From 08ca72670fbacc2abbe26959737b4393a5cd17bd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=AD=A6=E6=AF=85?= Date: Thu, 2 Nov 2017 08:36:15 +0800 Subject: [PATCH] evaluator_accumulate (#4828) --- python/paddle/v2/framework/evaluator.py | 59 +++++++++++++++++ .../v2/framework/tests/test_evaluator.py | 63 +++++++++++++++++++ 2 files changed, 122 insertions(+) create mode 100644 python/paddle/v2/framework/evaluator.py create mode 100644 python/paddle/v2/framework/tests/test_evaluator.py diff --git a/python/paddle/v2/framework/evaluator.py b/python/paddle/v2/framework/evaluator.py new file mode 100644 index 00000000000..254dd5f1a33 --- /dev/null +++ b/python/paddle/v2/framework/evaluator.py @@ -0,0 +1,59 @@ +import paddle.v2.framework.op as op +import numpy as np +import paddle.v2.framework.core as core + + +def avg_accumulate(accumulated_var, per_eval, num_batches, place): + t = np.array(accumulated_var.get_tensor()) + t[0] += per_eval[0] + accumulated_var.get_tensor().set([t[0] / float(num_batches)], place) + + +class Evaluator(object): + def __init__(self, + scope, + operator='accuracy', + input='Inference', + label='Label', + output='Output', + place=core.CPUPlace()): + """ + create an evaluator for evaluating the inference. + NOTE: default run on CPUPlace(), running on GPUPlace doesn't improve performance much. + + :param scope: the scope instance contains the input. + :type scope: paddle.v2.framework.core.scope + :param operator: operator name for caculating the evaluation for each mini-batch. + :type operator: string + :param input: output variable name of forward network. + :type input: string + :param label: variable name of label + :type label: string + """ + self.scope = scope + self.place = place + self.output_name = output + self.num_batches = 0 + # create variable to store accumulated evaluator output + eval_name = ''.join([operator, "@Eval"]) + if scope.find_var(eval_name): + raise Exception("evaluator already exist in scope: %s" % eval_name) + self.accumulated_var = scope.var(eval_name) + t = self.accumulated_var.get_tensor() + t.set_dims((1, )) + t.set([0.0], place) + # self.accumulated_var = block.create_var(block, name=eval_name, shape=(1,)) + # self.accumulated_var.get_tensor().set([0.0]) + # create operator of evaluation + var_map = dict() # var name -> variable + var_map[input] = [input] + var_map[label] = [label] + var_map[output] = [output] + self.op = op.Operator(operator, **var_map) + + def evaluate(self, ctx, accumulator=avg_accumulate): + self.op.run(self.scope, ctx) + per_eval = np.array(self.scope.find_var(self.output_name).get_tensor()) + self.num_batches += 1 + accumulator(self.accumulated_var, per_eval, self.num_batches, + self.place) diff --git a/python/paddle/v2/framework/tests/test_evaluator.py b/python/paddle/v2/framework/tests/test_evaluator.py new file mode 100644 index 00000000000..0f5aa5645f1 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_evaluator.py @@ -0,0 +1,63 @@ +from paddle.v2.framework.evaluator import Evaluator +from paddle.v2.framework.op import Operator +import paddle.v2.framework.core as core +import unittest +import op_test +import numpy as np + + +class TestEvaluator(unittest.TestCase): + def setup(self, scope, inputs, outputs): + def __create_var__(var_name, arr): + np_arr = np.array(arr) + scope.var(var_name) + # tensor = var.get_tensor() + # tensor.set_dims(np_arr.shape) + + for var_name, arr in inputs.iteritems(): + __create_var__(var_name, arr) + + for var_name, arr in outputs.iteritems(): + __create_var__(var_name, arr) + + def test_evaluator(self): + + inputs = { + 'Inference': np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 1]]).T, + 'Label': np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) + } + outputs = {'Accuracy': np.array([0.9])} + out_name = 'Accuracy' + + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.GPUPlace(0)) + + for place in places: + scope = core.Scope() + self.setup(scope, inputs, outputs) + + evaluator = Evaluator( + scope, + operator='accuracy', + input='Inference', + label='Label', + output=out_name, + place=place) + op_test.set_input(scope, evaluator.op, inputs, place) + ctx = core.DeviceContext.create(place) + + for i in range(10): # simulate 10 mini-batches + evaluator.evaluate(ctx) + + actual = np.array(scope.find_var(out_name).get_tensor()) + print actual + + self.assertTrue( + np.allclose( + actual, outputs[out_name], atol=1e-5), + "output name: " + out_name + " has diff.") + + +if __name__ == '__main__': + unittest.main() -- GitLab