Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
080024f0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
080024f0
编写于
3月 13, 2022
作者:
Z
zyfncg
提交者:
GitHub
3月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor unary infermeta (#40365)
上级
ec09ef26
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
827 addition
and
826 deletion
+827
-826
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+730
-730
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+97
-96
未找到文件。
paddle/phi/infermeta/unary.cc
浏览文件 @
080024f0
...
...
@@ -26,6 +26,82 @@ limitations under the License. */
namespace
phi
{
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
)
{
const
auto
&
x_dims
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
axis
,
-
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be greater than or equal to"
" -Rank(X)(%d)."
,
axis
,
-
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis
,
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d) of Input(X)."
,
axis
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
(
dtype
<
0
||
dtype
==
2
||
dtype
==
3
),
true
,
phi
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
if
(
config
.
is_runtime
)
{
if
(
dtype
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
int64_t
all_element_num
=
0
;
if
(
flatten
)
{
all_element_num
=
phi
::
product
(
x_dims
);
}
else
{
all_element_num
=
x_dims
[
axis
];
}
PADDLE_ENFORCE_LE
(
all_element_num
,
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The element num of the argmin/argmax input at axis is "
"%d, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'."
,
all_element_num
,
INT_MAX
));
}
}
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
else
{
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
}
out
->
set_dims
(
phi
::
make_ddim
(
vec
));
if
(
dtype
==
2
)
{
out
->
set_dtype
(
DataType
::
INT32
);
}
else
if
(
dtype
==
3
)
{
out
->
set_dtype
(
DataType
::
INT64
);
}
}
void
ArgsortInferMeta
(
const
MetaTensor
&
input
,
int
axis
,
bool
descending
,
...
...
@@ -54,96 +130,6 @@ void ArgsortInferMeta(const MetaTensor& input,
indices
->
share_lod
(
input
);
}
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
PADDLE_ENFORCE_LT
(
axis
,
rank
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
out
->
share_meta
(
x
);
}
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
dtype
::
ToReal
(
x
.
dtype
()));
out
->
set_layout
(
x
.
layout
());
}
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
int
in_dims_size
=
x_dims
.
size
();
if
(
start_axis
<
0
)
{
start_axis
=
start_axis
+
in_dims_size
;
}
if
(
stop_axis
<
0
)
{
stop_axis
=
stop_axis
+
in_dims_size
;
}
PADDLE_ENFORCE_GE
(
stop_axis
,
start_axis
,
phi
::
errors
::
InvalidArgument
(
"The stop_axis should be greater"
"than or equal to start_axis."
));
int64_t
outer
=
1
;
std
::
vector
<
int32_t
>
out_shape
;
out_shape
.
reserve
(
in_dims_size
-
stop_axis
+
start_axis
);
for
(
int
i
=
0
;
i
<
start_axis
;
++
i
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
for
(
int
i
=
start_axis
;
i
<=
stop_axis
;
i
++
)
{
if
(
x_dims
[
i
]
==
-
1
||
outer
==
-
1
)
{
outer
=
-
1
;
}
else
{
outer
*=
x_dims
[
i
];
}
}
out_shape
.
push_back
(
outer
);
for
(
int
i
=
stop_axis
+
1
;
i
<
in_dims_size
;
i
++
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
const
auto
&
out_dims
=
phi
::
make_ddim
(
out_shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
out
->
share_lod
(
x
);
}
}
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
)
{
UnchangedInferMetaCheckAxis
(
x
,
axis
,
out
);
}
void
CastInferMeta
(
const
MetaTensor
&
x
,
DataType
out_dtype
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
out_dtype
);
...
...
@@ -203,73 +189,275 @@ void CumsumInferMeta(const MetaTensor& x,
out
->
share_lod
(
x
);
}
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
product
(
x
.
dims
()),
1UL
,
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be 1."
"Now the number is %d."
,
product
(
x
.
dims
())));
out
->
set_dims
(
x
.
dims
());
out
->
share_lod
(
x
);
out
->
set_dtype
(
x
.
dtype
());
}
static
phi
::
DDim
ValidateShape
(
const
std
::
vector
<
int64_t
>
shape
,
const
phi
::
DDim
&
in_dims
)
{
const
int64_t
in_size
=
phi
::
product
(
in_dims
);
auto
in_dims_vec
=
phi
::
vectorize
(
in_dims
);
bool
all_positive
=
std
::
all_of
(
in_dims_vec
.
cbegin
(),
in_dims_vec
.
cend
(),
[](
int64_t
i
)
{
return
i
>
0
;
});
// only one dimension can be set to -1, whose size will be automatically
// infered.
const
int64_t
unk_dim_val
=
-
1
;
const
int64_t
copy_dim_val
=
0
;
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
output_shape
(
shape
.
size
(),
0
);
int64_t
capacity
=
1
;
int
unk_dim_idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
unk_dim_val
)
{
PADDLE_ENFORCE_EQ
(
unk_dim_idx
,
-
1
,
phi
::
errors
::
InvalidArgument
(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1."
