Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
07c67d5a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
07c67d5a
编写于
12月 01, 2020
作者:
卖
卖鱼的哲学
提交者:
GitHub
12月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add deformable_conv op on xpu (#29234)
* rebase develop * update deformable_conv op on xpu * update deformable_conv op on xpu
上级
1de32f82
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
562 addition
and
0 deletion
+562
-0
paddle/fluid/operators/deformable_conv_op_xpu.cc
paddle/fluid/operators/deformable_conv_op_xpu.cc
+288
-0
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
.../fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
+274
-0
未找到文件。
paddle/fluid/operators/deformable_conv_op_xpu.cc
0 → 100644
浏览文件 @
07c67d5a
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/xpu_header.h"
#include "xpu/refactor/math.h"
#include "xpu/refactor/nn.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
DeformableConvXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
offset
=
ctx
.
Input
<
Tensor
>
(
"Offset"
);
auto
*
mask
=
ctx
.
Input
<
Tensor
>
(
"Mask"
);
Tensor
filter
=
*
ctx
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
const
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
int
deformable_groups
=
ctx
.
Attr
<
int
>
(
"deformable_groups"
);
const
int
im2col_step
=
ctx
.
Attr
<
int
>
(
"im2col_step"
);
const
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
const
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
PADDLE_ENFORCE_EQ
(
deformable_groups
==
1
,
true
,
platform
::
errors
::
InvalidArgument
((
"XPU only support deformable_groups == 1 in deformable_conv op."
)));
PADDLE_ENFORCE_EQ
(
groups
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
(
"XPU only support groups == 1 in deformable_conv op."
)));
PADDLE_ENFORCE_EQ
(
filter
.
dims
()[
2
]
<=
8
&&
filter
.
dims
()[
3
]
<=
8
,
true
,
platform
::
errors
::
InvalidArgument
(
"Filter high and weight should less than 8 on xpu "
"in deformable_conv op."
));
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
const
T
*
input_ptr
=
input
->
data
<
T
>
();
const
T
*
filter_ptr
=
filter
.
data
<
T
>
();
const
float
*
offset_ptr
=
offset
->
data
<
T
>
();
const
float
*
mask_ptr
=
mask
->
data
<
T
>
();
T
*
output_prt
=
output
->
data
<
T
>
();
// set zeros for d_table_data
const
int
zero
=
0
;
int
r
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
output_prt
,
output
->
numel
(),
zero
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d], please check where "
"Baidu Kunlun Card is properly installed."
,
r
));
int
input_dim
=
input
->
numel
()
/
input
->
dims
()[
0
];
int
input_offset_dim
=
offset
->
numel
()
/
offset
->
dims
()[
0
];
int
input_mask_dim
=
mask
->
numel
()
/
mask
->
dims
()[
0
];
int
output_dim
=
output_shape_vec
[
1
]
*
output_shape_vec
[
2
]
*
output_shape_vec
[
3
];
std
::
vector
<
int
>
ksize
{
static_cast
<
int
>
(
filter
.
dims
()[
2
]),
static_cast
<
int
>
(
filter
.
dims
()[
3
])};
int
n
=
im2col_step
;
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
int
f
=
filter
.
dims
()[
0
];
for
(
int
i
=
0
;
i
<
batch_size
/
im2col_step
;
++
i
)
{
int
r
=
xpu
::
deformable_conv
<
float
,
float
,
float
,
int
>
(
dev_ctx
.
x_context
(),
input_ptr
+
i
*
im2col_step
*
input_dim
,
filter_ptr
,
offset_ptr
+
i
*
im2col_step
*
input_offset_dim
,
mask_ptr
+
i
*
im2col_step
*
input_mask_dim
,
output_prt
+
i
*
im2col_step
*
output_dim
,
n
,
c
,
h
,
w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
deformable_groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU deformable_conv kernel return wrong value[%d]."
