Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
07e87ff1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07e87ff1
编写于
1月 18, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix sequence_padding compile warning
上级
4b3e22b8
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
20 addition
and
18 deletion
+20
-18
paddle/operators/math/sequence_padding.cc
paddle/operators/math/sequence_padding.cc
+20
-18
未找到文件。
paddle/operators/math/sequence_padding.cc
浏览文件 @
07e87ff1
...
@@ -32,7 +32,8 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
...
@@ -32,7 +32,8 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
"equal to the sum of all sequences's length."
);
...
@@ -41,32 +42,32 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
...
@@ -41,32 +42,32 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."
);
"[max_sequence_length, num_sequences, sequence_width]."
);
const
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
const
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be the "
"The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."
);
"maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be the "
"The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."
);
"number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
"width of sequence in LoDTensor seq."
);
const
T
*
seq_data
=
seq
.
data
<
T
>
();
const
T
*
seq_data
=
seq
.
data
<
T
>
();
T
*
padding_data
=
padding
.
data
<
T
>
();
T
*
padding_data
=
padding
.
data
<
T
>
();
for
(
size
_t
i
=
0
;
i
<
max_sequence_length
;
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
max_sequence_length
;
++
i
)
{
for
(
size
_t
j
=
0
;
j
<
num_sequences
;
++
j
)
{
for
(
int64
_t
j
=
0
;
j
<
num_sequences
;
++
j
)
{
size
_t
start_pos
=
abs_offset_lod
[
level
][
j
];
int64
_t
start_pos
=
abs_offset_lod
[
level
][
j
];
size
_t
sequence_length
=
abs_offset_lod
[
level
][
j
+
1
]
-
start_pos
;
int64
_t
sequence_length
=
abs_offset_lod
[
level
][
j
+
1
]
-
start_pos
;
if
(
i
<
sequence_length
)
{
if
(
i
<
sequence_length
)
{
// i > 0 => sequence_length > 0
// i > 0 => sequence_length > 0
T
scale
=
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
size
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
for
(
int64
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
padding_data
[(
i
*
num_sequences
+
j
)
*
sequence_width
+
k
]
=
padding_data
[(
i
*
num_sequences
+
j
)
*
sequence_width
+
k
]
=
seq_data
[(
start_pos
+
i
)
*
sequence_width
+
k
]
*
scale
;
seq_data
[(
start_pos
+
i
)
*
sequence_width
+
k
]
*
scale
;
}
}
...
@@ -93,7 +94,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
...
@@ -93,7 +94,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
"equal to the sum of all sequences's length."
);
...
@@ -102,31 +104,31 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
...
@@ -102,31 +104,31 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."
);
"[max_sequnece_length, num_sequences, sequence_width]."
);
const
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
const
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be "
"The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."
);
"the maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be "
"The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."
);
"the number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
"width of sequence in LoDTensor seq."
);
const
T
*
padding_data
=
padding
.
data
<
T
>
();
const
T
*
padding_data
=
padding
.
data
<
T
>
();
T
*
seq_data
=
seq
.
data
<
T
>
();
T
*
seq_data
=
seq
.
data
<
T
>
();
for
(
size
_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
size
_t
start_pos
=
abs_offset_lod
[
level
][
i
];
int64
_t
start_pos
=
abs_offset_lod
[
level
][
i
];
size
_t
sequence_length
=
abs_offset_lod
[
level
][
i
+
1
]
-
start_pos
;
int64
_t
sequence_length
=
abs_offset_lod
[
level
][
i
+
1
]
-
start_pos
;
for
(
size
_t
j
=
0
;
j
<
sequence_length
;
++
j
)
{
for
(
int64
_t
j
=
0
;
j
<
sequence_length
;
++
j
)
{
// sequence_width > j > 0
// sequence_width > j > 0
T
scale
=
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
size
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
for
(
int64
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
seq_data
[(
start_pos
+
j
)
*
sequence_width
+
k
]
=
seq_data
[(
start_pos
+
j
)
*
sequence_width
+
k
]
=
padding_data
[(
j
*
num_sequences
+
i
)
*
sequence_width
+
k
]
*
padding_data
[(
j
*
num_sequences
+
i
)
*
sequence_width
+
k
]
*
scale
;
scale
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录