Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0a15b0db
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a15b0db
编写于
8月 31, 2023
作者:
Y
yuchen202
提交者:
GitHub
8月 31, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[xdoctest] reformat example code with google style in No.36-43 (#56440)
上级
71e28b12
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
843 addition
and
650 deletion
+843
-650
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+290
-226
python/paddle/nn/functional/common.py
python/paddle/nn/functional/common.py
+331
-233
python/paddle/nn/functional/conv.py
python/paddle/nn/functional/conv.py
+59
-59
python/paddle/nn/functional/distance.py
python/paddle/nn/functional/distance.py
+7
-8
python/paddle/nn/functional/extension.py
python/paddle/nn/functional/extension.py
+67
-59
python/paddle/nn/functional/flash_attention.py
python/paddle/nn/functional/flash_attention.py
+9
-11
python/paddle/nn/initializer/uniform.py
python/paddle/nn/initializer/uniform.py
+27
-18
python/paddle/nn/initializer/xavier.py
python/paddle/nn/initializer/xavier.py
+53
-36
未找到文件。
python/paddle/nn/functional/activation.py
浏览文件 @
0a15b0db
此差异已折叠。
点击以展开。
python/paddle/nn/functional/common.py
浏览文件 @
0a15b0db
此差异已折叠。
点击以展开。
python/paddle/nn/functional/conv.py
浏览文件 @
0a15b0db
...
...
@@ -368,24 +368,24 @@ def conv1d(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([[[4, 8, 1, 9],
[7, 2, 0, 9],
[6, 9, 2, 6]]], dtype="float32")
w = paddle.to_tensor([[[9, 3, 4],
[0, 0, 7],
[2, 5, 6]],
[[0, 3, 4],
[2, 9, 7],
[5, 6, 8]]], dtype="float32")
y = F.conv1d(x, w)
print(y)
# Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0
), stop_gradient=True,
#
[[[133., 238.],
#
[160., 211.]]])
>>>
import paddle
>>>
import paddle.nn.functional as F
>>>
x = paddle.to_tensor([[[4, 8, 1, 9],
...
[7, 2, 0, 9],
...
[6, 9, 2, 6]]], dtype="float32")
>>>
w = paddle.to_tensor([[[9, 3, 4],
...
[0, 0, 7],
...
[2, 5, 6]],
...
[[0, 3, 4],
...
[2, 9, 7],
...
[5, 6, 8]]], dtype="float32")
>>>
y = F.conv1d(x, w)
>>>
print(y)
Tensor(shape=[1, 2, 2], dtype=float32, place=Place(cpu
), stop_gradient=True,
[[[133., 238.],
[160., 211.]]])
"""
cudnn_version
=
get_cudnn_version
()
if
cudnn_version
is
not
None
:
...
...
@@ -632,16 +632,16 @@ def conv2d(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
>>>
x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
>>>
w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
y_var = F.conv2d(x_var, w_var)
>>>
y_var = F.conv2d(x_var, w_var)
print(y_var.shape)
#
[2, 6, 6, 6]
>>>
print(y_var.shape)
[2, 6, 6, 6]
"""
# entry checks
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
...
...
@@ -887,20 +887,20 @@ def conv1d_transpose(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
# shape: (1, 2, 4)
x = paddle.to_tensor([[[4, 0, 9, 7],
[8, 0, 9, 2,]]], dtype="float32")
# shape: (2, 1, 2)
w = paddle.to_tensor([[[7, 0]],
[[4, 2]]], dtype="float32")
>>>
# shape: (1, 2, 4)
>>>
x = paddle.to_tensor([[[4, 0, 9, 7],
>>>
[8, 0, 9, 2,]]], dtype="float32")
>>>
# shape: (2, 1, 2)
>>>
w = paddle.to_tensor([[[7, 0]],
>>>
[[4, 2]]], dtype="float32")
y = F.conv1d_transpose(x, w)
print(y)
# Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0
), stop_gradient=True,
#
[[[60., 16., 99., 75., 4. ]]])
>>>
y = F.conv1d_transpose(x, w)
>>>
print(y)
Tensor(shape=[1, 1, 5], dtype=float32, place=Place(cpu
), stop_gradient=True,
[[[60., 16., 99., 75., 4. ]]])
"""
cudnn_version
=
get_cudnn_version
()
if
cudnn_version
is
not
None
:
...