,
r
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
DeformableConvGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
Tensor
*
offset_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Offset"
));
Tensor
*
mask_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Mask"
));
T
*
dx_data
=
nullptr
;
T
*
dw_data
=
nullptr
;
T
*
dmask_data
=
nullptr
;
T
*
doffset_data
=
nullptr
;
if
(
input_grad
!=
nullptr
)
{
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dx_data
=
input_grad
->
data
<
T
>
();
}
if
(
filter_grad
!=
nullptr
)
{
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dw_data
=
filter_grad
->
data
<
T
>
();
}
if
(
offset_grad
!=
nullptr
)
{
offset_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
doffset_data
=
offset_grad
->
data
<
T
>
();
}
if
(
mask_grad
!=
nullptr
)
{
mask_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dmask_data
=
mask_grad
->
data
<
T
>
();
}
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
Tensor
offset
=
*
ctx
.
Input
<
Tensor
>
(
"Offset"
);
Tensor
mask
=
*
ctx
.
Input
<
Tensor
>
(
"Mask"
);
Tensor
filter
=
*
ctx
.
Input
<
Tensor
>
(
"Filter"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
deformable_groups
=
ctx
.
Attr
<
int
>
(
"deformable_groups"
);
int
im2col_step
=
ctx
.
Attr
<
int
>
(
"im2col_step"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
PADDLE_ENFORCE_EQ
(
deformable_groups
==
1
,
true
,
platform
::
errors
::
InvalidArgument
((
"XPU only support deformable_groups == 1 in deformable_conv op."
)));
PADDLE_ENFORCE_EQ
(
groups
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
(
"XPU only support groups == 1 in deformable_conv op."
)));
PADDLE_ENFORCE_EQ
(
filter
.
dims
()[
2
]
<=
8
&&
filter
.
dims
()[
3
]
<=
8
,
true
,
platform
::
errors
::
InvalidArgument
(
"Filter high and weight should less than 8 on xpu "
"in deformable_conv op."
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output_grad
->
dims
()));
const
T
*
output_grad_ptr
=
output_grad
->
data
<
T
>
();
const
T
*
input_ptr
=
input
->
data
<
T
>
();
const
T
*
filter_ptr
=
filter
.
data
<
T
>
();
const
float
*
offset_ptr
=
offset
.
data
<
float
>
();
const
float
*
mask_ptr
=
mask
.
data
<
float
>
();
if
(
dx_data
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dx_data
),
input
->
numel
()
*
sizeof
(
T
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
if
(
dw_data
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dw_data
),
filter
.
numel
()
*
sizeof
(
T
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
if
(
doffset_data
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
doffset_data
),
offset
.
numel
()
*
sizeof
(
T
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
if
(
dmask_data
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dmask_data
),
mask
.
numel
()
*
sizeof
(
T
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
int
input_dim
=
input
->
numel
()
/
input
->
dims
()[
0
];
int
input_offset_dim
=
offset
.
numel
()
/
offset
.
dims
()[
0
];
int
input_mask_dim
=
mask
.
numel
()
/
mask
.
dims
()[
0
];
int
output_dim
=
output_shape_vec
[
1
]
*
output_shape_vec
[
2
]
*
output_shape_vec
[
3
];
std
::
vector
<
int
>
ksize
{
static_cast
<
int
>
(
filter
.
dims
()[
2
]),
static_cast
<
int
>
(
filter
.
dims
()[
3
])};
int
n
=
im2col_step
;
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
int
f
=
filter
.
dims
()[
0
];
T
*
filter_grad_tmp
=
nullptr
;
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
filter_grad_tmp
),
filter_grad
->
numel
()
*
sizeof
(
T
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
// set zeros for d_table_data
const
int
zero
=
0
;
int
r_dx
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
dx_data
,
input
->
numel
(),
zero
);
int
r_dw
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
dw_data
,
filter
.
numel
(),
zero
);
int
r_doffset
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
doffset_data
,
offset
.
numel
(),
zero
);
int
r_dmask
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
dmask_data
,
mask
.
numel
(),
zero
);
int
r_filter
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
filter_grad_tmp
,
filter
.
numel
(),
zero
);
auto
ret
=
(
r_dx
==
xpu
::
Error_t
::
SUCCESS
)
&&
(
r_dx
==
r_dw
)
&&
(
r_dx
==
r_doffset
)
&&
(
r_dx
==
r_dmask
)
&&
(
r_dx
==
r_filter
);
PADDLE_ENFORCE_EQ
(
ret
,
true
,
platform
::
errors
::
External
(
"XPU API return wrong value, please check where "
"Baidu Kunlun Card is properly installed."