,
phi
::
make_ddim
(
shape
),
i
));
unk_dim_idx
=
i
;
}
else
if
(
shape
[
i
]
==
copy_dim_val
)
{
PADDLE_ENFORCE_LT
(
static_cast
<
int
>
(
i
),
in_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d."
,
phi
::
make_ddim
(
shape
),
i
,
in_dims
,
in_dims
.
size
()));
if
(
x_dims
.
size
()
==
1UL
)
{
int64_t
size_
=
x_dims
[
0
]
+
std
::
abs
(
offset
);
out
->
set_dims
({
size_
,
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
if
(
x_dims
.
size
()
==
2UL
)
{
int64_t
size_
=
0
;
if
(
offset
>=
0
)
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
<
x_dims
[
1
]
-
offset
)
{
size_
=
x_dims
[
0
];
}
else
{
size_
=
x_dims
[
1
]
-
offset
;
}
}
else
{
PADDLE_ENFORCE_GT
(
shape
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d."
,
phi
::
make_ddim
(
shape
),
i
,
shape
[
i
]));
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
+
offset
<
x_dims
[
1
])
{
size_
=
x_dims
[
0
]
+
offset
;
}
else
{
size_
=
x_dims
[
1
];
}
}
// NOTE all non-zero values will be converted to True (include negative
// value)
capacity
*=
(
shape
[
i
]
?
shape
[
i
]
:
in_dims
[
i
]);
out
->
set_dims
({
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of DiagV2Op should be either 1 or "
"2, but received %d."
,
x_dims
.
size
()));
}
}
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
)
{
auto
x_dims
=
input
.
dims
();
int
offset_
=
offset
;
int
axis1_
=
axis1
<
0
?
x_dims
.
size
()
+
axis1
:
axis1
;
int
axis2_
=
axis2
<
0
?
x_dims
.
size
()
+
axis2
:
axis2
;
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
OutOfRange
(
"Input's dim is out of range (expected at "
"least 2 dimensions, but got %ld)."
,
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis1_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis1) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis1
));
PADDLE_ENFORCE_LT
(
axis2_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis2) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis2
));
PADDLE_ENFORCE_NE
(
axis1_
,
axis2_
,
phi
::
errors
::
InvalidArgument
(
"The dimensions should not be identical "
"%d vs %d."
,
axis1
,
axis2
));
auto
out_dims
=
vectorize
(
x_dims
);
// from out_dims get the dim size of axis1_.
auto
axis1_size
=
out_dims
[
axis1_
];
auto
axis2_size
=
out_dims
[
axis2_
];
// delete two dims by attr axis1 and axis2 from out_dims.
/* example:
out_dim = [2, 3, 4];
axis1 = 0;
axis2 = 1;
according to the attr of axis1 and axis2, we get:
out_dim = [4].
*/
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
if
(
offset_
==
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
));
}
else
if
(
offset_
>
0
)
{
if
((
axis2_size
-
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
-
offset_
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
else
{
if
((
axis1_size
+
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
+
offset_
,
axis2_size
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
input_dim
=
x
.
dims
();
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
phi
::
errors
::
InvalidArgument
(
"Eigh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
out_w
->
set_dims
(
phi
::
make_ddim
(
values_dim
));
out_v
->
set_dims
(
input_dim
);
}
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
int
in_dims_size
=
x_dims
.
size
();
if
(
start_axis
<
0
)
{
start_axis
=
start_axis
+
in_dims_size
;
}
if
(
stop_axis
<
0
)
{
stop_axis
=
stop_axis
+
in_dims_size
;
}
PADDLE_ENFORCE_GE
(
stop_axis
,
start_axis
,
phi
::
errors
::
InvalidArgument
(
"The stop_axis should be greater"
"than or equal to start_axis."
));
int64_t
outer
=
1
;
std
::
vector
<
int32_t
>
out_shape
;
out_shape
.
reserve
(
in_dims_size
-
stop_axis
+
start_axis
);
for
(
int
i
=
0
;
i
<
start_axis
;
++
i
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
for
(
int
i
=
start_axis
;
i
<=
stop_axis
;
i
++
)
{
if
(
x_dims
[
i
]
==
-
1
||
outer
==
-
1
)
{
outer
=
-
1
;
}
else
{
outer
*=
x_dims
[
i
];
}
}
out_shape
.
push_back
(
outer
);
for
(
int
i
=
stop_axis
+
1
;
i
<
in_dims_size
;
i
++
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
const
auto
&
out_dims
=
phi
::
make_ddim
(
out_shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
out
->
share_lod
(
x
);
}
}
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
)
{
UnchangedInferMetaCheckAxis
(
x
,
axis
,
out
);
}
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
product
(
x
.
dims
()),
1UL
,
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be 1."
