提交 082eb8c6 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into roi_pooling

......@@ -227,7 +227,6 @@ template struct SelectedRowsAddToTensor<platform::GPUPlace, float>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, double>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, int>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, int64_t>;
} // namespace math
} // namespace operators
} // namespace paddle
import numpy as np
from paddle.v2.fluid.framework import Program, g_main_program, unique_name, Variable
import paddle.v2.fluid.core as core
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program, unique_name, \
Variable
from paddle.v2.fluid.layer_helper import LayerHelper
def _clone_var_in_block_(block, var):
__all__ = ['Accuracy']
def _clone_var_(block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
......@@ -16,175 +21,115 @@ def _clone_var_in_block_(block, var):
class Evaluator(object):
"""
Evalutor Base class.
create metric states
add mini-batch evaluator caculate operator
add increment operator to accumulate the metric states
Base Class for all evaluators
Args:
name(str): The name of evaluator. such as, "accuracy". Used for generate
temporary variable name.
main_program(Program, optional): The evaluator should be added to this
main_program. Default g_main_program
startup_program(Program, optional):The parameter should be added to this
startup_program. Default g_startup_program
Attributes:
states(list): The list of state variables. states will be reset to zero
when `reset` is invoked.
metrics(list): The list of metrics variables. They will be calculate
every mini-batch
"""
def __init__(self, name, **kwargs):
self.states = []
self.metrics = []
self.helper = LayerHelper(name, **kwargs)
def reset(self, executor, reset_program=None):
"""
init the global states
reset metric states at the begin of each pass/user specified batch
"""
self._states = {}
if kwargs.has_key("main_program"):
self._main_program = kwargs.get("main_program")
else:
self._main_program = g_main_program
if reset_program is None:
reset_program = Program()
def states(self):
return self._states
for var in self.states:
assert isinstance(var, Variable)
g_var = _clone_var_(reset_program.current_block(), var)
layers.fill_constant(
shape=g_var.shape,
value=0.0,
dtype=g_var.dtype,
out=g_var,
main_program=reset_program)
executor.run(reset_program)
def _update_ops(self, *args, **kwargs):
def eval(self, executor, eval_program=None):
"""
append update ops to the global states
Evaluate the statistics merged by multiple mini-batches.
"""
raise NotImplementedError()
def reset(self, executor, reset_program=None):
"""
Clear metric states at the begin of each pass/user specified batch
def create_state(self, suffix, dtype, shape):
"""
if reset_program == None:
reset_program = Program()
else:
reset_program = program
block = reset_program.global_block()
for k, var in self._states.iteritems():
g_var = _clone_var_in_block_(block, var)
zeros = block.create_var(dtype="float32", persistable=True)
block.append_op(
type="fill_constant",
outputs={"Out": [zeros]},
attrs={
"shape": g_var.shape,
"value": .0,
"dtype": 5,
})
block.append_op(
type="scale", inputs={"X": zeros}, outputs={"Out": g_var})
executor.run(reset_program, fetch_list=self._states.values())
Create state variable.
NOTE: It is not a public API.
Args:
suffix(str): the state suffix.
dtype(str|core.DataType): the state data type
shape(tuple|list): the shape of state
Returns: State variable
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
raise NotImplementedError()
state = self.helper.create_variable(
name="_".join([unique_name(self.helper.name), suffix]),
persistable=True,
dtype=dtype,
shape=shape)
self.states.append(state)
return state
class Accuracy(Evaluator):
"""
Accuracy need two state variable Total, Correct
Average Accuracy for multiple mini-batches.