...
@@ -1183,16 +1183,16 @@ def conv2d_transpose(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
>>>
x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
>>>
w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
y_var = F.conv2d_transpose(x_var, w_var)
>>>
y_var = F.conv2d_transpose(x_var, w_var)
print(y_var.shape)
#
[2, 6, 10, 10]
>>>
print(y_var.shape)
[2, 6, 10, 10]
"""
if
data_format
not
in
[
'NCHW'
,
'NHWC'
]:
...
...
@@ -1476,16 +1476,16 @@ def conv3d(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
>>>
x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
>>>
w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
y_var = F.conv3d(x_var, w_var)
>>>
y_var = F.conv3d(x_var, w_var)
print(y_var.shape)
#
[2, 6, 6, 6, 6]
>>>
print(y_var.shape)
[2, 6, 6, 6, 6]
"""
# entry check
if
data_format
not
in
[
"NCDHW"
,
"NDHWC"
]:
...
...
@@ -1690,16 +1690,16 @@ def conv3d_transpose(
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
>>>
x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
>>>
w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
y_var = F.conv3d_transpose(x_var, w_var)
>>>
y_var = F.conv3d_transpose(x_var, w_var)
print(y_var.shape)
#
[2, 6, 10, 10, 10]
>>>
print(y_var.shape)
[2, 6, 10, 10, 10]
"""
# entry checks
if
data_format
not
in
[
"NCDHW"
,
"NDHWC"
]:
...
...
python/paddle/nn/functional/distance.py
浏览文件 @
0a15b0db
...
...
@@ -59,14 +59,13 @@ def pairwise_distance(x, y, p=2.0, epsilon=1e-6, keepdim=False, name=None):
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1., 3.], [3., 5.]], dtype=paddle.float64)
y = paddle.to_tensor([[5., 6.], [7., 8.]], dtype=paddle.float64)
distance = paddle.nn.functional.pairwise_distance(x, y)
print(distance)
# Tensor(shape=[2], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [4.99999860, 4.99999860])
>>> import paddle
>>> x = paddle.to_tensor([[1., 3.], [3., 5.]], dtype=paddle.float64)
>>> y = paddle.to_tensor([[5., 6.], [7., 8.]], dtype=paddle.float64)
>>> distance = paddle.nn.functional.pairwise_distance(x, y)
>>> print(distance)
Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
[4.99999860, 4.99999860])
"""
if
in_dynamic_mode
():
sub
=
_C_ops
.
subtract
(
x
,
y
)
...
...
python/paddle/nn/functional/extension.py
浏览文件 @
0a15b0db
...
...
@@ -55,48 +55,46 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
diag_embed_input = paddle.arange(6)
diag_embed_output1 = F.diag_embed(diag_embed_input)
print(diag_embed_output1)
# Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[0, 0, 0, 0, 0, 0],
# [0, 1, 0, 0, 0, 0],
# [0, 0, 2, 0, 0, 0],
# [0, 0, 0, 3, 0, 0],
# [0, 0, 0, 0, 4, 0],
# [0, 0, 0, 0, 0, 5]])
diag_embed_output2 = F.diag_embed(diag_embed_input, offset=-1, dim1=0,dim2=1 )
print(diag_embed_output2)
# Tensor(shape=[7, 7], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0],
# [0, 1, 0, 0, 0, 0, 0],
# [0, 0, 2, 0, 0, 0, 0],
# [0, 0, 0, 3, 0, 0, 0],
# [0, 0, 0, 0, 4, 0, 0],
# [0, 0, 0, 0, 0, 5, 0]])
diag_embed_input_2dim = paddle.reshape(diag_embed_input,[2,3])
print(diag_embed_input_2dim)
# Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[0, 1, 2],
# [3, 4, 5]])
diag_embed_output3 = F.diag_embed(diag_embed_input_2dim,offset= 0, dim1=0, dim2=2 )
print(diag_embed_output3)
# Tensor(shape=[3, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
# [[[0, 0, 0],
# [3, 0, 0]],
# [[0, 1, 0],
# [0, 4, 0]],
# [[0, 0, 2],
# [0, 0, 5]]])
>>> import paddle
>>> import paddle.nn.functional as F
>>> diag_embed_input = paddle.arange(6)
>>> diag_embed_output1 = F.diag_embed(diag_embed_input)
>>> print(diag_embed_output1)
Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0],
[0, 0, 0, 3, 0, 0],
[0, 0, 0, 0, 4, 0],
[0, 0, 0, 0, 0, 5]])
>>> diag_embed_output2 = F.diag_embed(diag_embed_input, offset=-1, dim1=0,dim2=1 )