"Now the number is %d."
,
product
(
x
.
dims
())));
out
->
set_dims
(
x
.
dims
());
out
->
share_lod
(
x
);
out
->
set_dtype
(
x
.
dtype
());
}
static
phi
::
DDim
ValidateShape
(
const
std
::
vector
<
int64_t
>
shape
,
const
phi
::
DDim
&
in_dims
)
{
const
int64_t
in_size
=
phi
::
product
(
in_dims
);
auto
in_dims_vec
=
phi
::
vectorize
(
in_dims
);
bool
all_positive
=
std
::
all_of
(
in_dims_vec
.
cbegin
(),
in_dims_vec
.
cend
(),
[](
int64_t
i
)
{
return
i
>
0
;
});
// only one dimension can be set to -1, whose size will be automatically
// infered.
const
int64_t
unk_dim_val
=
-
1
;
const
int64_t
copy_dim_val
=
0
;
std
::
vector
<
int64_t
>
output_shape
(
shape
.
size
(),
0
);
int64_t
capacity
=
1
;
int
unk_dim_idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
unk_dim_val
)
{
PADDLE_ENFORCE_EQ
(
unk_dim_idx
,
-
1
,
phi
::
errors
::
InvalidArgument
(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1."
,
phi
::
make_ddim
(
shape
),
i
));
unk_dim_idx
=
i
;
}
else
if
(
shape
[
i
]
==
copy_dim_val
)
{
PADDLE_ENFORCE_LT
(
static_cast
<
int
>
(
i
),
in_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d."
,
phi
::
make_ddim
(
shape
),
i
,
in_dims
,
in_dims
.
size
()));
}
else
{
PADDLE_ENFORCE_GT
(
shape
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d."
,
phi
::
make_ddim
(
shape
),
i
,
shape
[
i
]));
}
// NOTE all non-zero values will be converted to True (include negative
// value)
capacity
*=
(
shape
[
i
]
?
shape
[
i
]
:
in_dims
[
i
]);
output_shape
[
i
]
=
(
shape
[
i
]
?
static_cast
<
int64_t
>
(
shape
[
i
])
:
in_dims
[
i
]);
}
...
...
@@ -360,6 +548,11 @@ void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out) {
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
IsfiniteInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
MultinomialInferMeta
(
const
MetaTensor
&
x
,
int
num_samples
,
bool
replacement
,
...
...
@@ -395,124 +588,97 @@ void MultinomialInferMeta(const MetaTensor& x,
out
->
set_dtype
(
DataType
::
INT64
);
}
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
)
{
#define MAX_RANK_SUPPORTED 6
auto
repeat_times_data
=
repeat_times
.
GetData
();
auto
x_dims
=
x
.
dims
();
if
(
repeat_times_data
.
size
()
==
0
)
{
repeat_times_data
=
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
-
1
);
}
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
repeat_times_data
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_data
.
size
()));
PADDLE_ENFORCE_GE
(
repeat_times_data
.
size
(),
1
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must be positive integers, but the value received is %d."
,
repeat_times_data
.
size
()));
auto
out_rank
=
std
::
max
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
repeat_times_data
.
size
());
std
::
vector
<
int64_t
>
out_shape
(
out_rank
);
auto
x_dim_vec
=
phi
::
vectorize
<
int
>
(
x_dims
);
if
(
x_dim_vec
.
size
()
>
repeat_times_data
.
size
())
{
auto
diff
=
x_dim_vec
.
size
()
-
repeat_times_data
.
size
();
repeat_times_data
.
insert
(
repeat_times_data
.
begin
(),
diff
,
-
1
);
}
else
{
auto
diff
=
repeat_times_data
.
size
()
-
x_dim_vec
.
size
();
x_dim_vec
.
insert
(
x_dim_vec
.
begin
(),
diff
,
-
1
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dim
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
,
phi
::
errors
::
InvalidArgument
(
"Size of 'paddings' dimension should be equal to 2 * size of "
"Input(X)'s dimension, but received (size of 'paddings' dimension "
"is) %d vs (2 * size of Input(X)'s dimension is) %d."
,
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
));
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
paddings
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"The element of 'paddings' should >= 0, but "
"received %d for index %d."