"""
def __init__(self, *args, **kwargs):
def __init__(self, input, label, k=1, **kwargs):
super(Accuracy, self).__init__("accuracy", **kwargs)
block = self._main_program.global_block()
g_total = block.create_var(
name=unique_name("Total"),
persistable=True,
dtype="int64",
shape=[1])
g_correct = block.create_var(
name=unique_name("Correct"),
persistable=True,
dtype="int64",
shape=[1])
self._states["Total"] = g_total
self._states["Correct"] = g_correct
def _update_ops(self, input, label, k=1, **kwargs):
block = self._main_program.global_block()
topk_out = block.create_var(dtype=input.dtype)
topk_indices = block.create_var(dtype="int64")
block.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out = block.create_var(dtype=kwargs.get("out_dtype", "float32"))
correct = block.create_var(dtype="int64", persistable=True)
total = block.create_var(dtype="int64", persistable=True)
block.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
block.append_op(
type="cast",
inputs={"X": [self._states["Total"]]},
outputs={"Out": [self._states["Total"]]},
attrs={
"in_dtype": 5, # float32
"out_dtype": 2, # int32
})
block.append_op(
type="cast",
inputs={"X": [self._states["Correct"]]},
outputs={"Out": [self._states["Correct"]]},
attrs={
"in_dtype": 5,
"out_dtype": 2,
})
block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Total"]],
"Y": [total]},
outputs={"Out": [self._states["Total"]]})
block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Correct"]],
"Y": [correct]},
outputs={"Out": [self._states["Correct"]]})
return acc_out
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
self.correct = self.create_state(
dtype='int64', shape=[1], suffix='correct')
kwargs = {'main_program': main_program}
total = self.helper.create_tmp_variable(dtype='int')
correct = self.helper.create_tmp_variable(dtype='int')
acc = layers.accuracy(
input=input,
label=label,
k=k,
total=total,
correct=correct,
**kwargs)
total = layers.cast(x=total, dtype='int64', **kwargs)
correct = layers.cast(x=correct, dtype='int64', **kwargs)
layers.sums(input=[self.total, total], out=self.total, **kwargs)
layers.sums(input=[self.correct, correct], out=self.correct, **kwargs)
self.metrics.append(acc)
def eval(self, executor, eval_program=None):
if eval_program != None:
eval_program = eval_program
else:
if eval_program is None:
eval_program = Program()
block = eval_program.global_block()
eval_out = block.create_var(dtype=self._states["Total"].dtype)
e_total = _clone_var_in_block_(block, self._states["Total"])
e_correct = _clone_var_in_block_(block, self._states["Correct"])
block.append_op(
type="cast",
inputs={"X": [e_total]},
outputs={"Out": [e_total]},
attrs={
"in_dtype": 2, # int32
"out_dtype": 5, # float32
})
block.append_op(
type="cast",
inputs={"X": [e_correct]},
outputs={"Out": [e_correct]},
attrs={
"in_dtype": 2,
"out_dtype": 5,
})
block.append_op(
type="elementwise_div",
inputs={"X": e_correct,
"Y": e_total},
outputs={"Out": eval_out})
out = executor.run(eval_program, fetch_list=[eval_out])
return np.array(out[0])
def accuracy(*args, **kwargs):
cls = Accuracy(*args, **kwargs)
out = cls._update_ops(*args, **kwargs)
return cls, out
block = eval_program.current_block()
kwargs = {'main_program': eval_program}
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32', **kwargs)
correct = layers.cast(correct, dtype='float32', **kwargs)
out = layers.elementwise_div(x=correct, y=total, **kwargs)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
......@@ -418,6 +418,7 @@ def _create_op_func_(op_type):
_create_op_func_('mean')
_create_op_func_('mul')
_create_op_func_('elementwise_add')
_create_op_func_('elementwise_div')
_create_op_func_('dropout')
_create_op_func_('reshape')
_create_op_func_('sigmoid')
......@@ -457,12 +458,13 @@ def concat(input, axis, main_program=None, startup_program=None):
return out
def sums(input, main_program=None, startup_program=None):
def sums(input, out=None, main_program=None, startup_program=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper = LayerHelper('sum', **locals())
if out is None:
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out
......@@ -606,7 +608,7 @@ def square_error_cost(input, label, **kwargs):
return square_out
def accuracy(input, label, k=1, **kwargs):
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
"""
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
......@@ -620,9 +622,10 @@ def accuracy(input, label, k=1, **kwargs):
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out_dtype = kwargs.get("out_dtype", "float32")
acc_out = helper.create_tmp_variable(dtype="float32")
if correct is None:
correct = helper.create_tmp_variable(dtype="int64")
if total is None:
total = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="accuracy",
......@@ -1355,6 +1358,19 @@ def lod_rank_table(x, level=0, main_program=None):
return table
def topk(input, k, main_program=None, startup_program=None):
helper = LayerHelper('topk', **locals())
topk_out = helper.create_tmp_variable(dtype=input.data_type)
topk_indices = helper.create_tmp_variable(dtype='int64')
helper.append_op(
type='top_k',
inputs={'X': [input]},
outputs={'Out': [topk_out],
'Indices': [topk_indices]},
attrs={'k': k})
return topk_out, topk_indices
def lod_tensor_to_array(x, table, main_program=None):
"""
This function creates an operator to convert an LOD_Tensor to
......@@ -1388,13 +1404,19 @@ def array_to_lod_tensor(x, table, main_program=None):
return tmp
def fill_constant(shape, dtype, value, main_program=None, startup_program=None):
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper = LayerHelper("fill_constant", **locals())
if out is None:
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
......
