diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index dbd5a14f9f3b681f0b77b9bd507b34edfaa78766..ed94540c268e5ed990c1d92859c6a2093c052868 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -24,7 +24,6 @@ #include "paddle/framework/op_registry.h" #include "paddle/operators/dynamic_recurrent_op.h" #include "paddle/operators/net_op.h" -#include "paddle/operators/recurrent_op.h" namespace paddle { namespace framework { @@ -38,7 +37,7 @@ static inline std::unique_ptr CreateGradOp( op_desc.SetType(op.Type()); op_desc.SetAttrMap(op.Attrs()); auto& info = OpInfoMap::Instance().Get(op.Type()); - auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var); + auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, {}); std::vector> grad_ops; grad_ops.reserve(grad_descs.size()); std::transform(grad_descs.begin(), grad_descs.end(), @@ -220,19 +219,7 @@ static std::unique_ptr BackwardRecursive( }); // process recurrent gradient op as a special operator. - if (forwardOp.Type() == "recurrent") { - // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), - // or this will result in infinite loop. - const auto& rnnop = - *static_cast(&forwardOp); - auto rnn_grad_op = - static_cast(grad_op.get()); - const auto& stepnet_op = - *static_cast(&rnnop.stepnet()); - // create stepnet's gradient op - rnn_grad_op->set_stepnet( - BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id)); - } else if (forwardOp.Type() == "dynamic_recurrent") { + if (forwardOp.Type() == "dynamic_recurrent") { // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), // or this will result in infinite loop. const auto& rnnop = @@ -331,7 +318,7 @@ static void CreateGradVarInBlock( continue; } auto pname = FwdName(arg); - auto* param = block_desc->FindVar(pname); + auto* param = block_desc->FindVarRecursive(pname); auto* grad = block_desc->FindVar(arg); if (param == nullptr) { LOG(WARNING) << "Cannot find forward variable of " << arg @@ -348,7 +335,9 @@ static void CreateGradVarInBlock( std::vector> MakeOpGrad( const OpDescBind* op_desc, std::unordered_set* no_grad_vars, - std::unordered_map* grad_to_var) { + std::unordered_map* grad_to_var, + const std::vector& grad_block = + std::vector()) { std::vector> grad_op_descs; // All input gradients of forwarding operator do not need to calculate. const std::vector& inputs = op_desc->InputArgumentNames(); @@ -364,9 +353,10 @@ std::vector> MakeOpGrad( return grad_op_descs; // empty vector } - grad_op_descs = OpInfoMap::Instance() - .Get(op_desc->Type()) - .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var); + grad_op_descs = + OpInfoMap::Instance() + .Get(op_desc->Type()) + .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block); std::list> pending_fill_zeros_ops; for (auto& desc : grad_op_descs) { @@ -400,21 +390,20 @@ std::vector> MakeBlockBackward( std::vector> backward_descs; for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) { - std::vector> op_grads = - MakeOpGrad(*it, no_grad_vars, grad_to_var); + std::vector> op_grads; if ((*it)->Type() == "recurrent") { - PADDLE_ENFORCE_EQ( - op_grads.size(), static_cast(1), - "rnn_op's gradient process should contain only one op."); int step_block_idx = (*it)->GetBlockAttr("step_block"); auto backward_block_op_descs = MakeBlockBackward( program_desc, step_block_idx, no_grad_vars, grad_to_var); - BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block); + BlockDescBind* backward_block = + program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx)); for (auto& ptr : backward_block_op_descs) { backward_block->AppendAllocatedOp(std::move(ptr)); } - op_grads[0]->SetBlockAttr("step_block", *backward_block); + op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); + } else { + op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); } for (const auto& desc : op_grads) { diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 72f77a88a24434fd7d2ed685ac850c88888d6808..26adf6a20ff09483b84f479db08efcf402135053 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -88,6 +88,8 @@ class BlockDescBind { BlockDesc *Proto(); + ProgramDescBind *Program() { return this->prog_; } + private: void ClearPBOps(); void ClearPBVars(); diff --git a/paddle/framework/details/op_registry.h b/paddle/framework/details/op_registry.h index b731840ef2a4b2d5d82b019d28ad6517fa4b7607..f91e0e03410c95f84a65f02beed38b7bbfdcaa86 100644 --- a/paddle/framework/details/op_registry.h +++ b/paddle/framework/details/op_registry.h @@ -108,8 +108,9 @@ struct OpInfoFiller { info->grad_op_maker_ = []( const OpDescBind& fwd_op, const std::unordered_set& no_grad_set, - std::unordered_map* grad_to_var) { - T maker(fwd_op, no_grad_set, grad_to_var); + std::unordered_map* grad_to_var, + const std::vector& grad_block) { + T maker(fwd_op, no_grad_set, grad_to_var, grad_block); return maker(); }; } diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 9bf2311dc835c701c9311880b8adba486a7d446c..f8d32de5df222e0ba9f143c3f7a3d34d07fed6b4 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -31,7 +31,7 @@ namespace framework { const std::string kFeedOpType = "feed"; const std::string kFetchOpType = "fetch"; -Executor::Executor(const std::vector& places) { +Executor::Executor(const std::vector& places) : own_(true) { PADDLE_ENFORCE_GT(places.size(), 0); device_contexts_.resize(places.size()); for (size_t i = 0; i < places.size(); i++) { @@ -52,8 +52,10 @@ Executor::Executor(const std::vector& places) { } Executor::~Executor() { - for (auto& device_context : device_contexts_) { - delete device_context; + if (own_) { + for (auto& device_context : device_contexts_) { + delete device_context; + } } } @@ -66,14 +68,18 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) { var->GetMutable(); } else if (var_type == VarDesc::FETCH_LIST) { var->GetMutable(); + } else if (var_type == VarDesc::STEP_SCOPES) { + var->GetMutable>(); } else { PADDLE_THROW( - "Variable type must be " - "LoDTensor/SelectedRows/FEED_MINIBATCH/FETCH_LIST."); + "Variable type %d is not in " + "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST]", + var_type); } } -void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id) { +void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id, + bool create_local_scope) { // TODO(tonyyang-svail): // - only runs on the first device (i.e. no interdevice communication) // - will change to use multiple blocks for RNN op and Cond Op @@ -81,29 +87,42 @@ void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id) { auto& block = pdesc.Block(block_id); auto& device = device_contexts_[0]; - Scope& local_scope = scope->NewScope(); - - for (auto& var : block.AllVars()) { - if (var->Persistable()) { - auto* ptr = scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " global, which pointer is " << ptr; - } else { - auto* ptr = local_scope.Var(var->Name()); + Scope* local_scope = scope; + if (create_local_scope) { + local_scope = &scope->NewScope(); + for (auto& var : block.AllVars()) { + if (var->Persistable()) { + auto* ptr = scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " global, which pointer is " << ptr; + } else { + auto* ptr = local_scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " locally, which pointer is " << ptr; + } + } + } else { + for (auto& var : block.AllVars()) { + auto* ptr = local_scope->Var(var->Name()); CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " locally, which pointer is " << ptr; + VLOG(3) << "Create variable " << var->Name() << ", which pointer is " + << ptr; } } for (auto& op_desc : block.AllOps()) { auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); - op->Run(local_scope, *device); + op->Run(*local_scope, *device); + } + if (create_local_scope) { + scope->DeleteScope(local_scope); } - - scope->DeleteScope(&local_scope); } +Executor::Executor(const platform::DeviceContext& device) + : device_contexts_({&device}), own_(false) {} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/executor.h b/paddle/framework/executor.h index c78bfe8f9f07f1324515f0baaca4a94cc0fe844e..b745f4f6474ef688774f4c833a3958942e9aa8cb 100644 --- a/paddle/framework/executor.h +++ b/paddle/framework/executor.h @@ -25,6 +25,7 @@ namespace framework { class Executor { public: explicit Executor(const std::vector& places); + explicit Executor(const platform::DeviceContext& devices); ~Executor(); /* @Brief @@ -34,10 +35,11 @@ class Executor { * ProgramDesc * Scope */ - void Run(const ProgramDescBind&, Scope*, int); + void Run(const ProgramDescBind&, Scope*, int, bool create_local_scope = true); private: - std::vector device_contexts_; + std::vector device_contexts_; + bool own_; }; } // namespace framework diff --git a/paddle/framework/grad_op_desc_maker.h b/paddle/framework/grad_op_desc_maker.h index 94944c79b64d38e799df436de874cabc3661e30a..998186e33915a11f2864eb5387d19ed1bfbab51c 100644 --- a/paddle/framework/grad_op_desc_maker.h +++ b/paddle/framework/grad_op_desc_maker.h @@ -15,6 +15,7 @@ #pragma once #include #include +#include #include "paddle/framework/op_desc.h" #include "paddle/framework/operator.h" @@ -26,8 +27,13 @@ class GradOpDescMakerBase { explicit GradOpDescMakerBase( const OpDescBind& fwd_op, const std::unordered_set& no_grad_set, - std::unordered_map* grad_to_var) - : fwd_op_(fwd_op), no_grad_set_(no_grad_set), grad_to_var_(grad_to_var) {} + std::unordered_map* grad_to_var, + const std::vector& grad_block = + std::vector()) + : fwd_op_(fwd_op), + no_grad_set_(no_grad_set), + grad_to_var_(grad_to_var), + grad_block_(grad_block) {} virtual ~GradOpDescMakerBase() = default; virtual std::vector> operator()() const = 0; @@ -102,6 +108,9 @@ class GradOpDescMakerBase { const OpDescBind& fwd_op_; const std::unordered_set& no_grad_set_; std::unordered_map* grad_to_var_; + + protected: + std::vector grad_block_; }; class SingleGradOpDescMaker : public GradOpDescMakerBase { diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 0779137639e6cd9f6ecf3bbbc24d081cae3de9c0..c96166f35d1425218a4a74f50dc5ed542d677b68 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -327,6 +327,19 @@ void OpDescBind::InferShape(const BlockDescBind &block) const { PADDLE_ENFORCE(static_cast(infer_shape), "%s's infer_shape has not been registered", this->Type()); CompileTimeInferShapeContext ctx(*this, block); + if (VLOG_IS_ON(10)) { + std::ostringstream sout; + auto inames = this->InputArgumentNames(); + sout << " From ["; + std::copy(inames.begin(), inames.end(), + std::ostream_iterator(sout, ", ")); + sout << "] to ["; + auto onames = this->OutputArgumentNames(); + std::copy(onames.begin(), onames.end(), + std::ostream_iterator(sout, ", ")); + sout << "]"; + VLOG(10) << sout.str(); + } infer_shape(&ctx); } diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 3be26fdc4fb6ebdd0ec427a2248b0f97d9edff01..9295d36c2b2e66130ad273ebd3a40de739efeea7 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -126,7 +126,7 @@ OperatorBase::OperatorBase(const std::string& type, std::vector OperatorBase::InputVars() const { std::vector ret_val; - for (auto& o : outputs_) { + for (auto& o : inputs_) { ret_val.reserve(ret_val.size() + o.second.size()); ret_val.insert(ret_val.end(), o.second.begin(), o.second.end()); } @@ -394,7 +394,19 @@ class RuntimeInferShapeContext : public InferShapeContext { void OperatorWithKernel::Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const { - VLOG(3) << "Running operator " << this->Type(); + if (VLOG_IS_ON(1)) { + auto inputs = this->InputVars(); + auto outputs = this->OutputVars(true); + std::ostringstream sout; + sout << "Run operator " << this->Type() << " From ["; + std::ostream_iterator out_it(sout, ","); + std::copy(inputs.begin(), inputs.end(), out_it); + sout << "] to ["; + std::copy(outputs.begin(), outputs.end(), out_it); + sout << "]"; + VLOG(1) << sout.str(); + } + RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 14cc530448379eb6d4bf0435f607494aa01ef5b5..fb2c69105627f663ddcce07d31526c9e4278e863 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -47,8 +47,12 @@ Variable* Scope::Var(const std::string& name) { return v; } -Variable* Scope::Var() { - return Var(string::Sprintf("%p.%d", this, vars_.size())); +Variable* Scope::Var(std::string* name) { + auto var_name = string::Sprintf("%p.%d", this, vars_.size()); + if (name != nullptr) { + *name = var_name; + } + return Var(var_name); } Variable* Scope::FindVar(const std::string& name) const { diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index ac334da5ef0c8ad563b6be5413df33f5d0bdbcf8..fb660949394149ebf2c6172a0ac3f4c7594f4286 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -49,7 +49,7 @@ class Scope { Variable* Var(const std::string& name); /// Create a variable with a scope-unique name. - Variable* Var(); + Variable* Var(std::string* name = nullptr); /// Find a variable in the scope or any of its ancestors. Returns /// nullptr if cannot find. diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 9eab67561a42b3fb4e22d8475ad5eeb146a72f1c..28d0fcf94ec31c82476e093f93ccee222a0c9d9a 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -125,7 +125,7 @@ class Tensor { * @param[in] end_idx The index of the end row(exclusive) to slice. * The index number begins from 0. */ - inline Tensor Slice(const int& begin_idx, const int& end_idx) const; + inline Tensor Slice(int begin_idx, int end_idx) const; platform::Place place() const { PADDLE_ENFORCE_NOT_NULL( diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index bcccdd5881775e199297dce7e70aaf6aae62d95a..d78a2c4c21149ef3c800991b9a144ea198f1bdcf 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -228,7 +228,7 @@ inline void Tensor::CopyFromVector(const std::vector& src, #endif } -inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { +inline Tensor Tensor::Slice(int begin_idx, int end_idx) const { check_memory_size(); PADDLE_ENFORCE_GE(begin_idx, 0, "The start row index must be greater than 0."); diff --git a/paddle/framework/type_defs.h b/paddle/framework/type_defs.h index afeeb1914ac30188b93c3b9da30bb5ceaf74416e..baeb98c9bd49ec65da5931bcbe33ab788f86f3e8 100644 --- a/paddle/framework/type_defs.h +++ b/paddle/framework/type_defs.h @@ -29,6 +29,7 @@ class OpDescBind; class BlockDescBind; class BlockDesc; class InferShapeContext; +class BlockDescBind; using VariableNameMap = std::map>; @@ -46,7 +47,8 @@ using OpCreator = std::function>( const OpDescBind&, const std::unordered_set& /*no_grad_set*/, - std::unordered_map* /*grad_to_var*/)>; + std::unordered_map* /*grad_to_var*/, + const std::vector& grad_block)>; using InferVarTypeFN = std::function; diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 60dc55a32f5f05875e4f3ce77431556e14adc74a..81d92ec6f4f8c94e08d3b86b6319a9bf06f76a22 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -131,9 +131,10 @@ add_subdirectory(math) add_subdirectory(nccl) set(DEPS_OPS - recurrent_op cond_op cross_entropy_op + recurrent_op + dynamic_recurrent_op softmax_with_cross_entropy_op sum_op pool_op @@ -142,9 +143,6 @@ set(DEPS_OPS sequence_conv_op lstm_op) - -op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc - DEPS framework_proto tensor net_op) op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) op_library(cross_entropy_op DEPS cross_entropy) op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) @@ -156,7 +154,9 @@ op_library(nccl_op DEPS nccl_common) endif() op_library(sequence_conv_op DEPS context_project) op_library(lstm_op DEPS sequence2batch lstm_compute) - +op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc + DEPS net_op tensor_array) +op_library(recurrent_op SRCS recurrent_op.cc DEPS executor) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) op_library(${src}) @@ -168,8 +168,9 @@ cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) -cc_test(dynamic_recurrent_op_test SRCS dynamic_recurrent_op_test.cc DEPS dynamic_recurrent_op recurrent_op tensor_array) - +cc_test(dynamic_recurrent_op_test SRCS dynamic_recurrent_op_test.cc + rnn/recurrent_op_utils.cc + DEPS dynamic_recurrent_op) if(WITH_GPU) nv_test(nccl_op_test SRCS nccl_op_test.cu DEPS nccl_op gpu_info device_context) endif() diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 245d3b47d3a6331a3cf20dbdbd972639d68cd496..90acf034d905e6ab3ba7bf8c3d29e1ef1161ed0c 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -29,9 +29,14 @@ class MulOpShapeInference : public framework::InferShapeBase { auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); + int x_num_col_dims = ctx->Attrs().Get("x_num_col_dims"); int y_num_col_dims = ctx->Attrs().Get("y_num_col_dims"); + VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims + << " x_num_col_dims=" << x_num_col_dims + << " y_num_col_dims=" << y_num_col_dims; + PADDLE_ENFORCE_GT( x_dims.size(), x_num_col_dims, "The input tensor X's rank of MulOp should be larger than " diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 40303e3adf4db7e8336ed72667fe69afa56c3f69..9eb2d79b4f65d23222e68ad2a439f7554469278b 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -12,181 +12,618 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/recurrent_op.h" - -#include -#include - +#include +#include "paddle/framework/executor.h" #include "paddle/framework/op_registry.h" -#include "paddle/operators/net_op.h" namespace paddle { namespace operators { +constexpr char kInputs[] = "inputs"; +constexpr char kInitialStates[] = "initial_states"; +constexpr char kParameters[] = "parameters"; +constexpr char kOutputs[] = "outputs"; +constexpr char kStepScopes[] = "step_scopes"; +constexpr char kExStates[] = "ex_states"; +constexpr char kStates[] = "states"; +constexpr char kStepBlock[] = "step_block"; +constexpr char kReverse[] = "reverse"; +constexpr char