,
paddings
[
i
],
static_cast
<
int
>
(
i
)));
}
for
(
size_t
i
=
0
;
i
<
repeat_times_data
.
size
();
++
i
)
{
if
(
x_dim_vec
[
i
]
==
-
1
||
repeat_times_data
[
i
]
==
-
1
)
{
out_shape
[
i
]
=
-
1
;
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
((
!
config
.
is_runtime
)
&&
(
x_dim
[
i
]
==
-
1
))
{
out_dims
[
i
]
=
-
1
;
}
else
{
PADDLE_ENFORCE_GT
(
repeat_times_data
[
i
],
0
,
errors
::
InvalidArgument
(
"Every element of the input 'repeat_times' for tile op must be "
"greater than 0, but the value given is %d."
,
repeat_times_data
[
i
]));
out_shape
[
i
]
=
x_dim_vec
[
i
]
*
repeat_times_data
[
i
];
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_shape
));
if
(
out_shape
[
0
]
==
x_dims
[
0
])
{
out
->
share_lod
(
x
);
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
if
(
out_dims
[
0
]
==
x_dim
[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
out
->
share_lod
(
input
);
}
out
->
set_dtype
(
input
.
dtype
());
}
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
&
shape_data
=
shape
.
GetData
();
PADDLE_ENFORCE_NOT_NULL
(
out
,
phi
::
errors
::
InvalidArgument
(
"Output(Out) of ReshapeOp should not be null."
));
if
(
!
config
.
is_runtime
&&
shape
.
FromTensor
())
{
out
->
set_dims
(
phi
::
make_ddim
(
shape_data
));
out
->
share_lod
(
x
);
return
;
}
PADDLE_ENFORCE_GT
(
shape_data
.
size
(),
0
,
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"
The shape's size in ReshapeOp can't be zero."
));
InferMetaFromVecValue
(
x
,
shape_data
,
out
);
}
"
Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u."
,
input_dims
.
size
()));
void
ReshapeWithXShapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
xshape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
PADDLE_ENFORCE_NOT_NULL
(
xshape
,
phi
::
errors
::
InvalidArgument
(
"Output(XShape) of ReshapeOp should not be null."
));
const
auto
&
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
const
bool
channel_last
=
(
data_format
==
"NHWC"
);
if
(
!
channel_last
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
1
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
input_dims
[
3
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
3
]));
}
xshape
->
set_dims
(
phi
::
make_ddim
(
xshape_dims
));
xshape
->
share_lod
(
x
);
ReshapeInferMeta
(
x
,
shape
,
out
,
config
);
auto
output_dims
=
input_dims
;
output_dims
[
0
]
=
input_dims
[
0
];
if
(
!
channel_last
)
{
output_dims
[
1
]
=
input_dims
[
1
]
/
(
upscale_factor
*
upscale_factor
);
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
*
upscale_factor
;
}
else
{
output_dims
[
1
]
=
input_dims
[
1
]
*
upscale_factor
;
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
/
(
upscale_factor
*
upscale_factor
);
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
output_dims
);
}
/* Why not use SumRawInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
SumRawInferMeta
(
x
,
axis
,
keep_dim
,
reduce_all
,
dtype
,
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
dtype
::
ToReal
(
x
.
dtype
()));
out
->
set_layout
(
x
.
layout
());
}
DDim
ReduceInferDim
(
const
MetaTensor
&
x
,
...
...
@@ -584,29 +750,12 @@ DDim ReduceInferDim(const MetaTensor& x,
return
out_dim
;
}
void
SumRaw
InferMeta
(
const
MetaTensor
&
x
,
void
Reduce
InferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
)
{
DDim
out_dim
=
ReduceInferDim
(
x
,
axis
,
keep_dim
,
reduce_all
);
DataType
out_dtype
;
if
(
dtype
!=
DataType
::
UNDEFINED
)
{
out_dtype
=
dtype
;
}
else
{
if
(
x
.
dtype
()
==
DataType
::
BOOL
||
x
.
dtype
()
==
DataType
::
INT32
||
x
.
dtype
()
==
DataType
::
INT64
)
{
out_dtype
=
DataType
::
INT64
;
}
else
{
out_dtype
=
x
.
dtype
();
}
}
out
->
set_dims
(
out_dim
);
out
->
set_dtype
(
out_dtype
);
out
->
set_layout
(
x
.
layout
());
bool
reduce_all
=
false
;
ReduceInferMetaBase
(
x
,
axis
,
keep_dim
,
reduce_all
,
out
);
}
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
...
...
@@ -620,33 +769,109 @@ void ReduceInferMetaBase(const MetaTensor& x,
out
->
set_layout
(
x
.
layout
());
}
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
ReduceInferMetaBase
(
x
,
axis
,
keep_dim
,
reduce_all
,
out
);
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
&
shape_data
=
shape
.