));
for
(
int
i
=
0
;
i
<
batch_size
/
im2col_step
;
++
i
)
{
int
r
=
xpu
::
deformable_conv_grad
<
float
,
float
,
float
,
int
>
(
dev_ctx
.
x_context
(),
input_ptr
+
i
*
im2col_step
*
input_dim
,
filter_ptr
,
offset_ptr
+
i
*
im2col_step
*
input_offset_dim
,
mask_ptr
+
i
*
im2col_step
*
input_mask_dim
,
output_grad_ptr
+
i
*
im2col_step
*
output_dim
,
dx_data
+
i
*
im2col_step
*
input_dim
,
filter_grad_tmp
,
doffset_data
+
i
*
im2col_step
*
input_offset_dim
,
dmask_data
+
i
*
im2col_step
*
input_mask_dim
,
n
,
c
,
h
,
w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
deformable_groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU deformable_conv_grad kernel return wrong value[%d]."
,
r
));
r
=
baidu
::
xpu
::
api
::
add
<
T
>
(
dev_ctx
.
x_context
(),
filter_grad_tmp
,
dw_data
,
dw_data
,
filter
.
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU add kernel return wrong value[%d]."
,
r
));
}
dev_ctx
.
Wait
();
xpu_free
(
filter_grad_tmp
);
if
(
input_grad
==
nullptr
)
{
xpu_free
(
dx_data
);
}
if
(
filter_grad
==
nullptr
)
{
xpu_free
(
dw_data
);
}
if
(
offset_grad
==
nullptr
)
{
xpu_free
(
doffset_data
);
}
if
(
mask_grad
==
nullptr
)
{
xpu_free
(
dmask_data
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
XPUDeviceContext
=
paddle
::
platform
::
XPUDeviceContext
;
REGISTER_OP_XPU_KERNEL
(
deformable_conv
,
ops
::
DeformableConvXPUKernel
<
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
deformable_conv_grad
,
ops
::
DeformableConvGradXPUKernel
<
XPUDeviceContext
,
float
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
0 → 100644
浏览文件 @
07c67d5a
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test_xpu
import
OpTest
,
XPUOpTest
import
paddle
from
paddle.fluid
import
Program
,
program_guard
def
dmc_bilinear
(
data_im
,
height
,
width
,
h
,
w
):
h_low
=
int
(
np
.
floor
(
h
))
w_low
=
int
(
np
.
floor
(
w
))
h_high
=
h_low
+
1
w_high
=
w_low
+
1
lh
=
h
-
h_low
lw
=
w
-
w_low
hh
=
1
-
lh
hw
=
1
-
lw
v1
=
0
if
h_low
>=
0
and
w_low
>=
0
:
v1
=
data_im
[
h_low
,
w_low
]
v2
=
0
if
h_low
>=
0
and
w_high
<=
width
-
1
:
v2
=
data_im
[
h_low
,
w_high
]
v3
=
0
if
h_high
<=
height
-
1
and
w_low
>=
0
:
v3
=
data_im
[
h_high
,
w_low
]
v4
=
0
if
h_high
<=
height
-
1
and
w_high
<=
width
-
1
:
v4
=
data_im
[
h_high
,
w_high
]
w1
,
w2
,
w3
,
w4
=
hh
*
hw
,
hh
*
lw
,
lh
*
hw
,
lh
*
lw
val
=
w1
*
v1
+
w2
*
v2
+
w3
*
v3
+
w4
*
v4
return
val
def
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
group
,
conv_param
):
in_n
,
in_c
,
in_h
,
in_w
=
input
.
shape
out_c
,
f_c
,
f_h
,
f_w
=
filter
.
shape
assert
offset
.
shape
==
(
in_n
,
2
*
f_h
*
f_w
,
in_h
,
in_w
)
assert
mask
.
shape
==
(
in_n
,
f_h
*
f_w
,
in_h
,
in_w
)
assert
f_c
*
group
==
in_c
assert
np
.
