82],"\u9ed8\u8ba4256k":28,"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":95,"\u9ed8\u8ba4\u4e0d\u663e\u793a":82,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":70,"\u9ed8\u8ba4\u4e3a0":[82,84],"\u9ed8\u8ba4\u4e3a1":[2,84],"\u9ed8\u8ba4\u4e3a100":84,"\u9ed8\u8ba4\u4e3a4096mb":82,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":70,"\u9ed8\u8ba4\u4e3anull":82,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":56,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":82,"\u9ed8\u8ba4\u503c":[60,67,84],"\u9ed8\u8ba4\u503c\u4e3a":[65,66],"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":70,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[58,61,80],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":58,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":68,"\u9ed8\u8ba4\u7684":86,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":84,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[65,66],"\u9ed8\u8ba4\u8c03\u7528":72,"\u9ed8\u8ba4\u914d\u7f6e\u5982\u4e0b":80,"abstract":48,"adamax\u7b49":95,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":95,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":65,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":65,"api\u4e2d\u4f7f\u7528":34,"api\u5bf9\u6bd4\u4ecb\u7ecd":69,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":35,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":35,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":35,"api\u63a5\u53e3":[28,85],"api\u63a5\u53e3\u751f\u6210":75,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":35,"api\u63a5\u53e3\u7684\u751f\u6210":75,"api\u6587\u6863":65,"api\u65f6":35,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":35,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":35,"api\u66b4\u9732\u7684\u7c7b\u578b":35,"api\u6765\u9884\u6d4b":65,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":35,"api\u7684\u5934\u6587\u4ef6":[65,66],"api\u7684\u5b9e\u4f8b":35,"api\u7684\u5b9e\u73b0\u7ec6\u8282":35,"api\u7684\u63a5\u53e3":35,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":35,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":35,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":35,"api\u7ea7\u522b":65,"api\u7ea7\u522b\u4e0d\u5c0f\u4e8e21":65,"api\u7ea7\u522b\u4e3a21":65,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":35,"app\u4e2d":65,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":58,"atlas\u7684\u8def\u5f84":60,"avx\u7684\u955c\u50cf":61,"awselasticblockstore\u7b49":85,"batch\u4e2d\u5305\u542b":56,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":82,"batches\u6b21":82,"blas\u7684\u8def\u5f84":60,"block\u6784\u6210\u4e00\u4e2amodel":20,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":61,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":47,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":61,"book\u7684":63,"book\u7684docker\u955c\u50cf":61,"bool\u578b\u53c2\u6570":2,"boolean":[29,33,34],"break":[18,51],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":47,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":47,"build\u6307\u4ee4\u6309\u7167dockerfile\u751f\u6210\u955c\u50cf":61,"build\u8fd9\u4e2a\u547d\u4ee4\u7684":61,"byte":[28,58],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":34,"c\u6709\u6807\u51c6\u7684abi":34,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":34,"case":[8,22,35,41,42,45,79,91],"cc\u4e2d\u7684":76,"cells\u7b49":57,"char":24,"class":[5,6,7,8,9,10,11,12,14,15,17,30,32,34,37,39,40,42,45,46,48,49,50,51,58,74,75,76],"cmake\u4e2d\u5c06":79,"cmake\u53c2\u6570\u5982\u4e0b":66,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":65,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":53,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":[65,66],"cmake\u7f16\u8bd1\u65f6":60,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[65,66],"cmake\u914d\u7f6e\u4e2d\u5c06":79,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[65,66],"com\u4e0b\u8f7d\u7684":61,"const":[17,22,24,38,46,48,50,51,74,75,76],"container\u4e2d":86,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":35,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":35,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":35,"core\u6982\u5ff5":35,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":63,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":58,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":84,"count\u548cgpu":84,"cuda\u5e93":82,"cudnn\u5e93":[60,82],"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":21,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":76,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":87,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":68,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":68,"dataprovider\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":1,"dataprovider\u7684\u4ecb\u7ecd":[3,95],"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":56,"deb\u5305":47,"deb\u5305\u7f16\u8bd1\u95ee\u9898":47,"debian\u955c\u50cf":61,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":70,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":70,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":70,"decoer\u67b6\u6784":70,"default":[6,7,8,9,11,12,14,15,17,18,31,36,48,49,50,52,84,86,87,91],"demo\u9884\u6d4b\u8f93\u51fa\u5982\u4e0b":4,"dictionary\u662f\u4ece\u7f51\u7edc\u914d\u7f6e\u4e2d\u4f20\u5165\u7684dict\u5bf9\u8c61":2,"docker\u5b58\u5728\u95ee\u9898":61,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":77,"docker\u5bb9\u5668\u4e2d":61,"docker\u5bb9\u5668\u4f1a\u8fd0\u884c\u5728\u72ec\u7acb\u7684\u6587\u4ef6\u7cfb\u7edf\u7a7a\u95f4\u4e4b\u4e0a":61,"docker\u7684\u5b98\u7f51":77,"docker\u955c\u50cf\u6765\u670d\u52a1html\u4ee3\u7801":61,"dockerfile\u4f4d\u4e8epaddlepaddl":61,"dockers\u8bbe\u7f6e":61,"double\u7c7b\u578b\u65f6\u4e3a8":58,"dropout\u7684\u6bd4\u4f8b":74,"eigenscalar\u7684\u8f6c\u6362":76,"elec\u6d4b\u8bd5\u96c6":95,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u63d0\u4f9b\u6570\u636e\u7684python\u811a\u672c":95,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":70,"encoder\u8f93\u51fa":70,"entropy\u4f5c\u4e3acost":58,"enum":[22,24,39,49,50,52],"export":[53,61],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":[2,63],"false\u7684\u60c5\u51b5":2,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":84,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":84,"final":[8,9,16,36,51],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":76,"float":[2,6,7,8,10,12,50,59,75,76,79,94],"float\u7b49":84,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":76,"full\u53c2\u6570\u63d0\u4ea4":54,"function":[8,9,10,12,15,17,19,23,24,25,27,32,36,37,38,39,41,42,43,45,46,48,50,51,71,91],"function\u4f7f\u7528":57,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":2,"generator\u81f3\u5c11\u9700\u8981\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":2,"git\u6d41\u5206\u652f\u6a21\u578b":73,"github\u9996\u9875":73,"golang\u53ef\u4ee5\u4f7f\u7528":34,"golang\u7684":34,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":60,"gpu\u5171\u4eabkernel\u5b9e\u73b0\u5728":75,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":79,"gpu\u53cc\u7f13\u5b58":2,"gpu\u548c\u975eavx\u533a\u5206\u4e86\u5982\u4e0b4\u4e2a\u955c\u50cf":61,"gpu\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":75,"gpu\u5b9e\u73b0\u5728":75,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":78,"gpu\u6267\u884c":76,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":82,"gpu\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":75,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":53,"group\u6559\u7a0b":69,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":57,"gru\u6216lstm":71,"gru\u6a21\u578b":95,"gru\u6a21\u578b\u914d\u7f6e":95,"h\u5e76\u4e0d\u56f0\u96be":34,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":77,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":[2,63],"id\u4e3a0\u7684\u6982\u7387":95,"id\u4e3a1\u7684\u6982\u7387":95,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":82,"id\u6307\u5b9a\u7684gpu":84,"id\u65e0\u6548":82,"image\u91cc":86,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":21,"import":[2,4,7,8,15,17,18,31,33,36,39,43,48,59,63,75,93,94],"include\u4e0b\u9700\u8981\u5305\u542bcbla":60,"include\u4e0b\u9700\u8981\u5305\u542bmkl":60,"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":56,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":2,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":21,"instance\u5305\u6db5\u4e24\u4e2a\u503c":21,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":21,"int":[2,6,7,8,9,12,17,22,23,24,27,33,34,35,39,40,41,49,50,51,52,68,74,76,84],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":34,"issue\u7f16\u53f7":73,"job\u542f\u52a8\u540e\u4f1a\u521b\u5efa\u8fd9\u4e9bpod\u5e76\u5f00\u59cb\u6267\u884c\u4e00\u4e2a\u7a0b\u5e8f":85,"job\u6216\u8005\u5e94\u7528\u7a0b\u5e8f\u5728\u5bb9\u5668\u4e2d\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e\u4f1a\u5728\u5bb9\u5668\u9500\u6bc1\u65f6\u6d88\u5931":85,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":87,"job\u7684\u540d\u5b57":87,"kernel\u5b9e\u73b0":75,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":75,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":75,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":87,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":78,"kubernetes\u5355\u673a\u8bad\u7ec3":78,"kubernetes\u53ef\u4ee5\u5728\u7269\u7406\u673a\u6216\u865a\u62df\u673a\u4e0a\u8fd0\u884c":85,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":87,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":87,"kubernetes\u63d0\u4f9b\u4e86\u591a\u79cd\u96c6\u7fa4\u90e8\u7f72\u7684\u65b9\u6848":85,"kubernetes\u652f\u6301\u591a\u79cdvolum":85,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":86,"kubernetes\u96c6\u7fa4\u5c31\u662f\u7531node\u8282\u70b9\u4e0emaster\u8282\u70b9\u7ec4\u6210\u7684":85,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":68,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":68,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":67,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":57,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":70,"layer\u65f6":57,"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":63,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":74,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":57,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":60,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":60,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":60,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542bmkl_cor":60,"list\u4e2d\u7684\u6bcf\u4e00\u884c\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":2,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":47,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":2,"list\u548ctest":1,"list\u5982\u4e0b\u6240\u793a":84,"list\u5b58\u653e\u5728\u672c\u5730":1,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":84,"long":[8,9,12],"lstm\u6a21\u578b":95,"lstm\u6a21\u578b\u914d\u7f6e":95,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":70,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":71,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":71,"memory\u53ea\u80fd\u5728":70,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":68,"memory\u6307\u5411\u4e00\u4e2alay":70,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":71,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":68,"memory\u7684":71,"memory\u7684\u521d\u59cb\u72b6\u6001":70,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":68,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":70,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":71,"memory\u7684i":70,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":70,"mkl\u7684\u8def\u5f84":60,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":60,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u670970":2,"model\u505a\u5206\u652f\u7ba1\u7406":47,"model\u53ef\u4ee5\u901a\u8fc7":4,"model\u6765\u5b9e\u73b0\u624b\u5199\u8bc6\u522b\u7684\u9884\u6d4b\u4ee3\u7801":4,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":87,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":21,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":65,"new":[8,12,16,17,18,19,22,23,24,25,26,40,41,42,44,45,50,51,73,74,91],"nfs\u7684\u90e8\u7f72\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":85,"normalization\u5c42":94,"normalization\u5c42\u7684\u53c2\u6570":94,"note\u7684\u4e66\u5199":47,"notebook\u662f\u4e00\u4e2a\u5f00\u6e90\u7684web\u7a0b\u5e8f":61,"null":[8,74,82],"num_gradient_servers\u53c2\u6570":87,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":58,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":75,"op\u5b9a\u4e49":75,"op\u6709\u8ba1\u7b97\u51fd\u6570":75,"op\u6ce8\u518c\u5b9e\u73b0\u5728":75,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":75,"openblas\u7684\u8def\u5f84":60,"opprotomake\u5b9a\u4e49":75,"org\u76ee\u524d\u9075\u5faa":47,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":68,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":76,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":87,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":76,"packages\u91cc\u9762":53,"packages\u91cc\u9762\u7684python\u5305":53,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":60,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":34,"paddle\u4e0b\u8f7d":61,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":68,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":56,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":34,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":34,"paddle\u662f\u4ece\u5b98\u65b9\u955c\u50cf\u6e90dockerhub":61,"paddle\u66ff\u6362\u6210dock":61,"paddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":86,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":34,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":35,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":34,"paddle\u7684c":35,"paddle\u7684dock":86,"paddle\u7684docker\u5f00\u53d1\u955c\u50cf\u5e26\u6709\u4e00\u4e2a\u901a\u8fc7":61,"paddle\u8bad\u7ec3\u4efb\u52a1":21,"paddle\u8def\u5f84\u4e0b":35,"paddle\u955c\u50cf":86,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":34,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":35,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":34,"paddle_\u7c7b\u578b\u540d":35,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":35,"paddlepaddle\u4e2d":[67,70],"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":68,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":57,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":63,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[65,66],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":63,"paddlepaddle\u4f1a\u5728\u8c03\u7528\u8bfb\u53d6\u6570\u636e\u7684python\u811a\u672c\u4e4b\u524d":95,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":57,"paddlepaddle\u4f7f\u7528\u5747\u503c0":58,"paddlepaddle\u4f7f\u7528avx":53,"paddlepaddle\u4f7f\u7528git":47,"paddlepaddle\u4f7f\u7528swig\u5bf9\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":4,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":58,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":58,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":2,"paddlepaddle\u5148\u4ece\u4e00\u4e2a\u6587\u4ef6\u5217\u8868\u91cc\u83b7\u5f97\u6570\u636e\u6587\u4ef6\u5730\u5740":59,"paddlepaddle\u53d1\u5e03\u65b0\u7248\u672c\u7684\u65f6\u5019\u90fd\u4f1a\u53d1\u5e03\u5bf9\u5e94\u7248\u672c\u7684\u751f\u4ea7\u955c\u50cf\u4ee5\u53ca\u5f00\u53d1\u955c\u50cf":61,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":60,"paddlepaddle\u53ef\u4ee5\u6267\u884c\u7528\u6237\u7684python\u811a\u672c\u7a0b\u5e8f\u6765\u8bfb\u53d6\u5404\u79cd\u683c\u5f0f\u7684\u6570\u636e\u6587\u4ef6":95,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":68,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":74,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":68,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":57,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":[2,63],"paddlepaddle\u5b9a\u4e49\u7684\u53c2\u6570":2,"paddlepaddle\u5c06\u4ee5\u8bbe\u7f6e\u53c2\u6570\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6e":95,"paddlepaddle\u5c06\u5728\u89c2\u6d4b\u6570\u636e\u96c6\u4e0a\u8fed\u4ee3\u8bad\u7ec330\u8f6e":59,"paddlepaddle\u5c06\u6839\u636e":65,"paddlepaddle\u5c06\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570\u4f5c\u4e3a\u4e00\u4e2anumpy\u6570\u7ec4\u5355\u72ec\u5b58\u4e3a\u4e00\u4e2a\u6587\u4ef6":59,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[65,66],"paddlepaddle\u5c06train":2,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":47,"paddlepaddle\u5f00\u53d1\u955c\u50cf\u5c31\u88ab\u6784\u5efa\u5b8c\u6bd5\u4e86":61,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":21,"paddlepaddle\u63d0\u4f9b\u4e86\u5f88\u591a\u4f18\u79c0\u7684\u5b66\u4e60\u7b97\u6cd5":59,"paddlepaddle\u63d0\u4f9bdocker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":62,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":63,"paddlepaddle\u652f\u6301\u4ee5\u4e0b\u4efb\u610f\u4e00\u79cdblas\u5e93":60,"paddlepaddle\u652f\u6301\u5927\u91cf\u7684\u8ba1\u7b97\u5355\u5143\u548c\u4efb\u610f\u6df1\u5ea6\u7684\u7f51\u7edc\u8fde\u63a5":59,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":56,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":56,"paddlepaddle\u6587\u6863\u4e3b\u9898\u5728":77,"paddlepaddle\u6587\u6863\u4f7f\u7528":77,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":[59,63],"paddlepaddle\u6bcf\u6b21\u53d1\u5e03\u65b0\u7248\u672c\u90fd\u4f1a\u53d1\u5e03\u5bf9\u5e94\u7684\u5f00\u53d1\u955c\u50cf\u4f9b\u5f00\u53d1\u8005\u76f4\u63a5\u4f7f\u7528":61,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":47,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":47,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":47,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":56,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":58,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":65,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":57,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":2,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":77,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e24\u79cd\u65b9\u5f0f":77,"paddlepaddle\u7684\u6e90\u7801":73,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":62,"paddlepaddle\u7684bas":74,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":65,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":66,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":66,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":65,"paddlepaddle\u7684docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f":62,"paddlepaddle\u7684docker\u955c\u50cf\u5c31\u5305\u542b\u4e86paddlepaddle\u7684python\u5e93\u4ee5\u53ca\u5176\u4f9d\u8d56\u7684\u591a\u4e2apython\u5e93":61,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":68,"paddlepaddle\u76ee\u524d\u552f\u4e00\u5b98\u65b9\u652f\u6301\u7684\u8fd0\u884c\u7684\u65b9\u5f0f\u662fdocker\u5bb9\u5668":61,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":58,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":58,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":65,"paddlepaddle\u8981\u6c42\u4f7f\u7528\u7684\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u652f\u6301\u7684andoid":65,"paddlepaddle\u8c03\u7528process\u51fd\u6570\u6765\u8bfb\u53d6\u6570\u636e":95,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":70,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":70,"paddlepaddle\u90fd\u53ef\u4ee5\u81ea\u52a8\u5224\u65ad\u786c\u4ef6\u662f\u5426\u652f\u6301avx":61,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":87,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":1,"paddlepaddle\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":61,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":82,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":82,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":82,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":82,"passes\u8f6e":82,"patch\u53f7":47,"patch\u53f7\u52a0\u4e00":47,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":84,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":82,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":82,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":82,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":82,"period\u6574\u9664":82,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":82,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":66,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":66,"pi\u5e73\u53f0\u4f7f\u7528\u7684c":66,"pi\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":66,"pi\u7248\u672c\u7684\u5e93":66,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":66,"pi\u7cfb\u7edf":66,"pi\u7cfb\u7edf\u4e0a":66,"pi\u7cfb\u7edf\u7684\u7248\u672c":66,"pod\u4e2d\u7684\u5bb9\u5668\u5171\u4eabnet":85,"pod\u662fkubernetes\u7684\u6700\u5c0f\u8c03\u5ea6\u5355\u5143":85,"process\u51fd\u6570\u4f1a\u7528yield\u8bed\u53e5\u8f93\u51fa\u8fd9\u6761\u6570\u636e":95,"prod\u7684\u751f\u4ea7\u955c\u50cf":61,"public":[12,17,30,46,48,50,51,74,75,76,86],"py\u4e2d":47,"py_paddle\u91cc\u9762\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7b":4,"pydataprovider2\u4f1a\u5c3d\u53ef\u80fd\u591a\u7684\u4f7f\u7528\u5185\u5b58":2,"pydataprovider2\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":2,"pydataprovider2\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":2,"pydataprovider2\u7684\u4f7f\u7528":[1,3,56,95],"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":56,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":47,"python\u4ee3\u7801\u5c06\u968f\u673a\u4ea7\u751f2000\u4e2a\u89c2\u6d4b\u70b9":59,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":2,"python\u5b89\u88c5\u5305\u652f\u6301linux":53,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":74,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":21,"reader\u8f93\u51fa\u7684data":21,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":87,"release\u9875\u9762":47,"repo\u7684\u6839\u76ee\u5f55":61,"request\u524d":73,"request\u7684":73,"request\u88ab\u5408\u5e76\u540e":73,"return":[2,6,8,9,11,12,14,15,16,17,21,22,24,27,30,31,36,37,39,40,42,44,46,48,50,51,58,59,63,68,71,74,76,87,94],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":68,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":68,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":70,"rnn\u6a21\u578b":95,"rnn\u76f8\u5173\u6a21\u578b":78,"rnn\u914d\u7f6e":69,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":21,"search\u7684\u65b9\u6cd5":82,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":68,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":70,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":82,"server\u4e4b\u4e0a":20,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":20,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":20,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":20,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":20,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":20,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":20,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":20,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":20,"server\u751f\u6210\u4e00\u4e2auuid":20,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":20,"server\u7684\u6570\u636e\u5feb\u7167":20,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":20,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":20,"sh\u8c03\u7528\u4e86":94,"short":[8,9,31,48,51],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":53,"size\u4e3a512":82,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":56,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":56,"size\u7684\u503c":2,"softmax\u5c42":93,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":74,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":56,"ssh\u65b9\u5f0f\u7684\u4e00\u4e2a\u4f18\u70b9\u662f\u6211\u4eec\u53ef\u4ee5\u4ece\u591a\u4e2a\u7ec8\u7aef\u8fdb\u5165\u5bb9\u5668":61,"ssh\u8fdb\u5165\u5bb9\u5668":61,"static":[14,24,35,48,50,91],"step\u51fd\u6570\u4e2d\u7