>>> print(diag_embed_output2)
Tensor(shape=[7, 7], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0, 0],
[0, 0, 0, 3, 0, 0, 0],
[0, 0, 0, 0, 4, 0, 0],
[0, 0, 0, 0, 0, 5, 0]])
>>> diag_embed_input_2dim = paddle.reshape(diag_embed_input,[2,3])
>>> print(diag_embed_input_2dim)
Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 1, 2],
[3, 4, 5]])
>>> diag_embed_output3 = F.diag_embed(diag_embed_input_2dim,offset= 0, dim1=0, dim2=2 )
>>> print(diag_embed_output3)
Tensor(shape=[3, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[0, 0, 0],
[3, 0, 0]],
[[0, 1, 0],
[0, 4, 0]],
[[0, 0, 2],
[0, 0, 5]]])
"""
if
not
isinstance
(
input
,
Variable
):
input
=
assign
(
input
)
...
...
@@ -200,16 +198,16 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
Examples:
.. code-block:: python
import paddle
>>>
import paddle
lengths = paddle.to_tensor([10, 9, 8])
mask = paddle.nn.functional.sequence_mask(lengths)
>>>
lengths = paddle.to_tensor([10, 9, 8])
>>>
mask = paddle.nn.functional.sequence_mask(lengths)
print(mask)
# Tensor(shape=[3, 10], dtype=int64, place=Place(gpu:0
), stop_gradient=True,
#
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
#
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
#
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]])
>>>
print(mask)
Tensor(shape=[3, 10], dtype=int64, place=Place(cpu
), stop_gradient=True,
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]])
"""
...
...
@@ -296,14 +294,24 @@ def gather_tree(ids, parents):
Examples:
.. code-block:: python
import paddle
>>>
import paddle
ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])
>>>
ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])
parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])
>>> parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])
>>> final_sequences = paddle.nn.functional.gather_tree(ids, parents)
>>> [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]
>>> final_sequences = paddle.nn.functional.gather_tree(ids, parents)
>>> print(final_sequences)
Tensor(shape=[3, 2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[2, 2],
[1, 6]],
[[3, 3],
[6, 1]],
[[0, 1],
[9, 0]]])
final_sequences = paddle.nn.functional.gather_tree(ids, parents)
# [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]
"""
if
ids
.
ndim
!=
3
:
...
...
@@ -388,11 +396,11 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
>>>
import paddle
>>>
import paddle.nn.functional as F
input = paddle.randn([6, 4, 2, 2])
out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
>>>
input = paddle.randn([6, 4, 2, 2])
>>>
out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
"""
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
raise
ValueError
(
...
...
python/paddle/nn/functional/flash_attention.py
浏览文件 @
0a15b0db
...
...
@@ -181,13 +181,12 @@ def flash_attention(
Examples:
.. code-block:: python
# required: skiptest
import paddle
>>> import paddle
q = paddle.rand((1, 128, 2, 16), dtype=paddle.float16)
>>> paddle.seed(1)
>>> q = paddle.rand((1, 128, 2, 16))
output = paddle.nn.functional.flash_attention(q, q, q, 0.9, False, False)
print(output)
>>> output = paddle.nn.functional.flash_attention.flash_attention(q, q, q, 0.9, False, False)
"""
head_dim
=
query
.
shape
[
3
]
sdp_func_name
=
_select_sdp
(
head_dim
)
...
...
@@ -340,13 +339,12 @@ def flash_attn_unpadded(
Examples:
.. code-block:: python
# required: skiptest
import paddle
q = paddle.rand((1, 128, 2, 16), dtype=paddle.float16)
>>> import paddle
>>> paddle.seed(1)
>>> q = paddle.rand((1, 128, 2, 16))
output = paddle.nn.functional
.flash_attn_unpadded(q, q, q, 0.9, False, False)
print(output)
>>> output = paddle.nn.functional.flash_attention
.flash_attn_unpadded(q, q, q, 0.9, False, False)
>>>
print(output)
"""
if
in_dynamic_mode
():
(
...