GetData
();
PADDLE_ENFORCE_NOT_NULL
(
out
,
phi
::
errors
::
InvalidArgument
(
"Output(Out) of ReshapeOp should not be null."
));
if
(
!
config
.
is_runtime
&&
shape
.
FromTensor
())
{
out
->
set_dims
(
phi
::
make_ddim
(
shape_data
));
out
->
share_lod
(
x
);
return
;
}
PADDLE_ENFORCE_GT
(
shape_data
.
size
(),
0
,
phi
::
errors
::
InvalidArgument
(
"The shape's size in ReshapeOp can't be zero."
));
InferMetaFromVecValue
(
x
,
shape_data
,
out
);
}
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
layout
);
void
ReshapeWithXShapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
xshape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
PADDLE_ENFORCE_NOT_NULL
(
xshape
,
phi
::
errors
::
InvalidArgument
(
"Output(XShape) of ReshapeOp should not be null."
));
const
auto
&
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
xshape
->
set_dims
(
phi
::
make_ddim
(
xshape_dims
));
xshape
->
share_lod
(
x
);
ReshapeInferMeta
(
x
,
shape
,
out
,
config
);
}
void
SplitInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
)
{
int
axis_value
=
axis
.
to
<
int
>
();
int
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_EQ
(
axis_value
>=
-
rank
&&
axis_value
<
rank
,
true
,
phi
::
errors
::
InvalidArgument
(
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dims
=
in
.
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Rank of Input(X) should be at least 2, "
"but the value given is %d."
,
x_dims
.
size
()));
if
(
config
.
is_runtime
||
x_dims
[
x_dims
.
size
()
-
1
]
>
0
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims
.
size
()
-
1
],
1U
,
phi
::
errors
::
InvalidArgument
(
"The last dimension of Input(X) should be 1, "
"but the value given is %d."
,
x_dims
[
x_dims
.
size
()
-
1
]));
}
out
->
set_dims
(
x_dims
);
out
->
share_lod
(
in
);
out
->
set_dtype
(
in
.
dtype
());
}
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
)
{
out
->
set_dtype
(
DataType
::
INT64
);
out
->
set_dims
({
1
});
}
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
dim_x
=
x
.
dims
();
auto
rank_x
=
dim_x
.
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
PADDLE_ENFORCE_LT
(
axis
,
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
void
SplitInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
)
{
int
axis_value
=
axis
.
to
<
int
>
();
int
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_EQ
(
axis_value
>=
-
rank
&&
axis_value
<
rank
,
true
,
phi
::
errors
::
InvalidArgument
(
"The axis is expected to be in range of [%d, %d), but got %d"
,
-
rank
,
rank
,
...
...
@@ -767,22 +992,108 @@ void SplitInferMeta(const MetaTensor& x,
}
}
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
)
{
auto
in_dims
=
x
.
dims
();
std
::
vector
<
int
>
out_dim
;
axis
=
axis
<
0
?
in_dims
.
size
()
+
axis
:
axis
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
!=
axis
)
out_dim
.
push_back
(
in_dims
[
i
]);
/* Why not use SumRawInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
SumRawInferMeta
(
x
,
axis
,
keep_dim
,
reduce_all
,
dtype
,
out
);
}
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
)
{
DDim
out_dim
=
ReduceInferDim
(
x
,
axis
,
keep_dim
,
reduce_all
);
DataType
out_dtype
;
if
(
dtype
!=
DataType
::
UNDEFINED
)
{
out_dtype
=
dtype
;
}
else
{
if
(
x
.
dtype
()
==
DataType
::
BOOL
||
x
.
dtype
()
==
DataType
::
INT32
||
x
.
dtype
()
==
DataType
::
INT64
)
{
out_dtype
=
DataType
::
INT64
;
}
else
{
out_dtype
=
x
.
dtype
();
}
}
auto
out_dims
=
phi
::
make_ddim
(
out_dim
);
for
(
size_t
i
=
0
;
i
<
outs
->
size
();
++
i
)
{
(
*
outs
)[
i
].
set_dtype
(
x
.
dtype
());
(
*
outs
)[
i
].
set_dims
(
out_dims
);
(
*
outs
)[
i
].
set_layout
(
x
.
layout
());
(
*
outs
)[
i
].
share_lod
(
x
);
out
->
set_dims
(
out_dim
);
out
->
set_dtype
(
out_dtype
);
out
->
set_layout
(
x
.
layout
());
}
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
)
{
#define MAX_RANK_SUPPORTED 6
auto
repeat_times_data
=
repeat_times
.
GetData
();
auto
x_dims
=
x
.
dims
();
if
(
repeat_times_data
.
size
()
==
0
)
{
repeat_times_data
=
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
-
1
);
}
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
repeat_times_data
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_data
.
size
()));
PADDLE_ENFORCE_GE
(
repeat_times_data
.
size
(),
1
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must be positive integers, but the value received is %d."
,
repeat_times_data
.
size
()));
auto
out_rank
=
std
::
max
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
repeat_times_data
.
size
());
std
::
vector
<
int64_t
>
out_shape
(
out_rank
);
auto
x_dim_vec
=
phi
::
vectorize
<
int
>
(
x_dims
);
if
(
x_dim_vec
.
size
()
>
repeat_times_data
.
size
())
{
auto
diff
=
x_dim_vec
.
size
()
-
repeat_times_data
.
size
();
repeat_times_data
.
insert
(
repeat_times_data
.
begin
(),
diff
,
-
1
);
}
else
{
auto
diff
=
repeat_times_data
.
size
()
-
x_dim_vec
.
size
();
x_dim_vec
.
insert
(
x_dim_vec
.
begin
(),
diff
,
-
1
);
}
for
(
size_t
i
=
0
;
i
<
repeat_times_data
.
size
();
++
i
)
{
if
(
x_dim_vec
[
i
]
==
-
1
||
repeat_times_data
[
i
]
==
-
1
)
{
out_shape
[
i
]
=
-
1
;
}
else
{
PADDLE_ENFORCE_GT
(
repeat_times_data
[
i
],
0
,
errors
::
InvalidArgument
(
"Every element of the input 'repeat_times' for tile op must be "
"greater than 0, but the value given is %d."
,
repeat_times_data
[
i
]));
out_shape
[
i
]
=
x_dim_vec
[
i
]
*
repeat_times_data
[
i
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_shape
));
if
(
out_shape
[
0
]
==
x_dims
[
0
])
{
out
->
share_lod
(
x
);
}
}
...
...
@@ -840,79 +1151,112 @@ void TraceInferMeta(
out
->
set_dtype
(
x
.
dtype
());
}
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
)
{
auto
x_dims
=
input
.
dims
();
int
offset_
=
offset
;
int
axis1_
=
axis1
<
0
?
x_dims
.
size
()
+
axis1
:
axis1
;
int
axis2_
=
axis2
<
0
?
x_dims
.
size
()
+
axis2
:
axis2
;
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
layout
);
}
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
OutOfRange
(
"Input's dim is out of range (expected at "
"least 2 dimensions, but got %ld)."
,
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis1_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis1) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis1
));
PADDLE_ENFORCE_LT
(
axis2_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis2) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis2
));
PADDLE_ENFORCE_NE
(
axis1_
,
axis2_
,
phi
::
errors
::
InvalidArgument
(
"The dimensions should not be identical "
"%d vs %d."
,
axis1
,
axis2
));
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
x_rank
=
x_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
auto
out_dims
=
vectorize
(
x_dims
);
// from out_dims get the dim size of axis1_.
auto
axis1_size
=
out_dims
[
axis1_
];
auto
axis2_size
=
out_dims
[
axis2_
];
// delete two dims by attr axis1 and axis2 from out_dims.
/* example:
out_dim = [2, 3, 4];
axis1 = 0;
axis2 = 1;
according to the attr of axis1 and axis2, we get:
out_dim = [4].
*/
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
PADDLE_ENFORCE_EQ
(
x_rank
,
axis_size
,
errors
::
InvalidArgument
(
"The input tensor's dimension "
"should be equal to the axis's size. "
"But received input tensor's dimension is %d, "
"axis's size is %d"
,
x_rank
,
axis_size
));
if
(
offset_
==
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
));
}
else
if
(
offset_
>
0
)
{
if
((
axis2_size
-
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
-
offset_
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
else
{
if
((
axis1_size
+
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
+
offset_
,
axis2_size
));
}
else
{
out_dims
.
push_back
(
0
);
}
std
::
vector
<
int
>
count
(
axis_size
,
0
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
PADDLE_ENFORCE_GE
(
axis
[
i
],
0
,
errors
::
InvalidArgument
(
"The axis should be greater than or equal to 0."