684memori":70,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":70,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":67,"super":[40,74],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":34,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":34,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":34,"swig\u76f4\u63a5\u8bfb\u53d6c":34,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":34,"swig_paddle\u4e2d\u7684\u9884\u6d4b\u63a5\u53e3\u7684\u53c2\u6570\u662f\u81ea\u5b9a\u4e49\u7684c":4,"switch":[17,35,44],"t\u6307\u5b9a\u4e86\u751f\u6210\u7684\u955c\u50cf\u7684\u540d\u5b57":61,"tag\u4e3a":47,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":76,"tensor\u5230eigentensor":76,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":76,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":76,"tensor\u6a21\u5757\u5bf9el":76,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":75,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":76,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":76,"tests\u7684paddlepaddl":73,"tflops\u4e86":79,"toolchain\u76ee\u5f55\u751f\u6210\u4e00\u5957\u7f16\u8bd1\u5de5\u5177\u94fe":65,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":63,"true":[6,7,8,9,11,12,14,15,17,22,33,37,39,41,50,51,56,58,68,71,74,84,87,94],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"try":[10,18,19,22,23,24,41,48,53],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":35,"ubuntu\u5b89\u88c5\u5305\u7684\u529f\u80fd\u6b63\u786e\u6027":47,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":57,"unsupported\u6a21\u5757":75,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":82,"utf8\u7f16\u7801":93,"uts\u7b49linux":85,"v1\u7248\u672c":53,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":60,"var":[17,30,32,33,37,39,40,45,48,51],"vector\u662frank\u4e3a1\u7684tensor":76,"void":[17,22,24,30,34,35,39,49,50,74,75,76],"volume\u6302\u8f7d\u5230\u5bb9\u5668\u4e2d":85,"w0\u548c":94,"wbias\u662f\u9700\u8981\u5b66\u4e60\u7684\u53c2\u6570":94,"wheel\u5305":47,"while":[6,12,17,26,38,41,48,87],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":76,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":71,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":68,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":68,"x86_64\u548cmaco":53,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":63,"x\u548cwindow":[61,65],"x\u548cwindows\u4e0a\u7684\u786c\u4ef6\u8d44\u6e90":61,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":63,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":87,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":87,"zero\u4e09\u79cd\u64cd\u4f5c":82,AGE:86,AWS:[21,85,88,89],And:[7,8,10,12,14,16,22,26,27,31,41,42,48],But:[8,9,12,16,30,48,53,91],EOS:8,For:[4,7,8,10,12,14,15,17,23,24,25,27,30,32,36,38,39,40,41,42,44,45,46,49,50,52,79,91],IDE:72,IDs:[12,26],IRs:42,Its:49,K8s:91,NFS:85,NMS:8,NOT:40,Not:[15,19,91],OPs:[42,43],One:[7,9,14,16,26,44,48],Ops:[45,50],PFS:28,QoS:86,Such:51,TLS:[15,28],That:[8,12,41],The:[2,5,6,7,8,9,10,12,14,15,16,18,19,23,25,26,27,29,35,36,39,40,41,42,43,44,48,49,50,51,52,74,75,76,87,92,95],Their:[8,19],Then:[8,30],There:[7,8,12,14,15,17,18,19,24,26,27,29,36,38,48,49],These:[7,17,32,37,50],Use:[7,12,15,29,41,45],Used:[9,45],Using:[19,45,48],Will:[12,14],With:[8,9,39,51],YES:27,Yes:61,___embedding_0__:87,___embedding_1__:87,__doc__:50,__file__:27,__gradient_machines__:14,__impl__:50,__init__:[31,37,40,51,74],__main__:[4,31,94],__metaclass__:75,__name__:[4,31,94],__param_conf__:14,__rnn_step__:71,__square_error_cost_0__:87,__tmp_params__:14,__va_args__:46,_binari:18,_create_global_var:40,_librari:18,_link:9,_loss:31,_op:75,_proj:8,_recurrent_group:71,_res2_1_branch1_bn:94,_source_language_embed:[71,93],_target_language_embed:[71,93],_test:18,a_op:75,aaaaa:21,abc:8,abil:31,abl:[8,15,37,40,42,44,52,91],about:[8,9,17,18,27,29,36,42,48,50],abov:[2,7,8,15,17,18,19,23,30,32,36,37,39,40,42,44,50,51,79,91],abs:[8,9,16,31],abs_numerical_grad:16,acceler:20,accept:[6,8,12,15,41,45],access:[8,9,15,18,23,26,27,40,42],accessor:40,accord:[7,8,16,24,32,42,43,45,51],accordingli:[7,8],account:[45,91],accrodingli:22,accumul:[19,24],accur:[16,26],accuraci:7,across:[8,12,36],act:[8,9,17,42,44,51,56,59,63,68,71],act_output:50,act_typ:95,activ:[9,13,18,42,50,56,63,71,95],activi:9,actual:[22,31,50],adadelta:[56,95],adagrad:[49,95],adagradoptim:37,adam:[15,24,31,58,95],adamoptim:[93,95],adapt:[7,10,14],add:[8,9,12,14,16,17,18,22,26,30,33,37,42,43,45,48,53,73,76],add_depend:18,add_execut:18,add_input:[36,74],add_memori:36,add_output:36,add_scalar:[17,39],add_test:[18,74],add_to:[8,57],add_two:[17,36],add_unittest_without_exec:74,addattr:[50,75],addbia:74,addcom:[50,75],added:[7,14,17,43,73],addinput:[50,75],addit:[8,9,45,51],addop:30,addoutput:75,addr:19,address:[19,24,42,44,91],addrow:74,addtolay:8,addtyp:50,admin:91,administr:[26,91],adopt:31,advanc:16,advantag:16,adversari:[31,41],affect:[8,17],afford:23,afi:2,aforement:18,after:[8,9,12,17,18,23,24,26,29,38,42,43,73],again:[15,19],age:[12,87],agg_level:[8,67,68],aggregatelevel:[67,68],ago:18,aistat:8,alex:8,alexnet_pass1:84,alexnet_pass2:84,algo_hrnn_demo:68,algorithm:[8,10,23,93],align:[8,9,12],all:[2,6,7,8,10,14,15,17,18,19,22,24,26,27,29,31,32,35,36,37,39,40,42,44,45,50,56,70,87,91],alloc:[6,24,27,76],allow:[15,24,42],allow_only_one_model_on_one_gpu:[81,82,84],alpha:18,alreadi:[18,19,40,42,43,48,53],also:[8,9,12,15,17,18,22,25,30,31,32,38,39,40,41,48,50,51,79,91,95],altogeth:91,alwai:[8,9,14,18,41,44,49,87],amazon:86,ambigu:41,amd64:85,amend:73,ancestor:[39,40],android:65,android_abi:65,android_arm_neon:65,android_native_api_level:65,android_standalone_toolchain:65,androideabi:65,ani:[8,9,12,15,18,19,24,26,27,40,41,42,43,44],anoth:[8,14,15,17,27,48,50],anroid_arm_mod:65,anyth:[12,41],anytim:31,api:[12,14,15,18,24,25,27,28,30,31,36,38,45,47,51,52,79,87,90,91,92],api_shar:18,api_test:18,api_trainer_config_helpers_lay:[71,95],apiserv:85,apivers:[85,86,87],appear:32,append:[2,14,40,41,68,71,87],append_gradient_machin:14,append_oper:40,appleyard:79,appli:[8,31,32,48],applic:[32,40,45,79,86,91],applyl1:22,approach:[8,38,42,43,91,95],arbitrari:[8,42],arch:65,archiv:[12,34,35],area:31,arg:[2,7,9,37,50,58,59,75,87,94,95],arg_nam:8,argpars:87,args_ext:87,argument:[2,8,12,17,22,23,37,38,44,87],argumentpars:87,argv:94,arm64:65,arm:[65,66],arm_soft_fp_abi:65,armeabi:65,around:[2,8,26,91],arrai:[4,6,8,12,14,24,32,39,40,41,45,51,56,58,63,75,94],arrang:51,arrow:31,articl:[32,73],arxiv:[8,9,31],as_row_vector:8,as_step_input:17,ask:[19,26],assert:4,assign:[7,8,23,91],associ:[38,46],assum:[7,8,17,42],astyp:[41,75],asyc:19,async:[19,81],async_count:[81,82],async_lagged_grad_discard_ratio:82,async_lagged_ratio_default:[81,82],async_lagged_ratio_min:[81,82],asynchron:19,atla:60,atlas_root:60,attenion:9,attent:[8,9],attr1:8,attr2:8,attr:[6,8,9,17,39,40,50,56,57,58,71,75],attr_map:50,attrdesc:39,attribut:[8,9,13,17,39,43,45,48,50,51],attributemap:75,attrproto:50,attrtyp:[39,50,75],attrvalu:50,auc:81,author:[28,85],authorized_kei:80,auto:[17,22,34,45,48,51,74,75,76,79],automat:[8,15,24,30,37,42,43,45,50],automaticli:8,avail:[19,24,43,44,91],averag:[7,8,11,23],average_test_period:[81,82],averagepool:8,avg:[67,79,95],avgcost:95,avgpool:[8,95],avoid:[16,17,19,38,79],avx:61,await:86,awar:[15,36,40],aws:28,axi:56,aync:43,azur:85,b2t:93,b363:86,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:86,back:[14,19,31,42],background:[7,8],background_id:[7,8],backpropag:16,backward:[5,8,9,16,17,22,24,31,37,38,46,74,75],backward_first:71,backward_op:16,backwardactiv:74,baidu:86,bake:42,balanc:43,bare:[85,86,91],barrierstatset:79,base:[7,8,11,12,15,23,37,42,45,46,51,72],baseactiv:9,baseev:14,basematrix:74,basenam:7,basepoolingtyp:[8,9],basestr:[6,7,8,9,11,14],bash:[61,72,73,86,87],basic:[8,14,39,45,46,51],batch:[8,9,10,12,14,15,17,19,21,22,31,33,36,51,59,63,80,86,87,94,95],batch_0:94,batch_id:[14,31,63],batch_im:31,batch_label:31,batch_norm:31,batch_norm_lay:9,batch_norm_typ:8,batch_read:[21,41],batch_siz:[12,31,56,59,63,80,93,95],batch_szi:31,batch_z:31,batchnorm:31,batchsiz:[8,74],bazel:18,bbbbb:21,bbox:[7,8],bcd:8,bcebo:12,bcm2708:66,bdist_wheel:47,beam:[8,71],beam_gen:[8,71],beam_search:[14,70,71],beam_siz:[8,71,81,82,84],becaus:[7,8,12,15,17,18,19,24,38,40,41,42,48,51,52,68],becom:[43,48],been:[18,23],befor:[8,9,19,26,29,32,38,41,53,56,75,91],begin:[7,8,22,24,29,32],beginiter:[14,15],beginn:71,beginpass:[14,15],begintrain:15,behind:51,being:[26,41],belong:[8,42,48],below:[8,17,19,24,38,41,42,43,51,52],benefit:[9,26,27],bengio:8,besid:[8,12,42],best:[8,18],besteffort:86,beta1:10,beta2:10,beta:[31,94],better:[8,9,18,91],between:[7,8,10,14,18,19,24,35,38,43,44,46,48],bgr:94,bi_gru:9,bi_lstm:9,bia:[8,9,10,74,94],bias:8,bias_attr:[8,9,56,58,59,68,71],bias_param_attr:9,biases_:74,biasparameter_:74,biassiz:74,bidi:86,bidirect:[8,9],bidirectional_lstm:57,big:[43,91],bigger:19,bilinear:8,bilinear_interpol:8,bilinearfwdbwd:79,bin:[61,80,85,86,87],binari:[7,8,12,18,27,31,42],bind:[30,48],black:31,blank:8,block:[8,20,22,24,36,37,42,43,76],block_i:8,block_x:8,blockdesc:[17,32,37,40,45],bn_bias_attr:9,bn_layer_attr:9,bn_param_attr:9,book:[12,45,71,92],bool:[6,7,8,9,11,12,14,17,33,40,49,50,51,52,74,82,84],boot:[8,70,71,91],boot_bia:8,boot_bias_active_typ:8,boot_lay:[68,71],boot_stat:51,boot_with_const_id:8,bootstrapp:91,borrow:[31,51],bos_id:[8,71],both:[5,6,8,9,15,17,18,19,26,31,42,43,49],bottom:[14,95],bound:8,boundari:42,boundri:7,box:[8,31],brace:[17,32],brain:26,branch:[8,15,17,18,33,39,42,47,73],break_if:51,brief:[18,24,76],broadcast:[19,45,91],broken:73,browser:61,bsd:72,buf:22,buf_siz:12,buffer:[12,22,41,48],buffer_s:12,buffered_read:41,bug:73,build:[8,12,18,27,32,42,47,50,61,65,66,72,73,77,87,88,89],build_dict:12,build_doc:77,build_model:31,built:[18,42,50,51,79,91],c11:34,c703c041:73,c99:35,cach:[42,56],cache_pass_in_mem:[2,56],cachetyp:[2,56],cacul:9,caff:17,caffe2:17,caffe_poli:58,calc_batch_s:2,calcul:[7,8,9,10,16,19,24],call:[7,8,9,14,15,16,17,22,23,24,25,27,31,32,36,37,40,42,45,46,48,50,51,79,87,95],callabl:[6,8,12],callback:74,caller:16,calrnn:68,can:[6,7,8,9,12,14,15,16,17,18,19,22,23,26,27,30,31,32,36,37,39,40,41,42,43,44,45,46,50,51,79,91],can_over_batch_s:2,cancel:26,candid:8,cannot:[44,45,48,51,53],capabl:[38,45],capi:34,capi_prvi:35,card:80,care:[9,27,41,91],caret:14,carpedm20:31,cast_to_op_attr:50,cat:[61,87,94],categori:[8,12,19],categorig:12,categoryfil:86,caus:[19,29],cc_:18,cc_binari:18,cc_test:18,cclient:25,cde:8,cdn:12,cdot:8,ceil:8,ceil_mod:8,cell:[8,9],cento:91,ceph:[21,85],cephf:[21,27,28],certain:[37,48],certif:[15,28,85],cffi:34,cfg:86,cgo:34,chagn:46,chain:[12,32],challeng:[8,19,33],chanc:15,chang:[8,12,18,23,27,38,39,41,46,48,73],channel:[8,9,79],chapter:36,chapter_data:36,chapter_out:36,check:[2,12,17,18,45,58,73,74,82],check_align:12,check_attr:50,check_eq:74,check_fail_continu:2,check_grad:[16,75],check_l:74,check_sparse_distribution_batch:[81,82],check_sparse_distribution_in_pserv:[81,82],check_sparse_distribution_ratio:[81,82],check_sparse_distribution_unbalance_degre:[81,82],checker:45,checkgrad:82,checkgrad_ep:82,checkmark:91,checkout:73,checkpoint:43,checksum:28,child:17,choic:18,chosen:31,chunk:[23,28],chunk_schem:7,chunktyp:7,circl:32,claimnam:87,clang:[34,61,73],clarifi:7,classic:8,classif:[8,32,95],classifi:[8,31,94],classification_cost:[42,56,68,95],classification_error_evalu:[7,95],classification_evalu:7,clean:[17,18,38,45,53,73],clear:[7,18,38,48],clearer:38,clearli:48,client:[22,25,45,85],clip:[6,9,82,95],clock:8,clone:[8,61,66,72],close:[2,41,44,73],cloud:[18,19,27,28,29,44,45,91],cloud_read:12,cluster:[12,14,15,17,19,24,42,44,80,85,87],cluster_train:80,cmake:[35,53,60,65,66,72,73,75,77,79],cmake_build_typ:[65,66],cmake_c:[65,66],cmake_system_nam:[65,66],cmakelist:[18,74],cmatrix:[34,35],cna:8,cnn:[8,86,95],coars:30,code:[2,4,8,12,15,18,26,30,31,32,37,38,41,42,43,45,46,50,51,61,74,86],codebas:45,coded_stream:58,codedinputstream:58,coeff:8,coeffici:8,collabor:19,collect:[8,12,14],collectbia:74,color:94,colour:12,column:[7,8,32,41,44],column_evalu:7,column_nam:40,com:[8,9,12,18,31,61,65,66,72,73,85,86,91,94],combin:[7,8,9,12,14,37,45,48],come:[39,51],comma:[14,24],command:[18,22,27,29,72,74,84,86,87,88,89],commandlin:[79,87],comment:[10,18,50,68,87],commit:[18,86],common:21,common_util:80,commonli:29,commun:[19,24,25,42,43],compar:[16,18,45],comparison:18,compat:30,compil:[8,18,42,46,49,50,52,65,66,72],complaint:18,complet:[8,9,10,12,14,17,19,23,24,28,32,45,86,87,91],complex:[9,26,41,45],complic:[8,30,42,51],compon:[42,51],compos:[12,15,30,36,40,45],composenotalign:12,composit:30,compress:23,comput:[8,9,15,16,19,37,42,43,44,46,48,52,75,76],computation:8,conat:8,concat:[31,71],concaten:[9,31,36,51,56],concentr:45,concept:[7,15,30,31,36,38,39,44,48,51,52],conceptu:31,concern:15,concis:[31,51],concret:45,concurr:[19,26,43],cond:[17,33,39],condit:[8,23,33,42,86],condtion:31,conf:[4,8,58,68,80,87,93,94],conf_paddle_gradient_num:87,conf_paddle_n:87,conf_paddle_port:87,conf_paddle_ports_num:87,conf_paddle_ports_num_spars:87,confid:8,confidence_threshold:8,config:[6,8,21,29,59,63,74,80,81,82,84,85,86,87,91,95],config_:[22,82],config_arg:[81,82,84,94,95],config_bas:[7,8,14],config_gener:80,config_lay:74,config_len:24,config_pars:[4,74],config_proto:24,configprotostr:58,configur:[8,14,22,24,26,27,43,74,91,93,94],confirm:29,conflict:[48,73],confus:31,conll:12,connect:[9,27,42,43,54,86,91,95],connectionist:8,consequ:[8,9],consid:[7,8,10,91],consider:9,consist:[7,8,12,23,39,41,45,46,50],consolid:17,const_cast:75,constant:[44,58],constraint:[42,48],construct:[7,15,36,40,45,48,50,52],constructbackwardgraph:32,constructoptimizationgraph:32,constructor:[40,45,48,50],consum:19,contact:26,contain:[2,7,8,9,11,12,14,15,17,23,31,38,44,45,46,48,49,50,51,52,72,86,87],content:[24,29],content_len:24,context:[2,8,9,12,48,49,56,71,75,76,85],context_attr:9,context_len:[8,9,95],context_proj_layer_nam:9,context_proj_param_attr:9,context_project:9,context_start:[8,9,95],continu:[7,19],contrast:8,contributor:45,control:[6,17,44,86,91],conv2d:31,conv:[9,31],conv_act:9,conv_batchnorm_drop_r:9,conv_bias_attr:9,conv_filter_s:9,conv_layer_attr:9,conv_num_filt:9,conv_op:8,conv_pad:9,conv_param_attr:9,conv_strid:9,conv_with_batchnorm:9,conveni:[15,37,50],convent:24,convers:42,convert:[2,4,12,21,41,46],convlay:8,convolut:[8,9,12,31],convoper:8,convtran:8,convtranslay:8,cool:73,coordin:[19,24],copi:[14,15,23,26,29,32,36,51],core:[6,35,38,51],coreo:91,corner:45,corpu:12,correct:[8,16],correctli:[7,12,31],correspoind:15,correspond:[15,17,18,33,36,40,44,45,46,50,58],corss_entropi:15,cos:[8,50],cosin:[8,50],cosineop:50,cosineopproto:50,cosineopprotomak:50,cost:[10,14,15,32,37,39,42,44,59,63],cost_id:8,cost_val:42,could:[8,12,14,15,16,23,36,37,38,39,41,42,43,46],count:[7,19,27,41,79,82,84,86],counter:[19,23,32],cours:[7,27],cpp:[16,22,30,34,35,38,43,45,52,58,68,74,79,87,95],cpu:[2,6,8,16,27,38,42,44,45,47,61,72,75,76,79,84,86,87],cpu_per_p:44,cpu_per_train:44,cpuinfo:61,cpuplac:[75,76],cpusparsematrix:35,crash:[19,79],creat:[6,8,12,14,15,16,17,19,24,28,29,30,31,32,36,37,38,40,46,58,63,73,74,86,87,91],create_backward_pass:37,create_bias_paramet:74,create_block:40,create_cloud_job:44,create_doc_str:50,create_global_var:40,create_input_paramet:74,create_op:75,create_oper:30,create_optimization_pass:37,create_paramet:40,create_python_ops_creatation_funct:50,create_rnn:17,create_rnn_op:36,create_var:40,create_whileloop:51,createfromconfigproto:4,creategradientoper:46,createop:50,createoper:17,createvari:17,creation:30,creator:[12,21,45,46],creator_:46,credenti:29,critic:31,crlf:73,crop:94,crop_siz:94,cross:[8,58,65,66,95],cross_entropi:[8,15,31,44],cross_entropy_with_selfnorm:8,crt:[28,85],csc:74,csr:74,csv:58,ctc:7,ctc_evalu:7,ctest:[61,72,73,75],ctor:40,ctrl:[72,80],ctx:[75,76],cuda:[18,45,72,79,80,82],cuda_dir:[81,82],cuda_so:[53,61],cuda_visible_devic:56,cudaconfigurecal:79,cudadevicegetattribut:79,cudaeventcr:79,cudaeventcreatewithflag:79,cudafre:79,cudagetdevic:79,cudagetdevicecount:79,cudagetdeviceproperti:79,cudagetlasterror:79,cudahostalloc:79,cudalaunch:79,cudamalloc:79,cudamemcpi:79,cudaprofilerstart:79,cudaprofilerstop:79,cudaprofilestop:79,cudaruntimegetvers:79,cudasetdevic:79,cudasetupargu:79,cudastreamcr:79,cudastreamcreatewithflag:79,cudastreamsynchron:79,cudeviceget:79,cudevicegetattribut:79,cudevicegetcount:79,cudevicegetnam:79,cudevicetotalmem:79,cudnn:[8,11,18],cudnn_batch_norm:8,cudnn_conv:8,cudnn_conv_workspace_limit_in_mb:[81,82],cudnn_convt:8,cudnn_dir:[81,82],cudnnv5:60,cudrivergetvers:79,cuinit:79,cumul:8,curl:85,curli:[17,32],current:[2,8,17,18,19,22,24,36,38,40,43,44,48,51,85,92],current_block:[39,40],current_oper:39,current_word:[56,71],currentcost:95,currentev:95,curv:15,custom:[15,27,31,45],custom_batch_read:41,cut:[43,51],cutoff:12,cxx_compil:[65,66],cxx_flags_minsizerel:[65,66],cycl:19,cyclic:8,cython:34,d_b0:31,d_b1:31,d_b2:31,d_block:31,d_f:31,d_g:31,d_h0:31,d_h0_bn:31,d_h0_relu:31,d_h1:31,d_h1_bn:31,d_h1_relu:31,d_h2:31,d_loss:31,d_loss_fak:31,d_loss_real:31,d_optim:31,d_step:31,d_t:31,d_w0:31,d_w1:31,d_w2:31,dalla:2,dandroid_abi:65,dandroid_arm_mod:65,dandroid_arm_neon:65,dandroid_standalone_toolchain:65,darwin:85,dash:31,dat:[21,80],data:[2,7,10,14,15,16,17,21,22,23,28,31,32,36,37,38,39,43,44,45,48,49,50,51,52,56,61,63,68,71,76,80,81,86,87,88,93,94,95],data_batch:56,data_config:4,data_dir:93,data_fil:59,data_i:31,data_lay:[2,22,40,56,59,68,95],data_read:[12,41],data_reader_creator_random_imag:41,data_shar:51,data_typ:[12,49,52,63,71],data_x:31,databas:12,datacent:[21,29],datacenter1:21,datacenter2:21,datacenter_1:21,datacenter_2:21,datacenter_nam:21,datadim:8,dataprovid:[1,56,58,59,80,87,95],dataprovider_:95,dataprovider_bow:95,dataprovider_emb:95,dataproviderconvert:4,datasci:8,dataset:[21,27,41,63,71,94],datatyp:[49,52],dcgan:31,dcmake_build_typ:77,dcmake_install_prefix:[65,66],dcmake_system_nam:[65,66],dcudnn_root:60,ddim:76,dead:19,deal:91,deb:73,debian:61,debug:[16,29,42,77],decai:10,decar:12,decayr:22,decent:23,decid:[15,26,31,41,46,49,92],declar:[8,17,31,36],decod:[8,9,70,71],decoder_boot:71,decoder_group_nam:71,decoder_input:[56,71],decoder_mem:71,decoder_prev:9,decoder_s:[56,71],decoder_st:[9,71],deconv:[8,31],deconvolut:8,decor:[2,12],deduc:45,deep:[8,26,31,32,45,79,94],def:[2,4,8,12,15,16,21,27,30,31,36,37,40,41,50,51,56,58,59,63,68,71,74,75,87,94,95],def_block:31,defalut:8,default_block:31,default_decor:87,default_devic:84,default_st:51,default_valu:84,defect:38,defer:26,defin:[2,8,9,12,14,15,17,18,19,26,30,31,36,39,40,41,43,45,48,50,51,56,63,75,95],define_py_data_sources2:[2,58,59,94,95],definit:[17,19,23,39,42,46,50,51,93],definiton:30,degre:8,deisgn:46,delet:[27,28,73,92],delimit:[7,58],deliv:91,delta:[8,16],delv:8,demand:19,demo:[4,8,12,45,80,86,88,93,94,95],dens:[8,12,24,25,49],dense_arrai:12,dense_vector:[2,4,12,59,63],dense_vector_sequ:12,dep:18,depend:[17,18,19,27,42,43,91],deploi:[8,91],deploy:[45,91],deprec:8,depth:17,dequeu:43,deriv:[5,15,33,37],desc:[17,40,50,51],desc_:17,descend:51,descent:[8,19],describ:[15,17,18,23,38,39,40,45,49,50,52,86],descript:[7,17,18,46,49,52,87],deseri:[14,38],deserializ:45,desgin:32,design:[8,12,22,34,91],desir:[19,86],destin:[24,29],destroi:17,destruct:48,det_output:7,detail:[6,7,8,9,10,16,23,27,29,31,36,40,42,44,48,51,52,91],detect:73,detection_evalu:7,detection_output:7,determin:[8,12,17,45],dev:[45,53,61,72,73,91],dev_ctx:17,develop:[18,38,46,47,73],deviat:6,devic:[6,38,42,44,45,53,61,76,84],device_context:75,device_context_:75,devicecontext:[17,75],deviceid:84,devid:8,dhcp:91,diagram:36,diamond:31,dict:[2,7,12,14,40,44,58,68,87],dict_dim:[56,68],dict_fil:[7,68],dict_siz:[12,22],dictionari:[2,7,8,12,14,15,16,44,56,95],dictrionari:95,did:38,diff:73,diff_mat:16,differ:[7,8,14,17,18,19,24,26,31,33,42,43,44,46,48,51],differenti:30,difficult:[7,16],digit:8,dilat:8,dilation_i:8,dim0:75,dim1:75,dim:[8,12,22,36,40,45,49,52,74,75,76,93],dim_:76,dimens:[5,8,11,12,31,45,49,51,56,76],dimes:8,dir:[65,80,87,94],direct:[8,9],directli:[9,18,25,27,38,42,50,51],directori:[8,18,21,26,28,29,73,79,86,92],disabl:58,discard:[12,19,23,73,82],discexp:58,discount:8,discov:19,discrim:31,discuss:[15,17,23,24,25,42],dispatch:[38,42],displai:[27,29],dist:[47,53],dist_train:[15,27],distanc:7,distinguish:18,distribut:[8,17,23,24,25,26,43,44,45,52,82,88,89,91],distribute_test:[81,82],distributedli:42,disucss:15,divid:[10,50,52],diy_beam_search_prob_so:[81,82],dmkl_root:60,do_forward_backward:41,doc:[4,12,36,51,61,75,77,87],doc_cn:77,doc_them:77,docker:[47,53,61,73,86,87,88,89,91],docker_build:15,docker_push:15,dockerfil:[61,72,73,87],dockerhub:61,document:[9,16,28,32,36,45],documentari:2,doe:[9,19,23,24,26,27,38,41,42,43,45,46],doesn:[6,8,12,15,17,41,44],dog:94,doing:[22,26,32,42],don:[9,15,18,30,32,41],done:[7,8,9,18,19,23,24,42,46,73,79,87],dot:75,dot_period:[82,84,87],dotmuloper:8,dotmulproject:8,doubl:[8,32,42,75,82],down:79,download:[12,18,19,22,26,28,86,91],doxygen:73,dozen:18,dpython_execut:53,dpython_include_dir:53,dpython_librari:53,drive:48,drop:9,drop_fc:57,drop_rat:[6,57],dropout:[6,9,57],dropout_r:[8,57],drpi_arm_neon:66,drpi_toolchain:66,drwxr:86,dst:24,dtoh:79,dtype:[4,40,58,59,94],due:[23,26,31,40],dummi:[14,23],duplic:43,durat:23,dure:[2,8,9,17,19,23,26,27,45,91],dwith_c_api:[35,65,66],dwith_doc:77,dwith_gpu:[60,66,77],dwith_mkldnn:77,dwith_mklml:77,dwith_profil:79,dwith_python:[35,66],dwith_swig_pi:[35,65,66],dwith_test:75,dwith_tim:79,dynam:[2,24,35,41],dynamic_cast:74,dynamic_recurrent_op:51,e2e:91,each:[2,7,8,9,11,12,14,16,18,19,22,23,24,26,27,32,36,38,40,41,42,43,45,46,48,49,50,51,91],each_feature_vector:5,each_pixel_str:2,each_time_step_output:5,each_word:2,eaqual:8,eas:[12,41],easi:[16,41,45],easier:[15,41,43,51],easili:[15,31,41,46,48],ec2:85,echo:[53,61],edg:44,edit:7,edu:[12,86],effici:[8,42],effort:42,efg:8,eigen:[45,75],eigen_use_gpu:75,eigenmatrix:76,eigentensor:76,eigenvector:76,either:[8,12,14,15,31,33,36],electron:86,elem_dim:8,element:[7,8,9,12,14,16,23,41,43,44,45,75],element_typ:24,elementari:45,elif:[15,50],els:[15,22,27,31,33,42,43,48,50,61,68,74,94],emac:72,emailweixu:18,emb1:[22,68],emb2:[22,68],emb:[56,58,68,86,95],emb_group:68,emb_para:58,emb_param_fil:58,emb_sum:56,embed:[15,17,22,43,49,51,58,71,93],embedding_lay:[22,56,68,95],embedding_nam:[8,71],embedding_s:[8,71],empir:8,emplace_back:74,emploi:50,empti:[7,12,19,59],enabl:[6,8,17,18,23,43,72,79],enable_grad_shar:[81,82],enable_parallel_vector:82,enc_proj:[9,71],enc_seq:9,enc_vec:71,encapsul:[24,44],encod:[9,23,68],encoded_proj:[9,71],encoded_sequ:[9,71],encoded_vector:71,encoder1:68,encoder1_expand:68,encoder1_rep:68,encoder2:68,encoder2_rep:68,encoder_last:8,encoder_s:71,encount:22,encourag:42,end2end:91,end:[7,8,14,17,38,41,48,71,73],end_pass:15,end_po:8,endforwardbackward:14,enditer:[14,15,63],endpass:[14,15],endpoint:[12,21],endtrain:15,engin:27,english:8,enlarg:75,enough:17,enqueu:43,ensembl:9,ensur:[19,48],enter:17,enterpris:45,entir:[8,9,24,26],entiti:[7,17,48],entri:[12,23,27],entropi:[8,95],entry_point:27,enueu:43,enumer:[5,58],env:[56,87],environ:[15,44,53,79,86],eol:73,eos_id:[8,71],epoch:31,epsilon:10,equal:[8,9,19,51,68,75],equat:[7,8,9,10,75],equival:[8,15,17,33,50,91],error:[6,7,8,9,10,15,16,23,29,48,53,58,75,82,95],error_clipping_threshold:[6,56],especi:9,essenc:15,essenti:[8,15],estim:[8,15,43],eta:86,etc:[7,12,17,41,42,48,91],etcd:[12,14,19,23,24,26],etcd_addr:24,etcd_endpoint:12,eth0:[80,87],eval:[7,17,31,44,45,95],evalu:[8,13,14,26,42,44,79,80],evaluate_difficult:7,even:[15,41],evenli:24,event:[63,86],event_handl:[14,15,63],eventu:51,everi:[7,8,9,12,15,19,23,24,26,32,43,48,50],everyth:[31,42,43],evid:38,exactli:[8,9,56],exampl:[7,8,9,10,12,14,17,27,29,30,31,32,36,38,39,40,41,43,45,46,49,51,94],exc_path:53,exceed:8,except:[8,12,26,32,51],exchang:38,excluded_chunk_typ:7,exconv:8,exconvt:8,exdb:12,exe:85,exec:61,execut:[18,19,23,27,31,44,46],executioncontext:[75,76],executor:[31,37,39],exist:[15,17,19,29,40,41,44,50,51,76],exit:[24,29,86],exp:58,expand:68,expand_a:[8,67,68],expand_lay:68,expand_level:[8,67],expandconvlay:8,expandlevel:67,expans:8,expect:8,expert:18,expir:19,explain:[7,19,30,32],explan:[8,16,27,42,48],explicit:[51,74],explicitli:[15,44],explor:8,exponenti:5,expos:[25,51],express:[15,43],ext:8,extend:[7,43