mod
(
out_c
,
group
)
==
0
stride
,
pad
,
dilation
=
conv_param
[
'stride'
],
conv_param
[
'pad'
],
\
conv_param
[
'dilation'
]
out_h
=
1
+
(
in_h
+
2
*
pad
[
0
]
-
(
dilation
[
0
]
*
(
f_h
-
1
)
+
1
))
//
stride
[
0
]
out_w
=
1
+
(
in_w
+
2
*
pad
[
1
]
-
(
dilation
[
1
]
*
(
f_w
-
1
)
+
1
))
//
stride
[
1
]
assert
out_h
==
in_h
assert
out_w
==
in_w
col_buffer
=
np
.
zeros
((
in_n
,
in_c
*
f_h
*
f_w
,
in_h
*
in_w
))
for
n
in
range
(
in_n
):
for
c
in
range
(
in_c
):
for
h
in
range
(
out_h
):
for
w
in
range
(
out_w
):
for
kh
in
range
(
f_h
):
for
kw
in
range
(
f_w
):
offset_h_table
=
\
offset
[
n
,
::
2
,
h
,
w
].
reshape
(
f_h
,
f_w
)
offset_w_table
=
\
offset
[
n
,
1
::
2
,
h
,
w
].
reshape
(
f_h
,
f_w
)
mask_table
=
\
mask
[
n
,
:,
h
,
w
].
reshape
(
f_h
,
f_w
)
offset_h
=
offset_h_table
[
kh
,
kw
]
offset_w
=
offset_w_table
[
kh
,
kw
]
val
=
0
im_h
=
h
*
stride
[
0
]
+
kh
*
dilation
[
0
]
\
+
offset_h
-
pad
[
0
]
im_w
=
w
*
stride
[
0
]
+
kw
*
dilation
[
0
]
\
+
offset_w
-
pad
[
1
]
if
im_h
>
-
1
and
im_w
>
-
1
and
\
im_h
<
in_h
and
im_w
<
in_h
:
val
=
dmc_bilinear
(
input
[
n
,
c
],
in_h
,
in_w
,
im_h
,
im_w
)
val_out
=
val
*
mask_table
[
kh
,
kw
]
col_buffer
[
n
,
c
*
f_h
*
f_w
+
kh
*
f_w
+
kw
,
h
*
in_w
+
w
]
=
val_out
out
=
np
.
zeros
((
in_n
,
group
,
int
(
out_c
//
group
),
out_h
*
out_w
))
weight
=
filter
.
reshape
(
group
,
int
(
out_c
//
group
),
f_c
*
f_h
*
f_w
)
col_buffer
=
col_buffer
.
reshape
(
(
in_n
,
group
,
int
(
in_c
//
group
*
f_h
*
f_w
),
in_h
*
in_w
))
for
n
in
range
(
in_n
):
for
g
in
range
(
group
):
out
[
n
,
g
]
=
np
.
matmul
(
weight
[
g
],
col_buffer
[
n
,
g
])
out
=
out
.
reshape
(
in_n
,
out_c
,
out_h
,
out_w
)
return
out
class
TestModulatedDeformableConvOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"deformable_conv"
self
.
dtype
=
np
.
float32
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
conv_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
offset
=
10
*
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
)
mask
=
10
*
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
output
=
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
self
.
groups
,
conv_param
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Offset'
:
OpTest
.
np_dtype_to_fluid_dtype
(
offset
),
'Mask'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mask
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'deformable_groups'
:
self
.
deformable_groups
,
'im2col_step'
:
self
.
im2col_step
,
'dilations'
:
self
.
dilations
,
}
self
.
outputs
=
{
'Output'
:
output
}
def
has_cuda
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
self
.
use_cuda
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Offset'
,
'Mask'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.06
)
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
8
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
8
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestWithDilation
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
2
,
2
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
4
,
3
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
class
TestWith3x3
(
TestModulatedDeformableConvOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
im2col_step
=
1
self
.
deformable_groups
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
class
TestModulatedDeformableConvInvalidInput
(
unittest
.
TestCase
):
def
test_error
(
self
):
def
test_invalid_input
():
paddle
.
enable_static
()
input
=
[
1
,
3
,
32
,
32
]
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_input
)
def
test_invalid_offset
():
paddle
.
enable_static
()
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'int32'
)
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
mask
=
fluid
.
data
(
name
=
'mask'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_offset
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录