...
python/paddle/nn/initializer/uniform.py
浏览文件 @
0a15b0db
...
...
@@ -158,24 +158,33 @@ class Uniform(UniformInitializer):
Examples:
.. code-block:: python
import paddle
data = paddle.ones(shape=[3, 1, 2], dtype='float32')
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
bias_attr = paddle.framework.ParamAttr(
name="linear_bias",
initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
# linear.weight: [[-0.46245047 0.05260676]
# [ 0.38054508 0.29169726]]
# linear.bias: [-0.2734719 0.23939109]
res = linear(data)
# res: [[[-0.3553773 0.5836951]]
# [[-0.3553773 0.5836951]]
# [[-0.3553773 0.5836951]]]
>>> import paddle
>>> paddle.seed(1)
>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Parameter containing:
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[-0.48212373, 0.26492310],
[ 0.17605734, -0.45379421]])
>>> print(linear.bias)
Parameter containing:
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=False,
[-0.11236754, 0.46462214])
>>> res = linear(data)
>>> print(res)
Tensor(shape=[3, 1, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[[-0.41843393, 0.27575102]],
[[-0.41843393, 0.27575102]],
[[-0.41843393, 0.27575102]]])
"""
def
__init__
(
self
,
low
=-
1.0
,
high
=
1.0
,
name
=
None
):
...
...
python/paddle/nn/initializer/xavier.py
浏览文件 @
0a15b0db
...
...
@@ -214,24 +214,33 @@ class XavierNormal(XavierInitializer):
Examples:
.. code-block:: python
import paddle
data = paddle.ones(shape=[3, 1, 2], dtype='float32')
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.XavierNormal())
bias_attr = paddle.framework.ParamAttr(
name="linear_bias",
initializer=paddle.nn.initializer.XavierNormal())
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
# inear.weight: [[ 0.06910077 -0.18103665]
# [-0.02546741 -1.0402188 ]]
# linear.bias: [-0.5012929 0.12418364]
res = linear(data)
# res: [[[-0.4576595 -1.0970719]]
# [[-0.4576595 -1.0970719]]
# [[-0.4576595 -1.0970719]]]
>>> import paddle
>>> paddle.seed(1)
>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.XavierNormal())
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.XavierNormal())
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Parameter containing:
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[-0.21607460, 0.08382989],
[ 0.29147008, -0.07049121]])
>>> print(linear.bias)
Parameter containing:
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=False,
[1.06076419, 0.87684733])
>>> res = linear(data)
>>> print(res)
Tensor(shape=[3, 1, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[[1.13615966, 0.89018601]],
[[1.13615966, 0.89018601]],
[[1.13615966, 0.89018601]]])
"""
def
__init__
(
self
,
fan_in
=
None
,
fan_out
=
None
,
name
=
None
):
...
...
@@ -266,24 +275,32 @@ class XavierUniform(XavierInitializer):
Examples:
.. code-block:: python
import paddle
data = paddle.ones(shape=[3, 1, 2], dtype='float32')
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.XavierUniform())
bias_attr = paddle.framework.ParamAttr(
name="linear_bias",
initializer=paddle.nn.initializer.XavierUniform())
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
# linear.weight: [[-0.04229349 -1.1248565 ]
# [-0.10789523 -0.5938053 ]]
# linear.bias: [ 1.1983747 -0.40201235]
res = linear(data)
# res: [[[ 1.0481861 -2.1206741]]
# [[ 1.0481861 -2.1206741]]
# [[ 1.0481861 -2.1206741]]]
>>> import paddle
>>> paddle.seed(1)
>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.XavierUniform())
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.XavierUniform())
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Parameter containing:
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[-1.18095720, 0.64892638],
[ 0.43125069, -1.11156428]])
>>> print(linear.bias)
Parameter containing:
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=False,
[-0.27524316, 1.13808715])
>>> res = linear(data)
>>> print(res)
Tensor(shape=[3, 1, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
[[[-1.02494967, 0.67544925]],
[[-1.02494967, 0.67544925]],
[[-1.02494967, 0.67544925]]])
"""
def
__init__
(
self
,
fan_in
=
None
,
fan_out
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录