,51],extens:[26,43],extent:35,extern:[18,34,35,45],external_librari:18,extra:[6,8,9,42,91],extra_lay:14,extraattr:[6,84],extraattribut:8,extract:[7,8,38,42,93,94],extract_fea_c:94,extract_fea_pi:94,extralayerattribut:[6,9,56,57],extralayeroutput:9,extrem:8,f1205:58,f120da72:86,fa0wx:86,fabric:80,face:18,facotr:8,fact:[39,40],factor:[6,8,10],factori:34,fail:[19,23,44,53,58,82,86],failur:[19,24],fake:31,fake_imag:41,faked_imag:31,falloc:28,fals:[6,7,8,9,10,12,16,17,33,36,39,41,49,52,56,59,63,68,71,74,75,84,86,93,95],false_block:[17,33,39],false_label:41,false_read:41,faq:90,far:51,fast:[8,23,46,79],faster:[8,9,19],fault:[14,23,45],fbd1f2bb71f4:86,fc1:[44,74,84],fc2:[44,84],fc3:84,fc4:84,fc_act:9,fc_attr:9,fc_bias_attr:9,fc_layer:[40,50,56,58,59,68,84,95],fc_layer_nam:9,fc_mat:14,fc_op:50,fc_out:17,fc_output:50,fc_param_attr:9,fc_without_b:17,fclayer:74,fcop:30,fdata:68,fea:94,fea_output:94,featur:[2,5,8,12,73,94],feed:[9,14,15,32,36,40,42,44,63],feed_dict:[31,44],feeder:12,festiv:2,fetch:[12,19,22,42,53,73],few:[18,19,41,49],fewer:8,fg0:8,field1:14,field2:14,field:[8,14,17,46,49,50,56],fifth:32,figur:[15,18,31,36,43,93],file:[2,7,8,12,14,15,18,19,21,23,24,26,27,28,29,35,41,42,45,52,73,75,91,94],file_list:2,file_nam:[58,59,68,94,95],filenam:[2,21,40,56],fileoffset:28,filer:8,filesystem:[26,27,28,42],fill:[8,19,23,40],fill_zero_grad:45,filter:[8,9],filter_s:[8,9],filter_size_i:8,find:[8,10,17,19,26,48],find_var:16,findop:17,findvar:[17,48],fine:[6,23,30],finish:[19,23,26,27,50,86],first:[8,14,15,17,19,23,26,27,29,31,32,36,39,40,42,45,49,50,51,75,76,91,95],first_seq:71,firstli:[7,8],firstn:12,firstseen:86,fit:[12,45],five:39,fix:[6,34,42,73],flag:12,flatten:[39,40,76],flatten_result:56,flexiabl:41,flexibl:[8,9,15,24,32,36,42,51],float32:[4,12,30,31,40,41,58,59,75,94],floor:[8,58],flow:[17,36,47],fmt:58,fname:58,folder:[18,21,27,29],follow:[7,8,9,10,12,14,15,16,17,18,19,23,27,30,31,32,33,36,39,41,43,45,48,49,50,51,88,89,91],forbid:15,force_load:34,forest:17,forget:[10,15],fork:8,form:[8,9,10],format:[7,12,14,16,23,51,73,74],former:[15,18],formula:[8,9,16],formular:8,forth:31,forward:[5,8,9,16,17,22,24,31,37,38,39,45,46,74],forward_op:16,forwardactiv:74,forwardbackward:14,forwardtest:4,found:[8,39,48],four:[7,32],fp16:[45,52],fp32:[45,52],fp64:52,fparam:58,fpga:44,frame:[7,45,51],framework:[15,17,39,45,48,50,75],free:[12,91],frequenc:12,frequent:[23,41,45],fresh:[26,44],friend:48,friendli:31,from:[2,4,7,8,9,12,14,16,17,18,19,21,22,23,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,48,51,53,59,61,70,75,76,79,86,91,93,95],from_no_sequ:[8,67],from_sequ:[8,67],from_tar:14,fromfil:[41,58,59,94],fromstr:58,fulfil:79,full:[8,19,26,36,91],full_matrix_project:[9,68,71],fulli:[42,43,91,95],fullmatrixproject:8,fullsiz:22,fully_matrix_project:9,fullyconnectedlay:74,func:[2,12,23,46],funciton:9,functor:30,fundament:[43,45],further:[8,50,91],furthermor:44,futur:[8,26,42,45,92],fvs:50,fwd_op:46,g_b0:31,g_b1:31,g_b2:31,g_block:31,g_h0:31,g_h0_bn:31,g_h0_relu:31,g_h1:31,g_h1_bn:31,g_h1_relu:31,g_h2:31,g_im:31,g_loss:31,g_optim:31,g_step:31,g_w0:31,g_w1:31,g_w2:31,gain:8,gamma:94,gan:15,gangliao:18,gate:[8,9],gate_act:[8,9,68],gate_attr:8,gate_bias_attr:8,gate_param_attr:8,gate_recurr:8,gather:[8,38,75],gauss:6,gaussian_normal_random:31,gcc:[34,45,61,65,66,72],gce:85,gcepersistentdisk:85,gcreators_:50,gen:8,gen_proto_pi:77,gen_rand_param:58,gender:[12,87],gener:[2,7,8,9,12,14,15,16,17,18,19,21,23,24,26,30,37,39,41,42,43,45,46,49,50,51,79,84,87,93],generated_word_embed:8,generatedinput:[8,70,71],genr:87,geq:8,gereat:7,get:[2,7,8,12,14,16,17,18,19,23,24,26,27,28,31,36,44,45,46,48,50,51,74,86],get_all_op_proto:50,get_block:40,get_cloud_job:44,get_config_arg:84,get_data:[86,95],get_dict:12,get_dim:16,get_embed:12,get_float_el:16,get_grad:14,get_input_lay:74,get_model:94,get_movie_title_dict:12,get_numeric_gradi:16,get_numerical_gradi:16,get_output:16,get_sample_from_lin:56,get_shap:14,get_support:53,get_tensor:16,get_vari:17,get_word_dict:12,getbatchs:74,geteigendevic:76,getenv:[15,27,87],gethostbynam:87,gethostnam:87,getidmap:87,getinput:74,getinputgrad:74,getinputvalu:74,getlayeroutput:14,getmat:22,getoptconfig:22,getoutputgrad:74,getoutputvalu:74,getparam:22,getparameterconfig:22,getparameterptr:74,getparameterspars:22,getparametersremot:22,getplac:[75,76],getpodlist:87,getsiz:74,gettask:23,gettranspos:74,getw:74,getweight:74,getwgrad:74,gist:9,git:[47,53,61,66,72,73],github:[9,18,31,61,66,72,73,94],give:[2,19,36,45],given:[8,12,14,24,26,30,31,41,43,44,51],glide:18,global:[6,15,17,18,19,38,40,44,45,48,50,72,79],global_block:40,global_learning_r:6,globalstat:79,globalstatinfo:79,globe:2,glolal_block:40,glusterf:85,gnueabihf:66,go_librari:18,go_test:18,goal:[32,45],gob:23,godep:18,godoc:34,goe:[8,9,19,33,48],going:[30,91],golang:18,good:[8,31,41,91],goodfellow13:8,googl:[15,45,58,65],googleapi:85,got:48,gprotos_:50,gpu:[6,8,11,16,27,38,42,44,45,47,53,61,72,75,79,84,91,94],gpu_id:[56,82,84],gpu_per_train:[42,44],gpugpu_id:81,gpukernel:45,gpuplac:75,grab:19,grad:[16,24,49,82],grad_op_class:45,grad_op_maker_:46,grad_op_typ:[45,46],grad_op_type_:46,grad_share_block_num:[81,82],grad_var_nam:16,gradient:[6,7,8,10,14,19,23,32,37,38,45,49,82,87,95],gradient_check:75,gradient_clipping_threshold:[6,56,95],gradient_evalu:7,gradient_flat:16,gradient_machin:[14,35],gradientcheck:75,gradientmachin:[4,14,35,38,87],gradientmachine_:22,gradopdescmak:46,gradopdescmakerbas:46,gradopmak:46,grain:30,gram:93,grandient:14,graph:[8,14,17,18,19,31,36,39,42,44,52],great:[43,91],greater:8,greaterthan:50,green:31,grep:61,groudtruth:71,ground:[7,8],group:[9,23,91],group_input1:71,group_input2:71,group_input:[68,71],grouplen:12,grpc:91,gru:[8,95],gru_bias_attr:9,gru_decod:71,gru_decoder_with_attent:71,gru_encoder_decod:93,gru_layer_attr:9,gru_memori:9,gru_siz:95,gru_step:71,gru_step_lay:9,grumemori:[9,57,71],gserver:[8,74],gsizex:79,guarante:40,guard:22,guid:[28,45,86],gzip:[23,86],h0_bn:31,h_prev:17,hadoop:15,hand:45,handi:18,handl:[12,15,27,38,41,42,44,48,51],handler:[14,17],happen:[23,50],hard:[42,43,51],harvest:95,has:[7,8,9,10,12,15,16,17,18,19,23,24,26,31,39,42,43,44,45,49,50,79,91],has_kei:14,hassubseq:68,have:[8,9,12,15,16,17,18,19,23,24,26,27,30,31,32,36,38,39,40,41,42,43,44,45,46,48,49,52,91],hdf:21,head:75,header:[24,35,45,58,59,94],height:[8,12,17,34,41,58,74,75],height_:49,held:19,hello:15,help:[4,17,29,45,51,73],helper:[8,42,46,51],henc:[40,48],here:[6,7,8,9,12,15,18,19,25,29,32,41,50,91],heterogen:[42,43],heurist:[8,43],hidden:[8,9,37,42,57,58],hidden_a:58,hidden_b:58,hidden_dim:68,hidden_out:17,hidden_s:9,hierach:70,hierarch:[8,39,40,45,68],hierarchi:45,high:[6,91],higher:[30,51],highest:[12,17],highli:[12,51],him:15,hint:[4,43],his:44,histor:30,hl_get_sync_flag:74,hold:[15,19,23,25,31,42,44,48,50,76],holder_:76,home:[21,29,42,44,80,86,87],honor:23,hook2:68,hook:[6,68],hookattr:6,hookattribut:6,horizont:8,host:[18,27,80,86],host_c:[65,66],hostnetwork:87,hostpath:[85,86,87],hot:95,hous:[2,12],how:[6,8,15,17,19,23,29,30,38,50],howardjohnson:68,howev:[8,9,16,26,38,40,41,42,46,49,50],howto:87,hpp:34,html:12,htod:79,http:[8,9,12,18,27,31,61,65,66,72,73,85,86,91,94],huber:8,huge:8,human:8,hyper:[8,31],hyperplan:12,i1116:87,i1117:79,ib0:80,ics:12,id_input:7,idea:[8,18,41],ident:[8,46],identifi:33,identityoffsetproject:8,identityproject:8,idmap:87,ids:[7,8,56],idx:[23,31,74],ies:29,ifels:[17,39],ifelseop:39,ight:8,ignor:[2,8],iil:58,illustr:[7,19,24,30,36,42,44],ilsvrc:94,im_siz:31,imag:[11,12,15,31,32,37,39,41,44,61,72,73,86,87,88,89,91,94],image_a:41,image_b:41,image_fil:41,image_lay:41,image_list_provid:94,image_nam:15,image_path:41,image_reader_cr:41,image_s:94,imagenet:[8,21],imagepullpolici:87,imageri:8,images_reader_cr:41,imagin:32,img:[2,8,9,42],img_conv_lay:9,img_pool_lay:9,imgsiz:79,imgsizei:79,imgsizex:79,immutable_paramet:15,imperfect:45,implement:[8,9,10,12,17,23,24,25,26,27,30,33,34,35,38,42,43,48,50,51],implemet:22,impli:18,implicit:44,imposs:91,improv:[8,43,45],inarg:[4,22],inc_path:53,includ:[7,8,9,12,15,17,18,24,27,31,34,35,36,39,40,42,45,50,65,66,73,75,79],incorpor:8,incorrect:8,increas:[19,23,58],increment:32,incupd:74,inde:[12,41],independ:[8,16,24,44,48,91],index:[7,8,11,12,14,16,17,19,23,39,40,51,68],indexslot:8,indic:[7,8,17,24,31,36,39,46,49,51],indice_map:51,indices_map:51,individu:19,industri:[19,91],ineffici:38,infer:[15,17,19,33,34,40,44,45,49],infer_shap:40,inferior:26,infershap:[17,40,45,75,76],infershapecontext:[75,76],infiniband:80,info:[7,8,12,36,63,68,74,80,87,91],inform:[8,12,14,17,27,29,36,40,42,48,49],inherit:[17,37,45],ininst:15,init:[6,14,17,31,36,42,63,74,87],init_attr:40,init_from_tar:14,init_hook:[68,95],init_model_path:[81,82,84,93,95],initi:[2,6,8,9,12,14,18,23,32,36,40,42,43,50,51,82,95],initial_max:[6,58],initial_mean:[6,8,58],initial_min:[6,58],initial_std:[6,8,58],initialize_op_attr:40,initpaddl:4,initrd:91,inlcud:9,inlin:76,inner:[56,68],inner_:68,inner_mem:68,inner_param_attr:9,inner_rnn_output:68,inner_rnn_st:68,inner_rnn_state_:68,inner_step:68,inner_step_impl:68,inproj_attr:8,inproj_bias_attr:8,inproj_param_attr:8,input0:76,input1:[8,9,76],input2:8,input:[2,5,7,8,9,11,12,14,16,17,22,26,30,31,32,36,38,40,41,42,43,44,45,46,48,50,51,56,57,58,59,63,67,68,70,71,74,75,76,84,87,93,95],input_conf:8,input_data:74,input_data_target:74,input_featur:5,input_fil:59,input_hassub_sequence_data:74,input_id:8,input_imag:9,input_index:74,input_label:74,input_lay:74,input_loc:8,input_nam:15,input_proj_bias_attr:9,input_proj_layer_attr:9,input_seg:51,input_seq:8,input_sequence_data:74,input_sequence_label:74,input_sparse_float_value_data:74,input_sparse_non_value_data:74,input_t:74,input_to_check:16,input_typ:[56,59,68,95],input_valu:16,input_var:16,inputbuff:22,inputdef:74,inputgradi:46,inputlayers_:74,inputs_to_check:16,inputtyp:12,insert:[45,46,73],insid:[7,8,19,38,41,43,45,46],instal:[8,27,47,53,65,66,73,80,86],instanc:[8,16,17,19,21,25,33,36,40,42,45,46],instanti:19,instead:[8,9,11,18,22,27,32,41,42],instruct:[17,32],int16:52,int32:[39,51,52,82],int64:[28,49,52],integ:[2,7,8,12,23,27,34,63,95],integer_sequ:56,integer_valu:[2,12,56,63,68,95],integer_value_sequ:[2,12,68,71,95],integer_value_sub_sequ:68,integr:[7,91],inter:[8,42],intercept:8,interchang:[32,45],interfac:[6,8,9,14,17,23,27,29,38,45,46,80,91],intergr:8,intermedi:[29,31,37,42],intern:[8,9,14],internet:[18,19,91],interpret:7,interv:8,introduc:[8,17,19,31,48,50],intuit:[26,45],invalid:[41,48],invoc:[18,30,45],invok:[2,8,14,38,42,43,45,46,50,79],iob:7,ioe:7,ip_str:87,ipc:85,ips:87,ipt:[8,50,58,68,71],ipx:91,ipython:15,is_gener:93,is_loc:14,is_predict:95,is_seq:[8,71],is_stat:[6,58],is_tensor:50,is_test:94,is_train:2,isinst:[4,63],ispodallrun:87,isspars:74,issu:[18,31,44],issue_numb:73,item:[8,12,14,26,41,87,91],iter:[2,8,9,10,12,14,15,19,41,42,51],its:[2,8,9,14,15,16,17,19,23,31,32,36,38,40,45,46,48,49,50,79],itself:[19,26,48],ivs:50,java:[17,34,39,45],jeremi:79,jmlr:8,job:[12,26,42,44,45,80,81,82,84,85,87,94,95],job_dispatch_packag:80,job_id:12,job_mod:93,job_nam:[27,87],job_namespac:87,job_path:87,job_path_output:87,job_workspac:80,jobnam:87,jobpath:87,jobselector:87,jobserv:27,join:[19,68],jointli:9,jpg:94,json:[80,86],jth:9,jupyt:[27,61],just:[5,7,8,9,12,18,23,24,31,36,38,42,45,46,48,49],jypyt:15,k8s:[87,91],k8s_data:87,k8s_job:15,k8s_token:15,k8s_train:87,k8s_user:15,kafka:21,kaim:8,kaimingh:94,kebilinearinterpbw:79,kebilinearinterpfw:79,keep:[8,12,19,32,48,50,91],keep_top_k:8,kei:[2,12,14,16,17,19,21,23,28,45,46,50,51,72,73,79,85,87],kept:[8,40],kernel:[8,16,49,75,76],key1:82,key2:82,keyword:87,kill:19,kind:[15,16,19,25,32,37,42,49,52,85,86,87],know:[15,23],known:[17,30,36],kriz:12,kselectedrow:49,ksimonyan:9,kube:85,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeadm:85,kubectl:[85,86,87],kuberent:19,kubernet:[15,19,45,78,80,87,88,89,91],kubernetes_service_host:15,kwarg:[2,9,10,12,50,68,95],l1_rate:6,l2_rate:6,l2regular:[56,95],l93:22,label:[2,7,8,10,12,14,31,32,37,39,41,42,43,44,56,59,63,68,86,94,95],label_dim:[8,68,95],label_fil:41,label_lay:41,label_path:41,labelselector:87,lag:82,lake:2,lambdacost:8,lambdarank:8,languag:[8,12,32,45,48,93],larg:[11,12,42,43,73],larger:[6,7,8],larger_than:[17,33,39],last:[7,8,9,36,39,67,68],last_seq:68,last_time_step_output:8,lastseen:86,latenc:[8,42],later:[18,45,76,92],latest:[8,17,18,19,26,53,86,87],latter:51,launcher:15,layer1:[8,9,56,67],layer2:[8,56,67],layer3:8,layer:[4,6,7,9,11,12,13,14,17,22,31,32,33,37,39,41,42,43,45,50,51,56,58,63,67,70,71,74,94,95],layer_0:74,layer_att:57,layer_attr:[8,56,57,71,84],layer_num:[84,94],layer_s:8,layer_typ:8,layerbas:74,layerconfig:74,layergradutil:74,layermap:74,layeroutout:8,layeroutput:9,layers_test:53,lbl:7,ld_library_path:80,leaki:31,learing_r:37,learn:[6,7,8,9,10,12,15,24,26,31,32,41,42,43,44,45,61,79,92,94],learnabl:14,learning_method:[59,93,95],learning_r:[6,24,42,56,58,59,93,95],learning_rate_arg:58,learning_rate_decay_a:58,learning_rate_decay_b:58,learning_rate_schedul:58,leas:19,least:[7,8,19],leav:17,lecun:12,left:[8,17],legal:50,len:[2,8,24,28,40,68,74,87,95],length:[8,9,12,24,36,45,51,86],leq:8,less:[8,15,91],less_than:15,let02:86,let:[7,8,15,17,26,30,32,36,37,46],level:[6,8,30,36,51,52,70],lgtest:18,lgtest_main:18,lib64:[53,61,80,82],lib:[35,60,65,66],lib_path:53,libapi:18,libari:35,libcuda:[53,61],libnvidia:[53,61],libpaddl:[34,35,45,73],libpaddle_capi:35,libpaddle_gserv:35,libpaddle_math:35,libprotobuf:58,librari:[8,18,25,35,42,80,82],life:19,lifecycl:91,lifetim:48,lightweight:30,like:[7,8,12,17,18,19,22,27,30,31,32,40,41,42,45,48,49,51,91,94],limit:[8,12,45,58,79],linaro:66,line:[2,7,12,18,22,27,29,32,39,45,56,58,68,73,84],line_count:58,linear:[8,56,58,63],linearactiv:59,link:[8,9,18,28,29,45,48,70,91],linux:[28,61,65,66,72,85],linux_x86_64:[47,53],lipeng:93,list:[1,2,7,8,9,12,14,15,17,18,23,27,29,31,37,38,40,44,46,48,51,56,59,80,84,94,95],listen:19,littl:24,load:[8,15,19,31,40,42,59,87,94],load_data_arg:4,load_featur:94,load_feature_c:94,load_feature_pi:94,load_missing_parameter_strategi:[81,82,84,93],load_mnist:31,load_paramet:58,loadparamet:4,loadsave_parameters_in_pserv:[22,81,82],loc:7,local:[6,14,16,17,19,25,26,32,36,39,45,60,80,81,82,87],local_scop:16,localhost:[61,85],localip:87,localpath:29,locat:[8,14,18,51],lock:[18,19,23,24,43],lod:[36,49,51,52],lod_desc:[49,52],lod_level:[40,49,52],lod_tensor:[36,49,52],lodtensor:[45,52],lodtensordesc:49,log:[23,29,31,42,54,58,74,80,82,86,87],log_barrier_abstract:[81,82],log_barrier_lowest_nod:[81,82],log_barrier_show_log:[81,82],log_clip:[81,82],log_error_clip:[81,82],log_period:[82,84,86,87,95],log_period_serv:[81,82],logarithm:5,logger:[2,68],logic:[26,31,37,38,42,43,48,51],logist:95,logit:31,longer:[19,42],look:[2,7,17,27,32,42],lookahead:8,loop:[16,17,41,48],loop_var:51,loss:[8,31,37,95],lost:37,lot:[42,91],low:[8,37,51],low_rnn:36,lower:[8,36],lower_level_rnn:36,lpaddle_capi_shar:35,lpaddle_capi_whol:35,lrelu:31,lstm:[8,68,71,86,95],lstm_bias_attr:9,lstm_cell_attr:9,lstm_group:[9,68],lstm_group_input:68,lstm_input:68,lstm_last:68,lstm_layer_attr:9,lstm_nest_group:68,lstm_output:68,lstm_size:95,lstm_step:9,lstmemori:[9,57,68,71],lstmemory_group:[8,57,68],lstmemory_unit:57,ltr:8,mac:[35,61,65],machin:[8,9,12,14,31,42,43,56,70,91],machine_transl:71,maco:72,macro:[30,46],made:[19,24],mai:[8,9,16,17,41,42,43,44,45,48],main:[4,39,45],mainli:25,maintain:[8,17,23,40,45,92],majel:18,major:42,make:[2,7,8,15,17,18,19,23,24,26,32,36,38,41,42,45,46,51,65,66,72,73,74,75,77,79,91],make_ddim:76,make_function_oper:30,make_vari:50,maker:[45,46],man:28,manag:[14,19,24,25,29,42,48],mandarin:8,mani:[8,9,18,23,31,38,45,46,48,49,50,51],manipul:[40,46],manner:8,manual:[37,42,46,58,91],manylinux1_x86_64:[47,53],map:[7,8,12,14,15,17,23,40,46,48,50,51,63,91],map_fn:51,map_read:12,mapper:12,mapreduc:15,mark:[31,32,36,43,48,91],mask:[6,8],master:[15,26,45,47,85],mastermind:18,mat:[34,35],mat_cache_row:22,mat_norm:22,mat_normal_shar:22,mat_param_attr:9,mat_sparse_row:22,mat_sparse_row_auto_grow:22,mat_sparse_row_id:22,mat_sparse_row_prefetch:22,mat_sparse_row_prefetch_full_s:22,mat_value_shar:22,match:[8,18,56],matchbox:91,math:[9,34,45,74,75,79],matirx:8,matmul:[17,36,51,75],matrix:[7,8,9,12,14,22,34,35,74,75],matrixptr:74,matrixtyp:35,mattyp:22,max:[6,8,12,16,40,58,67,79,84],max_diff:16,max_id:[8,14],max_job_id:12,max_length:[8,71],max_movie_id:12,max_relative_error:[16,75],max_sort_s:8,max_user_id:12,maxframe_evalu:7,maxid:7,maxid_evalu:7,maxim:8,maximum:[7,8,12,17,24],maxinum:11,maxpool:8,mayb:[8,17],md5:[12,20],mean:[6,7,8,9,10,11,12,14,18,36,41,42,48,56,82,91,94],mean_meta:94,mean_meta_224:94,mean_valu:94,mean_var_nam:8,meant:51,mechan:[8,9,25,46],mem:[8,17,27,68],mem_per_p:44,mem_per_train:44,member:[12,15,32,38,40,48],memcpi:[38,79],memori:[9,17,22,23,27,45,71,76,79,86],memory_boot:9,memory_nam:[8,57],memory_test:72,memory_threshold_on_load_data:[81,82],mention:[18,23,43],mere:9,merg:[8,24,26,36,38,73],mergedict:93,messag:[17,32,39,40,45,46,49,52,53,73,86],meta:[80,94],meta_config:80,meta_gener:80,metadata:[28,86,87],metal:[85,91],metaphor:32,metaplotlib:15,method:[2,8,10,14,16,17,26,31,32,37,43,45,48,49,51],mfs:87,might:[8,17,18,39,43],million:12,min:[6,8,40,79,84],min_block:17,min_count:43,min_desc:17,min_pool_s:[2,56],min_word_freq:12,mini:[8,12,14,17,19,33,36],mini_batch:41,minibatch:[8,17,32,33,39],minikub:85,minim:[10,17,31,37,43,45],minimum:8,minsizerel:[65,66],minu:46,minus_grad:46,minusgradop:46,minusop:46,minusopgradmak:46,minusopprotoandcheckermak:46,minut:[19,26],mip:65,mirror:18,mislead:24,miss:31,mix:[9,51,71],mixed_lay:[9,68],mixed_layer_attr:9,mixedlayertyp:8,mkdir:[29,77],mkl:[45,60],mkl_root:60,ml_data:80,mnist:[2,4,21,31,32,39,41,42,44,45],mnist_model:4,mnist_provid:2,mnist_random_image_batch_read:41,mnist_train:[2,41],mnist_train_batch_read:41,mnt:87,mobil:45,mode:[8,14,73,87],model:[8,9,12,14,17,19,20,32,37,42,43,44,45,51,84,92,93,95],model_config:4,model_list:[82,84],model_path:84,model_zoo:[93,94],modifi:[8,42,73],modul:[2,9,12,14,30,31,51,58,59,75,94,95],modulo:8,momentum:[6,48,56,63,95],momentumoptim:59,mon:86,mono:8,month:18,moosef:85,more:[7,8,9,12,15,16,18,19,23,26,27,29,30,32,36,37,40,41,42,43,45,46,51,58,79,91],morin:8,most:[8,12,15,18,26,32,41,42,91],mostli:91,motiv:45,mount:27,mountpath:[86,87],move:[8,19,23,29,91],movi:[2,12],movie_categori:12,movie_id:87,movie_info:12,movie_review:12,movieinfo:12,moving_average_fract:8,mpi:80,mse:[32,37,39],much:[8,19,37,41,51],mul:[30,44,74,75],mul_grad:75,mul_op:75,mulgradkernel:75,mulkernel:75,mulop:[30,75],mulopgrad:75,mulopmak:75,multi:[8,38,91,94],multi_binary_label_cross_entropi:8,multi_crop:94,multigradientmachin:38,multinomi:8,multipl:[7,8,9,12,14,15,16,23,24,26,30,42,43,44,45,52],multipli:[7,8],multiprocess:12,must:[5,7,8,9,12,24,40,41,45,50,56,74,75,76],mutabl:76,mutable_data:[75,76],mxnet:17,my_cost:58,my_standalone_toolchain:65,mypaddl:[86,87],name:[2,6,7,8,9,11,14,15,16,17,19,21,22,24,27,30,35,39,40,44,45,47,49,50,51,52,58,59,61,63,68,71,74,79,84,85,86,87,88,89,91,95],name_prefix:21,namespac:[17,33,34,74,75,85,86,87],nativ:8,natur:[23,26,43,51],nchw:8,ndarrai:[14,21],ndcg:8,ndcg_num:8,ndk:65,nearli:16,necess:51,necessari:[8,17,24,26,38,40,50,51],need:[7,8,9,12,15,16,18,22,23,24,26,27,29,30,31,37,38,40,42,43,44,45,46,48,50,51,53,79,87,91],need_tran:58,neg:[2,7,8],neg_distribut:8,neg_overlap:8,neg_pos_ratio:8,ner:7,nerual:42,nest:[8,12,17,39],net:[8,9,17,31,36,48],net_diagram:94,netop:[17,45],network:[4,6,7,8,10,12,13,14,15,16,17,19,22,31,36,37,41,42,43,48,50,52,57,63,68,80,84,87,91,93,94],network_config:84,neural:[8,9,10,12,14,15,17,19,42,48,52,68,70,93],neuralnetwork:38,never:[12,41,48,86,87],new_block_idx:40,new_stat:36,newblock:40,newest:24,newli:91,newop:17,newopdesc:40,newprogram:40,newremot:42,newvardesc:40,next:[2,8,12,19,25,51],nfs:87,nfsdir:87,nginx:61,ngram:12,nic:[80,81,82,87],nil:23,nine:12,nlp:8,nltk:12,nms_threshold:8,nms_top_k:8,nmt_without_attent:56,nnz:74,no_cach:2,no_grad_set:[16,75],no_sequ:[2,8,63],noavx:61,node0:87,node:[8,18,26,42,43,44,45,52,85,86,87,91],node_0:87,node_1:87,node_2:87,nodebook:61,nodefil:80,nois:[8,19,31],noisi:31,non:[8,19,49],none:[2,4,6,7,8,9,10,11,14,15,16,17,31,33,36,37,39,40,44,50,51,59,71,94],norm:[9,31],norm_by_tim:8,normal:[8,9,12,86,87,94],notat:8,note:[6,8,9,11,14,15,17,22,23,27,41,45,76],notebook:27,noth:[5,14,48,73],notic:46,notingradi:75,notion:51,notori:16,now:[8,12,18,19,31,43,45,46,48,70],np_arrai:12,nproc:72,nullptr:[46,48,74],num:[8,9,80,82,87],num_channel:[8,9],num_chunk_typ:7,num_class:[8,9],num_filt:[8,9],num_gradient_serv:[81,82],num_group:8,num_neg_sampl:8,num_p:[42,44],num_parameter_serv:15,num_pass:[14,59,63,81,82,84,86,87,95],num_repeat:8,num_result:7,num_results_per_sampl:8,num_row:49,num_samples_process:58,num_shard:21,num_step:51,num_train:[42,44],number:[7,8,9,12,17,19,21,41,43,45,50,51],numchunktyp:7,numdevices_:84,numeric_grad:16,numerical_grad:16,numlogicaldevices_:84,numofallsampl:7,numofwrongpredict:7,numpi:[6,12,14,21,31,40,41,58,59,63,75,94],numreal:22,numsampl:79,numtagtyp:7,numtimeout:23,nv_:18,nv_gpu:72,nv_librari:18,nv_test:18,nvcc:[18,61],nvidia:[53,61,72],obei:7,obj:[2,58,59,94,95],object:[2,6,8,9,10,12,14,15,22,31,34,37,40,44,45,48,79],observ:[8,10],obtain:26,obvious:18,occup:87,occur:[12,14],occurr:17,oct:86,odd:8,off:[35,60,61,65,66,72,73,77,91],offer:[17,44,45,50],offici:[8,18],offlin:[19,21,91],offset:[8,22],often:22,ograd:74,old:[16,24,26,45],omit:[56,95],on_init:2,onc:[8,19,23,32,42,43],one:[2,5,7,8,9,10,11,12,14,15,16,17,19,22,23,24,26,27,30,31,36,37,38,39,40,41,42,44,45,46,48,49,51,91,95],onehotcrossentropyopkernel:75,ones:[30,31,45],onli:[7,8,9,11,14,15,16,18,22,23,24,25,26,27,29,31,32,36,37,38,40,42,43,44,45,49,50,51,68,70,91],onlin:[8,10,19,21,41],only_cpu:16,onto:[42,43],op_:75,op_check:75,op_class:[45,50],op_maker_class:[45,50],op_proto:50,op_test_util:75,op_typ:45,opattrcheck:75,opcreat:50,opdesc:[17,32,39,40,45,46,50,52],opdescbind:46,opdescbuild:17,open:[2,8,15,21,31,41,56,58,59,68,94],openbla:60,openblas_root:60,oper:[8,9,10,12,16,17,31,32,36,37,42,44,48,52,75,76],operaotr:46,operartor:76,operator_grad:16,operatorbas:[17,30,45,46,50,75],operatorwithkernel:75,opinfo:[45,46],opinfomap:46,opkernel:[75,76],opkernelkei:45,opmak:50,opproto:75,opprotoandcheckermak:[46,75],opprotomak:[50,75],opregist:50,opregistri:50,ops:[16,17,18,32,39,40,45,75,91],ops_:17,ops_test:18,opt:[15,37,44,50,60,87],opt_op_list:37,optestmeta:75,optim:[6,13,14,16,31,38,39,42,43,44,45,49,56,58,63],optimis:37,optimize_op_attr:40,optimzi:56,option:[7,8,15,18,31,39,45,49,50,52,91],optmization_op_list:37,optyp:50,opwithkernel:49,order:[8,9,12,14,32,41,51,87,91],ordereddict:14,org:[7,8,9,12,21,28,31,61],organ:[7,8],orient:50,origin:[8,12,16,31,48,51,73],other:[7,8,9,12,17,19,24,29,36,48,50,91],otherchunktyp:7,otherwis:[8,12,15,19,24,26,31,41],our:[15,18,31,42,43,48,51],out:[8,14,15,17,18,23,26,36,40,56,68,70,71,75,76],out_dir:87,out_left:8,out_mem:71,out_memori:9,out_right:8,out_size_i:8,out_size_x:8,outer:68,outer_mem:68,outer_rnn_st:68,outer_rnn_state_:68,outer_step:68,outlier:8,outout_lay:14,outout_layer1:14,outout_layer2:14,output:[5,6,7,9,11,12,14,15,16,17,21,26,29,30,31,32,33,36,39,40,41,42,43,45,46,48,49,50,51,56,59,68,71,75,76,80,84,86,87,93,94,95],output_:8,output_all_step:36,output_dir:94,output_id:8,output_lay:[14,56,94],output_max_index:11,output_mem:[8,71],output_nam:16,output_num:36,output_path:21,output_seg:51,outputbuff:22,outputgradi:46,outputh:8,outputw:8,outsid:[2,8,9,48],outupt:51,outv:74,over:[8,9,14,15,51],overal:[31,91],overlap:[7,8],overlap_threshold:[7,8],overrid:[17,19,29,44,75,76],overview:[23,24,25],overwrit:29,own:[24,26,37,42,44,50],pack:[51,58],packag:[12,23,27,30,47,53],pad:9,pad_c:8,pad_h:8,pad_w:8,padding_attr:8,padding_i:8,padding_x:8,paddl:[2,4,5,6,7,8,9,10,11,12,14,15,17,18,19,21,27,29,30,31,33,34,35,36,38,39,42,44,45,50,51,56,58,59,61,63,71,72,73,74,75,77,79,80,84,86,87,91,93,95],paddle_begin_init_param:24,paddle_dir:75,paddle_doc:77,paddle_docs_cn:77,paddle_element_typ:24,paddle_element_type_float32:24,paddle_element_type_float64:24,paddle_element_type_int32:24,paddle_element_type_int64:24,paddle_element_type_uint32:24,paddle_element_type_uint64:24,paddle_enforc:17,paddle_enforce_eq:[75,76],paddle_error:[34,35],paddle_exampl:27,paddle_finish_init_param:24,paddle_get_param:24,paddle_gradi:24,paddle_init_param:24,paddle_job:27,paddle_matrix:[34,35],paddle_matrix_cr:35,paddle_matrix_get_shap:34,paddle_matrix_shap:34,paddle_n:[80,87],paddle_new_etcd_pserver_cli:24,paddle_new_pserver_cli:24,paddle_on_cloud:27,paddle_output:86,paddle_paramet:24,paddle_port:[80,87],paddle_ports_num:[80,87],paddle_ports_num_for_spars:80,paddle_ports_num_spars:87,paddle_process_by_paddl:87,paddle_pserver2:80,paddle_pserver_cli:24,paddle_pserver_client_releas:24,paddle_root:93,paddle_save_model:24,paddle_send_grad:24,paddle_server_num:87,paddle_source_root:93,paddle_train:[35,47,80,87],paddledev:[53,61,86,87],paddlepaddl:[8,9,12,14,18,19,21,24,25,26,27,28,29,30,31,32,33,36,37,38,40,41,44,45,48,51,52,61,71,72,73,79,80,88,89,91,92,93],pain:44,pair:[7,8,17,32,37,42,45],pakcag:18,palceholder_just_ignore_the_embed:93,paper:[8,31],para:[22,93],paraconvert:93,paradigm:45,paragraph:36,paragraph_data:36,paragraph_out:36,parallel:[42,43,45,79,84,86,87],parallel_nn:[6,81,82],param:[6,8,9,12,16,17,24,38,58,76],param_attr:[8,9,22,56,58,59,71],param_config_proto:24,param_fil:58,paramattr:[6,8,56,58,59,71],paramet:[7,9,10,11,12,13,16,17,18,20,22,26,29,31,32,36,37,39,41,42,48,50,51,56,58,63,82,87],parameter_attribut:8,parameter_block_s:[81,82],parameter_block_size_for_spars:[81,82],parameter_learning_r:6,parameter_list:37,parameter_nam:[14,15],parameter_serv:15,parameter_valu:22,parameterattribut:[6,8,9,22],parameterclient2:87,parameterclient_:22,parametermap:74,parametermutex_:22,parameters_:74,parameters_and_grad:37,parameterserver2:22,parameterset:15,parameterupdat:38,parameterupdater_:22,parametris:10,params_grad:37,paraphras:93,paraphrase_data:93,paraphrase_model:93,paraphrase_modeldata:93,paraspars:74,parent:[17,39,40,45],parent_:[17,48],parent_idx:40,parenthes:45,pars:[12,18,72],parse_config:4,parse_known_arg:87,parsefromstr:58,parser:87,part:[7,8,17,26,39,40,91],partial:[8,14],partial_sum:8,particular:[32,45],partit:[19,21,42,43,45],paserv:87,pass:[2,8,14,17,19,31,37,38,41,45,48,51,56,59,63,73,79,82,84,86,87,95],pass_id:[14,63],pass_idx:41,pass_manu:58,passtyp:74,past:15,patch:28,path:[7,12,14,19,23,24,27,41,65,66,80,82,85,86,87],pattern:[12,19,34],paus:[19,26],pdf:[8,9],peer:54,pem:[15,21],pend:[19,23],pep425tag:53,per:[7,8,12,19,24,41],perform:[8,16,24,31,38,45,79,81],period:[19,26,44,82],peroid:8,persist:[49,52],persistentvolum:85,persistentvolumeclaim:[85,87],person:[7,15],perspect:45,perturb:16,peter:44,pex:91,pfs:[21,29,44],pfsclient:21,pfspath:29,phase:[46,91],photo:31,physic:91,pid:85,piec:[8,9],pillow:27,pip:[47,53,73,80],pixel:[2,8,12],pixels_float:2,pixels_str:2,place:[2,19,26,42,43,45,75,76],placehold:[31,76],placement:43,plain:[7,8,27,35],plan:[19,45],platform:[17,65,75,76],pleas:[6,8,9,10,15,19,23,24,25,36,40,41,42,44,45,52,53,87,92],plot:15,plu:[8,16],pnpairvalid:81,pod:[21,27,85,86,87],podip:87,podlist:87,point:[17,19,27,44,76,79,91],pointer:[17,24,40,45,48,76],polar:12,poli:58,pollut:26,pool3:74,pool:[9,13],pool_attr:9,pool_bias_attr:9,pool_layer_attr:9,pool_pad:9,pool_siz:[2,8,9],pool_size_i:8,pool_strid:9,pool_typ:[8,9],pooling_lay:[9,56,95],pooling_typ:[8,56,67,95],poolingtyp:11,pop:17,popul:24,popular:[18,31],port:[18,80,81,82,86,87],port_num:81,ports_num:[82,87],ports_num_for_spars:[22,81,82,84,87],pose:19,posit:[2,7,8,9],positive_label:7,posix:85,possibl:[15,17,23,40,43],post:[27,28],potenti:79,pow:58,power:91,practic:8,pre:[8,9,12,15,24,93],pre_dictandmodel:93,pre_stat:[36,51],preambl:40,precis:7,precision_evalu:7,predetermin:8,predic:12,predict:[2,4,7,8,10,14,42,56,80,93,94,95],predict_fil:[81,82],predict_lay:14,predict_output_dir:[81,82,95],predict_sampl:4,prediction1:14,prediction2:14,prefer:85,prefetch:[22,74],prefix:[7,19,21],pregrad:74,premodel:93,prepand:40,prepar:[16,27,38,88],prepend:40,prepend_oper:40,preprocess:[12,51,80,93,95],present:[15,17,51,73],preserv:29,prev_batch_st:[81,82],prevent:[10,15,19,23,26],preview:45,previou:[8,9,14,19,29,36,43],previous:8,previous_memori:17,price:[12,45],primari:32,primit:51,principl:[15,18],print:[4,6,14,15,42,53,59,63],printallstatu:79,printer:7,printstatu:79,priorbox:8,prioriti:45,prite:7,privat:[17,35,48,49,50,51,73,76],prob:[7,14],probabilist:[8,93],probabl:[7,8,14],problem:[8,10,15,16,18,26,31,32,45],proc:61,proce:[12,19,41],procedur:17,proceed:8,process2:68,process:[2,6,8,9,12,15,17,21,22,23,26,42,50,56,58,59,68,87,95],process_num:12,processdata:94,processor:79,prod:[61,73],produc:[8,9,12,19,41],product:[8,27],productgraph:86,profil:[29,79],proflier:79,prog:87,program:[12,15,21,24,26,32,33,37,41,42,44,45,48,79,87],programdesc:[40,44,46],programm:[40,42],progress:[19,23],proj:8,project:[8,9,27,35],promis:[8,9],prompt:29,prone:15,propag:10,propos:[17,37,43,51],protect:[50,74,75],proto:[11,39,45,50,52,75],proto_:50,protobuf:[14,17,27,32,39,40,45,46,50,58],protocol:[7,91],protomak:75,provid:[8,12,15,17,24,27,31,44,50,51,56,59,68,81,91,95],provis:91,prune:[8,17],ps_desir:19,pserver:[14,22,24,25,27,45,80,81,82,87],pserver_addr:24,pserver_cpu:27,pserver_id:20,pserver_mem:27,pserver_num_thread:[22,81,82],pserver_spec:14,pseudo:[15,27,46,51],pseudocod:51,psize:74,ptr:35,pull:[18,45,47,61],purpos:[8,19,42,43,79],push:[17,87],push_back:74,put:[18,19,22,40,43],pwd:[61,72,73],pxe:91,py_paddl:[4,53],pybind:17,pydataprovid:56,pydataprovider2:[2,4,59,87],pyramid:8,pyramid_height:8,python:[14,15,17,25,30,31,32,34,38,45,47,51,53,56,61,71,72,73,74,75,80,93,94],pythonpath:53,queri:8,question:[8,15,43,50],queue:43,quick:86,quick_start:[27,86,87,88,95],quick_start_data:86,quickli:45,quickstart:86,r14b:65,r_t:8,rac:8,rais:12,rajathkmp:31,ran:[43,79],rand:[31,58,79,82,84],random:[6,8,12,21,31,38,41,58,59,75],random_imag:21,randomli:26,rang:[8,12,21,31,41,42,44,50,87,95],rank:[8,15,51,94,95],rare:2,raspberri:66,raspberrypi:66,raspbian:66,rate:[6,7,9,10,12,24,56,80,87],rather:[27,31,51],ratio:[8,82],raw:8,rdma_tcp:[81,82],reach:19,read:[2,12,14,15,19,21,41,42,43,45,51,58,59,91,94],read_from_realistic_imag:15,read_from_rng:15,read_lock:20,read_mnist_imag:15,read_next_from_fil:56,read_paramet:58,read_ranking_model_data:15,readabl:45,reader:[14,21,31,32,39,40,42,44,63],reader_cr:21,reader_creator_bool:41,reader_creator_random_imag:[12,41],reader_creator_random_image_and_label:[12,41],readi:[19,86,91],readlockguard:22,readm:[35,73],readwritebuffer_:22,real:[8,22,31,41],real_process:2,realist:15,realiz:[17,36],reason:[9,15,16,19,86],recal:7,receiv:[19,27,43],recognit:[8,94],recommend:[9,15,80,87],record:[12,23,50],recordio:[12,15,21,23,42,44],recov:[19,51],recover:45,recoveri:23,rectangular:8,rectifi:8,recurr:[48,68,69],recurrent_group:[9,57,68,70,71],recurrent_lay:9,recurrent_op:51,recurrentgradientmachin:[35,51],recurrentgroup:7,recurs:[17,18,29,45],recv:[42,43],recvparametertyp:22,red:31,reduc:[10,43,45],reduce_by_kei:45,reduce_mean:31,refactor:[32,38,40,42,43,51],refer:[6,8,9,10,16,17,19,23,24,25,36,39,40,45,48,51,52,60],referenc:[8,23],reference_cblas_root:60,refine_unknown_arg:87,reflect:23,reg:50,regard:91,region:[8,48],regist:46,register_gpu_profil:79,register_lay:74,register_op:[30,45,46,50,75],register_op_cpu_kernel:75,register_op_gpu_kernel:75,register_op_without_gradi:[45,75],register_oper:46,register_tim:22,register_timer_info:79,registerop:50,registri:[27,86,91],regress:8,regular:[6,56,95],reinforc:44,rel:[9,16,26,75],relat:[19,26,27,48,49,91],relationship:46,releas:[44,47,65,66,85],reli:[16,37],reliabl:19,relu:[8,31],remain:51,rememb:8,remot:[6,18,22,45,73,80,82,84],remote_ess:44,remote_sess:44,remoteparameterupdat:[22,25],remov:[12,29,73],renam:29,reorgan:8,repeat:[17,32,39,49,50,52],repeatedli:32,replac:[18,23,44,46],replic:42,replicaset:27,repo:18,report:[23,42],reportdataset:23,repositori:[8,65],repres:[8,9,17,23,40,43,44,45,49,51,52],represent:[8,24,31,32,42,49],request:[18,19,22,26,42,45,47,86,91],requir:[7,8,15,19,24,26,27,29,36,39,42,43,45,46,49,50,52,80,91],res5_3_branch2c_bn:94,res5_3_branch2c_conv:94,research:[12,42],reserv:29,reserveoutput:74,reset:[8,19,54],reshap:[16,41,58],reshape_s:8,residu:94,resiz:[22,75,76],resnet_101:94,resnet_152:94,resnet_50:94,resolv:[18,73,86],resourc:44,respect:[16,31,36],respons:[8,22,31,38,86],rest:[8,17,27,28,91],restart:[19,24,86,91],restartpolici:[86,87],restor:16,restrict:48,resu:41,result:[2,5,7,8,14,16,23,31,32,37,38,42,79,95],result_fil:7,resum:26,retriev:[17,48],return_seq:9,reuqest:47,reus:[17,26,41,45],rev:72,reveal:15,revers:[8,9,70,71],review:[12,73,86],reviews_electronics_5:86,rewrit:18,rgb:8,rho:10,right:[8,16,17,18,27,45],rkt:[27,72],rmsprop:[56,95],rnn:[8,9,17,31,40,45,48,70,71,81],rnn_bias_attr:71,rnn_layer_attr:71,rnn_out:71,rnn_output:51,rnn_state:68,rnn_state_:68,rnn_step:8,rnn_use_batch:[81,82],rnnlm:12,rnnstep:51,roadmap:51,robust:8,role:[12,15,23,24,42],rollback:40,root:[10,11,61,80,86,87,93],root_dir:80,rot:8,row:[7,8,12,22],row_id:8,rows_:49,rpc:23,rpcserver:23,rpi:66,rpi_arm_neon:66,rpi_toolchain:66,rstrip:87,rtk:91,rtype:[8,12],rule:[7,32,42],run:[15,16,17,18,19,27,30,31,32,36,37,39,42,43,44,45,48,49,53,61,72,73,76,79,80,86,87,88,89,91],runinitfunct:[79,87],runnabl:43,running_on_cloud:27,runtim:[2,17,36,44,45,52,53],runtime_table_:17,safe:27,sai:[8,32,33],same:[2,7,8,9,14,15,16,23,24,26,30,31,36,42,44,45,46,48,51,68,76,95],samping_id:8,sampl:[2,7,12,31,50,95],sample_id:7,sample_num:7,sampler:31,satifi:7,satisfi:[18,49],save:[2,8,12,14,19,21,23,24,27,32,42,49,52,86],save_dir:[59,82,84,86,87,95],save_only_on:[81,82],savetxt:58,saving_period:[81,82,87],saving_period_by_batch:[81,82,84],saw:2,sbin:61,scalabl:45,scalar:[8,17,33,51],scale:[5,42,43,46,50,75],scaleop:75,scaleopmak:[45,75],scalingproject:8,scan:[23,45],scatter:8,schedul:[23,27,43],scheduler_factor:6,scheme:[7,22],scope:[16,40,44],score:[7,8],script:[12,77],search:[8,19,48,71],second:[8,15,29,31,36,39,41,48,50,75,95],section:[40,43],see:[8,9,15,19,40,42,44,58],seed:[58,79,82],seem:18,segment:[7,36,51],sel_fc:8,selcet:8,select:8,selected_id:8,selected_indic:8,selected_row:[49,52],selected_rows_desc:[49,52],selectedrow:52,selectiv:8,selector:86,self:[16,31,37,40,51,74,75],selfnorm:8,semant:[12,15,47],semat:15,send:[19,24,42,43,45,50,52],send_back_parameter_typ:22,sendbackparameterspars:22,sendbackparametertyp:22,sendparameterrequest:22,sendparameterrespons:22,sensit:8,sent:[15,24,42,45,50,86],sentanc:56,sentenc:[2,8,12,36,51,68,71],sentence_input:51,sentence_last_state1:68,sentence_last_state2:68,sentiment:2,sentimental_provid:2,sentimental_train:2,separ:[7,24,30,46],seper:51,seq:[8,12,68],seq_len:51,seq_pool:[8,67],seq_silc:8,seq_text_print:7,seq_to_seq_data:93,seq_typ:12,seqlastin:68,seqtext_evalu:7,seqtoseq:[8,58,93],seqtoseq_net:[8,93],sequel:2,sequenc:[2,5,7,8,9,11,12,17,32,37,39,51,56,63,68,70,95],sequence_conv_pool:95,sequence_group:8,sequence_layer_group:68,sequence_nest_group:8,sequence_nest_layer_group:68,sequencegen:68,sequencestartposit:8,sequencetextprint:7,sequencetyp:[2,8,63],sequenti:[8,17],seri:[9,68],serial:[14,17,23,38,45,52],serializ:45,serv:[42,45,51],server:[15,18,22,25,26,42,45,54,80,82,85,87,91],serverless:19,servic:91,sess:[31,37,44],session:37,set:[2,6,7,8,9,12,14,15,19,27,31,36,40,45,46,48,51,56,58,59,68,72,75,76,79,80,86,93,94,95],set_active_typ:74,set_default_parameter_nam:6,set_drop_r:74,set_float_el:16,set_input:8,set_siz:74,set_typ:74,setdatatyp:49,setdefault:75,setq:72,settotalbyteslimit:58,setup:[47,74,75,91],sever:[7,8,16,22,31,36,38,49,51],sexstant:91,sgd:[10,14,15,19,27,38,42,43,44,49,59,63,80,81],shall:18,shape:[8,12,14,16,17,31,33,36,39,40,44,45,49,63],shard:[19,20,21,22,23,24,26,42,43],share:[8,18,31,35,38,45,51],shared_bia:9,shared_bias:8,shared_librari:18,shared_ptr:[34,35,48,76],shorten:8,should:[6,7,8,12,14,15,16,17,24,27,30,31,36,37,38,39,41,42,45,46,49,50,51,52,70,75],should_be_fals:15,should_be_tru:15,should_shuffl:[2,68],show:[7,10,17,19,29,33,36,39,49,51,72],show_check_sparse_distribution_log:[81,82],show_layer_stat:[81,82],show_parameter_stats_period:[81,82,84,86],shown:[8,15,42],shuf:56,shuffl:[12,56],side:[8,14,38],sigint:80,sigmod:50,sigmod_op:50,sigmod_output:50,sigmoid:[8,17,44,50,51],sigmoidactiv:[9,68],sign:28,similar:[8,17,41,43,45,51,91],similarli:[8,12],simpl:[5,7,8,9,12,14,32,39,43,48,50,51,87],simple_attent:71,simple_gru:[71,95],simple_lstm:[8,57,95],simple_rnn:[8,71],simpler:38,simpli:[8,15,24,36],simplifi:[15,40,50],sinc:[8,19,23,25,26,41,42,44,46,49,51,91],singl:[7,9,12,19,42,43,44,45,48],sinlg:14,site:18,size:[2,7,8,9,10,12,14,19,21,22,24,31,40,41,42,44,49,50,51,56,58,59,63,68,71,74,75,76,94,95],size_a:8,size_b:8,size_t:[22,51,74],sizeof:17,skip:[41,58,59,73,94],sleep:87,sliceproject:8,slide:[8,10,12,19],slightli:31,slope:8,slopeinterceptlay:8,small:[12,16,31],small_messag:[81,82],smaller:[8,16,19],smart:48,smartli:8,smooth:8,snap:86,snapshot:[20,26],snippet:[30,37],sock:27,sock_recv_buf_s:[81,82],sock_send_buf_s:[81,82],socket:87,softmax:[8,9,15,17,33,39,42,43,44,56,71,74,95],softmax_param:58,softmax_param_attr:9,softmax_selfnorm_alpha:8,softmaxactiv:[68,95],softwar:91,solid:31,solut:91,solv:[15,42,45],some:[6,8,12,14,15,17,18,22,23,24,26,27,30,31,32,36,37,39,40,42,43,45,46,48,51,91],some_c_api_funct:35,some_inst:35,some_op:[36,51],some_python_class:34,somecppclass:34,somedata:14,somegotyp:34,someth:[8,22,40],sometim:[8,10,41],somewhat:24,somewher:48,soon:19,sort:[8,12,51,87],sort_by_length:51,sourc:[8,12,16,18,29,31,35,41,45],source_dict_dim:71,source_language_word:71,space:[7,8,40,43],space_seperated_tokens_from_dictionary_according_to_seq:7,space_seperated_tokens_from_dictionary_according_to_sub_seq:7,spars:[6,8,10,12,22,56,74,80,82,84,87],sparse_binary_vector:[2,12,56,63],sparse_binary_vector_sequ:12,sparse_float_vector:[2,63],sparse_non_value_slot:12,sparse_remot:22,sparse_upd:[6,22,56],sparse_value_slot:12,sparse_vector:[12,56],sparse_vector_sequ:12,sparseparam:74,sparseprefetchrowcpumatrix:74,spatial:8,spec:[86,87],special:[8,24,37,40,42],specif:[14,18,19,29,45,48],specifi:[7,8,15,16,22,23,24,27,29,31,40,42,44,48,50,51],speech:8,speed:[9,91],sphinx:[34,61,77],split:[2,8,26,33,45,51,68,80],split_count:87,sqrt:8,squar:[8,10,11],square_error_cost:[59,63],squarerootnpool:8,squash:73,srand:82,src:[18,87],src_backward:71,src_dict:58,src_dict_path:58,src_embed:71,src_forward:71,src_root:4,src_word_id:71,srl:12,ssd:8,ssh:[61,80],sshd:61,sstabl:15,stabil:16,stabl:[47,85],stack:[45,51],stackexchang:8,stage:[18,25,31,52,73],stale:[19,44],standalon:65,standard:[6,45],stanford:[12,16,86],star:18,start:[8,9,14,18,19,22,23,24,26,27,38,42,53,73,82,86,87],start_paddl:87,start_pass:[81,82],start_po:8,start_pserv:[81,82],startpaddl:87,startup:[19,27],stat:[79,82],state:[8,9,19,36,48,51,57,70,86],state_act:[8,9,68],statement:32,statfulset:87,static_cast:76,staticinput:[8,70,71],statist:8,statset:79,statu:[27,73,79,86,87],status:86,std:[14,18,22,34,35,45,46,48,50,74,75,76,82],stderr:80,stdout:80,step:[8,9,11,16,17,19,24,31,32,38,40,42,43,45,50,51,68,70,71,91],step_id:51,step_input:51,step_net:17,step_output:51,step_scop:45,stepnet:[17,36,45,48],stepout:68,still:[23,26,42,46],stirng:40,stochast:[10,19,23,26],stop:8,storag:[28,85],store:[7,8,12,14,16,17,18,22,38,39,40,42,44,45,46,48,51],str:[14,27,51,84,87],straight:39,straightforward:49,strategi:[11,19,43,82],street:8,strict:41,stride:[8,9],stride_i:8,stride_x:8,string:[2,7,8,14,17,23,29,39,40,44,45,46,48,49,50,52,74,75,82],strip:[58,68],struct:[23,24,28,35,46,50,58],structur:[17,23,31,39,40,45,49],stuff:73,stun:2,style:[8,45,50],sub:[7,8,12,15,26,31,36,38,40,42],sub_nest_seq:8,sub_sequ:[2,8,63],subclass:40,subcommand:29,subgradi:10,subgraph:[31,43],submiss:42,submit:45,subnet:15,subobjectpath:86,subseq:[67,70],subsequ:8,subsequenceinput:[8,68],succeed:[23,86],success:[8,24,86],successfulcr:86,sudo:72,suffer:16,suffic:41,suffix:27,suggest:[8,18],suit:91,suitabl:49,sum:[8,10,17,20],sum_:8,summar:31,sumopgradmak:46,sumpool:[8,56],suppli:49,support:[6,7,8,11,12,16,17,19,26,27,30,31,38,41,42,43,45,46,49,68,91],suppos:[18,30,49],suppress:[8,29],sure:45,surpass:8,svs:50,swagger:28,swap_channel:94,swig:[25,34,35],swig_paddl:4,switchop:17,symbol:[8,17,35],symbols_ready_:17,symbolt:[17,45],symlink:73,sync:19,syncflag:74,synchron:[10,19,23],syntax:41,sys:94,sysroot:65,system:[17,18,19,24,26,28,30,31,42,43,56],t2b:93,tab:95,tabl:[7,8,17,49,52],tablelookup:49,tablelookupgrad:49,tablelookupop:49,tableproject:8,tag:[7,12,53,61],tagtyp:7,tainer_id:87,take:[2,7,8,9,15,17,18,19,26,31,32,33,39,40,45,46,51],taken:51,talk:24,tanh:[8,9,31,42,71,74],tanhactiv:[9,68],tar:14,target:[8,12,14,17,18,31,37,42,44,45],target_dict_dim:71,target_dictionary_dim:8,target_language_embed:8,target_language_word:71,target_link_librari:18,targetinlink:[8,68],task:[7,8,42,50],task_queu:23,taskentri:23,taskqueu:23,tbd:[25,68],tcp:82,tear:79,technic:19,tee:86,tell:[19,23,24,50],templat:[30,50,75,76,86,87,91],tempor:8,temporari:[27,92],tensor:[16,18,31,36,43,44,49,51,52,75],tensor_array_read:51,tensor_array_s:51,tensor_array_stack:51,tensor_array_unstack:51,tensor_array_writ:51,tensor_s:16,tensor_test:18,tensor_to_check:16,tensorarraydesc:51,tensordesc:49,tensorflow:[17,31,33,42,43,51],term:[8,9,19],termin:86,tessorarrai:51,test100:12,test10:12,test1:21,test:[1,2,8,12,14,15,16,18,35,41,44,47,73,74,75,76,79,80,82,84,94,95],test_:75,test_all_data_in_one_period:86,test_check_grad_ingore_i:75,test_check_grad_ingore_x:75,test_check_grad_norm:75,test_compar:53,test_comparespars:53,test_comparetwonet:53,test_comparetwoopt:53,test_config_pars:53,test_data:4,test_fcgrad:74,test_gpuprofil:79,test_layergrad:74,test_list:[2,58,59],test_mul_op:75,test_networkcompar:53,test_pass:[81,82,84],test_period:[81,82,84],test_predict:53,test_pydataprovid:53,test_pydataprovider2:53,test_pydataproviderwrapp:53,test_recurrent_machine_gener:53,test_recurrentgradientmachin:[53,68],test_swig_api:53,test_train:53,test_traineronepass:53,test_wait:[81,82],testa:15,testb:15,testbilinearfwdbwd:79,testcas:75,testconfig:74,testfcgrad:74,testfclay:74,testlayergrad:74,testmulgradop:75,testmulop:75,testq:15,testresult:14,testutil:74,text1:29,text:[2,7,9,12,15,36,93],text_conv:95,text_fil:12,tflop:79,tftp:91,tgz:12,than:[6,7,8,9,19,27,30,31,40,45,46,51,58,91],the_current_program:40,thei:[8,15,18,19,24,26,29,31,32,37,40,43,44,45,49,50,51,52,79],them:[7,8,9,15,16,18,19,22,27,30,41,43,45,46,48,49,50,51,52,79],themselv:18,therein:[8,17],theta:31,theta_d:31,theta_g:31,thi:[2,6,7,8,9,10,12,14,15,16,17,18,19,22,23,24,25,26,27,30,31,32,36,37,38,39,40,41,42,43,44,45,50,51,79,91],thing:[2,31,45],think:[15,18],third:[8,19],third_parti:[8,65,66],those:[17,18,19,30,32,33,39],though:[51,91],thought:18,thread:79,thread_local_rand_use_global_se:[81,82],threadid:84,threadloc:79,three:[7,8,16,19,32,37,38,39,41,94],threshold:[6,7,8,19,23,82],through:[8,18,19,23,25,37,44],throughput:79,thrust:45,thu:[8,26,92],tier:86,time:[8,9,11,12,15,16,18,19,23,26,30,36,40,41,42,43,45,46,49,50,51,52,68,79,82,86,87,91],timelin:[8,45],timeout:[19,23],timeout_sec:12,timer:79,timestamp:[8,20],timestep:[8,48],titl:[12,87],tls:28,tmp:2,to_no_sequ:[8,67],to_sequ:[8,67,68],to_your_paddle_clone_path:77,todo:[7,10,12,17,19,23,26,50],toend:8,togeth:[8,9,12,14,51],token:[7,8,15,71],toler:[14,16],too:[12,16,42,51],took:91,tool:[65,66,77,87],toolchain:[65,66],top:[7,14,36,94],top_k:7,top_level_rnn:36,toplevel:72,topolog:[15,19,38,42,44],topolopi:14,torch:17,toronto:12,tostr:58,total:[14,19,41,43,79,86,91],total_pass:41,trace:[17,31],track:[19,23,40,73],tractabl:8,tradit:[8,17],traffic:42,trail:12,train100:12,train10:12,train:[1,2,6,7,8,10,12,17,21,23,24,26,31,32,38,39,44,45,49,52,54,56,59,63,71,80,82,84,86,87,88,89,93,94,95],train_arg:87,train_args_dict:87,train_args_list:87,train_conf:93,train_config_dir:87,train_i:63,train_list:[2,58,59,94],train_read:63,train_x:63,trainabl:[8,40],trainer:[2,4,15,20,21,22,23,25,38,42,43,45,59,63,74,82,84,87],trainer_config:[1,2,4,59,80,86,87,95],trainer_config_help:[2,59,74],trainer_count:[56,81,82,84,86,87],trainer_cpu:27,trainer_cr:27,trainer_gpu:27,trainer_id:[82,87],trainer_intern:22,trainer_mem:27,trainer_packag:27,trainerconfighelp:58,trainerid:[26,87],trainerintern:95,trainonebatch:22,tran:74,transact:[19,23],transform:[8,45],transform_param_attr:9,translat:[8,9,56,93],transpos:8,transposedfullmatrixproject:8,travel:2,travers:32,travi:73,treat:[8,17,24],treatment:24,tree:[8,17,40,87],trg_embed:71,tricki:34,trigger:[26,38],trim:8,trivial:51,true_block:[17,33,39],true_imag:41,true_label:41,true_read:41,truth:[7,8],tune:[6,8,81],tupl:[8,9,12,14,40,41],ture:8,turn:[8,40,41,70],tutori:[86,87,88,89,92,93],twice:[31,43],twine:47,two:[7,8,9,15,24,25,26,27,29,31,32,39,41,42,44,45,46,48,49,50,51,52,75,76,79],txt:[2,18,27,29,74,80,85,95],type:[2,7,8,9,11,12,15,17,19,22,23,26,27,28,29,34,35,36,39,40,41,45,46,49,50,52,59,63,68,71,74,75,76,84,86,94,95],type_nam:50,typedef:[24,34,35],typeid:50,typenam:[30,50,75,76],typic:[7,42],ubuntu:47,ubyt:41,uci:12,ufldl:8,uid:86,uint32:28,uint64:34,uint64_t:34,unawar:24,unclear:26,under:[18,23,43],understand:91,understand_senti:71,undeterminist:79,unidirect:8,unifi:49,uniform:[6,8,12,21,31,41],uniform_random:40,uninstal:53,uniqu:[15,17,19,26,27,48],unique_name_gener:40,unique_ptr:[46,48,74],unit:[8,9,18],unittest:[35,53,75],unix:80,unk:[49,52,93],unknown:8,unlik:8,unordered_map:48,unpack:51,unrol:36,unseg:8,unsign:24,unstack:51,unstack_from:51,unsupervis:31,unsupport:75,until:[19,24,43,48,87],untrack:73,unzip:65,updat:[6,8,10,19,23,24,28,31,36,37,38,42,48,51,73,80,84],update_equ:[14,63],update_hook:6,update_memori:17,update_op:37,updatecallback:74,upgrad:[53,92],upload:[19,27,28,47],upon:19,upper:8,upstream:[53,73],url:12,usag:[7,8,9,14,33,38,87],use:[6,7,8,9,11,12,14,15,16,17,18,19,25,31,36,37,38,42,43,44,48,49,50,51,52,73,75,79,87,94],use_etcd:14,use_global_stat:8,use_gpu:[4,56,63,81,82,84,86,87,94,95],use_old_updat:[22,81,82],use_seq:59,use_sparse_remote_updat:22,used:[2,7,8,9,10,11,12,14,15,16,17,18,19,25,26,31,36,38,40,41,42,44,45,48,50,51,79],useful:[8,9,16,48],usegpu:74,user:[6,8,9,12,14,15,16,17,18,21,23,26,27,29,30,31,32,37,40,41,42,43,44,45,46,48,50,51,85,91],user_id:87,user_info:12,user_nam:21,usercert:21,userinfo:12,userkei:21,usernam:[21,73],uses:[19,26,38,42],using:[6,8,9,12,14,15,17,18,19,23,24,26,27,29,30,31,36,37,39,41,42,46,48,50,75,92],usr:[53,60,61,80,82,87],usrdict:93,usrmodel:93,usual:[8,14,27,39,79],util:[79,87,91],uuid:[20,26],v28:8,v7a:65,valid:[8,41,45,48],valu:[2,4,6,7,8,10,11,12,14,16,17,19,33,36,37,38,39,42,44,45,48,49,50,51,52,56,74,84,87,94,95],value1:82,value2:82,value_:49,value_evalu:7,value_rang:12,valueerror:56,values_:51,vanilla:71,varabl:43,vardesc:[17,32,39,40,45,49],vardescbuild:17,variabl:[8,12,15,16,17,31,32,33,36,37,39,42,43,44,46,49,50,51,86],variablenamemap:75,varialbl:31,varianc:8,variant:[8,51],varienc:51,varient:51,variou:17,varproto:50,vars_:[17,48],vartyp:[49,52],vec:58,vector:[8,9,12,15,17,22,24,33,36,40,45,46,49,51,95],vendor:18,verb:12,verbos:29,veri:[8,11,18,23,30,31,38,43,48,51],verifi:17,version:[8,9,18,27,29,31,33,47,61,79,81,82],versu:15,vertic:8,vgg:9,via:[19,36,41,73,91],view:8,virtual:46,virtualenv:72,visibl:[26,48],visit:14,visual:8,vlog:22,volum:[61,85,86,87],volumemount:[86,87],vutbr:12,wai:[7,8,9,15,24,26,42,44,51],wait:[10,19,24,87],wangkuiyi:18,want:[2,8,15,27,31,41,44,48,51],warn:[29,53,58,87],warp:8,warpctc:8,watch:19,wbia:94,weight:[7,8,9,10,74,94],weight_act:9,weightlist:74,weights_:74,weights_t:74,welcom:18,well:[27,30,31,42,44,49],were:[7,18],wether:8,wget:65,what:[6,8,10,18,31,43,50,73,91],when:[2,6,7,8,12,14,16,17,18,19,22,23,24,27,29,38,39,40,42,43,45,51,79,91],whenev:40,where:[8,9,10,15,17,19,26,32,36,39,45,51],wherea:[17,23,30,33],whether:[7,8,14,16,17,41,49,51],which:[6,7,8,9,10,12,14,15,16,17,18,19,21,23,24,26,27,30,31,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,91],while_loop:51,whileloop:51,whileop:17,who:[30,32,40],whoever:24,whole:[2,7,12,31,33,34,35,36,50,91],whose:[8,12,16,19,26,36,45,50,51],why:[9,16,35,79],wide:[18,31],width:[7,8,12,22,34,41,58,74,75],wiki:[8,18],wikipedia:[8,12],wilder:2,window:[8,11,12,72,85],wise:[8,43,45],with_avx:[60,61,65,73],with_bia:50,with_c_api:[65,66],with_doc:60,with_doubl:[60,74],with_dso:60,with_gpu:[60,61,65,72,73],with_profil:79,with_python:[60,65],with_rdma:[60,65],with_style_check:[60,73],with_swig_pi:[60,65],with_test:[60,61,73,75],with_tim:[60,79],within:[8,23],without:[7,8,19,24,41,43,45],wloop:51,wmt14:71,wmt_shrinked_data:12,woboq:61,won:68,wonder:2,word2vec:[27,56],word:[2,7,8,12,32,36,43,45,50,51,56,68,70,95],word_dict:[68,95],word_dim:[58,68,95],word_id:[2,56],word_idx:12,word_vector_dim:[8,71,93],words_freq_sort:12,work:[12,15,17,18,19,37,40,41,61,68,73,86,87,91],worker:[43,52],workflow:45,workspac:80,would:[14,17,18,19,26,30,31,32,37,38,40,41,43,49,51,91],wouldn:32,wrap:[30,31,91],wrapper:[9,18,30,42,46,51,79],write:[12,15,19,26,30,37,40,41,42,43,45,46,51,58],write_lock:20,writelin:59,writer:[15,40],written:[17,31,42,45,49],wrong:41,wrote:43,wuyi:85,www:[8,12],x64:66,x86:[65,66],x86_64:65,x_1:8,x_n:8,x_neg:16,x_po:16,xarg:[7,53,61,74],xgbe0:82,xgbe1:82,xmap_read:12,xrang:[16,31,41,59,63,74],xxx:[15,51,94],xxxx:20,y_dim:31,y_neg:16,y_po:16,y_predict:63,yaml:[18,86,87,91],yancey1989:27,yann:12,yapf:73,yeild:14,yet:91,yield:[2,12,15,21,41,56,59,63,68],yin:8,you:[2,6,8,9,14,16,27,48,91,94],your:[8,14,15,18,22,27,29,45,53,65,66,91],your_param_nam:58,your_repo:87,your_source_root:35,yourself:8,yuyang18:[10,12],z_dim:31,z_size:31,zero:[6,8,9,10,12,16,19,31,38,49,82],zip:[12,65,87],zoo:93},titles:["API","DataProvider\u7684\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","API\u4e2d\u6587\u624b\u518c","\u57fa\u4e8ePython\u7684\u9884\u6d4b","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","The