......@@ -5,7 +5,6 @@ import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
import paddle.v2.fluid.evaluator as evaluator
from paddle.v2.fluid.io import get_inference_program
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.initializer import XavierInitializer
from paddle.v2.fluid.optimizer import AdamOptimizer
......@@ -110,18 +109,16 @@ avg_cost = layers.mean(x=cost)
optimizer = AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
accuracy, acc_out = evaluator.accuracy(input=predict, label=label)
accuracy = evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 128
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=BATCH_SIZE * 10),
paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
......@@ -147,46 +144,15 @@ for pass_id in range(PASS_NUM):
outs = exe.run(framework.default_main_program(),
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost, acc_out])
fetch_list=[avg_cost] + accuracy.metrics)
loss = np.array(outs[0])
acc = np.array(outs[1])
pass_acc = accuracy.eval(exe)
batch_id = batch_id + 1
test_accuracy, test_acc_out = evaluator.accuracy(
input=predict, label=label)
test_target = [avg_cost, test_acc_out] + test_accuracy.states().values()
inference_program = get_inference_program(test_target)
test_accuracy.reset(exe)
for data in test_reader():
x_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = np.expand_dims(y_data, axis=1)
tensor_x = core.LoDTensor()
tensor_x.set(x_data, place)
tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)
outs = exe.run(inference_program,
feed={'pixel': tensor_x,
'label': tensor_y},
fetch_list=[avg_cost, test_acc_out])
out = np.array(outs[0])
acc = np.array(outs[1])
test_pass_acc = test_accuracy.eval(exe)
print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) +
" loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc) + " test_pass_acc:" + str(test_pass_acc))
pass_acc))
batch_id = batch_id + 1
if batch_id > 1:
# this model is slow, so if we can train two mini batch, we think it works properly.
......
......@@ -31,7 +31,7 @@ avg_cost = layers.mean(x=cost)
optimizer = AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999)
opts = optimizer.minimize(avg_cost)
accuracy, acc_out = evaluator.accuracy(input=predict, label=label)
accuracy = evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 50
PASS_NUM = 3
......@@ -61,7 +61,7 @@ for pass_id in range(PASS_NUM):
outs = exe.run(framework.default_main_program(),
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost, acc_out])
fetch_list=[avg_cost] + accuracy.metrics)
loss = np.array(outs[0])
acc = np.array(outs[1])
pass_acc = accuracy.eval(exe)
......
......@@ -36,7 +36,7 @@ avg_cost = layers.mean(x=cost)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost)
accuracy, acc_out = evaluator.accuracy(input=predict, label=label)
accuracy = evaluator.Accuracy(input=predict, label=label)
train_reader = paddle.batch(
paddle.reader.shuffle(
......@@ -67,15 +67,14 @@ for pass_id in range(PASS_NUM):
outs = exe.run(framework.default_main_program(),
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost, acc_out])
fetch_list=[avg_cost] + accuracy.metrics)
out = np.array(outs[0])
acc = np.array(outs[1])
pass_acc = accuracy.eval(exe)
test_accuracy, test_acc_out = evaluator.accuracy(
input=predict, label=label)
test_accuracy = evaluator.Accuracy(input=predict, label=label)
test_target = [avg_cost, test_acc_out] + test_accuracy.states().values()
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = get_inference_program(test_target)
test_accuracy.reset(exe)
......@@ -93,7 +92,7 @@ for pass_id in range(PASS_NUM):
outs = exe.run(inference_program,
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost, test_acc_out])
fetch_list=[avg_cost] + test_accuracy.metrics)
out = np.array(outs[0])
acc = np.array(outs[1])
......
......@@ -32,9 +32,9 @@ def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32):
cost = layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = AdamOptimizer(learning_rate=0.002)
opts = adam_optimizer.minimize(avg_cost)
accuracy, acc_out = evaluator.accuracy(input=prediction, label=label)
return avg_cost, accuracy, acc_out
adam_optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=prediction, label=label)
return avg_cost, accuracy, accuracy.metrics[0]
def to_lodtensor(data, place):
......
......@@ -41,9 +41,9 @@ def stacked_lstm_net(input_dim,
cost = layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = AdamOptimizer(learning_rate=0.002)
opts = adam_optimizer.minimize(avg_cost)
accuracy, acc_out = evaluator.accuracy(input=prediction, label=label)
return avg_cost, accuracy, acc_out
adam_optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=prediction, label=label)
return avg_cost, accuracy, accuracy.metrics[0]
def to_lodtensor(data, place):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册