"But received %d of axis[%d]"
,
axis
[
i
],
i
));
PADDLE_ENFORCE_EQ
(
axis
[
i
]
<
static_cast
<
int
>
(
axis_size
)
&&
++
count
[
axis
[
i
]]
==
1
,
true
,
errors
::
InvalidArgument
(
"Each element of Attribute axis should "
"be a unique value range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"unique value means this axis value can appear only once. "
"But received axis[%d] is %d, axis_size is %d, "
"count[axis[%d]] is %d"
,
i
,
axis
[
i
],
axis_size
,
i
,
count
[
axis
[
i
]]));
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
phi
::
DDim
out_dims
(
x_dims
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
++
i
)
{
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
}
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
)
{
auto
in_dims
=
x
.
dims
();
std
::
vector
<
int
>
out_dim
;
axis
=
axis
<
0
?
in_dims
.
size
()
+
axis
:
axis
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
!=
axis
)
out_dim
.
push_back
(
in_dims
[
i
]);
}
auto
out_dims
=
phi
::
make_ddim
(
out_dim
);
for
(
size_t
i
=
0
;
i
<
outs
->
size
();
++
i
)
{
(
*
outs
)[
i
].
set_dtype
(
x
.
dtype
());
(
*
outs
)[
i
].
set_dims
(
out_dims
);
(
*
outs
)[
i
].
set_layout
(
x
.
layout
());
(
*
outs
)[
i
].
share_lod
(
x
);
}
}
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
PADDLE_ENFORCE_LT
(
axis
,
rank
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
out
->
share_meta
(
x
);
}
void
UnfoldInferMeta
(
const
MetaTensor
&
x
,
...
...
@@ -1073,303 +1417,6 @@ void UnfoldInferMeta(const MetaTensor& x,
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
if
(
x_dims
.
size
()
==
1UL
)
{
int64_t
size_
=
x_dims
[
0
]
+
std
::
abs
(
offset
);
out
->
set_dims
({
size_
,
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
if
(
x_dims
.
size
()
==
2UL
)
{
int64_t
size_
=
0
;
if
(
offset
>=
0
)
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
<
x_dims
[
1
]
-
offset
)
{
size_
=
x_dims
[
0
];
}
else
{
size_
=
x_dims
[
1
]
-
offset
;
}
}
else
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
+
offset
<
x_dims
[
1
])
{
size_
=
x_dims
[
0
]
+
offset
;
}
else
{
size_
=
x_dims
[
1
];
}
}
out
->
set_dims
({
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of DiagV2Op should be either 1 or "
"2, but received %d."
,
x_dims
.
size
()));
}
}
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
)
{
const
auto
&
x_dims
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
axis
,
-
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be greater than or equal to"
" -Rank(X)(%d)."
,
axis
,
-
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis
,
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d) of Input(X)."
,
axis
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
(
dtype
<
0
||
dtype
==
2
||
dtype
==
3
),
true
,
phi
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
if
(
config
.
is_runtime
)
{
if
(
dtype
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
int64_t
all_element_num
=
0
;
if
(
flatten
)
{
all_element_num
=
phi
::
product
(
x_dims
);
}
else
{
all_element_num
=
x_dims
[
axis
];
}
PADDLE_ENFORCE_LE
(
all_element_num
,
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The element num of the argmin/argmax input at axis is "
"%d, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'."
,
all_element_num
,
INT_MAX
));
}
}
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
else
{
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
}
out
->
set_dims
(
phi
::
make_ddim
(
vec
));
if
(
dtype
==
2
)
{
out
->
set_dtype
(
DataType
::
INT32
);
}
else
if
(
dtype
==
3
)
{
out
->
set_dtype
(
DataType
::
INT64
);
}
}
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
)
{
out
->
set_dtype
(
DataType
::
INT64
);
out
->
set_dims
({
1
});
}
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dim
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
,
phi
::
errors
::
InvalidArgument
(
"Size of 'paddings' dimension should be equal to 2 * size of "
"Input(X)'s dimension, but received (size of 'paddings' dimension "
"is) %d vs (2 * size of Input(X)'s dimension is) %d."
,
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
));
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
paddings
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"The element of 'paddings' should >= 0, but "
"received %d for index %d."
,
paddings
[
i
],
static_cast
<
int
>
(
i
)));
}
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
((
!
config
.
is_runtime
)
&&
(
x_dim
[
i
]
==
-
1
))
{
out_dims
[
i
]
=
-
1
;
}
else
{
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
if
(
out_dims
[
0
]
==
x_dim
[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
out
->
share_lod
(
input
);
}
out
->
set_dtype
(
input
.
dtype
());
}
void
IsfiniteInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u."
,
input_dims
.
size
()));
const
bool
channel_last
=
(
data_format
==
"NHWC"
);
if
(
!
channel_last
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
1
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
input_dims
[
3
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
3
]));
}
auto
output_dims
=
input_dims
;
output_dims
[
0
]
=
input_dims
[
0
];
if
(
!
channel_last
)
{
output_dims
[
1
]
=
input_dims
[
1
]
/
(
upscale_factor
*
upscale_factor
);
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
*
upscale_factor
;
}
else
{
output_dims
[
1
]
=
input_dims
[
1
]
*
upscale_factor
;
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
/
(
upscale_factor
*
upscale_factor
);
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
output_dims
);
}
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
x_rank
=
x_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
PADDLE_ENFORCE_EQ
(
x_rank
,
axis_size
,
errors
::
InvalidArgument
(
"The input tensor's dimension "
"should be equal to the axis's size. "
"But received input tensor's dimension is %d, "
"axis's size is %d"
,
x_rank
,
axis_size
));
std
::
vector
<
int
>
count
(
axis_size
,
0
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
PADDLE_ENFORCE_GE
(
axis
[
i
],
0
,
errors
::
InvalidArgument
(
"The axis should be greater than or equal to 0."