IfElse Operator","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","RNNOp design","Optimizer Design","Design Doc: The C++ Class Parameters","Design Doc: PaddlePaddle Programs","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Distributed Training Architecture","Design Doc: Operation Graph Based Parameter Server","Design Doc: Session","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","Design for TensorArray","Background","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1","PaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","PaddlePaddle\u7684Docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u6784\u5efaAndroid\u5e73\u53f0\u4e0a\u7684PaddlePaddle\u5e93","\u6784\u5efaRaspberry Pi\u5e73\u53f0\u4e0a\u7684PaddlePaddle\u5e93","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u7f16\u8bd1PaddlePaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","Kubernetes \u7b80\u4ecb","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","<no title>","<no title>","PaddlePaddle \u6587\u6863","Cluster bootstrapping tool survey","<no title>","\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528","Model Zoo - ImageNet","\u5feb\u901f\u5165\u95e8\u6559\u7a0b"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":87,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":21,"\u4e0b\u8f7d\u548c\u6570\u636e\u62bd\u53d6":93,"\u4e0b\u8f7d\u6570\u636e":86,"\u4e0d\u4f7f\u7528":34,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":34,"\u4e0d\u540c\u7684":57,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":34,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":34,"\u4e24\u79cd\u4f7f\u7528":57,"\u4e2d\u6587\u5b57\u5178":93,"\u4e2d\u6587\u77ed\u8bed\u6539\u5199\u7684\u4f8b\u5b50":93,"\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528":93,"\u4e2d\u6587\u8bcd\u5411\u91cf\u7684\u9884\u8bad\u7ec3\u6a21\u578b":93,"\u4e3a\u4ec0\u4e48\u8981":72,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":79,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":79,"\u4ec5\u4ec5\u4f7f\u7528void":34,"\u4ecb\u7ecd":[93,94],"\u4ece\u5feb\u7167\u6062\u590d":20,"\u4ee3\u7801\u8981\u6c42":73,"\u4efb\u52a1\u7b80\u4ecb":59,"\u4f18\u5316\u7b97\u6cd5":95,"\u4f7f\u7528":[73,86],"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":34,"\u4f7f\u7528\u6848\u4f8b":84,"\u4f7f\u7528\u6982\u8ff0":95,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":84,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":87,"\u4f7f\u7528\u7528\u6237\u6307\u5b9a\u7684\u8bcd\u5411\u91cf\u5b57\u5178":93,"\u4f7f\u7528\u8bf4\u660e":78,"\u4f7f\u7528\u8f6c\u6362\u5e93":21,"\u4f7f\u7528docker\u6784\u5efa":77,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":73,"\u4fee\u6539\u542f\u52a8\u811a\u672c":86,"\u4fee\u6539\u6587\u6863":77,"\u514b\u9686":73,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":35,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":35,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":2,"\u5185\u7f6e\u5b9a\u65f6\u5668":79,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[65,66],"\u51c6\u5907\u5de5\u4f5c\u7a7a\u95f4":80,"\u51c6\u5907\u6570\u636e":59,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":87,"\u51c6\u5907\u96c6\u7fa4\u4f5c\u4e1a\u914d\u7f6e":80,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":56,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":56,"\u51fa\u73b0":57,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u652f\u89c4\u8303":47,"\u521b\u5efa\u672c\u5730\u5206\u652f":73,"\u521b\u5efajob":87,"\u521b\u5efapaddl":86,"\u5220\u9664\u672c\u5730\u5206\u652f":73,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":73,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":56,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":73,"\u5236\u4f5c\u955c\u50cf":87,"\u5236\u4f5cdocker\u955c\u50cf":86,"\u524d\u5411operator\u5355\u5143\u6d4b\u8bd5":75,"\u524d\u63d0\u6761\u4ef6":80,"\u52a0\u8f7dpaddlepaddl":63,"\u52a0\u901f\u6267\u884c":20,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":56,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":34,"\u52a8\u6001\u6269\u5bb9":20,"\u5355\u5143\u6d4b\u8bd5":82,"\u5355\u53cc\u5c42rnn":68,"\u5377\u79ef\u6a21\u578b":95,"\u539f\u56e0":34,"\u539f\u56e0\u5217\u8868":34,"\u53c2\u6570\u4fe1\u606f":94,"\u53c2\u6570\u5185\u5b58":56,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":82,"\u53c2\u6570\u6982\u8ff0":81,"\u53c2\u6570\u8bbe\u7f6e":58,"\u53c2\u6570\u8bfb\u53d6":94,"\u53c2\u8003":2,"\u53c2\u8003\u6587\u6863":28,"\u53c2\u8003\u8d44\u6599":79,"\u53cc\u5c42rnn":68,"\u53cc\u5c42rnn\u4ecb\u7ecd":70,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":70,"\u53cd\u5411operator\u5355\u5143\u6d4b\u8bd5":75,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":2,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":72,"\u53ef\u9009\u529f\u80fd":93,"\u540d\u8bcd\u89e3\u91ca":28,"\u5411\u7cfb\u7edf\u4f20\u9001\u6570\u636e":95,"\u5411\u91cf":82,"\u542f\u52a8\u4efb\u52a1":87,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":80,"\u5440":72,"\u547d\u4ee4\u884c\u53c2\u6570":95,"\u548c":67,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":84,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":76,"\u5728paddlepaddle\u5e73\u53f0\u8bad\u7ec3\u6a21\u578b":93,"\u57fa\u4e8epython\u7684\u9884\u6d4b":4,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":63,"\u57fa\u672c\u539f\u7406":70,"\u57fa\u672c\u8981\u6c42":34,"\u5982\u4f55\u4e66\u5199\u6587\u6863":77,"\u5982\u4f55\u4f7f\u7528":57,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":58,"\u5982\u4f55\u5199\u65b0\u7684oper":75,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":56,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":58,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":58,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":56,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":58,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":56,"\u5982\u4f55\u66f4\u65b0\u6587\u6863\u4e3b\u9898":77,"\u5982\u4f55\u66f4\u65b0doc":77,"\u5982\u4f55\u6784\u5efa\u6587\u6863":77,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":58,"\u5982\u4f55\u8c03\u7528":56,"\u5982\u4f55\u8d21\u732e":77,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":73,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":79,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":58,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":68,"\u5b50\u5e8f\u5217\u95f4\u6709memori":68,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":58,"\u5b89\u88c5":95,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":62,"\u5b89\u88c5\u6d41\u7a0b":62,"\u5b89\u88c5kubectl":85,"\u5b9a\u4e49operator\u7c7b":75,"\u5b9a\u4e49opkernel\u7c7b":75,"\u5b9a\u4e49protomaker\u7c7b":75,"\u5b9e\u73b0":34,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":75,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":74,"\u5b9e\u73b0\u65b9\u5f0f":35,"\u5b9e\u73b0\u8ba1\u7b97":76,"\u5b9e\u73b0c":[74,75],"\u5b9e\u73b0python\u5c01\u88c5":74,"\u5bfc\u51fac":34,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":84,"\u5c0f\u7ed3":2,"\u5de5\u5177":79,"\u5e76\u5b8c\u6210":73,"\u5efa\u7acb":73,"\u5f00\u53d1\u6807\u51c6":78,"\u5f00\u59cb\u5f00\u53d1":73,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":82,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":20,"\u5feb\u901f\u5165\u95e8\u6559\u7a0b":95,"\u6027\u80fd\u4f18\u5316":78,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":79,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":79,"\u6027\u80fd\u8c03\u4f18":82,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":95,"\u603b\u4f53\u6d41\u7a0b":72,"\u6216\u8005\u662f":53,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":53,"\u62a5importerror":53,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":34,"\u63a5\u53e3":94,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":56,"\u63a8\u5bfc\u65b9\u7a0b":74,"\u63a8\u6d4b\u6267\u884c":20,"\u63d0\u4ea4":73,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":73,"\u63d0\u4ea4\u955c\u50cf":86,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":63,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":67,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":21,"\u6570\u636e\u652f\u6301":82,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":95,"\u6570\u636e\u7684\u51c6\u5907\u548c\u9884\u5904\u7406":93,"\u6574\u4f53\u65b9\u6848":87,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":21,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":21,"\u6587\u4ef6\u9884\u5904\u7406":21,"\u6587\u6863":[61,90],"\u65b0\u624b\u5165\u95e8":64,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":54,"\u65f6\u5e8f\u6a21\u578b":95,"\u65f6\u5e8f\u6a21\u578b\u7684\u4f7f\u7528\u573a\u666f":2,"\u65f6\u95f4\u5e8f\u5217":68,"\u65f6\u95f4\u6b65":68,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":35,"\u672c\u5730\u6d4b\u8bd5":84,"\u672c\u5730\u8bad\u7ec3":84,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":56,"\u672f\u8bed":20,"\u6784\u5efa\u548c\u6d4b\u8bd5":73,"\u6784\u5efaandroid\u5e73\u53f0\u4e0a\u7684paddlepaddle\u5e93":65,"\u6784\u5efaraspberri":66,"\u67b6\u6784\u56fe":28,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":86,"\u67e5\u770b\u8f93\u51fa":87,"\u6837\u4f8b\u6570\u636e":2,"\u6846\u67b6\u751f\u6210":28,"\u6848\u4f8b\u4e00":84,"\u6848\u4f8b\u4e8c":84,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":80,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":80,"\u6982\u5ff5\u7b80\u4ecb":75,"\u6982\u5ff5\u89e3\u91ca":21,"\u6982\u8ff0":[67,70],"\u6a21\u5757":28,"\u6a21\u578b":94,"\u6a21\u578b\u4e0b\u8f7d":94,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":20,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":35,"\u6a21\u578b\u68c0\u9a8c":59,"\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":95,"\u6a21\u578b\u914d\u7f6e":[57,68,78],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":68,"\u6ce8\u518coper":75,"\u6ce8\u610f\u4e8b\u9879":[2,75],"\u6d41\u7a0b\u4ecb\u7ecd":21,"\u6d4b\u8bd5":82,"\u7279\u5f81\u63d0\u53d6":94,"\u751f\u6210\u5e8f\u5217":71,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":70,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u7684\u533a\u522b":57,"\u7684\u53c2\u6570":57,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":57,"\u76ee\u5f55\u7ed3\u6784":35,"\u76ee\u6807":28,"\u76f4\u63a5\u6784\u5efa":77,"\u76f8\u5173\u6982\u5ff5":70,"\u77e9\u9635":82,"\u793a\u4f8b1":68,"\u793a\u4f8b2":68,"\u793a\u4f8b3":68,"\u793a\u4f8b4":68,"\u793a\u4f8b\u7a0b\u5e8f":21,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":56,"\u7a00\u758f\u8bad\u7ec3":84,"\u7b26\u53f7":34,"\u7b80\u4ecb":85,"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":71,"\u7c7b":[34,74,75],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":63,"\u7ec6\u8282\u63cf\u8ff0":82,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":80,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":59,"\u7ed1\u5b9apython":75,"\u7f16\u5199yaml\u6587\u4ef6":86,"\u7f16\u8bd1":75,"\u7f16\u8bd1\u548c\u5b89\u88c5":[65,66],"\u7f16\u8bd1\u548c\u6267\u884c\u5355\u5143\u6d4b\u8bd5":75,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":53,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":53,"\u7f16\u8bd1\u6d41\u7a0b":62,"\u7f16\u8bd1\u9009\u9879":35,"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":60,"\u7f16\u8bd1paddlepaddle\u548c\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":72,"\u7f29\u5bb9":20,"\u7f51\u7edc\u53ef\u89c6\u5316":94,"\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684\u8c03\u7528":2,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":34,"\u80cc\u666f":34,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":82,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u89c2\u6d4b\u8bcd\u5411\u91cf":93,"\u8bad\u7ec3":82,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":56,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":21,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":21,"\u8bad\u7ec3\u6a21\u578b":[59,63,95],"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":70,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":56,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":83,"\u8bcd\u5411\u91cf\u6a21\u578b":95,"\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4fee\u6b63":93,"\u8bcd\u6c47\u8868":68,"\u8be6\u7ec6\u6559\u7a0b":79,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":68,"\u8f6c\u6362\u5e93":21,"\u8f93\u5165":70,"\u8f93\u5165\u4e0d\u7b49\u957f":68,"\u8f93\u5165\u793a\u4f8b":70,"\u8f93\u51fa":70,"\u8f93\u51fa\u65e5\u5fd7":95,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":80,"\u8fd0\u884c\u5bb9\u5668":86,"\u8fd0\u884cdocker":53,"\u8fd0\u884cpaddlepaddl":61,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":34,"\u8fdb\u884c\u8bad\u7ec3":[21,86],"\u8fdb\u9636\u6307\u5357":78,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":85,"\u901a\u7528":82,"\u901a\u8fc7docker\u5bb9\u5668\u5f00\u53d1paddlepaddl":61,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":95,"\u9047\u5230":53,"\u90e8\u7f72kubernetes\u96c6\u7fa4":85,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":95,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[65,66],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":71,"\u914d\u7f6e\u7f51\u7edc":63,"\u914d\u7f6ekubectl":85,"\u914d\u7f6ekubectl\u8bbf\u95ee\u4f60\u7684kubernetes\u96c6\u7fa4":85,"\u94a9\u5b50":73,"\u9519\u8bef\u600e\u4e48\u529e":57,"\u9644\u5f55":95,"\u968f\u673a\u6570":82,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":54,"\u96c6\u7fa4\u8bad\u7ec3":84,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":54,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":72,"\u975e\u6cd5\u6307\u4ee4":53,"\u9884\u6d4b":[94,95],"\u9884\u6d4b\u6d41\u7a0b":4,"\u9884\u6d4bdemo":4,"abstract":[42,43,44,91],"api\u4e2d\u6587\u624b\u518c":3,"api\u5bf9\u6bd4\u4ecb\u7ecd":68,"beam_search\u7684\u751f\u6210":68,"blas\u8def\u5f84\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":60,"book\u4e2d\u6240\u6709\u7ae0\u8282":47,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":60,"class":[31,38],"cmake\u6e90\u7801\u7f16\u8bd1":53,"cudnn\u7684\u7f16\u8bd1\u9009\u9879":60,"dataprovider\u7684\u4ecb\u7ecd":1,"dataprovider\u7684\u4f7f\u7528":2,"docker\u4f7f\u7528\u5165\u95e8":61,"filemanager\u8bbe\u8ba1\u6587\u6863":28,"float":56,"function":[18,30,31,40],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":84,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":79,"gpu\u955c\u50cf\u51fa\u73b0":53,"group\u6559\u7a0b":70,"import":53,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":87,"kubernetes\u5355\u673a\u8bad\u7ec3":86,"mnist\u7684\u4f7f\u7528\u573a\u666f":2,"paddle\u52a8\u6001\u5e93\u4e2d":34,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":34,"paddle\u7248\u672c\u53f7\u4e3a0":53,"paddlepaddle\u53d1\u5e03\u7684docker\u955c\u50cf\u4f7f\u7528\u8bf4\u660e":61,"paddlepaddle\u53d1\u884c\u89c4\u8303":47,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":47,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":60,"paddlepaddle\u7684docker\u5bb9\u5668\u4f7f\u7528\u65b9\u5f0f":61,"pi\u5e73\u53f0\u4e0a\u7684paddlepaddle\u5e93":66,"pod\u95f4\u901a\u4fe1":87,"pydataprovider2\u7684\u4f7f\u7528":2,"python\u63a5\u53e3":94,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":53,"python\u811a\u672c\u8bfb\u53d6\u6570\u636e":95,"return":41,"rnn\u76f8\u5173\u6a21\u578b":69,"rnn\u914d\u7f6e":71,"tensor\u4f7f\u7528\u6837\u4f8b":76,"tensor\u5230eigentensor\u7684\u8f6c\u6362":76,"tensor\u6a21\u5757":76,Abs:5,For:18,The:[17,24,31,32,33,37,38,45,46],USE:45,Use:[17,39],Using:[18,24],With:27,about:31,activ:[5,8],adadelta:10,adagrad:10,adam:10,adamax:10,addto:8,aggreg:8,aggregatelevel:8,alalysi:22,algorithm:[16,19,36,42],all:[48,51],analysi:42,anneal:58,api:[0,3,35,37,40,50],appendix:91,applic:3,architectur:42,argument:[29,41],arrai:16,associ:48,assumpt:91,async:82,attent:71,attribut:6,auc:7,auto:16,avg:11,backgraound:16,background:[43,44,51,52],backward:[32,45],base:[27,43],basepool:11,basic:91,batch:41,batch_norm:8,batch_siz:41,beam_search:8,becaus:58,benefit:[43,45],between:[15,45,50],bidirectional_gru:9,bidirectional_lstm:9,big:58,bilinear_interp:8,binari:17,bla:60,block:[17,31,32,39,40,45],block_expand:8,blockdesc:39,book:61,bootstrap:91,brelu:5,bring:91,build:[31,45],cach:2,can:48,capi:35,capi_priv:35,challeng:43,check:[8,16],checker:16,checkpoint:[19,20,26],choos:18,chunk:7,cifar:12,classif:7,classification_error:7,classification_error_print:7,client:24,clip:8,clone:73,close:16,cluster:[25,91],cmake:18,code:27,column_sum:7,commit:73,compar:91,compil:[17,39,45],compos:41,comput:[17,32,45],con:91,concat:8,concept:[40,45],conclus:[26,91],condit:31,config:3,configur:13,conll05:12,connect:8,construct:32,content:[2,35,53,54,56,57,58,67,79],context_project:8,control:45,conv:8,conv_oper:8,conv_project:8,conv_shift:8,convert:[26,42,43],core:[16,40],cos_sim:8,cost:8,creat:[41,44,45,48],creation:23,creator:41,crf:8,crf_decod:8,cross_channel_norm:8,cross_entropy_cost:8,cross_entropy_with_selfnorm_cost:8,ctc:8,ctc_error:7,cuda:[53,60],cudnn:60,cudnnavg:11,cudnnmax:11,current:46,custom:41,data:[8,12,19,40,41,42],datafeed:12,dataprovid:[3,82],dataset:[12,19,23],datatyp:12,decayedadagrad:10,decor:41,deep:17,definit:52,demo:31,dens:26,depend:31,deploi:27,describ:37,descript:[29,45],design:[15,16,17,19,23,24,25,26,30,31,32,36,37,38,39,40,41,42,43,44,45,46,48,49,51],destroi:48,detail:22,detect:[7,8],detection_map:7,detection_output:8,develop:45,dictionari:41,differ:45,discrimin:31,discuss:[31,43],dispatch:[19,23],distribut:[15,19,22,27,42],doc:[15,17,19,23,24,25,26,30,32,38,39,40,41,42,43,44,45,46,49],docker:[27,72],dotmul_oper:8,dotmul_project:8,driver:53,drop_out:57,dropout:8,duplic:57,dylib:35,dynam:[19,51],eigen:76,elect:26,els:17,embed:8,engin:31,enough:16,entri:41,environ:27,eos:8,eval:42,evalu:7,event:[14,15],exampl:[15,18,33,35,44],except:56,execut:[17,39,45],exp:5,expand:[8,67],expandlevel:8,explain:16,faq:55,fault:19,file:17,first_seq:[8,67],fork:73,format:[17,19],forward:32,frame:17,framework:[16,76],from:[15,26,50],full_matrix_project:8,fulli:8,gan:31,gate:71,gated_unit:8,gener:[31,91],get_output:8,global:39,gpu:82,gradient:[16,24,46],gradient_print:7,graident:16,graph:[32,43,45],group:8,gru:[9,82],gru_group:9,gru_step:8,gru_unit:9,grumemori:8,handler:[15,34],happen:26,hierarchi:17,high:[37,50],how:[16,22,41,45],hsigmoid:8,huber_classification_cost:8,huber_regression_cost:8,ident:5,identity_project:8,ifels:33,ifelseop:17,illeg:53,imag:[8,9,27],imagenet:94,imdb:12,img_cmrnorm:8,img_conv:8,img_conv_bn_pool:9,img_conv_group:9,img_pool:8,imikolov:12,implement:[16,18,22,36,41,45,46],infer:[14,56],infershap:[39,49],ingredi:15,ingress:28,init_hook:2,initi:[24,31],input_typ:2,insid:48,instal:91,instruct:53,insuffici:53,interact:50,interfac:[12,16,19,24,25,37,41,44,48],intermedi:45,interpol:8,introduc:51,isn:41,issu:73,job:[19,27,86],join:8,kernel:45,kmax_sequence_scor:8,kubernet:[27,85,86],lambda_cost:8,languag:17,larg:22,last_seq:[8,67],layer:[8,15,30,40,57],learn:[17,58],learnabl:8,leval:50,level:[37,50],libpaddle_capi_shar:35,libpaddle_capi_whol:35,librari:[24,45],limit:42,linear:5,linear_comb:8,list:[20,41],local:[42,44,48],lodtensor:[36,51],lodtensordesc:52,log:5,logic:23,low:50,lstm:[9,82],lstm_step:8,lstmemori:8,lstmemory_group:9,lstmemory_unit:9,macro:45,main:31,manag:18,map:[41,45],master:[19,23,27],math:8,mathemat:16,max:11,maxframe_print:7,maxid:8,maxid_print:7,maxout:8,member:31,memori:[8,36,57,68,70],messag:[50,58],might:31,migrat:45,mileston:45,mini:41,minibatch:12,misc:8,mix:8,mnist:12,model:[3,13,15,22,24,26,31,71,94],modul:[45,53],momentum:10,more:31,movielen:12,multi_binary_label_cross_entropy_cost:8,multibox_loss:8,multipl:41,multiplex:8,name:[48,53,57],nce:8,necessari:45,need:41,nest:36,network:[9,45,71],neural:71,nlp:[9,82],norm:8,note:16,numer:16,numpi:16,nvprof:79,nvvp:79,object:19,onli:[41,48],op_mak:45,oper:[30,33,39,40,43,45,46,49,51],opinfomap:45,opkernel:45,opproto:50,optim:[10,19,24,32,37,40],option:29,opwithkernel:45,order:29,org:77,origin:45,orthogon:48,output:8,overview:[26,45,48],packag:18,pad:8,paddl:[22,41,48,53,57,76],paddlejob:27,paddlepaddl:[15,17,39,42,47,53,77,90],parallel_nn:84,paramet:[6,8,14,15,19,24,25,27,38,40,43],parent:48,part:32,partit:24,path:[26,29],perform:82,persist:23,pfsclient:[28,29],pfsserver:28,placement:42,platform:53,pnpair:7,point:56,pool:[8,11,67],pose:46,power:8,pre:73,precision_recal:7,prefetch:41,prelu:8,print:7,pro:91,problem:[37,46],procedur:91,process:[19,24,27,37,45],program:[17,39,40],programdesc:39,project:18,propos:46,protobuf:49,protocol:58,provid:[2,41],pserver:26,pull:73,push:73,python:[16,27,36,37,40,41,42,50,52],qualiti:45,queue:[19,23],rank:7,rank_cost:8,rate:58,reader:[12,15,41],realiz:45,recoveri:19,recurr:[8,9,57,70,71],recurrent_group:8,ref:16,refactor:45,refer:[2,42,43],regist:[45,50],registr:[45,46],registri:45,regular:24,reject:58,relat:[45,51],relu:5,remot:[25,44],repeat:8,represent:[17,45],request:73,requir:[18,31],reshap:8,resiz:8,resnet:94,retri:23,rmsprop:10,rnn:[36,51,68,82],rnnop:[17,36,45],rotat:8,row:49,row_conv:8,row_l2_norm:8,runtim:[27,42],sampl:8,sampling_id:8,save:26,scale:[8,19],scale_shift:8,scaling_project:8,scope:[17,36,45,48],select:[24,49],selectedrow:49,selective_fc:8,sentiment:12,separ:45,seq_concat:8,seq_reshap:8,seq_slic:8,seqtext_print:7,sequenc:71,sequence_conv_pool:9,sequencesoftmax:5,server:[19,23,24,27,43],session:[42,44],sextant:91,sgd:82,share:[15,48],should:48,shuffl:41,sigmoid:5,simple_attent:9,simple_gru2:9,simple_gru:9,simple_img_conv_pool:9,simple_lstm:9,singl:41,slice:8,slice_project:8,slope_intercept:8,small_vgg:9,smooth_l1_cost:8,softmax:5,softrelu:5,solut:46,spars:[24,25,26,49],spp:8,squar:5,square_error_cost:8,squarerootn:11,stack:17,stanh:5,start:15,step:36,store:19,sub_nested_seq:8,subcommond:29,submit:27,suffici:41,suitabl:18,sum:[7,11],sum_cost:8,sum_to_one_norm:8,summar:15,support:[51,53],survei:91,synopsi:29,tabl:35,table_project:8,take:41,tanh:5,task:[19,23],tecton:91,tensor:[8,45,76],tensorarrai:51,tensordesc:52,text_conv_pool:9,theori:16,thi:[48,53],think:31,three:51,timelin:26,todo:[20,21],togeth:48,toler:19,too:58,tool:[18,91],train:[14,15,19,22,25,27,37,41,42],trainer:[14,19,24,26,27],tran:8,trans_full_matrix_project:8,tune:82,two:16,uci_h:12,uniform:51,updat:[15,25,26],usag:[36,41],use:[22,41],user:19,util:7,value_print:7,vardesc:52,variabl:[40,45,48,52],version:53,vgg_16_network:9,warp_ctc:8,what:[22,26],wheel:53,when:[26,48],whl:53,why:[41,45,51],wmt14:12,zoo:94}}) \ No newline at end of file diff --git a/develop/doc_cn/tutorials/image_classification/index_cn.html b/develop/doc_cn/tutorials/image_classification/index_cn.html deleted file mode 100644 index fdb7628c5ea7981541d9c9e8a01828ca288fd3a5..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/image_classification/index_cn.html +++ /dev/null @@ -1,441 +0,0 @@ - - - - - - - - - - - 图像分类教程 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • 图像分类教程
    • -
    -
    - -
    -
    -
    -
    - -
    -