kIsTrain[] = "is_train"; +#define GRAD_SUFFIX "@GRAD" +constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX; +constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX; +constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX; +constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX; -using Scope = framework::Scope; -using Variable = framework::Variable; -using Tensor = framework::Tensor; -using LoDTensor = framework::LoDTensor; - -void RecurrentAlgorithm::Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const { - auto* input0 = scope.FindVar(arg_->inlinks[0]); - PADDLE_ENFORCE_NOT_NULL(input0); - size_t seq_len = input0->GetMutable()->dims()[0]; - PADDLE_ENFORCE_GT(seq_len, 0); - - CreateScopes(scope, seq_len); - auto& step_scopes = GetStepScopes(scope); - rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len); - InitMemories(step_scopes[0]); - - for (size_t step_id = 0; step_id < seq_len; step_id++) { - if (step_id > 0) { - rnn::LinkMemories(step_scopes, arg_->states, step_id, -1); +using StepScopeVar = std::vector; + +// StepScopes manages scopes inside RNN. +// StepScopes::CurScope() get the current scope +// StepScopes::ExScope() get the ex-scope, or scope in previous time step. +// StepScopes::Next() move to next time step. +// +// if is_train = False, then +// there are two scopes for the RNN and just support forward. +// else +// the len(scopes) == seq_len +// +// if is_backward = True, then +// reversely access scopes +// else +// access scopes from begin to end. +class StepScopes { + public: + StepScopes(const framework::Scope &parent, StepScopeVar *scopes, + bool is_train, size_t seq_len, bool is_backward = false) + : counter_(is_backward ? seq_len - 1 : 0UL), + scopes_(scopes), + is_train_(is_train), + is_backward_(is_backward) { + size_t num_step_scopes = is_train ? seq_len : 2; + PADDLE_ENFORCE(is_train || !is_backward, + "Cannot backward when is not training"); + if (!is_backward_) { + PADDLE_ENFORCE(scopes->empty()); + scopes->reserve(static_cast(num_step_scopes)); + for (size_t i = 0; i < num_step_scopes; ++i) { + scopes->emplace_back(&parent.NewScope()); + } } - (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); - } - rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len, dev_ctx); -} - -void RecurrentAlgorithm::CreateScopes(const Scope& scope, - size_t seq_len) const { - // TODO(superjom) Only two scopes are needed for inference, this case will be - // supported later. - auto* step_scopes_var = scope.FindVar(arg_->step_scopes); - PADDLE_ENFORCE(step_scopes_var != nullptr, ""); - auto* step_scopes = step_scopes_var->GetMutable>(); - - // Now all variables in scope must be created outside of op. - PADDLE_ENFORCE_NOT_NULL(stepnet_); - PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), - "step_unit_ op has no outputs"); - - if (seq_len > step_scopes->size()) { - for (size_t i = step_scopes->size(); i < seq_len; ++i) { - auto& step_scope = scope.NewScope(); - - // create step net's temp inputs - for (auto& input : (*stepnet_)->Inputs()) { - // the weight are located in parent scope - for (auto& var_name : input.second) { - if (!step_scope.FindVar(var_name)) { - step_scope.Var(var_name)->GetMutable(); - } + } + + framework::Scope &CurScope() { return GetScope(counter_); } + + framework::Scope &ExScope() { + auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1); + return scope; + } + + void Next() { + if (is_backward_) { + --counter_; + } else { + ++counter_; + } + } + + private: + framework::Scope &GetScope(size_t scope_id) const { + if (!is_train_) { + scope_id %= 2; + } + PADDLE_ENFORCE_LT(scope_id, scopes_->size()); + return *(*scopes_)[scope_id]; + } + + size_t counter_; + StepScopeVar *scopes_; + bool is_train_; + bool is_backward_; +}; + +// Base class for RecurrentOp/RecurrentGradOp +// Some common protected functions for RecurrentOp/RecurrentGradOp +class RecurrentBase : public framework::OperatorBase { + public: + RecurrentBase(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + protected: + // Get SequenceLength from Scope + // The sequence length is got from input tensor. The input tensor's + // dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape + // is SEQ_LEN. The second of the tensor's shape could be the batch size or + // nested sequence length. + int64_t GetSequenceLength(const framework::Scope &scope) const { + // Dim format SEQ_LEN, BATCH_SIZE, ... + int64_t seq_len = -1; + auto &all_inputs = Inputs(kInputs); + PADDLE_ENFORCE(!all_inputs.empty()); + for (auto &iname : all_inputs) { + auto *var = scope.FindVar(iname); + PADDLE_ENFORCE(var != nullptr); + PADDLE_ENFORCE(var->IsType()); + auto &dim = var->Get().dims(); + if (seq_len == -1) { + seq_len = dim[0]; + } else { + PADDLE_ENFORCE_EQ(seq_len, dim[0]); + } + } + return seq_len; + } + + // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), + // map(dst_scope.Var, dst_vars)): + // dst_tensor.ShareDataWith(src_tensor) + static void LinkTensor(const framework::Scope &src_scope, + const std::vector &src_vars, + framework::Scope *dst_scope, + const std::vector &dst_vars) { + LinkTensorWithCallback( + src_scope, src_vars, dst_scope, dst_vars, + [&](const framework::Tensor &src, framework::Tensor *dst) { + dst->ShareDataWith(src); + }); + } + + // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), + // map(dst_scope.Var, dst_vars)): + // callback(src_tensor, &dst_tensor) + template + static void LinkTensorWithCallback(const framework::Scope &src_scope, + const std::vector &src_vars, + framework::Scope *dst_scope, + const std::vector &dst_vars, + Callback callback) { + PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size()); + for (size_t i = 0; i < dst_vars.size(); ++i) { + VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i]; + AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback); + } + } + + // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars), + // map(dst_scope.FindVar, dst_vars)): + // callback(src_tensor, &dst_tensor) + template + static void LinkTensorWithCallback(const framework::Scope &src_scope, + const std::vector &src_vars, + const framework::Scope &dst_scope, + const std::vector &dst_vars, + Callback callback) { + PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size()); + for (size_t i = 0; i < dst_vars.size(); ++i) { + VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i]; + AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback); + } + } + + // (seq_len, shape) -> return [seq_len] + list(shape) + static framework::DDim PrependDims(size_t seq_len, + const framework::DDim &src) { + auto dims = framework::vectorize(src); + dims.insert(dims.begin(), static_cast(seq_len)); + return framework::make_ddim(dims); + } + + private: + template + static void AccessTensor(const framework::Scope &src_scope, + const std::string &src_var_name, + framework::Scope *dst_scope, + const std::string &dst_var_name, Callback callback) { + auto *src_var = src_scope.FindVar(src_var_name); + PADDLE_ENFORCE(src_var != nullptr); + auto &src_tensor = src_var->Get(); + + auto *dst_var = dst_scope->Var(dst_var_name); + auto *dst_tensor = dst_var->GetMutable(); + callback(src_tensor, dst_tensor); + } + + template + static void AccessTensor(const framework::Scope &src_scope, + const std::string &src_var_name, + const framework::Scope &dst_scope, + const std::string &dst_var_name, Callback callback) { + auto *src_var = src_scope.FindVar(src_var_name); + PADDLE_ENFORCE(src_var != nullptr); + auto &src_tensor = src_var->Get(); + auto *dst_var = dst_scope.FindVar(dst_var_name); + PADDLE_ENFORCE(dst_var != nullptr); + auto *dst_tensor = dst_var->GetMutable(); + callback(src_tensor, dst_tensor); + } +}; + +class RecurrentOp : public RecurrentBase { + public: + RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : RecurrentBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::DeviceContext &dev_ctx) const override { + auto seq_len = static_cast(this->GetSequenceLength(scope)); + VLOG(3) << "Static RNN input sequence length = " << seq_len; + StepScopes scopes = CreateStepScopes(scope, seq_len); + auto reverse = Attr(kReverse); + + framework::Executor executor(dev_ctx); + auto *block = Attr(kStepBlock); + auto *program = block->Program(); + + for (size_t i = 0; i < seq_len; ++i) { + size_t seq_offset = reverse ? seq_len - i - 1 : i; + VLOG(3) << "Recurrent operate at the time step " << seq_offset; + + auto &cur_scope = scopes.CurScope(); + + // Link outside::input --> inside::input + // inside::input = outside::input[seq_offset: seq_offset+1] + LinkTensorWithCallback( + scope, Inputs(kInputs), &cur_scope, Inputs(kInputs), + [&seq_offset](const framework::Tensor &outside, + framework::Tensor *inside) { + inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1)); + auto dims = framework::vectorize(inside->dims()); + dims.erase(dims.begin()); + inside->Resize(framework::make_ddim(dims)); + }); + + if (i == 0) { + // Link initial states --> ex_states + LinkTensor(scope, Inputs(kInitialStates), &cur_scope, + Attr>(kExStates)); + } else { + auto &ex_scope = scopes.ExScope(); + // Link ex_scope::state --> cur_scope::ex_state + LinkTensor(ex_scope, Attr>(kStates), + &cur_scope, Attr>(kExStates)); + } + + // Every inputs are linked now, execute! + executor.Run(*program, &cur_scope, block->ID(), + false /*create_local_scope*/); + + // Copy inside::output -> outside::output + // outside::output[seq_offset: seq_offset + 1] = inside::output + this->LinkTensorWithCallback( + cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs), + [&](const framework::LoDTensor &src_tensor, + framework::LoDTensor *dst_tensor) { + if (i == 0) { // create output tensor at begin + dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims())); + dst_tensor->mutable_data(dev_ctx.GetPlace(), src_tensor.type()); + } + + auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1); + // Explicit copy output since the local RNN scope can be destroyed + // early. + dst_out.CopyFrom(src_tensor, dev_ctx.GetPlace(), dev_ctx); + }); + + scopes.Next(); + } + } + + private: + StepScopes CreateStepScopes(const framework::Scope &scope, + size_t seq_len) const { + auto *var = scope.FindVar(Output(kStepScopes)); + PADDLE_ENFORCE(var != nullptr); + return StepScopes(scope, var->GetMutable(), + Attr(kIsTrain), seq_len); + } +}; + +class RecurrentGradOp : public RecurrentBase { + public: + RecurrentGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : RecurrentBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::DeviceContext &dev_ctx) const override { + auto seq_len = static_cast(GetSequenceLength(scope)); + StepScopes scopes = CreateStepScopes(scope, seq_len); + auto reverse = Attr(kReverse); + + framework::Executor executor(dev_ctx); + auto *block = Attr(kStepBlock); + auto *program = block->Program(); + + for (size_t step_id = 0; step_id < seq_len; ++step_id) { + size_t seq_offset = reverse ? step_id : seq_len - step_id - 1; + VLOG(3) << "Recurrent backward operate at the time step " << seq_offset; + auto &cur_scope = scopes.CurScope(); + // Link outside::output_grads --> inside::output_grads + // inside::output_grad = outside::output_grad[seq_offset:seq_offset+1] + LinkTensorWithCallback( + scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads), + [&](const framework::Tensor &outside, framework::Tensor *inside) { + inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1)); + auto dims = framework::vectorize(inside->dims()); + dims.erase(dims.begin()); + inside->Resize(framework::make_ddim(dims)); + }); + auto og_set = List2Set(Inputs(kOutputGrads)); + + if (VLOG_IS_ON(10)) { + std::ostringstream sout; + std::copy(og_set.begin(), og_set.end(), + std::ostream_iterator(sout, ",")); + VLOG(10) << " RNN output gradients = [" << sout.str() << "]"; + } + + // Link states + // if cur_scope::cur_state_grad in out_grads: + // cur_scope::cur_state_grad += ex_scope::ex_state_grad + // else: + // ex_scope::ex_state_grad --> cur_scope::cur_state_grad + if (step_id != 0) { // not at beginning + auto &ex_scope = scopes.ExScope(); + auto ex_state_grads = + GradVarLists(Attr>(kExStates)); + auto cur_state_grads = + GradVarLists(Attr>(kStates)); + + PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size()); + for (size_t i = 0; i < ex_state_grads.size(); ++i) { + auto &cur_grad = cur_state_grads[i]; + auto &ex_grad = ex_state_grads[i]; + auto &ex_tensor = + ex_scope.FindVar(ex_grad)->Get(); + + VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad; + auto *cur_grad_var = cur_scope.Var(cur_grad); + auto cur_grad_tensor = + cur_grad_var->GetMutable(); + cur_grad_tensor->CopyFrom(ex_tensor, dev_ctx.GetPlace(), dev_ctx); } } - // create stepnet's outputs - for (const auto& output : (*stepnet_)->Outputs()) { - for (auto& var_name : output.second) { - step_scope.Var(var_name); + + VLOG(5) << "Recurrent memory linking finished "; + // Run step block with cur_scope + executor.Run(*program, &cur_scope, block->ID(), + false /*create_local_scope*/); + + VLOG(5) << "executor.Run finished "; + + auto local_var_names = LocalVarNames(cur_scope); + + // Accumulate params + // if (step == 0): + // outside::param_grad = 0.0 + // outside::param_grad += inside::param_grad + { + auto &pg_names = Outputs(kParamGrads); + auto &p_names = Inputs(kParameters); + PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size()); + + for (size_t prog_id = 0; prog_id < pg_names.size(); ++prog_id) { + auto inside_grad_name = framework::GradVarName(p_names[prog_id]); + + // If does not compute gradient of that variable inside rnn, just + // continue + if (local_var_names.find(inside_grad_name) == local_var_names.end()) { + continue; + } + + // zero gradient variable in step 0 + if (step_id == 0) { + auto &inside_tensor = cur_scope.FindVar(inside_grad_name) + ->Get(); + framework::AttributeMap attrs; + attrs["data_type"] = framework::ToDataType(inside_tensor.type()); + attrs["shape"] = framework::vectorize2int(inside_tensor.dims()); + attrs["value"] = 0.0f; + + auto zero_op = framework::OpRegistry::CreateOp( + "fill_constant", {}, {{"Out", {pg_names[prog_id]}}}, attrs); + zero_op->Run(scope, dev_ctx); + } + + // sum gradient + auto *outside_var = scope.FindVar(pg_names[prog_id]); + PADDLE_ENFORCE(outside_var != nullptr); + auto &outside_tensor = + *outside_var->GetMutable(); + + std::string result_var_name; + auto *local_result_var = cur_scope.Var(&result_var_name); + auto &local_result_tensor = + *local_result_var->GetMutable(); + + local_result_tensor.ShareDataWith(outside_tensor); + + auto sum_op = framework::OpRegistry::CreateOp( + "sum", {{"X", {result_var_name, inside_grad_name}}}, + {{"Out", {result_var_name}}}, {}); + sum_op->Run(cur_scope, dev_ctx); } } - step_scopes->emplace_back(&step_scope); + VLOG(5) << "Accumulate Parameter finished "; + + // Copy input gradient from inside to outside + // outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad + LinkTensorWithCallback( + cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads), + [&](const framework::LoDTensor &inside, + framework::LoDTensor *outside) { + if (inside.memory_size() == 0) { // IG is not created. + return; + } + if (step_id == 0) { // alloc memory + outside->Resize(PrependDims(seq_len, inside.dims())); + outside->mutable_data(dev_ctx.GetPlace(), inside.type()); + } + + auto dst = outside->Slice(seq_offset, seq_offset + 1); + dst.CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx); + }); + VLOG(5) << "Link outside gradient finished "; + + if (step_id + 1 == seq_len) { // at_end + // copy initialize states gradient from inside to outside + LinkTensorWithCallback( + cur_scope, GradVarLists(Attr>(kExStates)), + scope, Outputs(kInitStateGrads), + [&](const framework::LoDTensor &inside, + framework::LoDTensor *outside) { + outside->Resize(inside.dims()); + outside->mutable_data(dev_ctx.GetPlace(), inside.type()); + outside->CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx); + }); + VLOG(5) << "Link initialize state gradient finished "; + } + scopes.Next(); } } -} - -void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { - for (auto& attr : arg_->states) { - auto* pre_mem = step_scope->Var(attr.pre_var)->GetMutable(); - PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, - "memory [%s]'s boot variable [%s] not exists", attr.var, - attr.boot_var); - auto* boot_mem = - step_scope->FindVar(attr.boot_var)->GetMutable(); - pre_mem->Resize(boot_mem->dims()); - PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2); - pre_mem->ShareDataWith(*boot_mem); - } -} - -const rnn::ArgumentName RecurrentOp::kArgName{ - "step_net", "step_scopes", "inputs", "outputs", - "states", "ex_states", "initial_states"}; - -const rnn::ArgumentName RecurrentGradientOp::kArgName{ - "step_net", "step_scopes@GRAD", "outputs@GRAD", "inputs@GRAD", - "states", "ex_states", "initial_states@GRAD"}; - -RecurrentOp::RecurrentOp(const std::string& type, - const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) { - rnn::InitArgument(kArgName, &arg_, *this); - alg_.Init(&arg_, &stepnet_); -} - -class RecurrentAlgorithmProtoAndCheckerMaker - : public framework::OpProtoAndCheckerMaker { + + private: + StepScopes CreateStepScopes(const framework::Scope &scope, + size_t seq_len) const { + auto *var = scope.FindVar(Input(kStepScopes)); + PADDLE_ENFORCE(var != nullptr); + return StepScopes(scope, var->GetMutable(), + Attr(kIsTrain), seq_len, true /*is_backward*/); + } + + std::unordered_set List2Set( + const std::vector &list) const { + std::unordered_set local_var_name_set; + local_var_name_set.reserve(list.size()); + for (auto &each : list) { + local_var_name_set.insert(each); + } + return local_var_name_set; + } + + std::unordered_set LocalVarNames( + const framework::Scope &scope) const { + return this->List2Set(scope.GetAllNames(false)); + } + static std::vector GradVarLists( + const std::vector &var_names) { + std::vector retv; + retv.reserve(var_names.size()); + std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv), + framework::GradVarName); + return retv; + } +}; + +class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + RecurrentOpProtoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - const auto& name = RecurrentOp::kArgName; - // inputs and outputs stored in proto - AddInput(name.inlinks, - "the inputs that need to be segmented for each step.") + AddInput(kInputs, "rnn inputs").AsDuplicable(); + AddInput(kInitialStates, "rnn initial states").AsDuplicable(); + AddInput(kParameters, + "Parameters are used by step block as its input. However, the " + "inputs is not a sequence tensor. Every time step, each operator " + "in step block just use the parameter directly") .AsDuplicable(); - AddInput(name.initial_states, "variables to initialize states.") + AddOutput(kOutputs, + "The output sequence of RNN. The sequence length must be same") .AsDuplicable(); + AddOutput(kStepScopes, + "StepScopes contains all local variables in each time step."); + AddAttr>(kExStates, + string::Sprintf( + R"DOC(The ex-state variable names. +The ex-state means the state value in the ex-timestep or the previous time step +[%s, %s, %s] must be the same order)DOC", + kExStates, kStates, kInitStateGrads)); + AddAttr>( + kStates, + string::Sprintf( + "The state variable names. [%s, %s, %s] must be the same order", + kExStates, kStates, kInitStateGrads)); + AddAttr(kStepBlock, + "The step block inside RNN"); + AddAttr(kReverse, R"DOC(Calculate RNN reversely or not. +By default reverse=False - AddOutput(name.outlinks, "the outputs that need to concated for all steps.") - .AsDuplicable(); - AddOutput(name.step_scopes, "step scopes"); +Assume the input data is [A, B, C, D] + +if reverse is False: + the computation of RNN is like + A B C D + | | | | + v v v v + rnn -----> rnn -----> rnn ----> rnn + | | | | + v v v v + o o o o + +if reverse is True + the computation of RNN is like + A B C D + | | | | + v v v v + rnn <----- rnn <----- rnn <---- rnn + | | | | + v v v v + o o o o +)DOC").SetDefault(false); + AddAttr(kIsTrain, "").SetDefault(true); + AddComment(R"DOC(Static Length Recurrent Operator + +The static length recurrent operator can only operate on fix sized sequence +data, i.e. in each mini-batch, the sequence length of all inputs are same. +)DOC"); + } +}; + +class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - // Attributes stored in AttributeMap - AddAttr>(name.ex_states, "names of pre-states"); - AddAttr>(name.states, "names of states"); + protected: + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDescBind(); + grad->SetType("recurrent_grad"); + for (auto &input_param : this->InputNames()) { + grad->SetInput(input_param, this->Input(input_param)); + grad->SetOutput(framework::GradVarName(input_param), + this->InputGrad(input_param)); + } + + for (auto &output_param : this->OutputNames()) { + if (output_param == kStepScopes) { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->Output(output_param)); + } else { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->OutputGrad(output_param)); + } + } + grad->SetAttrMap(this->Attrs()); + grad->SetBlockAttr(kStepBlock, *grad_block_[0]); - AddComment("This is a recurrent group operator."); + return std::unique_ptr(grad); } }; -void RecurrentGradientAlgorithm::Run( - const Scope& scope, const platform::DeviceContext& dev_ctx) const { - auto* input0 = scope.FindVar(arg_->inlinks[0]); - PADDLE_ENFORCE_NOT_NULL(input0); - size_t seq_len = input0->GetMutable()->dims()[0]; - auto& step_scopes = GetStepScopes(scope); - rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len); - for (int step_id = seq_len - 1; step_id >= 0; --step_id) { - if (static_cast(step_id) != seq_len - 1) { - rnn::LinkMemories(step_scopes, arg_->states, step_id, 1); +class RecurrentGradOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override { + std::vector input{kInputs, kInitialStates}; + std::vector output{kOutputs}; + for (auto &s : input) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s))); + } + for (auto &s : output) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + } + for (auto &s : input) { + ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s)); } - (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); - } - rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len, dev_ctx); - LinkBootMemoryGradients(step_scopes[0]); -} - -void RecurrentGradientAlgorithm::LinkBootMemoryGradients( - Scope* step_scope) const { - for (auto& attr : arg_->states) { - PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr, - "memory variable [%s] does not exists", attr.var); - PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, - "boot variable [%s] does not exists", attr.boot_var); - auto* mem_grad = step_scope->Var(attr.var)->GetMutable(); - auto* boot_mem_grad = - step_scope->Var(attr.boot_var)->GetMutable(); - boot_mem_grad->Resize(mem_grad->dims()); - boot_mem_grad->ShareDataWith(*mem_grad); - } -} - -RecurrentGradientOp::RecurrentGradientOp( - const std::string& type, const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) { - rnn::InitArgument(kArgName, &arg_, *this, true /*is grad*/); - alg_.Init(&arg_, &stepnet_); -} + if (ctx->HasInputs(kParameters)) { + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); + ctx->SetOutputsDim(framework::GradVarName(kParameters), + ctx->GetInputsDim(kParameters)); + } + } +}; } // namespace operators } // namespace paddle -REGISTER_OP(recurrent, paddle::operators::RecurrentOp, - paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker, - recurrent_grad, paddle::operators::RecurrentGradientOp); +REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp, + paddle::operators::RecurrentOpProtoMaker, + paddle::operators::RecurrentGradOpDescMaker); +REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp, + paddle::operators::RecurrentGradOpShapeInference); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h deleted file mode 100644 index 253d7e3284360ceaddce9ef5f8f9a3ea4793d740..0000000000000000000000000000000000000000 --- a/paddle/operators/recurrent_op.h +++ /dev/null @@ -1,170 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#pragma once - -#include "paddle/framework/operator.h" -#include "paddle/operators/net_op.h" -#include "paddle/operators/rnn/recurrent_op_utils.h" - -namespace paddle { -namespace operators { - -// The sequence format in RecurrentOp is Tensor now. -// TODO(Superjom) -// 1. No-padding computing for sequences with indifinite length in one batch. -// 2. Hierarchical RNN for sequence with sub-sequence. -// 3. Internal Memory. -// 4. More Complex RNN architecture, such as Gated Feedback RNN. -// Refer to: https://arxiv.org/pdf/1502.02367.pdf - -class RecurrentAlgorithm { - public: - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const; - - void Init(rnn::Argument* arg, - std::unique_ptr* stepnet) { - PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before."); - arg_ = arg; - stepnet_ = stepnet; - } - - protected: - /* - * The step scopes will be stored in the father scope as a variable. - * - * NOTE the scopes are reused in both the forward and backward, so just - * create once and expand its size if more steps need. - */ - void CreateScopes(const framework::Scope& scope, size_t seq_len) const; - - const std::vector& GetStepScopes( - const framework::Scope& scope) const { - return *scope.FindVar(arg_->step_scopes) - ->GetMutable>(); - } - - void InitMemories(framework::Scope* step_scopes) const; - - private: - std::unique_ptr* stepnet_; - rnn::Argument* arg_; -}; - -class RecurrentGradientAlgorithm { - /** - * RNN's backward alogorithm. - * - * To accelerate the development of RecurrentGradientOp, we decouple RNN's - * algorithm and `OperatorBase`'s implementation, the former contains the core - * implementation of a RNN, and will keep stable even if the framework changes - * a - * lot, and the latter is a wrapper acts like an dapter for it to make RNN an - * operator. - */ - public: - void Init(rnn::Argument* arg, - std::unique_ptr* stepnet) { - PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before."); - arg_ = std::move(arg); - stepnet_ = stepnet; - } - - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const; - - void LinkBootMemoryGradients(framework::Scope* step_scopes) const; - - protected: - inline const std::vector& GetStepScopes( - const framework::Scope& scope) const { - return *scope.FindVar(arg_->step_scopes) - ->GetMutable>(); - } - - private: - rnn::Argument* arg_; - std::unique_ptr* stepnet_; -}; - -class RecurrentOp : public framework::OperatorBase { - public: - RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs); - - RecurrentOp(const RecurrentOp& o) - : framework::OperatorBase( - static_cast(o)) { - // TODO(yuyang18): Implement copy ctor well. - PADDLE_THROW("Not implemented"); - } - - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { - alg_.Run(scope, dev_ctx); - } - - void set_stepnet(std::unique_ptr net) { - stepnet_ = std::move(net); - } - - const OperatorBase& stepnet() const { return *stepnet_; } - - static const rnn::ArgumentName kArgName; - - private: - RecurrentAlgorithm alg_; - rnn::Argument arg_; - std::unique_ptr stepnet_; -}; - -class RecurrentGradientOp : public framework::OperatorBase { - public: - RecurrentGradientOp(const std::string& type, - const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs); - - RecurrentGradientOp(const RecurrentGradientOp& o) - : framework::OperatorBase( - static_cast(o)) { - // TODO(yuyang18): Implement Copy ctor. - PADDLE_THROW("Not Implemented"); - } - - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { - alg_.Run(scope, dev_ctx); - } - - static const rnn::ArgumentName kArgName; - - /* - * set a stepnet that is created according to a RecurrentOp's stepnet. - */ - void set_stepnet(std::unique_ptr net) { - stepnet_ = std::move(net); - } - const OperatorBase& stepnet() const { return *stepnet_; } - - private: - RecurrentGradientAlgorithm alg_; - std::unique_ptr stepnet_; - rnn::Argument arg_; -}; - -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/rnn_memory_helper_op.cc b/paddle/operators/rnn_memory_helper_op.cc index f383faf5dd37304ac9cf2dde778fd149692a75e2..b621c7f1ba3f9e9613dea5bc98ef74c7c6dae9a0 100644 --- a/paddle/operators/rnn_memory_helper_op.cc +++ b/paddle/operators/rnn_memory_helper_op.cc @@ -133,11 +133,10 @@ class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { auto x_grad_name = framework::GradVarName("X"); - auto out_grad_name = framework::GradVarName("Out"); - PADDLE_ENFORCE(ctx->HasInput(out_grad_name), ""); PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), ""); - ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name)); - ctx->ShareLoD(out_grad_name, /*->*/ x_grad_name); + PADDLE_ENFORCE(ctx->HasInput("X"), ""); + ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ x_grad_name); } }; diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index f2f2c67bc395ea245798b537144dd88a816f4a85..ad441a598040aca71a72c9c03d477934d14e9a8b 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -29,22 +29,27 @@ template class SumKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto& in_vars = context.MultiInputVar("X"); + auto in_vars = context.MultiInputVar("X"); int N = in_vars.size(); auto out_var = context.OutputVar("Out"); + bool in_place = out_var == in_vars[0]; + if (out_var->IsType()) { auto* out = context.Output("Out"); out->mutable_data(context.GetPlace()); auto result = EigenVector::Flatten(*out); - math::SetConstant constant_functor; - constant_functor(context.device_context(), out, 0.0); + if (!in_place) { + math::SetConstant constant_functor; + constant_functor(context.device_context(), out, 0.0); + } math::SelectedRowsAddToTensor functor; auto place = context.GetEigenDevice(); - for (int i = 0; i < N; i++) { + // If in_place, just skip the first tensor + for (int i = in_place ? 1 : 0; i < N; i++) { if (in_vars[i]->IsType()) { auto& in_t = in_vars[i]->Get(); auto in = EigenVector::Flatten(in_t); @@ -57,6 +62,7 @@ class SumKernel : public framework::OpKernel { } } } else if (out_var->IsType()) { + PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now"); auto* out = context.Output("Out"); auto* out_value = out->mutable_value(); diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index 881df6ad3244e597f1c0f0121ccec08d50dd851e..aab08a759b094382c62feec57c6a907490331fea 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -28,7 +28,6 @@ limitations under the License. */ #include "paddle/operators/cond_op.h" #include "paddle/operators/dynamic_recurrent_op.h" #include "paddle/operators/net_op.h" -#include "paddle/operators/recurrent_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" #include "paddle/pybind/exception.h" @@ -428,25 +427,6 @@ All parameter, weight, gradient are variables in Paddle. return self.UnstackShared(source); }); - // recurrent_op - py::class_(m, "RecurrentOp") - .def_static( - "create", - [](py::bytes protobin) -> operators::RecurrentOp * { - OpDesc desc; - PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), - "Cannot parse user input to OpDesc"); - PADDLE_ENFORCE(desc.IsInitialized(), - "User OpDesc is not initialized, reason %s", - desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); - return static_cast(rnn_op.release()); - }) - .def("set_stepnet", [](operators::RecurrentOp &self, - const operators::NetOp &net) -> void { - self.set_stepnet(net.Clone()); - }); - py::class_(m, "DynamicRecurrentOp") .def_static("create", diff --git a/python/paddle/v2/framework/executor.py b/python/paddle/v2/framework/executor.py index d7d33903ff4f2244eb5365bf7f848c4390c8101b..8268d0d8f5126b00365d4e5e76cd98de4c47e670 100644 --- a/python/paddle/v2/framework/executor.py +++ b/python/paddle/v2/framework/executor.py @@ -62,7 +62,7 @@ class Executor(object): outputs={'Out': [fetch_var]}, attrs={'col': i}) - self.executor.run(program.desc, scope, 0) + self.executor.run(program.desc, scope, 0, True) return [ core.get_fetch_variable(scope, fetch_var_name, i) for i in xrange(len(fetch_list)) diff --git a/python/paddle/v2/framework/framework.py b/python/paddle/v2/framework/framework.py index b50b215333e82ec80498387352370723bd1a0a03..a890bbf598569ecb7d8f9f6b02ca4ab9895d149e 100644 --- a/python/paddle/v2/framework/framework.py +++ b/python/paddle/v2/framework/framework.py @@ -270,7 +270,8 @@ class Operator(object): self.desc.check_attrs() no_kernel_op_set = { - 'feed', 'fetch', 'save', 'load', 'rnn_memory_helper_grad' + 'feed', 'fetch', 'save', 'load', 'recurrent', + 'rnn_memory_helper_grad' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index 6126af5cf6d25b61c8e59b93f2a7e27a9ca236ee..37c36dd7283578c016e34040ac8cd84f0164b95f 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -1,6 +1,7 @@ from paddle.v2.framework.layer_helper import LayerHelper, unique_name import paddle.v2.framework.core as core -from paddle.v2.framework.framework import OpProtoHolder, Variable, Program +from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \ + Operator from paddle.v2.framework.initializer import ConstantInitializer import re @@ -32,7 +33,6 @@ def fc(input, param_shape = [ reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) ] + [size] - w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype) tmp = helper.create_tmp_variable(dtype) @@ -88,8 +88,17 @@ def data(name, program=None, init_program=None): helper = LayerHelper('data', **locals()) + shape = list(shape) + for i in xrange(len(shape)): + if shape[i] is None: + shape[i] = -1 + append_batch_size = False + elif shape[i] < 0: + append_batch_size = False + if append_batch_size: shape = [-1] + shape # append batch size as -1 + return helper.create_global_variable( name=name, shape=shape, dtype=data_type, type=type) @@ -165,6 +174,9 @@ _create_op_func_('mul') _create_op_func_('elementwise_add') _create_op_func_('dropout') _create_op_func_('reshape') +_create_op_func_('elementwise_add') +_create_op_func_('sigmoid') +_create_op_func_('scale') def cast(x, data_type, program=None): @@ -193,7 +205,7 @@ def concat(input, axis, program=None, init_program=None): def sums(input, program=None, init_program=None): helper = LayerHelper('sum', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op(type='sum', inputs={'X': [input]}, outputs={'Out': out}) + helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out}) return out @@ -346,7 +358,7 @@ def conv2d(input, 'paddings': padding, 'groups': groups}) - pre_act = helper.append_bias_op(pre_bias) + pre_act = helper.append_bias_op(pre_bias, 1) return helper.append_activation(pre_act) @@ -518,6 +530,8 @@ class StaticRNNGuard(BlockGuard): return super(StaticRNNGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): + if exc_type is not None: + return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn.complete_rnn_op() return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) @@ -577,7 +591,7 @@ class StaticRNN(object): outputs={'Out': [boot_var]}, attrs={ 'value': init_value, - 'shape': boot_var.shape, + 'shape': [40] + list(boot_var.shape[1:]), 'data_type': boot_var.data_type }) @@ -596,14 +610,14 @@ class StaticRNN(object): if not isinstance(x, Variable): raise TypeError("step input takes a Variable") if self.seq_len is None: - self.seq_len = x.shape[1] - elif self.seq_len != x.shape[1]: + self.seq_len = x.shape[0] + elif self.seq_len != x.shape[0]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.data_type, - shape=[-1] + list(x.shape[2:]), + shape=list(x.shape[1:]), type=x.type) self.inputs.append(ipt) return ipt @@ -613,10 +627,17 @@ class StaticRNN(object): if not isinstance(o, Variable): raise TypeError("step output takes a Variable") + tmp_o = self.helper.create_tmp_variable(dtype=o.data_type) + self.helper.append_op( + type='rnn_memory_helper', + inputs={'X': [o]}, + outputs={'Out': tmp_o}, + attrs={'data_type': o.data_type}) + out_var = self.parent_block().create_var( - name=o.name, - shape=[-1, self.seq_len] + list(o.shape[1:]), - dtype=o.data_type) + name=tmp_o.name, + shape=[self.seq_len] + list(tmp_o.shape), + dtype=tmp_o.data_type) self.outputs.append(out_var) @@ -647,6 +668,68 @@ class StaticRNN(object): return self.outputs def complete_rnn_op(self): - # TODO(yuyang18): Create RNN Op here. - # Implement this method after RNN op complete. - pass + program = self.helper.program + rnn_block = program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in rnn_block.ops: + assert isinstance(op, Operator) + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + for m in self.memories: + local_inputs.add(m) + + params = list() + for op in rnn_block.ops: + assert isinstance(op, Operator) + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + parameters = [parent_block.var(name) for name in params] + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + inlinks = [parent_block.var(i.name) for i in self.inputs] + outlinks = self.outputs + + boot_memories = [] + pre_memories = [] + memories = [] + for _, mem in self.memories.iteritems(): + boot_memories.append(mem.init) + pre_memories.append(mem.pre_mem.name) + mem_var = rnn_block.var(mem.mem.name) + assert isinstance(mem_var, Variable) + new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type) + + rnn_block.append_op( + type='rnn_memory_helper', + inputs={'X': [mem_var]}, + outputs={'Out': [new_mem]}, + attrs={'data_type': mem_var.data_type}) + + memories.append(new_mem.name) + + parent_block.append_op( + type='recurrent', + inputs={ + 'inputs': inlinks, + 'initial_states': boot_memories, + 'parameters': parameters + }, + outputs={'outputs': outlinks, + 'step_scopes': [step_scope]}, + attrs={ + 'ex_states': pre_memories, + 'states': memories, + 'step_block': rnn_block + }) diff --git a/python/paddle/v2/framework/tests/test_recurrent_op.py b/python/paddle/v2/framework/tests/test_recurrent_op.py index 6c9081a7c37d2a68c50b5748c87199efe9a90cc7..157befd2effa252356fdb51b273fefd4bb7ae31c 100644 --- a/python/paddle/v2/framework/tests/test_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_recurrent_op.py @@ -1,51 +1,67 @@ -import logging -import paddle.v2.framework.core as core import unittest -import numpy as np -from paddle.v2.framework.op import Operator, RecurrentOp -from op_test import get_numeric_gradient - -def py_sigmoid(x): - return 1. / (1. + np.exp(-x)) +import logging +from op_test import get_numeric_gradient +from paddle.v2.framework.layers import * +from paddle.v2.framework.framework import Program +from paddle.v2.framework.executor import Executor +from paddle.v2.framework.backward import append_backward_ops +import numpy as np +import paddle.v2.framework.core as core -class PySimpleRNN(object): - ''' - A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm - ''' - def __init__(self, input_dim=30, batch_size=50, weight_dim=15, sent_len=11): - self.x = np.random.normal(size=(sent_len, batch_size, - input_dim)).astype("float32") - self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32") - self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32") - self.h_boot = np.random.normal(size=(batch_size, - input_dim)).astype("float32") +class PyRNNBase(object): + def __init__(self, input_shape, output_shape): + self.x = np.ones(shape=input_shape).astype("float32") + self.y = np.zeros(shape=output_shape).astype("float32") - # memories - self.mems = [ - np.zeros(shape=(batch_size, input_dim)).astype("float32") - for i in range(sent_len) - ] + def step(self): + pass def forward(self): - xs = self.segment_inputs() for step_id in range(self.x.shape[0]): - self.step(step_id, xs[step_id]) - return self.concat_outputs() + self.step(step_id, self.x[step_id]) + return np.array([np.mean(self.y)]) def segment_inputs(self): return [self.x[i] for i in range(self.x.shape[0])] - def concat_outputs(self): - return np.array(self.mems).astype("float32") + +class PySimpleRNN1(PyRNNBase): + def __init__(self, input_shape, output_shape): + super(PySimpleRNN1, self).__init__(input_shape, output_shape) + + seq_len, batch_size, input_dim = input_shape + self.h_boot = np.random.normal(size=(batch_size, + input_dim)).astype("float32") + + self.scale = 1.0 / 2.0 + men_dim = (seq_len, batch_size, input_dim) + self.mems = np.zeros(shape=men_dim).astype("float32") + + def step(self, step_id, x): + if step_id == 0: + pre_mem = self.h_boot + else: + pre_mem = self.mems[step_id - 1] + self.mems[step_id] = (pre_mem + x) * self.scale + self.y[step_id] = self.mems[step_id] + + +class PySimpleRNN2(PyRNNBase): + def __init__(self, input_shape, output_shape): + super(PySimpleRNN2, self).__init__(input_shape, output_shape) + + seq_len, batch_size, input_dim = input_shape + self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32") + self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32") + self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32") + + men_dim = (seq_len, batch_size, input_dim) + self.mems = np.zeros(shape=men_dim).astype("float32") def step(self, step_id, x): - ''' - run a step - ''' - mem = self.mems[step_id] if step_id > 0: pre_mem = self.mems[step_id - 1] else: @@ -53,108 +69,124 @@ class PySimpleRNN(object): xW = np.matmul(x, self.W).astype("float32") hU = np.matmul(pre_mem, self.U).astype("float32") - sum = xW + hU - self.mems[step_id] = py_sigmoid(sum) - + def py_sigmoid(x): + return 1. / (1. + np.exp(-x)) -class PySimpleRNNTest(unittest.TestCase): - def setUp(self): - self.rnn = PySimpleRNN() - - def test_forward(self): - output = self.rnn.forward() + self.mems[step_id] = py_sigmoid(xW + hU) + self.y[step_id] = self.mems[step_id] -def create_tensor(scope, name, shape, np_data): - tensor = scope.var(name).get_tensor() - tensor.set_dims(shape) - tensor.set(np_data, core.CPUPlace()) +def create_tensor(np_data, place): + tensor = core.LoDTensor() + tensor.set(np_data, place) return tensor -class RecurrentOpTest(unittest.TestCase): +class RecurrentOpTest1(unittest.TestCase): ''' Test RNNOp - equation: - h_t = \sigma (W x_t + U h_{t-1}) - weights: - - W - - U + h_t = ( x_t + h_{t-1} ) / scale vars: - x memories: - h outputs: - - h + - h ''' - input_dim = 30 - batch_size = 50 - weight_dim = 15 - sent_len = 11 + input_dim = 2 + batch_size = 1 + sent_len = 1 + + def init_program(self): + self.program = Program() + self.init_program = Program() + self.p_info = { + "program": self.program, + "init_program": self.init_program + } + self.place = core.CPUPlace() def setUp(self): - self.py_rnn = PySimpleRNN(self.input_dim, self.batch_size, - self.weight_dim, self.sent_len) + self.init_program() + self.data_field = {"x", "h_boot"} - def forward(self): - self.scope = core.Scope() - self.create_global_variables() - self.create_rnn_op() - self.create_step_net() - ctx = core.DeviceContext.create(core.CPUPlace()) - self.rnnop.run(self.scope, ctx) - return np.array(self.scope.find_var("h@mem").get_tensor()).astype( - "float32") - - def create_global_variables(self): - # create inlink - x_np_data = self.py_rnn.x - create_tensor(self.scope, "x", - [self.sent_len, self.batch_size, self.input_dim], - x_np_data) - W_np_data = self.py_rnn.W - create_tensor(self.scope, "W", [self.input_dim, self.input_dim], - W_np_data) - - U_np_data = self.py_rnn.U - create_tensor(self.scope, "U", [self.input_dim, self.input_dim], - U_np_data) - - h_boot_np_data = self.py_rnn.h_boot - create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim], - h_boot_np_data) - self.scope.var("step_scopes") - self.scope.var("h@mem") + self.input_shape = (self.sent_len, self.batch_size, self.input_dim) + self.output_shape = (self.sent_len, self.batch_size, self.input_dim) + self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape) + + self.output = mean(x=self.create_rnn_op(), **self.p_info) def create_rnn_op(self): - # create RNNOp - self.rnnop = RecurrentOp( - # inputs - inputs=["x"], - initial_states=["h_boot"], - step_net="stepnet", - # outputs - outputs=["h@mem"], - step_scopes="step_scopes", - # attributes - ex_states=["h@pre"], - states=["h@mem"]) - - def create_step_net(self): - stepnet = core.Net.create() - x_fc_op = Operator("mul", X="x", Y="W", Out="Wx") - h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") - sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") - sig_op = Operator("sigmoid", X="sum", Y="h@mem") - - for op in [x_fc_op, h_fc_op, sum_op, sig_op]: - stepnet.append_op(op) - stepnet.complete_add_op(True) - self.rnnop.set_stepnet(stepnet) - - def test_forward(self): + x = data( + shape=[self.sent_len, self.batch_size, self.input_dim], + data_type='float32', + name='x', + append_batch_size=False, + **self.p_info) + h_boot = data( + shape=[self.input_dim], + data_type='float32', + name='h_boot', + **self.p_info) + + rnn = StaticRNN(program=self.program) + with rnn.step(): + h_pre = rnn.memory(init=h_boot) + x_t = rnn.step_input(x) + + h = scale( + x=elementwise_add( + x=h_pre, y=x_t, **self.p_info), + scale=self.py_rnn.scale, + **self.p_info) + + rnn.update_memory(h_pre, h) + rnn.output(h) + + return rnn() + + def forward(self): + self.feed_map = { + x: create_tensor(getattr(self.py_rnn, x), self.place) + for x in self.data_field + } + exe = Executor(self.place) + out = exe.run(self.program, + feed=self.feed_map, + fetch_list=[self.output]) + + return np.array(out[0]) + + def backward(self): + self.feed_map = { + x: create_tensor(getattr(self.py_rnn, x), self.place) + for x in self.data_field + } + fetch_list = [ + self.program.global_block().var(x + "@GRAD") + for x in self.data_field + ] + + exe = Executor(self.place) + return exe.run(self.program, feed=self.feed_map, fetch_list=fetch_list) + + def test_backward(self): + self.check_forward() + + append_backward_ops(self.output) + + ana_grad = [np.array(x) for x in self.backward()] + + num_grad = self.get_numerical_gradient() + for idx, name in enumerate(self.data_field): + self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape) + self.assertTrue( + np.isclose( + num_grad[idx], ana_grad[idx], rtol=0.1).all()) + + def check_forward(self): print 'test recurrent op forward' pd_output = self.forward() py_output = self.py_rnn.forward() @@ -164,44 +196,190 @@ class RecurrentOpTest(unittest.TestCase): self.assertEqual(pd_output.shape, py_output.shape) self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all()) + def get_numerical_gradient(self, delta=0.005): + dloss_dout = 1.0 + feed_list = [getattr(self.py_rnn, x) for x in self.data_field] + grad_list = [np.zeros_like(x) for x in feed_list] + for feed, grad in zip(feed_list, grad_list): + for f, g in np.nditer([feed, grad], op_flags=['readwrite']): + o = float(f) + f[...] = o + delta + y_pos = self.forward() -class RecurrentGradientOpTest(unittest.TestCase): - def create_forward_op(self): - self.forward_op = RecurrentOp( - # inputs - inputs=["x"], - initial_states=["h_boot"], - step_net="stepnet", - # outputs - outputs=["h"], - step_scopes="step_scopes", - # attributes - ex_states=["h@pre"], - states=["h@alias"]) - - # create a stepnet for RNN - stepnet = core.Net.create() - x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx") - h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") - sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") - sig_op = Operator("sigmoid", X="sum", Y="h@alias") - - for op in [x_fc_op, h_fc_op, sum_op, sig_op]: - stepnet.append_op(op) - stepnet.complete_add_op(True) - self.forward_op.set_stepnet(stepnet) - - def create_gradient_op(self): - a = set() - backward_op = core.RecurrentOp.backward(self.forward_op, a) - - def test_grad(self): - self.create_forward_op() - self.create_gradient_op() + f[...] = o - delta + y_neg = self.forward() + + f[...] = o + dout_dfeed = (y_pos - y_neg) / (delta * 2) + g[...] = dout_dfeed[0] + + return grad_list + + +class RecurrentOpTest2(RecurrentOpTest1): + ''' + Test RNNOp + equation: + h_t = \sigma (W x_t + U h_{t-1}) + weights: + - W + - U + vars: + - x + memories: + - h + outputs: + - h + ''' + + input_dim = 2 + batch_size = 10 + sent_len = 2 + + def setUp(self): + self.init_program() + + self.data_field = {"x", "h_boot", "W", "U"} + + self.input_shape = (self.sent_len, self.batch_size, self.input_dim) + self.output_shape = (self.sent_len, self.batch_size, self.input_dim) + self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape) + + self.output = mean(x=self.create_rnn_op(), **self.p_info) + + def create_rnn_op(self): + x = data( + shape=[self.sent_len, self.batch_size, self.input_dim], + data_type='float32', + name='x', + append_batch_size=False, + **self.p_info) + h_boot = data( + shape=[self.input_dim], + data_type='float32', + name='h_boot', + **self.p_info) + + rnn = StaticRNN(program=self.program) + with rnn.step(): + h_pre = rnn.memory(init=h_boot) + x_t = rnn.step_input(x) + + temp_l = fc(input=x_t, + size=self.input_dim, + param_attr={'name': 'W'}, + bias_attr=False, + **self.p_info) + temp_r = fc(input=h_pre, + size=self.input_dim, + param_attr={'name': 'U'}, + bias_attr=False, + **self.p_info) + + h = sigmoid( + x=elementwise_add( + x=temp_l, y=temp_r, **self.p_info), + **self.p_info) + + rnn.update_memory(h_pre, h) + rnn.output(h) + + return rnn() + + +class RecurrentOpTest3(RecurrentOpTest1): + ''' + Test RNNOp with two memories + equation: + h_1 = h_pre_1 + h_2 = h_pre_2 + y = h_1 + h_2 + vars: + - x + memories: + - h_1, h_2 + outputs: + - y + ''' + + class PySimpleRNN3(PyRNNBase): + def __init__(self, input_shape, output_shape): + super(RecurrentOpTest3.PySimpleRNN3, self).__init__(input_shape, + output_shape) + + seq_len, batch_size, input_dim = input_shape + self.h_boot1 = np.random.normal(size=(batch_size, + input_dim)).astype("float32") + self.h_boot2 = np.random.normal(size=(batch_size, + input_dim)).astype("float32") + + men_dim = (seq_len, batch_size, input_dim) + self.mems1 = np.zeros(shape=men_dim).astype("float32") + self.mems2 = np.zeros(shape=men_dim).astype("float32") + + def step(self, step_id, x): + if step_id == 0: + pre_mem1 = self.h_boot1 + pre_mem2 = self.h_boot2 + else: + pre_mem1 = self.mems1[step_id - 1] + pre_mem2 = self.mems2[step_id - 1] + self.mems1[step_id] = pre_mem1 + self.mems2[step_id] = pre_mem2 + self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x + + input_dim = 1 + batch_size = 1 + sent_len = 2 + + def setUp(self): + self.init_program() + + self.data_field = {"x", "h_boot1", "h_boot2"} + + self.input_shape = (self.sent_len, self.batch_size, self.input_dim) + self.output_shape = (self.sent_len, self.batch_size, self.input_dim) + self.py_rnn = RecurrentOpTest3.PySimpleRNN3(self.input_shape, + self.output_shape) + + self.output = mean(x=self.create_rnn_op(), **self.p_info) + + def create_rnn_op(self): + x = data( + shape=[self.sent_len, self.batch_size, self.input_dim], + data_type='float32', + name='x', + append_batch_size=False, + **self.p_info) + h_boot1 = data( + shape=[self.batch_size, self.input_dim], + data_type='float32', + name='h_boot1', + append_batch_size=False, + **self.p_info) + h_boot2 = data( + shape=[self.batch_size, self.input_dim], + data_type='float32', + name='h_boot2', + append_batch_size=False, + **self.p_info) + + rnn = StaticRNN(program=self.program) + with rnn.step(): + h_pre1 = rnn.memory(init=h_boot1) + h_pre2 = rnn.memory(init=h_boot2) + x_t = rnn.step_input(x) + + mem1 = scale(x=h_pre1, scale=1.0, **self.p_info) + mem2 = scale(x=h_pre2, scale=1.0, **self.p_info) + out = sums(input=[mem1, x_t, mem2], **self.p_info) + + rnn.update_memory(h_pre1, mem1) + rnn.update_memory(h_pre2, mem2) + rnn.output(out) + + return rnn() if __name__ == '__main__': - exit( - 0 - ) # FIXME(qijun): https://github.com/PaddlePaddle/Paddle/issues/5101#issuecomment-339814957 unittest.main() diff --git a/python/paddle/v2/framework/tests/test_rnn_helpers.py b/python/paddle/v2/framework/tests/test_rnn_helpers.py deleted file mode 100644 index be0ecfb129aa181229bc42d8d6818ad860991965..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_rnn_helpers.py +++ /dev/null @@ -1,38 +0,0 @@ -import unittest -from paddle.v2.framework.layers import * -from paddle.v2.framework.framework import g_program - - -class TestRNN(unittest.TestCase): - def test_rnn(self): - img = data( - shape=[ - 80, # sequence length - 22, # image height - 22 - ], # image width - data_type='float32', - name='image') - hidden = fc(input=img, size=100, act='sigmoid', num_flatten_dims=2) - self.assertEqual((-1, 80, 100), hidden.shape) - hidden = fc(input=hidden, size=100, act='sigmoid', num_flatten_dims=2) - self.assertEqual((-1, 80, 100), hidden.shape) - - rnn = StaticRNN() - with rnn.step(): - hidden = rnn.step_input(hidden) - self.assertEqual((-1, 100), hidden.shape) - memory = rnn.memory(shape=(-1, 32), dtype='float32', init_value=0.0) - - rnn_out = fc(input=[hidden, memory], size=32, act='sigmoid') - self.assertEqual((-1, 32), rnn_out.shape) - rnn.update_memory(memory, rnn_out) - rnn.output(rnn_out) - - out = rnn() - self.assertEqual((-1, 80, 32), out.shape) - print g_program - - -if __name__ == '__main__': - unittest.main()