"But received %d of axis[%d]"
,
axis
[
i
],
i
));
PADDLE_ENFORCE_EQ
(
axis
[
i
]
<
static_cast
<
int
>
(
axis_size
)
&&
++
count
[
axis
[
i
]]
==
1
,
true
,
errors
::
InvalidArgument
(
"Each element of Attribute axis should "
"be a unique value range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"unique value means this axis value can appear only once. "
"But received axis[%d] is %d, axis_size is %d, "
"count[axis[%d]] is %d"
,
i
,
axis
[
i
],
axis_size
,
i
,
count
[
axis
[
i
]]));
}
phi
::
DDim
out_dims
(
x_dims
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
++
i
)
{
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
}
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
input_dim
=
x
.
dims
();
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
phi
::
errors
::
InvalidArgument
(
"Eigh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
out_w
->
set_dims
(
phi
::
make_ddim
(
values_dim
));
out_v
->
set_dims
(
input_dim
);
}
void
WhereIndexInferMeta
(
const
MetaTensor
&
condition
,
MetaTensor
*
out
)
{
auto
rank
=
condition
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
...
...
@@ -1381,53 +1428,6 @@ void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out) {
out
->
set_dtype
(
DataType
::
INT64
);
}
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dims
=
in
.
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Rank of Input(X) should be at least 2, "
"but the value given is %d."
,
x_dims
.
size
()));
if
(
config
.
is_runtime
||
x_dims
[
x_dims
.
size
()
-
1
]
>
0
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims
.
size
()
-
1
],
1U
,
phi
::
errors
::
InvalidArgument
(
"The last dimension of Input(X) should be 1, "
"but the value given is %d."
,
x_dims
[
x_dims
.
size
()
-
1
]));
}
out
->
set_dims
(
x_dims
);
out
->
share_lod
(
in
);
out
->
set_dtype
(
in
.
dtype
());
}
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
dim_x
=
x
.
dims
();
auto
rank_x
=
dim_x
.
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
PADDLE_ENFORCE_LT
(
axis
,
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
}
// namespace phi
PD_REGISTER_INFER_META_FN
(
copy_to
,
phi
::
CopyToInferMeta
);
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
080024f0
...
...
@@ -32,32 +32,20 @@ class MetaConfig;
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
ArgsortInferMeta
(
const
MetaTensor
&
input
,
int
axis
,
bool
descending
,
MetaTensor
*
output
,
MetaTensor
*
indices
);
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
);
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
);
void
CastInferMeta
(
const
MetaTensor
&
x
,
DataType
out_dtype
,
MetaTensor
*
out
);
void
CholeskyInferMeta
(
const
MetaTensor
&
x
,
bool
upper
,
MetaTensor
*
out
);
...
...
@@ -76,6 +64,30 @@ void CumsumInferMeta(const MetaTensor& x,
bool
reverse
,
MetaTensor
*
out
);
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
);
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
);
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
);
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
);
void
InferMetaFromVecValue
(
const
MetaTensor
&
x
,
...
...
@@ -84,11 +96,37 @@ void InferMetaFromVecValue(const MetaTensor& x,
void
IsEmptyInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
IsfiniteInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
MultinomialInferMeta
(
const
MetaTensor
&
x
,
int
num_samples
,
bool
replacement
,
MetaTensor
*
out
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
);
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
MetaTensor
*
out
);
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
...
...
@@ -100,28 +138,23 @@ void ReshapeWithXShapeInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
);
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
MetaTensor
*
out
);
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
);
void
SplitInferMeta
(
const
MetaTensor
&
x_meta
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
=
MetaConfig
());
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
...
...
@@ -129,21 +162,39 @@ void SumInferMeta(const MetaTensor& x,
bool
keep_dim
,
MetaTensor
*
out
);
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
);
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
TraceInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
);
void
SplitInferMeta
(
const
MetaTensor
&
x_meta
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
=
MetaConfig
());
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
);
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
);
void
TraceInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
UnfoldInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
...
...
@@ -153,56 +204,6 @@ void UnfoldInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
);
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
);
void
IsfiniteInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
);
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
WhereIndexInferMeta
(
const
MetaTensor
&
condition
,
MetaTensor
*
out
);
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录