    图像分类教程

    -

    在本教程中,我们将使用CIFAR-10数据集训练一个卷积神经网络,并使用这个神经网络来对图片进行分类。如下图所示,卷积神经网络可以辨识图片中的主体,并给出分类结果。 -

    Image Classification

    -
    -

    数据准备

    -

    首先下载CIFAR-10数据集。下面是CIFAR-10数据集的官方网址:

    -

    https://www.cs.toronto.edu/~kriz/cifar.html

    -

    我们准备了一个脚本,可以用于从官方网站上下载CIFAR-10数据集,转为jpeg文件并存入特定的目录。使用这个脚本前请确认已经安装了pillow及相关依赖模块。可以参照下面的命令进行安装:

    -
      -
    1. 安装pillow
    2. -
    -
    sudo apt-get install libjpeg-dev
    -pip install pillow
    -
    -
    -
      -
    1. 下载数据集
    2. -
    -
    cd demo/image_classification/data/
    -sh download_cifar.sh
    -
    -
    -

    CIFAR-10数据集包含60000张32x32的彩色图片。图片分为10类,每个类包含6000张。其中50000张图片作为训练集,10000张作为测试集。

    -

    下图展示了所有的图片类别,每个类别中随机抽取了10张图片。 -

    Image Classification

    -

    脚本运行完成后,我们应当会得到一个名为cifar-out的文件夹,其下子文件夹的结构如下

    -
    train
    ----airplane
    ----automobile
    ----bird
    ----cat
    ----deer
    ----dog
    ----frog
    ----horse
    ----ship
    ----truck
    -test
    ----airplane
    ----automobile
    ----bird
    ----cat
    ----deer
    ----dog
    ----frog
    ----horse
    ----ship
    ----truck
    -
    -
    -

    cifar-out下包含traintest两个文件夹,其中分别包含了CIFAR-10中的训练集和测试集。这两个文件夹下各自有10个子文件夹,每个子文件夹下存储相应分类的图片。将图片按照上述结构存储好之后,我们就可以着手对分类模型进行训练了。

    -
    -
    -

    预处理

    -

    数据下载之后,还需要进行预处理,将数据转换为Paddle的格式。我们可以通过如下命令进行预处理工作:

    -
    cd demo/image_classification/
    -sh preprocess.sh
    -
    -
    -

    其中preprocess.sh 调用 ./demo/image_classification/preprocess.py 对图片进行预处理

    -
    export PYTHONPATH=$PYTHONPATH:../../
    -data_dir=./data/cifar-out
    -python preprocess.py -i $data_dir -s 32 -c 1
    -
    -
    -

    ./demo/image_classification/preprocess.py 使用如下参数:

    -
      -
    • -i--input 给出输入数据所在路径;
    • -
    • -s--size 给出图片尺寸;
    • -
    • -c--color 标示图片是彩色图或灰度图
    • -
    -
    -
    -

    模型训练

    -

    在开始训练之前,我们需要先创建一个模型配置文件。下面我们给出了一个配置示例。注意,这里的列出的和vgg_16_cifar.py文件稍有差别,因为该文件可适用于预测。

    -
    from paddle.trainer_config_helpers import *
    -data_dir='data/cifar-out/batches/'
    -meta_path=data_dir+'batches.meta'
    -args = {'meta':meta_path, 'mean_img_size': 32,
    -        'img_size': 32, 'num_classes': 10,
    -        'use_jpeg': 1, 'color': "color"}
    -define_py_data_sources2(train_list=data_dir+"train.list",
    -                        test_list=data_dir+'test.list',
    -                        module='image_provider',
    -                        obj='processData',
    -                        args=args)
    -settings(
    -    batch_size = 128,
    -    learning_rate = 0.1 / 128.0,
    -    learning_method = MomentumOptimizer(0.9),
    -    regularization = L2Regularization(0.0005 * 128))
    -
    -img = data_layer(name='image', size=3*32*32)
    -lbl = data_layer(name="label", size=10)
    -# small_vgg is predined in trainer_config_helpers.network
    -predict = small_vgg(input_image=img, num_channels=3)
    -outputs(classification_cost(input=predict, label=lbl))
    -
    -
    -

    在第一行中我们载入用于定义网络的函数。

    -
    from paddle.trainer_config_helpers import *
    -
    -
    -

    之后定义的define_py_data_sources2使用Python数据提供器,其中 args将在image_provider.py进行使用,该文件负责产生图片数据并传递给Paddle系统

    -
      -
    • meta: 训练集平均值。
    • -
    • mean_img_size: 平均特征图的高度及宽度。
    • -
    • img_size:输入图片的高度及宽度。
    • -
    • num_classes:类别个数。
    • -
    • use_jpeg:处理过程中数据存储格式。
    • -
    • color:标示是否为彩色图片。
    • -
    -

    settings用于设置训练算法。在下面的例子中,learning rate被设置为0.1除以batch size,而weight decay则为0.0005乘以batch size。

    -
    settings(
    -   batch_size = 128,
    -   learning_rate = 0.1 / 128.0,
    -   learning_method = MomentumOptimizer(0.9),
    -   regularization = L2Regularization(0.0005 * 128)
    -)
    -
    -
    -

    small_vgg定义了网络结构。这里我们使用的是一个小的VGG网络。关于VGG卷积神经网络的描述可以参考:http://www.robots.ox.ac.uk/~vgg/research/very_deep/

    -
    # small_vgg is predined in trainer_config_helpers.network
    -predict = small_vgg(input_image=img, num_channels=3)
    -
    -
    -

    配置创建完毕后,可以运行脚本train.sh来训练模型。

    -
    config=vgg_16_cifar.py
    -output=./cifar_vgg_model
    -log=train.log
    -
    -paddle train \
    ---config=$config \
    ---dot_period=10 \
    ---log_period=100 \
    ---test_all_data_in_one_period=1 \
    ---use_gpu=1 \
    ---save_dir=$output \
    -2>&1 | tee $log
    -
    -python -m paddle.utils.plotcurve -i $log > plot.png
    -
    -
    -
      -
    • 这里我们使用的是GPU模式进行训练。如果你没有GPU环境,可以设置use_gpu=0
    • -
    • ./demo/image_classification/vgg_16_cifar.py是网络和数据配置文件。各项参数的详细说明可以在命令行参数相关文档中找到。
    • -
    • 脚本plotcurve.py依赖于python的matplotlib模块。因此如果这个脚本运行失败,也许是因为需要安装matplotlib。 -在训练完成后,训练及测试误差曲线图会被plotcurve.py脚本保存在 plot.png中。下面是一个误差曲线图的示例:
    • -
    -

    Training and testing curves.

    -
    -
    -

    预测

    -

    在训练完成后,模型及参数会被保存在路径./cifar_vgg_model/pass-%05d下。例如第300个pass的模型会被保存在./cifar_vgg_model/pass-00299

    -

    要对一个图片的进行分类预测,我们可以使用predict.sh,该脚本将输出预测分类的标签:

    -
    sh predict.sh
    -
    -
    -

    predict.sh:

    -
    model=cifar_vgg_model/pass-00299/
    -image=data/cifar-out/test/airplane/seaplane_s_000978.png
    -use_gpu=1
    -python prediction.py $model $image $use_gpu
    -
    -
    -
    -
    -

    练习

    -

    在CUB-200数据集上使用VGG模型训练一个鸟类图片分类模型。相关的鸟类数据集可以从如下地址下载,其中包含了200种鸟类的照片(主要来自北美洲)。

    -

    http://www.vision.caltech.edu/visipedia/CUB-200.html

    -
    -
    -

    细节探究

    -
    -

    卷积神经网络

    -

    卷积神经网络是一种使用卷积层的前向神经网络,很适合构建用于理解图片内容的模型。一个典型的神经网络如下图所示:

    -

    Convolutional Neural Network

    -

    一个卷积神经网络包含如下层:

    -
      -
    • 卷积层:通过卷积操作从图片或特征图中提取特征
    • -
    • 池化层:使用max-pooling对特征图下采样
    • -
    • 全连接层:使输入层到隐藏层的神经元是全部连接的。
    • -
    -

    卷积神经网络在图片分类上有着惊人的性能,这是因为它发掘出了图片的两类重要信息:局部关联性质和空间不变性质。通过交替使用卷积和池化处理, 卷积神经网络能够很好的表示这两类信息。

    -

    关于如何定义网络中的层,以及如何在层之间进行连接,请参考Layer文档。

    -
    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/rec/ml_dataset_cn.html b/develop/doc_cn/tutorials/rec/ml_dataset_cn.html deleted file mode 100644 index a8985b4d8f3e02b2c543f886f6c42e59c78b4ffd..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/rec/ml_dataset_cn.html +++ /dev/null @@ -1,352 +0,0 @@ - - - - - - - - - - - MovieLens数据集 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • MovieLens数据集
    • -
    -
    - -
    -
    -
    -
    - -
    -

    MovieLens数据集

    -

    MovieLens 数据集由GroupLens Research实验室搜集整理。 -该数据集包含一些用户信息、电影信息以及电影评分[1-5]。根据数据量规模,该数据及有很多不同的版本。 -我们用MovieLens 百万数据集作为示例数据 -集,其中包含6,000位用户对4,000部电影的1,000,000条评价。该数据集于2003年2月发布。

    -
    -

    数据集特征

    -

    ml-1m 数据集中有许多的特征。在[ml-1m 数据集] -(http://files.grouplens.org/datasets/movielens/ml-1m.zip)中的这些数据文件(含有”.dat”的后缀)实际上是CSV文件, -分隔符为”::”。以下我们翻译数据集网站中README文件的描述:

    -
    -

    评分文件描述(ratings.dat)

    -

    所有的评分数据都包含在”ratings.dat”文件中,遵循如下的格式:

    -

    用户ID::电影ID::评分::时间戳

    -
      -
    • 用户ID范围从1到6040
    • -
    • 电影ID范围从1到3952
    • -
    • 评分被调整为5星的规模(只允许整数的星级)
    • -
    • 时间戳表示为从1970-01-01(UTC)来的秒数,与time(2)的返回值一致
    • -
    • 每位用户至少有20条评分
    • -
    -
    -
    -

    用户文件描述(users.dat)

    -

    所有的用户信息都包含在”users.dat”文件中,遵循如下的格式:

    -

    用户ID::性别::年龄::职业::邮编

    -

    所有的人口统计学信息由用户自愿提供,没有进行正确性的检查。只有含有人 -口统计学信息的用户才被包含在数据集中。

    -
      -
    • 性别,用”M”表示男性,”F”表示女性
    • -
    • 年龄从下列列表范围中选取:
        -
      • 1: “18岁以下”
      • -
      • 18: “18-24岁”
      • -
      • 25: “25-34岁”
      • -
      • 35: “35-44岁”
      • -
      • 45: “45-49岁”
      • -
      • 50: “50-55岁”
      • -
      • 56: “56+”
      • -
      -
    • -
    • 职业从下面所列中选择:
        -
      • 0: “其他”或不确定
      • -
      • 1: “学术/教育工作者”
      • -
      • 2: “艺术家”
      • -
      • 3: “文书工作/管理员”
      • -
      • 4: “大学生/研究生”
      • -
      • 5: “客户服务”
      • -
      • 6: “医生/医疗保健”
      • -
      • 7: “行政工作/管理人员”
      • -
      • 8: “农民”
      • -
      • 9: “操持家务者”
      • -
      • 10: “高中毕业生”
      • -
      • 11: “律师”
      • -
      • 12: “程序员”
      • -
      • 13: “退休人员”
      • -
      • 14: “销售/市场”
      • -
      • 15: “科学家”
      • -
      • 16: “自由职业者”
      • -
      • 17: “技术员/工程师”
      • -
      • 18: “推销员/手工艺者”
      • -
      • 19: “无业人士”
      • -
      • 20: “作家”
      • -
      -
    • -
    -
    -
    -

    电影文件描述(movies.dat)

    -

    所有的电影信息都包含在”movies.dat”文件中,遵循如下的格式:

    -

    电影ID::电影名称::电影类型

    -
      -
    • 电影名称(包括发行时间)与IMDB网站提供的一致
    • -
    • 电影类型如符合多种用管道符号|分割,选自下列类型:
        -
      • 动作片
      • -
      • 冒险片
      • -
      • 动画片
      • -
      • 儿童片
      • -
      • 喜剧片
      • -
      • 犯罪片
      • -
      • 纪录片
      • -
      • 戏剧
      • -
      • 奇幻片
      • -
      • 黑色电影
      • -
      • 恐怖片
      • -
      • 音乐剧
      • -
      • 悬疑片
      • -
      • 浪漫片
      • -
      • 科幻片
      • -
      • 惊险电影
      • -
      • 战争片
      • -
      • 西部片
      • -
      -
    • -
    • 由于意外的副本记录和测试记录,有些电影ID可能与实际电影不相符合
    • -
    • 电影大部分是手工输入数据,因此可能会有一些错误和不一致发生
    • -
    -
    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/rec/ml_regression_cn.html b/develop/doc_cn/tutorials/rec/ml_regression_cn.html deleted file mode 100644 index ae9aae91ddd442a9c5b5c65c69106c86d9dc9d7b..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/rec/ml_regression_cn.html +++ /dev/null @@ -1,588 +0,0 @@ - - - - - - - - - - - MovieLens数据集评分回归模型 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • MovieLens数据集评分回归模型
    • -
    -
    - -
    -
    -
    -
    - -
    -

    MovieLens数据集评分回归模型

    -

    这里我们在MovieLens数据集描述一种 余弦相似度回归 任务。 -该示例将展示paddle如何进行词向量嵌入,处理相似度回归,针对文本 -的单词级别的卷积神经网络,以及paddle如何处理多种类型的输入。 -需要注意的是,该模型网络只是用于进行demo展示paddle如何工作,而 -没有进行结构的微调。

    -

    我们非常欢迎您用PADDLEPADDLE构建更好的示例,如果您有好的建议来 -让这个示例变得更好,希望能让我们知晓。

    -
    -

    数据准备

    -
    -

    下载并解压数据集

    -

    这里我们使用 MovieLens数据集 。 -要下载和解压数据集,只需要简单的运行下面的命令即可。

    -
    cd demo/recommendation/data
    -./ml_data.sh
    -
    -
    -

    demo/recommendation/data/ml-1m 的目录结构为:

    -
    +--ml-1m
    -        +--- movies.dat         # 电影特征
    -        +--- ratings.dat        # 评分
    -        +--- users.dat          # 用户特征
    -        +--- README             # 数据集描述
    -
    -
    -
    -
    -

    字段配置文件

    -

    字段配置文件 用来具体说明数据集的字段和文件格式, -例如,说明每个特征文件具体字段是 什么 类型。

    -

    ml-1m的字段配置文件在目录 demo/recommendation/data/config.json 中。 -其具体说明了字段类型和文件名称:

    -
      -
    1. 用户文件中有四种类型的字段: 编号,性别,年龄和职业;
    2. -
    3. 文件名称为”users.dat”,文件的分隔符为”::”。
    4. -
    -
    -
    -
    -

    准备数据

    -

    你需要安装python的第三方库。 -强烈推荐使用VIRTUALENV来创造一个干净的python环境。

    -
    pip install -r requirements.txt
    -
    -
    -

    预处理数据一般的命令为:

    -
    cd demo/recommendation
    -./preprocess.sh
    -
    -
    -

    下面介绍预处理过程具体的步骤。

    -
    -

    提取电影或用户的特征并生成python对象

    -

    在movielens 1m数据集中,电影和用户有许多的特征。 -评分文件的每一行仅仅提供电影或用户的编号来代表相应的电影或用户。 -我们首先处理电影或用户的特征文件,然后用pickle命令将特征( Meta )对象存储为文件。

    -
    -

    Meta配置文件

    -

    Meta配置文件 用来具体描述 如何 解析数据集中的每一个字段。 -该文件可以从字段配置文件生成,或是手动编辑生成。文件的格式可以 -为json或yaml格式。解析器能通过文件的扩展名自动识别文件的格式。

    -

    要将字段配置文件转化为meta配置文件,只需要运行:

    -
    cd demo/recommendation/data
    -python config_generator.py config.json > meta_config.json
    -
    -
    -

    生成的meta配置文件如下所示:

    -

    在meta文件中有两种特征: 电影和用户。

    -
      -
    • -
      在电影文件movies.dat中
      -
        -
      • 我们仅用”::”来分隔每一行
      • -
      • pos 0 代表编号
      • -
      • -
        pos 1 特征:
        -
          -
        • name是电影名
        • -
        • 利用正则表达式来解析该特征
        • -
        • 基于字母的词嵌入特征
        • -
        • 是序列
        • -
        -
        -
        -
      • -
      • -
        pos 2 特征:
        -
          -
        • name是体裁
        • -
        • type是one hot稠密向量
        • -
        • dictionary由解析自动生成,每一个key由’|’分隔
        • -
        -
        -
        -
      • -
      -
      -
      -
    • -
    • -
      在用户文件users.dat中
      -
        -
      • 我们仅用”::”来分隔每一行
      • -
      • pos 0 代表编号
      • -
      • -
        pos 1 特征:
        -
          -
        • name是性别
        • -
        • 简单的基于字母的词嵌入
        • -
        -
        -
        -
      • -
      • -
        pos 2 特征:
        -
          -
        • name是年龄
        • -
        • 是整个的词嵌入
        • -
        • 嵌入编号会根据单词排序
        • -
        -
        -
        -
      • -
      • -
        pos 3 特征:
        -
          -
        • name是职业
        • -
        • 简单的整个词嵌入
        • -
        -
        -
        -
      • -
      -
      -
      -
    • -
    -
    -
    -
    -

    Meta文件

    -

    有了meta配置文件之后,我们可以生成 Meta文件 ,该文件是python的pickle对象, -存储着电影或用户信息。可以运行下面的命令来生成。

    -
    python meta_generator.py ml-1m meta.bin --config=meta_config.json
    -
    -
    -

    meta文件 meta.bin 的结构如下:

    -
    +--+ movie
    -|      +--+ __meta__
    -|      |       +--+ raw_meta  # 每个特征的meta配置。列表
    -|      |       |       +
    -|      |       |       |     # 编号字段,我们用编号作为key
    -|      |       |       +--+ {'count': 3883, 'max': 3952, 'is_key': True, 'type': 'id', 'min': 1}
    -|      |       |       |
    -|      |       |       |     # 电影名字段,嵌入特征字典
    -|      |       |       +--+ {'dict': [ ... ], 'type': 'embedding', 'name': 'title', 'seq': 'sequence'}
    -|      |       |       |
    -|      |       |       |     # 体裁字段,体裁字典
    -|      |       |       +--+ {'dict': [ ... ], 'type': 'one_hot_dense', 'name': 'genres'}
    -|      |       |
    -|      |       +--+ feature_map [1, 2] # a list for raw_meta index for feature field.
    -|      |                               # it means there are 2 features for each key.
    -|      |                               #    * 0 offset of feature is raw_meta[1], Title.
    -|      |                               #    * 1 offset of feature is raw_meta[2], Genres.
    -|      |
    -|      +--+ 1 # 电影1的特征
    -|      |    +
    -|      |    +---+ [[...], [...]] # title ids, genres dense vector
    -|      |
    -|      +--+ 2
    -|      |
    -|      +--+ ...
    -|
    -+--- user
    -       +--+ __meta__
    -       |       +
    -       |       +--+ raw_meta
    -       |       |       +
    -       |       |       +--+ id field as user
    -       |       |       |
    -       |       |       +--+ {'dict': ['F', 'M'], 'type': 'embedding', 'name': 'gender', 'seq': 'no_sequence'}
    -       |       |       |
    -       |       |       +--+ {'dict': ['1', '18', '25', '35', '45', '50', '56'], 'type': 'embedding', 'name': 'age', 'seq': 'no_sequence'}
    -       |       |       |
    -       |       |       +--+ {'dict': [...], 'type': 'embedding', 'name': 'occupation', 'seq': 'no_sequence'}
    -       |       |
    -       |       +--+ feature_map [1, 2, 3]
    -       |
    -       +--+ 1 # 用户1的特征
    -       |
    -       +--+ 2
    -       +--+ ...
    -
    -
    -
    -
    -

    分割训练/测试文件

    -

    我们将 ml-1m/ratings.dat 文件分割为训练和测试文件。分割文件的方法是:对于每位用户,我们将评分分成两部分。 -这样的话每位用户在测试文件中将与训练文件含有同样的信息。

    -

    separate.py 来分离训练和测试文件。

    -
    python split.py ml-1m/ratings.dat --delimiter="::" --test_ratio=0.1
    -
    -
    -

    这样就会生成两个文件:ml-1m/ratings.dat.trainml-1m/ratings.data.test 。 -将他们移动到目录 data ,然后进行随机打乱,再为paddle的训练过程提供文件列表。

    -
    shuf ml-1m/ratings.dat.train > ratings.dat.train
    -cp ml-1m/ratings.dat.test .
    -echo "./data/ratings.dat.train" > train.list
    -echo "./data/ratings.dat.test" > test.list
    -
    -
    -
    -
    -
    -

    神经网络结构配置

    -
    -

    训练器配置文件

    -

    网络结构如下图所示:

    -rec_regression_network -

    该示例的神经网络配置文件 trainer_config.py 如下所示:

    -

    在文件 trainer_config.py 中,我们仅仅是将每个特征种类映射到一个特征向量中,以下 -展示了如何将每个特征映射到一个向量。

    -
      -
    • id : 仅仅是简单的嵌入,然后添加一个全连接层。
    • -
    • -
      embedding :
      -
        -
      • 如果是序列,则先做嵌入,然后再做一次文本卷积网络操作, -然后得到平均采样的结果。
      • -
      • 如果不是序列,则先做嵌入,然后添加一个全连接层。
      • -
      -
      -
      -
    • -
    • -
      one_host_dense :
      -
        -
      • 仅仅是两个全连接层。
      • -
      -
      -
      -
    • -
    -

    然后我们利用多输入的:code:fc_layer 全连接层将电影的每个特征结合成一个电影特征, -并且对用户的特征做同样的操作,也得到一个用户特征。然后我们求这两个特征的余弦相似度。

    -

    在这些网络中,我们用以下的一些:ref:api_trainer_config 中的接口。

    -
      -
    • 数据层, api_trainer_config_helpers_layers_data_layer
    • -
    • 全连接层, api_trainer_config_helpers_layers_fc_layer
    • -
    • 嵌入层, api_trainer_config_helpers_layers_embedding_layer
    • -
    • 文本投影层, api_trainer_config_helpers_layers_context_projection
    • -
    • 采样层, api_trainer_config_helpers_layers_pooling_layer
    • -
    • 余弦相似度层, api_trainer_config_helpers_layers_cos_sim
    • -
    • 文本卷积采样层, text_conv_pool
    • -
    • 声明Python数据源, api_trainer_config_helpers_data_sources
    • -
    -
    -
    -

    数据提供脚本

    -

    数据提供脚本仅仅是读取meta.bin和评分文件,生成训练需要的样本。 -在脚本 dataprovider.py 中,我们需要设置:

    -
      -
    • obj.slots: 特征的类型和维度。
    • -
    • use_seq: dataprovider.py 中的数据是否为序列模式。
    • -
    • process: 返回数据的每一条样本给 paddle
    • -
    -

    数据提供脚本的细节文档可以参考 PyDataProvider2的使用

    -
    -
    -
    -

    训练

    -

    准备好数据,配置了网络,编写好数据提供脚本后,现在我们可以开始paddle训练了。

    -

    代码 run.sh 如下:

    -

    该脚本仅仅是开始一个paddle训练过程,将日志写入文件 log.txt ,然后 -打印在屏幕上。

    -

    脚本 run.sh 中的每一行命令,请参考页面 设置命令行参数 。 -这些参数的简短介绍如下:

    -
      -
    • config: 告诉paddle哪个文件是神经网络的配置文件。
    • -
    • save_dir: 告诉paddle将模型保存在: code:./output 中。
    • -
    • use_gpu: 是否使用GPU,默认为不使用。
    • -
    • trainer_count: 一台机器上面的线程数量。
    • -
    • test_all_data_in_one_period: 每一个测试周期测试一次所有数据。否则, -每个测试周期测试: code:batch_size 批次的数据。
    • -
    • log_period: 在训练了: code:log_period 批次后打印日志。
    • -
    • dot_period: 在每训练: code:dot_period 个批次后打印一个 .
    • -
    • num_passes: 训练至多: code:num_passes 轮。
    • -
    -

    如果训练过程启动成功的话,输出应该类似如下:

    -
    I0601 08:07:22.832059 10549 TrainerInternal.cpp:157]  Batch=100 samples=160000 AvgCost=4.13494 CurrentCost=4.13494 Eval:  CurrentEval:
    -
    -I0601 08:07:50.672627 10549 TrainerInternal.cpp:157]  Batch=200 samples=320000 AvgCost=3.80957 CurrentCost=3.48421 Eval:  CurrentEval:
    -
    -I0601 08:08:18.877369 10549 TrainerInternal.cpp:157]  Batch=300 samples=480000 AvgCost=3.68145 CurrentCost=3.42519 Eval:  CurrentEval:
    -
    -I0601 08:08:46.863963 10549 TrainerInternal.cpp:157]  Batch=400 samples=640000 AvgCost=3.6007 CurrentCost=3.35847 Eval:  CurrentEval:
    -
    -I0601 08:09:15.413025 10549 TrainerInternal.cpp:157]  Batch=500 samples=800000 AvgCost=3.54811 CurrentCost=3.33773 Eval:  CurrentEval:
    -I0601 08:09:36.058670 10549 TrainerInternal.cpp:181]  Pass=0 Batch=565 samples=902826 AvgCost=3.52368 Eval:
    -I0601 08:09:46.215489 10549 Tester.cpp:101]  Test samples=97383 cost=3.32155 Eval:
    -I0601 08:09:46.215966 10549 GradientMachine.cpp:132] Saving parameters to ./output/model/pass-00000
    -I0601 08:09:46.233397 10549 ParamUtil.cpp:99] save dir ./output/model/pass-00000
    -I0601 08:09:46.233438 10549 Util.cpp:209] copy trainer_config.py to ./output/model/pass-00000
    -I0601 08:09:46.233541 10549 ParamUtil.cpp:147] fileName trainer_config.py
    -
    -
    -

    模型被保存在 output/ 目录中。你可以在任何时候用 Ctrl-C 来停止训练。

    -
    -
    -

    模型评估和预测

    -

    在训练了几个轮次以后,你可以对模型进行评估,得到最好轮次下的模型。运行下面命令即可:

    -
    ./evaluate.sh
    -
    -
    -

    你将看到如下的信息:

    -
    Best pass is 00009,  error is 3.06949, which means predict get error as 0.875998002281
    -evaluating from pass output/pass-00009
    -
    -
    -

    然后,你可以预测任何用户对于任何一部电影的评价,运行下面命令即可:

    -
    python prediction.py 'output/pass-00009/'
    -
    -
    -

    预测程序将读取用户的输入,然后输出预测分数。用户预测的命令行界面如下:

    -
    Input movie_id: 9
    -Input user_id: 4
    -Prediction Score is 2.56
    -Input movie_id: 8
    -Input user_id: 2
    -Prediction Score is 3.13
    -
    -
    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/semantic_role_labeling/index_cn.html b/develop/doc_cn/tutorials/semantic_role_labeling/index_cn.html deleted file mode 100644 index c0fb4b2a8c9ed2e1767871d86d2855f680b094fa..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/semantic_role_labeling/index_cn.html +++ /dev/null @@ -1,449 +0,0 @@ - - - - - - - - - - - 语义角色标注教程 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • 语义角色标注教程
    • -
    -
    - -
    -
    -
    -
    - -
    -

    语义角色标注教程

    -

    语义角色标注(Semantic role labeling, SRL)是浅层语义解析的一种形式,其目的是在给定的输入句子中发现每个谓词的谓词论元结构。 SRL作为很多自然语言处理任务中的中间步骤是很有用的,如信息提取、文档自动分类和问答。 实例如下 [1]:

    -

    [ A0 He ] [ AM-MOD would ][ AM-NEG n’t ] [ V accept] [ A1 anything of value ] from [A2 those he was writing about ].

    -
      -
    • V: 动词
    • -
    • A0: 接受者
    • -
    • A1: 接受的东西
    • -
    • A2: 从……接受
    • -
    • A3: 属性
    • -
    • AM-MOD: 情态动词
    • -
    • AM-NEG: 否定
    • -
    -

    给定动词“accept”,句子中的组块将会扮演某些语义角色。这里,标签方案来自 Penn Proposition Bank。

    -

    到目前为止,大多数成功的SRL系统是建立在某种形式的句法分析结果之上的,使用了基于句法结构的预定义特征模板。 本教程将介绍使用深度双向长短期记忆(DB-LSTM)模型[2]的端到端系统来解决SRL任务,这在很大程度上优于先前的最先进的系统。 这个系统将SRL任务视为序列标注问题。

    -
    -

    数据描述

    -

    相关论文[2]采用 CoNLL-2005&2012 共享任务中设置的数据进行训练和测试。由于数据许可的原因,演示采用 CoNLL-2005 的测试数据集,可以在网站上找到。

    -

    用户只需执行以下命令就可以下载并处理原始数据:

    -
    cd data
    -./get_data.sh
    -
    -
    -

    data目录会出现如下几个新的文件:

    -
    conll05st-release:the test data set of CoNll-2005 shared task 
    -test.wsj.words:the Wall Street Journal data sentences
    -test.wsj.props:  the propositional arguments
    -feature: the extracted features from data set
    -
    -
    -
    -
    -

    训练

    -
    -

    DB-LSTM

    -

    请参阅情感分析的演示以了解有关长期短期记忆单元的更多信息。

    -

    与在 Sentiment Analysis 演示中使用的 Bidirectional-LSTM 不同,DB-LSTM 采用另一种方法来堆叠LSTM层。首先,标准LSTM以正向处理该序列。该 LSTM 层的输入和输出作为下一个 LSTM 层的输入,并被反向处理。这两个标准 LSTM 层组成一对 LSTM。然后我们堆叠一对对的 LSTM 层后得到深度 LSTM 模型。

    -

    下图展示了时间扩展的2层 DB-LSTM 网络。 -

    -pic -

    -
    -
    -

    特征

    -

    两个输入特征在这个流程中起着至关重要的作用:predicate(pred)和argument(arguments)。 还采用了两个其他特征:谓词上下文(ctx-p)和区域标记(mr)。 因为单个谓词不能精确地描述谓词信息,特别是当相同的词在句子中出现多于一次时。 使用谓词上下文,可以在很大程度上消除歧义。类似地,如果它位于谓词上下文区域中,则使用区域标记 mr = 1 来表示参数位置,反之则 mr = 0。这四个简单的特征是我们的SRL系统所需要的。上下文大小设置为1的一个样本的特征如下[2]所示: -

    -pic -

    -

    在这个示例中,相应的标记句子是:

    -

    [ A1 A record date ] has [ AM-NEG n’t ] been [ V set ] .

    -

    在演示中, 我们采用上面的特征模板, 包括: argument, predicate, ctx-p (p=-1,0,1), mark 并使用 B/I/O 方案来标记每个参数。这些特征和标签存储在 feature 文件中, 用\t分割。

    -
    -
    -

    数据提供

    -

    dataprovider.py 是一个包装数据的 Python 文件。 函数 hook() 定义了网络的数据槽。六个特征和标签都是索引槽。

    -
    def hook(settings, word_dict, label_dict, **kwargs):
    -    settings.word_dict = word_dict
    -    settings.label_dict = label_dict
    -    #all inputs are integral and sequential type
    -    settings.slots = [
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(len(predicate_dict)),
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(len(word_dict)),
    -        integer_value_sequence(2),
    -        integer_value_sequence(len(label_dict))]
    -
    -
    -

    相应的数据迭代器如下:

    -
    @provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
    -          can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
    -def process(settings, file_name):
    -    with open(file_name, 'r') as fdata:
    -        for line in fdata:
    -            sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2,  mark, label = \
    -                line.strip().split('\t')
    -
    -            words = sentence.split()
    -            sen_len = len(words)
    -            word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
    -
    -            predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
    -            ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
    -            ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
    -            ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
    -            ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
    -            ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
    -
    -            marks = mark.split()
    -            mark_slot = [int(w) for w in marks]
    -
    -            label_list = label.split()
    -            label_slot = [settings.label_dict.get(w) for w in label_list]
    -            yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
    -                  ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
    -
    -
    -

    函数 process 返回8个特征list和1个标签list。

    -
    -
    -

    神经网络配置

    -

    db_lstm.py 是在训练过程中加载字典并定义数据提供程序模块和网络架构的神经网络配置文件。

    -

    九个 data_layer 从数据提供程序加载实例。八个特征分别转换为向量,并由mixed_layer混合。 深度双向LSTM层提取softmax层的特征。目标函数是标签的交叉熵。

    -
    -
    -

    训练

    -

    训练的脚本是 train.sh,用户只需执行:

    -
      ./train.sh
    -
    -
    -

    train.sh 中的内容:

    -
    paddle train \
    -  --config=./db_lstm.py \
    -  --use_gpu=0 \
    -  --log_period=5000 \
    -  --trainer_count=1 \
    -  --show_parameter_stats_period=5000 \
    -  --save_dir=./output \
    -  --num_passes=10000 \
    -  --average_test_period=10000000 \
    -  --init_model_path=./data \
    -  --load_missing_parameter_strategy=rand \
    -  --test_all_data_in_one_period=1 \
    -2>&1 | tee 'train.log'
    -
    -
    -
      -
    • --config=./db_lstm.py : 网络配置文件
    • -
    • --use_gpu=false: 使用 CPU 训练(如果已安装 PaddlePaddle GPU版本并想使用 GPU 训练可以设置为true,目前 crf_layer 不支持 GPU)
    • -
    • --log_period=500: 每20个batch输出日志
    • -
    • --trainer_count=1: 设置线程数(或 GPU 数)
    • -
    • --show_parameter_stats_period=5000: 每100个batch显示参数统计
    • -
    • --save_dir=./output: 模型输出路径
    • -
    • --num_passes=10000: 设置数据遍历次数,一个pass意味着PaddlePaddle训练数据集中的所有样本被遍历一次
    • -
    • --average_test_period=10000000: 每个 average_test_period 批次对平均参数进行测试
    • -
    • --init_model_path=./data: 参数初始化路径
    • -
    • --load_missing_parameter_strategy=rand: 随机初始不存在的参数
    • -
    • --test_all_data_in_one_period=1: 在一个周期内测试所有数据
    • -
    -

    训练后,模型将保存在目录output中。 我们的训练曲线如下: -

    -pic -

    -
    -
    -

    测试

    -

    测试脚本是 test.sh, 执行:

    -
      ./test.sh
    -
    -
    -

    tesh.sh 的主要部分:

    -
    paddle train \
    -  --config=./db_lstm.py \
    -  --model_list=$model_list \
    -  --job=test \
    -  --config_args=is_test=1 \
    -
    -
    -
      -
    • --config=./db_lstm.py: 网络配置文件
    • -
    • --model_list=$model_list.list: 模型列表文件
    • -
    • --job=test: 指示测试任务
    • -
    • --config_args=is_test=1: 指示测试任务的标记
    • -
    • --test_all_data_in_one_period=1: 在一个周期内测试所有数据
    • -
    -
    -
    -

    预测

    -

    预测脚本是 predict.sh,用户只需执行:

    -
      ./predict.sh
    -  
    -
    -
    -

    predict.sh中,用户应该提供网络配置文件,模型路径,标签文件,字典文件,特征文件。

    -
    python predict.py 
    -     -c $config_file \
    -     -w $best_model_path \
    -     -l $label_file \
    -     -p $predicate_dict_file  \
    -     -d $dict_file \
    -     -i $input_file \
    -     -o $output_file
    -
    -
    -

    predict.py 是主要的可执行python脚本,其中包括函数:加载模型,加载数据,数据预测。网络模型将输出标签的概率分布。 在演示中,我们使用最大概率的标签作为结果。用户还可以根据概率分布矩阵实现柱搜索或维特比解码。

    -

    预测后,结果保存在 predict.res 中。

    -
    -
    -
    -

    引用

    -

    [1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005.

    -

    [2] Zhou, Jie, and Wei Xu. “End-to-end learning of semantic role labeling using recurrent neural networks.” Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/sentiment_analysis/index_cn.html b/develop/doc_cn/tutorials/sentiment_analysis/index_cn.html deleted file mode 100644 index c4aa814bea1cab3dc3829547924517967fe4fb7a..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/sentiment_analysis/index_cn.html +++ /dev/null @@ -1,558 +0,0 @@ - - - - - - - - - - - 情感分析教程 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • 情感分析教程
    • -
    -
    - -
    -
    -
    -
    - -
    -

    情感分析教程

    -

    情感分析有许多应用场景。 一个基本的应用场景是区分给定文本的褒贬两极性,给定的文本可以是一个文档、句子、或者是一个小的文本片段。 一个简单的例子如:把用户在购物网站、旅游网站、团购网站(亚马逊、天猫、淘宝等)上发表的评论分成正面评论和负面评论两类。

    -

    情感分析也常用于基于大量评论和个人博客来监控社会媒体。 例如,研究人员分析了几个关于消费者信心和政治观点的调查,结果发现它们与同时期的Twitter消息中的情绪词频率相关 [1]。 另一个例子是通过分析每日Twitter博客的文本内容来预测股票变动 [2]。

    -

    另一方面,抓取产品的用户评论并分析他们的情感,有助于理解用户对不同公司,不同产品,甚至不同竞争对手产品的偏好。

    -

    本教程将指导您完成长期短期记忆(LSTM)网络的训练过程,以分类来自大型电影评论数据集(有时称为互联网电影数据库 (IMDB))的句子的情感 。 此数据集包含电影评论及其相关联的类别标签,即正面和负面。

    -
    -

    数椐准备

    -
    -

    IMDB 数椐介绍

    -

    训练模型之前, 我们需要预处理数椐并构建一个字典。 首先, 你可以使用下面的脚本下载 IMDB 数椐集和Moses工具, 这是一个基于统计的机器翻译系统. 我们提供了一个数据预处理脚本,它不仅能够处理IMDB数据,还能处理其他用户自定义的数据。 为了使用提前编写的脚本,需要将标记的训练和测试样本移动到另一个路径,这已经在get_imdb.sh中完成。

    -
    cd demo/sentiment/data
    -./get_imdb.sh
    -
    -
    -

    如果数椐获取成功,你将在目录./demo/sentiment/data中看到下面的文件:

    -
    aclImdb  get_imdb.sh  imdb  mosesdecoder-master
    -
    -
    -
      -
    • aclImdb: 从外部网站上下载的原始数椐集。
    • -
    • imdb: 仅包含训练和测试数椐集。
    • -
    • mosesdecoder-master: Moses 工具。
    • -
    -

    IMDB数据集包含25,000个已标注过的高极性电影评论用于训练,25,000个用于测试。负面的评论的得分小于等于4,正面的评论的得大于等于7,总评分10分。 运行完脚本 ./get_imdb.sh后, 我们可以看到在目录 aclImdb中的数椐集的结构如下:

    -
    imdbEr.txt  imdb.vocab  README  test  train
    -
    -
    -
      -
    • train: 训练数椐集。
    • -
    • test : 测试数椐集。
    • -
    • imdb.vocab: 字典文件。
    • -
    • imdbEr.txt: 字典imdb.vocab中每个切分单词的预期评级。
    • -
    • README: 数椐说明文档。
    • -
    -

    测试集和训练集目录包含下面的文件:

    -
    labeledBow.feat  neg  pos  unsup  unsupBow.feat  urls_neg.txt  urls_pos.txt  urls_unsup.txt
    -
    -
    -
      -
    • pos: 正面评价样本,包含12,500个txt文件,每个文件是一个电影评论。
    • -
    • neg: 负面评价样本,包含12,500个txt文件,每个文件是一个电影评论。
    • -
    • unsup: 未标记的评价样本,包含50,000个txt文件。
    • -
    • urls_xx.txt: 每个评论的网址。
    • -
    • xxBow.feat: 用于统计词频的Bow模型特征。
    • -
    -
    -
    -

    IMDB 数椐准备

    -

    在这个例子中,我们只使用已经标注过的训练集和测试集,且默认在训练集上构建字典,而不使用IMDB数椐集中的imdb.vocab做为字典。训练集已经做了随机打乱排序而测试集没有。 Moses 工具中的脚本tokenizer.perl 用于切分单单词和标点符号。执行下面的命令就可以预处理数椐。

    -
    cd demo/sentiment/
    -./preprocess.sh
    -
    -
    -

    preprocess.sh:

    -
    data_dir="./data/imdb"
    -python preprocess.py -i data_dir
    -
    -
    -
      -
    • data_dir: 输入数椐所在目录。
    • -
    • preprocess.py: 预处理脚本。
    • -
    -

    运行成功后目录demo/sentiment/data/pre-imdb 结构如下:

    -
    dict.txt  labels.list  test.list  test_part_000  train.list  train_part_000
    -
    -
    -
      -
    • test_part_000 and train_part_000: 所有标记的测试集和训练集, 训练集已经随机打乱。
    • -
    • train.list and test.list: 训练集和测试集文件列表。
    • -
    • dict.txt: 利用训练集生成的字典。
    • -
    • labels.txt: neg 0, pos 1, 含义:标签0表示负面的评论,标签1表示正面的评论。
    • -
    -
    -
    -

    用户自定义数椐预处理

    -

    如果你执行其它的用情感分析来分类文本的任务,可以按如下的结构来准备数椐. 我们提供了脚本来构建字典和预处理数椐。所以你只用按下面的结构来组织数椐就行了。

    -
    dataset
    -|----train
    -|    |----class1
    -|    |    |----text_files
    -|    |----class2
    -|    |    |----text_files
    -|    |    ...
    -|----test
    -|    |----class1
    -|    |    |----text_files
    -|    |----class2
    -|    |    |----text_files
    -|    |    ...
    -
    -
    -
      -
    • dataset: 一级目录。
    • -
    • train, test: 二级目录。
    • -
    • class1,class2,...: 三级目录。
    • -
    • text_files: 文本格式的实例文件。
    • -
    -

    所有同目录下的文本实例文件都是同级别的。 每个文本文件包含一个或者多个实例,每一行表示一个实例。 为了充分的随机打乱训练集, 在预处理含有多行数椐的文本文件时参数设置稍有不同, 执行preprocess.sh脚本时需要加上-m True参数。 tokenizer.perl 默认用来切分单记和标点符号,如果你不需要这个操作,在运行preprocess.sh时加上-t False参数即可。

    -
    -
    -
    -

    训练模型

    -

    在这步任务中,我们使用了循环神经网络(RNN)的 LSTM 架构来训练情感分析模型。 引入LSTM模型主要是为了克服消失梯度的问题。 LSTM网络类似于具有隐藏层的标准循环神经网络, 但是隐藏层中的每个普通节点被一个记忆单元替换。 每个记忆单元包含四个主要的元素: 输入门, 具有自循环连接的神经元,忘记门和输出门。 更多的细节可以在文献中找到[4]。 LSTM架构的最大优点是它可以在长时间间隔内记忆信息,而没有短时记忆的损失。在有新的单词来临的每一个时间步骤内,存储在记忆单元区块的历史信息被更新用来迭代的学习单词以合理的序列程现。

    -

    LSTM
    -
    图表 1. LSTM [3]

    -

    情感分析是自然语言理解中最典型的问题之一。 它的目的是预测在一个序列中表达的情感态度。 通常, ,仅仅是一些关键词,如形容词和副词,在预测序列或段落的情感中起主要作用。然而有些评论上下文非常长,例如 IMDB的数椐集。 我们只所以使用LSTM来执行这个任务是因为其改进的设计并且具有门机制。 首先,它能够从词级到具有可变上下文长度的上下文级别来总结表示。 第二,它可以在句子级别利用可扩展的上下文, 而大多数方法只是利用n-gram级别的知识。第三,它直接学习段落表示,而不是组合上下文级别信息。

    -

    在本演示中,我们提供两个网络,即双向LSTM和三层堆叠LSTM。

    -
    -

    双向LSTM

    -

    图2是双向LSTM网络,后面连全连接层和softmax层。

    -

    BiLSTM
    -
    图 2. Bidirectional-LSTM

    -
    -
    -

    Stacked-LSTM

    -

    图3是三层LSTM结构。图的底部是word embedding(对文档处理后形成的单词向量)。 接下来,连接三个LSTM隐藏层,并且第二个是反向LSTM。然后提取隐藏LSTM层的所有时间步长的最大词向量作为整个序列的表示。 最后,使用具有softmax激活的全连接前馈层来执行分类任务。 更多内容可查看参考文献 [5]。

    -

    StackedLSTM
    -
    图 3. Stacked-LSTM for sentiment analysis

    -

    配置

    -

    进入demo/sentiment 目录 , trainer_config.py 是一个配置文件的例子, 其中包含算法和网络配置。第一行从sentiment_net.py中导出预定义的网络。

    -

    trainer_config.py:

    -
    from sentiment_net import *
    -
    -data_dir  = "./data/pre-imdb"
    -# whether this config is used for test
    -is_test = get_config_arg('is_test', bool, False)
    -# whether this config is used for prediction
    -is_predict = get_config_arg('is_predict', bool, False)
    -dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict)
    -
    -################## Algorithm Config #####################
    -
    -settings(
    -  batch_size=128,
    -  learning_rate=2e-3,
    -  learning_method=AdamOptimizer(),
    -  regularization=L2Regularization(8e-4),
    -  gradient_clipping_threshold=25
    -)
    -
    -#################### Network Config ######################
    -stacked_lstm_net(dict_dim, class_dim=class_dim,
    -                 stacked_num=3, is_predict=is_predict)
    -#bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict)
    -
    -
    -
      -
    • 数椐定义:
        -
      • get_config_arg(): 获取通过 --config_args=xx 设置的命令行参数。
      • -
      • 定义训练数椐和测试数椐提供者, 这里使用了PaddlePaddle的Python接口来加载数椐。想了解更多细节可以参考PyDataProvider部分的文档
      • -
      -
    • -
    • 算法配置:
        -
      • 使用随机梯度下降(sgd)算法。
      • -
      • 使用 adam 优化。
      • -
      • 设置batch size大小为128。
      • -
      • 设置平均sgd窗口。
      • -
      • 设置全局学习率。
      • -
      -
    • -
    • 网络配置:
        -
      • dict_dim: 获取字典维度。
      • -
      • class_dim: 设置类别数,IMDB有两个标签,即正面评价标签和负面评价标签。
      • -
      • stacked_lstm_net: 预定义网络如图3所示,默认情况下使用此网络
      • -
      • bidirectional_lstm_net: 预定义网络,如图2所示。
      • -
      -
    • -
    -

    训练

    -

    首先安装PaddlePaddle。 然后使用下面的脚本 train.sh 来开启本地的训练。

    -
    cd demo/sentiment/
    -./train.sh
    -
    -
    -

    train.sh:

    -
    config=trainer_config.py
    -output=./model_output
    -paddle train --config=$config \
    -             --save_dir=$output \
    -             --job=train \
    -             --use_gpu=false \
    -             --trainer_count=4 \
    -             --num_passes=10 \
    -             --log_period=20 \
    -             --dot_period=20 \
    -             --show_parameter_stats_period=100 \
    -             --test_all_data_in_one_period=1 \
    -             2>&1 | tee 'train.log'
    -
    -
    -
      -
    • --config=$config: 设置网络配置。
    • -
    • --save_dir=$output: 设置输出路径以保存训练完成的模型。
    • -
    • --job=train: 设置工作模式为训练。
    • -
    • --use_gpu=false: 使用CPU训练,如果你安装GPU版本的PaddlePaddle,并想使用GPU来训练设置为true。
    • -
    • --trainer_count=4:设置线程数(或GPU个数)。
    • -
    • --num_passes=15: 设置pass,PaddlePaddle中的一个pass意味着对数据集中的所有样本进行一次训练。
    • -
    • --log_period=20: 每20个batch打印一次日志。
    • -
    • --show_parameter_stats_period=100: 每100个batch打印一次统计信息。
    • -
    • --test_all_data_in_one_period=1: 每次测试都测试所有数据。
    • -
    -

    如果运行成功,输出日志保存在路径 demo/sentiment/train.log中,模型保存在目录demo/sentiment/model_output/中。 输出日志说明如下:

    -
    Batch=20 samples=2560 AvgCost=0.681644 CurrentCost=0.681644 Eval: classification_error_evaluator=0.36875  CurrentEval: classification_error_evaluator=0.36875
    -...
    -Pass=0 Batch=196 samples=25000 AvgCost=0.418964 Eval: classification_error_evaluator=0.1922
    -Test samples=24999 cost=0.39297 Eval: classification_error_evaluator=0.149406
    -
    -
    -
      -
    • Batch=xx: 表示训练了xx个Batch。
    • -
    • samples=xx: 表示训练了xx个样本。。
    • -
    • AvgCost=xx: 从第0个batch到当前batch的平均损失。
    • -
    • CurrentCost=xx: 最新log_period个batch处理的当前损失。
    • -
    • Eval: classification_error_evaluator=xx: 表示第0个batch到当前batch的分类错误。
    • -
    • CurrentEval: classification_error_evaluator: 最新log_period个batch的分类错误。
    • -
    • Pass=0: 通过所有训练集一次称为一遍。 0表示第一次经过训练集。
    • -
    -

    默认情况下,我们使用stacked_lstm_net网络,当传递相同的样本数时,它的收敛速度比bidirectional_lstm_net快。如果要使用双向LSTM,只需删除最后一行中的注释并把“stacked_lstm_net”注释掉。

    -
    -
    -
    -

    测试模型

    -

    测试模型是指使用训练出的模型评估已标记的验证集。

    -
    cd demo/sentiment
    -./test.sh
    -
    -
    -

    test.sh:

    -
    function get_best_pass() {
    -  cat $1  | grep -Pzo 'Test .*\n.*pass-.*' | \
    -  sed  -r 'N;s/Test.* error=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \
    -  sort | head -n 1
    -}
    -
    -log=train.log
    -LOG=`get_best_pass $log`
    -LOG=(${LOG})
    -evaluate_pass="model_output/pass-${LOG[1]}"
    -
    -echo 'evaluating from pass '$evaluate_pass
    -
    -model_list=./model.list
    -touch $model_list | echo $evaluate_pass > $model_list
    -net_conf=trainer_config.py
    -paddle train --config=$net_conf \
    -             --model_list=$model_list \
    -             --job=test \
    -             --use_gpu=false \
    -             --trainer_count=4 \
    -             --config_args=is_test=1 \
    -             2>&1 | tee 'test.log'
    -
    -
    -

    函数get_best_pass依据分类错误率获得最佳模型进行测试。 在本示例中,我们默认使用IMDB的测试数据集作为验证。 与训练不同,它需要在这里指定--job = test和模型路径,即--model_list = $model_list。如果运行成功,日志将保存在“demo / sentiment / test.log”的路径中。例如,在我们的测试中,最好的模型是model_output / pass-00002,分类误差是0.115645,如下:

    -
    Pass=0 samples=24999 AvgCost=0.280471 Eval: classification_error_evaluator=0.115645
    -
    -
    -
    -
    -

    预测

    -

    predict.py脚本提供了一个预测接口。在使用它之前请安装PaddlePaddle的python api。 预测IMDB的未标记评论的一个实例如下:

    -
    cd demo/sentiment
    -./predict.sh
    -
    -
    -

    predict.sh:

    -
    #Note the default model is pass-00002, you shold make sure the model path
    -#exists or change the mode path.
    -model=model_output/pass-00002/
    -config=trainer_config.py
    -label=data/pre-imdb/labels.list
    -cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \
    -     --tconf=$config\
    -     --model=$model \
    -     --label=$label \
    -     --dict=./data/pre-imdb/dict.txt \
    -     --batch_size=1
    -
    -
    -
      -
    • cat ./data/aclImdb/test/pos/10007_10.txt : 输入预测样本。
    • -
    • predict.py : 预测接口脚本。
    • -
    • --tconf=$config : 设置网络配置。
    • -
    • --model=$model : 设置模型路径。
    • -
    • --label=$label : 设置标签类别字典,这个字典是整数标签和字符串标签的一个对应。
    • -
    • --dict=data/pre-imdb/dict.txt : 设置字典文件。
    • -
    • --batch_size=1 : 设置batch size。
    • -
    -

    注意应该确保默认模型路径model_output / pass-00002存在或更改为其它模型路径。

    -

    本示例的预测结果:

    -
    Loading parameters from model_output/pass-00002/
    -./data/aclImdb/test/pos/10014_7.txt: predicting label is pos
    -
    -
    -

    我们真诚地感谢您的关注,并欢迎您来参与贡献。

    -
    -
    -

    参考文档

    -

    [1] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM-2010.
    -[2] Johan Bollen, Huina Mao, Xiaojun Zeng. 2011. Twitter mood predicts the stock market, Journal of Computational Science.
    -[3] Alex Graves, Marcus Liwicki, Santiago Fernan- dez, Roman Bertolami, Horst Bunke, and Ju ̈rgen Schmidhuber. 2009. A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine In- telligence, 31(5):855–868.
    -[4] Zachary C. Lipton, A Critical Review of Recurrent Neural Networks for Sequence Learning, arXiv:1506.00019.
    -[5] Jie Zhou and Wei Xu; End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks; ACL-IJCNLP 2015.

    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/text_generation/index_cn.html b/develop/doc_cn/tutorials/text_generation/index_cn.html deleted file mode 100644 index 11a85f42618e33132d3e9a450ce9f91590bff288..0000000000000000000000000000000000000000 --- a/develop/doc_cn/tutorials/text_generation/index_cn.html +++ /dev/null @@ -1,611 +0,0 @@ - - - - - - - - - - - 文本生成教程 — PaddlePaddle 文档 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - -
    - - - - - - - - - - - -
    -
      - -
    • 文本生成教程
    • -
    -
    - -
    -
    -
    -
    - -
    -

    文本生成教程

    -

    在语言生成领域中,“序列到序列”(sequence to sequence)的方法已被证明是一种强大的模型。它可以被应用于进行机器翻译(machine translation)、query改写(query rewriting)、图像描述(image captioning)等等。

    -

    本篇教程将会指导你通过训练一个“序列到序列”的神经网络机器翻译(NMT)模型来将法语翻译成英语。

    -

    我们遵循 Neural Machine Translation by Jointly Learning to Align and Translate 这篇文章,其中详细说明了模型架构,以及在WMT-14数据集上得到良好表现的训练过程。本篇教程在PaddlePaddle中重现了这一良好的训练结果。

    -

    我们感谢@caoying的pull request,其中定义了模型架构和solver配置。

    -
    -

    数据准备

    -
    -

    下载与解压缩

    -

    从该链接 http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/ 下载WMT-14数据集,然后解压,并将Develop和Test数据分别放入不同的文件夹。

    - -

    在Linux下,只需要简单地运行以下命令。否则你需要自己下载、解压、拆分到不同文件夹、并且分别重命名文件后缀。

    -
    cd demo/seqToseq/data
    -./wmt14_data.sh
    -
    -
    -

    我们会发现数据集 wmt14 中包含如下表所示的3个文件夹。

    - ------ - - - - - - - - - - - - - - - - - - - - - - - - -
    folder nameFrench-English parallel corpora filenumber of total filesize
    train_dataccb2_pc30.src, ccb2_pc30.trg, etc123.55G
    test_datantst1213.src, ntst1213.trg21636k
    gen_datantst14.src, ntst14.trg2864k
    -
      -
    • 每个文件夹都包含法语到英语的平行语料库
    • -
    • XXX.src 是原始法语文件;XXX.trg 是目标英语文件
    • -
    • XXX.srcXXX.trg 的行数应该一致
    • -
    • 每行都是一个法语或者英语的句子
    • -
    • XXX.srcXXX.trg 中任意第i行的句子之间都有着一一对应的关系
    • -
    -
    -
    -

    用户自定义数据集

    -

    如果你想进行诸如语义转述(Paraphrasing)等其他“序列到序列”的任务,你只需要按照如下方式组织数据,并将它们放在demo/seqToseq/data目录下:

    -
    dataset
    -  train
    -    file1.src file1.trg
    -    file2.src file2.trg
    -    ......
    -  test
    -    file1.src file1.trg
    -    file2.src file2.trg
    -    ......
    -  gen
    -    file1.src file1.trg
    -    file2.src file2.trg
    -    ......
    -
    -
    -
      -
    • 一级目录:数据集文件夹名称
    • -
    • 二级目录:train、test和gen这三个文件夹是固定的
    • -
    • 三级目录:源语言到目标语言的平行语料库文件
        -
      • XXX.src 是源语言的文件,XXX.trg 时目标语言的文件
      • -
      • 文件中的每行都必须是一个句子
      • -
      • XXX.srcXXX.trg 中任意第i行的句子之间都必须有着一一对应的关系
      • -
      -
    • -
    -
    -
    -
    -

    数据预处理

    -
    -

    预处理工作流程

    -
      -
    • 将每个源语言到目标语言的平行语料库文件合并为一个文件:
        -
      • 合并每个 XXX.srcXXX.trg 文件为 XXX
      • -
      • XXX 中的第i行 = XXX.src 中的第i行 + ‘\t’ + XXX.trg中的第i行
      • -
      -
    • -
    • 创建训练数据的“源字典”和“目标字典”,每个字典都有DICTSIZE个单词,包括:
        -
      • 词频最高的(DICTSIZE - 3)个单词
      • -
      • 3个特殊符号
      • -
      • <s>:序列的开始
      • -
      • <e>:序列的结束
      • -
      • <unk>:未包含在字典中的单词
      • -
      -
    • -
    -
    -
    -

    预处理命令和结果

    -

    对数据集进行预处理的基本命令是:

    -
    cd demo/seqToseq/
    -python preprocess.py -i INPUT [-d DICTSIZE] [-m]
    -
    -
    -
      -
    • -i INPUT:输入的原始数据集路径
    • -
    • -d DICTSIZE:指定的字典单词数,如果没有设置,字典会包含输入数据集中的所有单词
    • -
    • -m --mergeDict:合并 “源字典”和“目标字典”,使得两个字典有相同的上下文
    • -
    -

    你将会看到如下消息:

    -
    concat parallel corpora for dataset
    -build source dictionary for train data
    -build target dictionary for train data
    -dictionary size is XXX
    -
    -
    -

    然后你只需要运行以下命令:

    -
    python preprocess.py -i data/wmt14 -d 30000
    -
    -
    -

    这将花费数分钟的时间,并且将预处理好的数据集存放在demo/seqToseq/data/pre-wmt14目录下。目录结构如下:

    -
    train test gen train.list test.list gen.list src.dict trg.dict# Text generation Tutorial #
    -
    -
    -
      -
    • train, test, gen:分别包含了法语到英语的平行语料库的训练数据、测试数据和生成数据。文件夹中的每个文件的每一行包含两部分,首先是法语序列,然后是对应的英语序列。
    • -
    • train.list, test.list, gen.list:分别为train,test,gen文件夹中的文件列表
    • -
    • src.dict, trg.dict:源(法语)/目标(英语)字典,每个字典包含总共30000个单词:29997个最高频单词和3个特殊符号
    • -
    -
    -
    -
    -

    模型训练

    -
    -

    简介

    -

    神经网络机器翻译(NMT)旨在建立一个可以被协同调至最优翻译效果的单神经元网络。近期提出的NMT模型通常都属于编解码模型(encoder–decoder models)的一种。编解码模型将一个源语句编码为一个定长的向量,然后解码器通过这个向量生成一个目标语句。

    -

    在这个任务中,我们使用了一个编解码模型的扩展,它同时学习排列(align)与翻译。每当模型在翻译过程中生成了一个单词,它就会在源语句中搜索出最相关信息的位置的集合。解码器根据上下文向量预测出一个目标单词,这个向量与源中搜索出的位置和所有之前生成的目标单词有关。如想了解更多详细的解释,可以参考 Neural Machine Translation by Jointly Learning to Align and Translate

    -

    这个模型对于编解码模型来说,最不同的特色是它并没有将输入语句编码为一个单独的定长向量。相反,它将输入语句编码为向量的序列,其中每个向量对应输入语句中的一个元素。然后在解码被翻译的语句时,会自适应地从这些向量中选择一个子集出来。这使得NMT模型得以解放出来,不必再将任意长度源语句中的所有信息压缩至一个定长的向量中。该模型在长语句翻译的场景下效果提升更加明显,在任意长度语句翻译的场景下都可以观察到其效果的提升。 -

    -
    Figure 1. Encoder-Decoder-Attention-Model

    -
    -
    -

    使用PaddlePaddle训练模型

    -

    我们在训练之前需要常见一个模型配置文件,这里是一个例子demo/seqToseq/translation/train.conf。前三行import了定义network,job_mode和attention_mode的python函数。

    -
    from seqToseq_net import *
    -is_generating = False
    -
    -### Data Definiation
    -train_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14",
    -                             is_generating = is_generating)
    -
    -### Algorithm Configuration
    -settings(
    -    learning_method = AdamOptimizer(),
    -    batch_size = 50,
    -    learning_rate = 5e-4)
    -
    -### Network Architecture
    -gru_encoder_decoder(train_conf, is_generating)
    -
    -
    -
      -
    1. Data Definiation:在示例中我们定义了一个序列到序列的训练和测试数据。它返回train_conf作为配置,其输入参数如下:
    2. -
    -
      -
    • data_dir:训练数据和测试数据的目录
    • -
    • is_generating:这个配置是否用来生成,这里设置为False
    • -
    -
      -
    1. Algorithm Configuration:在示例中我们使用SGD训练算法(默认),和ADAM学习方法,指定batch_size为50,learning_rate为5e-4
    2. -
    3. Network Architecture:在示例中我们使用attention版本的GRU编解码网络。它包括了一个双向的GRU作为编码器和解码器,它模拟了解码翻译过程中在源语句中的搜索。
    4. -
    -
    -
    -

    训练模型的命令与结果

    -

    写完模型配置之后,我们可以通过以下命令来训练模型:

    -
    cd demo/seqToseq/translation
    -./train.sh
    -
    -
    -

    train.sh 的内容如下所示:

    -
    paddle train \
    ---config='translation/train.conf' \
    ---save_dir='translation/model' \
    ---use_gpu=false \
    ---num_passes=16 \
    ---show_parameter_stats_period=100 \
    ---trainer_count=4 \
    ---log_period=10 \
    ---dot_period=5 \
    -2>&1 | tee 'translation/train.log'
    -
    -
    -
      -
    • config: 设置神经网络的配置文件
    • -
    • save_dir: 设置保存模型的输出路径
    • -
    • use_gpu: 是否使用GPU训练,这里设置为使用CPU
    • -
    • num_passes: 设置passes的数量。paddle中的一条pass表示训练数据集中所有的样本一次
    • -
    • show_parameter_stats_period: 这里每隔100个batch显示一次参数统计信息
    • -
    • trainer_count: 设置CPU线程数或者GPU设备数
    • -
    • log_period: 这里每隔10个batch打印一次日志
    • -
    • dot_period: 这里每个5个batch打印一个点”.”
    • -
    -

    训练的损失函数默认每隔10个batch打印一次,你将会看到如下消息:

    -
    I0719 19:16:45.952062 15563 TrainerInternal.cpp:160]  Batch=10 samples=500 AvgCost=198.475 CurrentCost=198.475 Eval: classification_error_evaluator=0.737155  CurrentEval: classification_error_evaluator=0.737155
    -I0719 19:17:56.707319 15563 TrainerInternal.cpp:160]  Batch=20 samples=1000 AvgCost=157.479 CurrentCost=116.483 Eval: classification_error_evaluator=0.698392  CurrentEval: classification_error_evaluator=0.659065
    -.....
    -
    -
    -
      -
    • AvgCost:从第0个batch到当前batch的平均cost
    • -
    • CurrentCost::当前batch的cost
    • -
    • classification_error_evaluator(Eval):从第0个评估到当前评估中,每个单词的预测错误率
    • -
    • classification_error_evaluator(CurrentEval):当前评估中,每个单词的预测错误率
    • -
    -

    当classification_error_evaluator的值低于0.35时,模型就训练成功了。

    -
    -
    -
    -

    文本生成

    -
    -

    简介

    -

    一般而言,NMT模型受制于源语句的编码,并且通过给出当前目标单词来预测下一个目标单词。在训练过程中,当前单词在相比之下总是被当作真值(ground truth)。在生成过程中,当前单词是解码器最后一步的输出,这来自于PaddlePaddle的内存中。

    -

    而且,我们使用集束搜索(Beam Search)来生成序列。集束搜索使用广度优先搜索来构建搜索树。对于树的每一层,生成当前层的所有后继状态,并将它们按照启发代价(heuristic cost)升序排列。但是这种方法在每层只保存预设数量的最优状态(这个数量称为beam size)。

    -
    -
    -

    预训练的模型

    -

    我们在拥有50个节点的集群中训练模型,每个节点有两个6核CPU。我们在5天里训练了16个pass,其中每条pass花费了7个小时。model_dir中有16个子目录,每个里面都包含202MB的全部的模型参数。然后我们发现pass-00012的模型有着最高的BLEU值27.77(参考文献BLEU: a Method for Automatic Evaluation of Machine Translation)。要下载解压这个模型,只需在linux下运行如下命令:

    -
    cd demo/seqToseq/data
    -./wmt14_model.sh
    -
    -
    -
    -
    -

    使用PaddlePaddle生成模型

    -

    在翻译法语句子之前,我们需要创建模型配置文件。这里是一个例子demo/seqToseq/translation/gen.conf。前三行import了定义network,job_mode和attention_mode的python函数。

    -
    from seqToseq_net import *
    -is_generating = True
    -
    -################## Data Definiation #####################
    -gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14",
    -                           is_generating = is_generating,
    -                           gen_result = "./translation/gen_result")
    -
    -############## Algorithm Configuration ##################
    -settings(
    -  learning_method = AdamOptimizer(),
    -  batch_size = 1,
    -  learning_rate = 0)
    -
    -################# Network configure #####################
    -gru_encoder_decoder(gen_conf, is_generating)
    -
    -
    -
      -
    1. Data Definiation:在示例中我们定义了一个序列到序列的生成数据。它返回gen_conf作为配置,其输入参数如下:
    2. -
    -
      -
    • data_dir:生成数据的目录 - - is_generating:这个配置是否用来生成,这里设置为True - - gen_result:保存生成结果的文件
    • -
    -
      -
    1. Algorithm Configuration:在生成过程中我们使用SGD训练算法,并指定batch_size为1(每次生成1个序列),learning_rate为0
    2. -
    3. Network Architecture:本质上与训练模型一样
    4. -
    -
    -
    -

    生成模型的命令与结果

    -

    写完模型配置之后,我们可以通过以下命令来进行从法语到英语的文本翻译:

    -
    cd demo/seqToseq/translation
    -./gen.sh
    -
    -
    -

    gen.sh 的内容如下所示。与训练模型不同的是,这里有一些不同的参数需要指定:

    -
    paddle train \
    ---job=test \
    ---config='translation/gen.conf' \
    ---save_dir='data/wmt14_model' \
    ---use_gpu=true \
    ---num_passes=13 \
    ---test_pass=12 \
    ---trainer_count=1 \
    -2>&1 | tee 'translation/gen.log'
    -
    -
    -
      -
    • job:设置任务的模式为测试
    • -
    • save_dir:存储模型的路径
    • -
    • num_passes and test_pass:从test_pass到(num_passes - 1)加载模型参数,这里只加载 data/wmt14_model/pass-00012
    • -
    -

    你将会看到这样的消息:

    -
    I0706 14:48:31.178915 31441 GradientMachine.cpp:143] Loading parameters from data/wmt14_model/pass-00012
    -I0706 14:48:40.012039 31441 Tester.cpp:125]  Batch=100 samples=100 AvgCost=0
    -I0706 14:48:48.898632 31441 Tester.cpp:125]  Batch=200 samples=200 AvgCost=0
    -...
    -
    -
    -

    然后在demo/seqToseq/translation/gen_result中的生成结果如下所示:

    -
    0
    -0       -11.1314         The <unk> <unk> about the width of the seats while large controls are at stake <e>
    -1       -11.1519         The <unk> <unk> on the width of the seats while large controls are at stake <e>
    -2       -11.5988         The <unk> <unk> about the width of the seats while large controls are at stake . <e>
    -
    -1
    -0       -24.4149         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of the Dubai <unk> . <e>
    -1       -26.9524         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of Dubai &apos; s <unk> . <e>
    -2       -27.9574         The dispute is between the major aircraft manufacturers about the width of the tourist seats on the <unk> flights , paving the way for a <unk> confrontation during the month of Dubai &apos; s Dubai <unk> . <e>
    -...
    -
    -
    -
      -
    • 这是集束搜索的结果,其中beam size是3
    • -
    • 第一行的“0”和第6行的“1”表示生成数据的序列id
    • -
    • 其他六行列出了集束搜索的结果
        -
      • 第二列是集束搜索的得分(从大到小)
      • -
      • 第三列是生成的英语序列
      • -
      -
    • -
    • 有两个特殊标识:
        -
      • <e>:序列的结尾
      • -
      • <unk>:不包含在字典中的单词
      • -
      -
    • -
    -
    -
    -

    BLEU评估

    -

    对机器翻译的人工评估工作很广泛但也很昂贵。一篇论文 BLEU: a Method for Automatic Evaluation of Machine Translation 展示了一种方法,当需要快速或者频繁的评估时,使用自动的替补来替代经验丰富的人工评判。Moses 是一个统计学的机器翻译系统,我们使用其中的 multi-bleu.perl 来做BLEU评估。运行以下命令来下载这个脚本:

    -
    cd demo/seqToseq/translation
    -./moses_bleu.sh
    -
    -
    -

    由于标准的翻译结果已经下载到这里data/wmt14/gen/ntst14.trg,我们可以运行以下命令来做BLEU评估。

    -
    cd demo/seqToseq/translation
    -./eval_bleu.sh FILE BEAMSIZE
    -
    -
    -
      -
    • FILE:生成的结果文件
    • -
    • BEAMSIZE:集束搜索中的扩展广度
    • -
    -
    -
    -
    - - -
    -
    -
    - - -
    - -
    -

    - © Copyright 2016, PaddlePaddle developers. - -

    -
    - Built with Sphinx using a theme provided by Read the Docs. - -
    - -
    -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/develop/doc_cn/tutorials/index_cn.html b/develop/doc_cn/v1_api_tutorials/README.html similarity index 87% rename from develop/doc_cn/tutorials/index_cn.html rename to develop/doc_cn/v1_api_tutorials/README.html index 5cad032c70c6b029983fb254d653ddf69ddeed42..7162772d3abce57a5c74c7dbd76b20415fe7df7a 100644 --- a/develop/doc_cn/tutorials/index_cn.html +++ b/develop/doc_cn/v1_api_tutorials/README.html @@ -8,7 +8,7 @@ - 完整教程 — PaddlePaddle 文档 + <no title> — PaddlePaddle 文档 @@ -182,7 +182,7 @@
      -
    • 完整教程
    • +
    • <no title>
    @@ -191,28 +191,10 @@
    - +

    The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later. +Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future.

    +

    Please go to PaddlePaddle/book and +PaddlePaddle/models to learn PaddlePaddle.

    diff --git a/develop/doc_cn/tutorials/embedding_model/index_cn.html b/develop/doc_cn/v1_api_tutorials/embedding_model/index_cn.html similarity index 99% rename from develop/doc_cn/tutorials/embedding_model/index_cn.html rename to develop/doc_cn/v1_api_tutorials/embedding_model/index_cn.html index 2eebaab520335d98dfd1cde6270cf04343db652c..cc35054298824af9405794ef3263bd02e4282b3e 100644 --- a/develop/doc_cn/tutorials/embedding_model/index_cn.html +++ b/develop/doc_cn/v1_api_tutorials/embedding_model/index_cn.html @@ -297,7 +297,7 @@ python extract_para.py –preModel PREMODEL –preDict PREDICT –us
  • --init_model_path: 初始化模型的路径配置为data/paraphrase_modeldata/paraphrase_model
  • --load_missing_parameter_strategy:如果参数模型文件缺失,除词向量模型外的参数将使用正态分布随机初始化
  • -

    如果用户想要了解详细的数据集的格式、模型的结构和训练过程,请查看 Text generation Tutorial.

    +

    如果用户想要了解详细的数据集的格式、模型的结构和训练过程,请查看 Text generation Tutorial.

    diff --git a/develop/doc_cn/tutorials/imagenet_model/resnet_model_cn.html b/develop/doc_cn/v1_api_tutorials/imagenet_model/resnet_model_cn.html similarity index 100% rename from develop/doc_cn/tutorials/imagenet_model/resnet_model_cn.html rename to develop/doc_cn/v1_api_tutorials/imagenet_model/resnet_model_cn.html diff --git a/develop/doc_cn/tutorials/quick_start/index_cn.html b/develop/doc_cn/v1_api_tutorials/quick_start/index_cn.html similarity index 100% rename from develop/doc_cn/tutorials/quick_start/index_cn.html rename to develop/doc_cn/v1_api_tutorials/quick_start/index_cn.html